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Abstract
This paper investigates undefined behavior in C and offers
a few simple techniques for operationally specifying such
behavior formally. A semantics-based undefinedness checker
for C is developed using these techniques, as well as a test
suite of undefined programs. The tool is evaluated against
other popular analysis tools, using the new test suite in
addition to a third-party test suite. The semantics-based tool
performs at least as well or better than the other tools tested.

1. Introduction
A programming language specification or semantics has dual
duty: to describe the behavior of correct programs and to
identify incorrect programs. The process of identifying incor-
rect programs can also be seen as describing which programs
do not belong to the language. Many languages come with
static analyses (such as type systems) that statically exclude a
variety of programs from the language, and there are rich for-
malisms for defining these restrictions. However, well-typed
programs that “go bad” dynamically are less explored. Some
languages choose to give these programs semantics involving
exceptions, or similar constructs, while others choose to ex-
clude these programs by fiat, stating that programs exhibiting
such behaviors do not belong to the language. Regardless of
how they are handled, semantic language definitions must
specify these situations in some manner. This paper is about
these behaviors and such specifications.

This paper is a sister paper to our previous work giving
a complete, formal semantics to C [6]. In that work, we fo-
cused primarily on giving semantics to correct programs, and
showed how our formal definition could yield a number of
tools for exploring program evaluation. The evaluation we
performed was against defined programs, and the complete-
ness we claimed was for defined programs. In contrast, in this
work we focus on identifying undefined programs. We go into
detail about what this means and how to do it, and evaluate
our semantics against test suites of undefined programs.

Although there have been a number of formal semantics
of various subsets of C (see above paper for an in-depth
comparison), they generally focus on the semantics of cor-
rect programs only. While it might seem that semantics will

naturally capture undefined behavior simply by exclusion, be-
cause of the complexity of undefined behavior, it takes active
work to avoid giving many undefined programs semantics.
In addition, capturing the undefined behavior is at least as
important as capturing the defined behavior, as it represents
a source of many subtle program bugs. While a semantics
of defined programs can be used to prove their behavioral
correctness, any results are contingent upon programs actu-
ally being defined—it takes a semantics capturing undefined
behavior to decide whether this is the case.

C, together with C++, is the king of undefined behavior—C
has over 200 explicitly undefined categories of behavior, and
more that are left implicitly undefined [11]. Many of these
behaviors can not be detected statically, and as we show later
(Section 2.6), detecting them is actually undecidable even
dynamically. C is a particularly interesting case study because
its undefined behaviors are truly undefined—the language has
nothing to say about such programs. Moreover, the desire for
fast execution combined with the acceptance of danger in the
culture surrounding C means that very few implementations
try to detect such errors at runtime.

Concern about undefined programs has been increasing
due to the growing interest in security and safety-critical
systems. However, not only are these issues broadly misun-
derstood by the developer community, but many tools and
analyses underestimate the perniciousness of undefined be-
havior (see Section 2 for an introduction to its complexity),
or even limit their input to only defined programs. For exam-
ple, CompCert [16], a formally verified optimizing compiler
for C, assumes its input programs are completely defined,
and gives few guarantees if they contain undefined behavior.
We provide this study of undefined behaviors in the hope of
alleviating this obstacle to correct software.

To our knowledge, this is the first study of the semantics of
undefined behavior (though there has been a practical study of
arithmetic overflow in particular [4]). Undefinedness tends to
be considered of secondary importance in semantics, particu-
larly because of the misconception that capturing undefined
behaviors comes “for free” simply by not defining certain
cases. However, it can be quite difficult to cleanly separate
the defined from the undefined. To see how this might be the
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case, consider that the negation of a context free language
may not be context free, or that not all semidecidable systems
are decidable. While it is true that capturing undefinedness is
about not defining certain cases, this is easier said than done
(see Section 4).

Our contributions include the following:

• a systematic formal analysis of undefinedness in C;
• identification and comparison of techniques that can be

used to define undefinedness;
• a semantics-based tool for identifying undefined C pro-

grams;
• initial work on a comprehensive benchmark for undefined

behavior in C.

The tool, the semantics, and the test suite can be found at
http://c-semantics.googlecode.com/.

In the following sections, we formalize what undefined-
ness means in C and why it is important to detect (Section 2),
give background information on our formalism and on our
semantics (Section 3), explain techniques needed to capture
undefinedness semantically (Section 4), and compare how our
semantics-based tool performs against other analysis tools in
identifying such behavior (Section 5).

2. Undefinedness
In this section we examine what undefinedness is and why it
is useful in C. We also look into some of the complexity
and strangeness of undefined behavior. We finish with a
brief overview of undefinedness in other popular languages.
Other good introductions to undefinedness in C (and C++)
include Regehr [24] and Lattner [14]. The fact that the best
existing summaries are blog posts should indicate that there
is a significant lack of academic work on undefinedness.

2.1 What Undefinedness Is
According to the C standard, undefined behavior is “behavior,
upon use of a nonportable or erroneous program construct
or of erroneous data, for which this International Standard
imposes no requirements” [11, §3.4.3:1]. It goes on to say:

Possible undefined behavior ranges from ignoring the
situation completely with unpredictable results, to
behaving during translation or program execution in a
documented manner characteristic of the environment
(with or without the issuance of a diagnostic message),
to terminating a translation or execution (with the
issuance of a diagnostic message). [11, §3.4.3:2]

This effectively means that, according to the standard, unde-
fined behavior is allowed to do anything at any time. This is
discussed in more detail in Section 2.4. Undefined programs
are invalid C programs, because the standard imposes no
restrictions on what they can do. Of course, particular im-
plementations of C may guarantee particular semantics for
otherwise undefined behaviors, but these are then extensions
of the actual C language.

2.2 Undefinedness is Useful
The C standard ultimately decides which behaviors are to
be undefined and which are to be defined. One source of
undefined behaviors are behaviors that are exceptional in
some way, while also hard (or impossible) to detect statically.1

If these behaviors are undefined, an implementation of C does
not need to handle them by adding complex static checks that
may slow down compilation, or dynamic checks that might
slow down execution of the program. This makes programs
run faster.

For example, dereferencing an invalid pointer may cause a
trap or fault (e.g., a Segmentation Fault); more importantly, it
does not do the same thing on every platform. If the language
required that all platforms behave identically, for example by
throwing an exception when dereferencing an invalid pointer,
a C compiler would have to generate more complicated code
for dereference. It would have to generate something like: for
dereference of a pointer p, if p is a valid pointer, go ahead and
dereference p; otherwise, throw an exception. This additional
condition would mean slower code, which is something that
the designers of C try to avoid: two of the design principles of
C are that it should be “[made] fast, even if it is not guaranteed
to be portable”, and that implementations should “trust the
programmer” [10].

To keep the language fast, the standard states that derefer-
encing an invalid pointer is undefined [11, §6.5.3.3:4]. This
means programs are allowed to exhibit any behavior what-
soever when they dereference an invalid pointer. However,
it also means that programmers now need to worry about it,
if they are interested in writing portable code. The upshot
of liberal use of undefined behavior is that no runtime error
checking needs to be provided by the language. This leads
to the fastest possible generated code, but the tradeoff is that
fewer programs are portable.

2.3 Undefinedness is also a Problem
Even though undefined behavior comes with benefits, it also
comes with problems. It can often confuse programmers who
upon writing an undefined program, think that a compiler will
generate “reasonable” behavior. In fact, compilers do many
unexpected things when processing undefined programs.

For example, in the previous section we mentioned that
dereferencing invalid pointers is undefined. When given this
code:
int main(void){
*(char*)NULL;
return 0;
}

1 There are also undefined behaviors that are not hard to detect statically, such
as “If two identifiers differ only in nonsignificant characters, the behavior is
undefined” [11, §6.4.2:6], but are there for historical reasons or to make a
compiler’s job easier.
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GCC,2 Clang,3 and ICC4 will not generate code that segfaults,
because they simply ignore the dereference of NULL. They are
allowed to do this because dereferencing NULL is undefined—
a compiler can do anything it wants to such an expression,
including totally ignoring it.

Even worse is that compilers are at liberty to assume that
undefined behavior will not occur. This assumption can lend
itself to more strange consequences. One nice example is this
piece of C code [21]:
int x;
...
if (x + 1 < x) { ... }

Programmers might think to use a construct like this in or-
der to handle a possible arithmetic overflow. However, ac-
cording to the standard, x + 1 can never be less than x un-
less undefined behavior occurred (signed overflow is unde-
fined [11, §6.5:5]). A compiler is allowed to assume unde-
fined behavior never occurs—even if it does occur, it does
not matter what happens. Therefore, a compiler is entirely
justified in removing the branch entirely. In fact, GCC 4.1.2
does this at all optimization levels and Clang and GCC 4.4.4
do this at optimization levels above 0. Even though Clang and
GCC only support two’s complement arithmetic, in which
INT_MAX + 1 == INT_MIN, both compilers clearly take ad-
vantage of the undefinedness.

Here is another example where compilers take advantage
of undefined behavior and produce unexpected results:
int main(void){
int x = 0;
return (x = 1) + (x = 2);
}

Because assignment is an expression in C that evaluates
to “the value of the left operand after the assignment” [11,
§6.5.16:3], this piece of code would seem to return 3. How-
ever, it is actually undefined because multiple writes to the
same location must be sequenced (ordered) [11, §6.5:2], but
addition is nondeterministic. GCC returns 4 for this program,
because it transforms the code similar to the following:
int x = 0;
x = 1;
x = 2;
return x + x;

For defined programs, this transformation is completely
behavior preserving. However, because it is undefined, the
behavior can be, and in the case of GCC is, different than
what most programmers expect.

2 v 4.1.2 unless otherwise noted. All compilers on x86_64 with -O0 unless
otherwise noted.
3 v 3.0
4 v 11.1

2.4 Strangeness of C Undefinedness
In one sense, all undefined behaviors are equally bad because
compiler optimizers are allowed to assume undefined behav-
ior can never occur. This assumption means that really strange
things can happen when undefined behavior does occur. For
example, undefined behavior in one part of the code might
actually affect code “that ran earlier”, because the compiler
can reorder things. For example:
int main(void){
int r = 0, d = 0;
for (int i = 0; i < 5; i++) {
printf("%d\n", i);
r += 5 / d; // divides by zero
}
return r;
}

Even though the division by zero occurs after the printf
lexically, it is not correct to assume that this program will “at
least” print 0 to the screen. Again, this is because an undefined
program can do anything. In practice, an optimizing compiler
will notice that the expression 5 / d is invariant to the loop
and move it before the loop. Both GCC and ICC do this at
optimization levels above 0. This means on a machine that
faults when doing division by zero, nothing will be printed to
the screen except for the fault. Again, this is correct behavior
according to the C standard because the program triggers
undefined behavior.

2.5 Implementation-Dependent Undefined Behavior
The C standard allows implementations to choose how they
behave for certain kinds of behavior. So far we have discussed
only undefined behavior, for which implementations may
do whatever they want. However, there are other kinds of
behavior, including unspecified behavior and implementation-
defined behavior [11, §3.4]:

unspecified behavior Use of an unspecified value, or other
behavior [with] two or more possibilities and [ . . . ] no
further requirements on which is chosen in any instance.

implementation-defined Unspecified behavior where each
implementation documents how the choice is made.

An example of unspecified behavior is the order in which
summands are evaluated in an addition. An example of
implementation-defined behavior is the size of an int.
Whether or not a program is undefined may actually de-
pend on the choices made for an implementation regarding
implementation-defined or unspecified behaviors.

2.5.1 Undefinedness Depending on
Implementation-Defined Behavior

Depending on choices of implementation-defined behavior,
behavior can be defined or not. For example:
int* p = malloc(4);
if (p) { *p = 1000; }
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In this code, if ints are 4 bytes long, then the above code is
free from undefined behaviors. If instead, ints are 8 bytes
long, then the above will make an undefined memory read
outside the bounds of the object pointed to by p. In practice,
this means that programmers must be intimately familiar with
the implementation-defined choices of their compiler in order
to avoid potential undefinedness arising from it.

2.5.2 Undefinedness Depending on Unspecified
Behavior

Like implementation-defined undefined behavior above, un-
defined behavior can also depend on unspecified behavior.
However, while implementation-defined behavior must be
documented [11, §3.19.1] so that programmers may rely on
it, unspecified behavior has no such requirement. An imple-
mentation is allowed to have different unspecified behaviors
in different situations, and may even change them at runtime.

One such example is evaluation order. Because evaluation
order is almost completely unspecified in C, an implementa-
tion may take advantage of undefined behavior found on only
some of these orderings. For example, any implementation
is allowed to “miscompile” this code:
int d = 5;
int setDenom(int x){
return d = x;
}
int main(void) {
return (10/d) + setDenom(0);
}

because there is an evaluation strategy (e.g., right-to-left)
that would set d to 0 before doing the division. While GCC
compiles this code and generates an executable containing no
runtime error, CompCert [16], a formally verified optimizing
compiler for C, generates code that exhibits a division by
zero. Both of these behaviors are correct because the program
contains reachable undefined behavior. In practice, this means
that any tool seeking to identify all undefined behaviors must
search all possible evaluation strategies.

2.6 Difficulties in Detecting Undefined Behavior
In general, detecting undefined behavior is undecidable even
with dynamic information. Consider the following example:

int main(void){
guard();
5 / 0;
}

The undefinedness of this program is based on what happens
in the guard() function. Only if one can show that guard()
will terminate can one conclude that this program has unde-
fined behaviors. However, showing that guard() terminates,
even with runtime information, is undecidable.

Although it is impossible (in general) to prove that a pro-
gram is free from undefined behaviors, this raises the ques-
tion of whether one can monitor for undefined behaviors.

The question is somewhat hard to pin down—as we saw in
Section 2.3, a smart compiler may detect undefined code stat-
ically and generate target code that does not contain the same
behaviors. This means a monitor or even state-space search
tool would not be able to detect such undefined behavior at
runtime, even though the original program contained it. If
we instead assume we will monitor the code as run on an
“abstract machine”, we can give more concrete answers.

First, it is both decidable and feasible to monitor an
execution and detect any undefined behavior, as long as the
program is deterministic. By deterministic we mean there
is only a single path of execution (or all alternatives join
back to the main path after a bounded number of steps). It is
feasible because one could simply check the list of undefined
behaviors against all the alternatives before executing any
step. Because all decisions would be joinable, only a fixed
amount of computation would be needed to check each step.

For nondeterministic single-threaded5 programs, one may
need to keep arbitrary amounts of information, making the
problem decidable but intractable. Consider this program:
int r = 0;
int flip() {
// return 0 or 1 nondeterministically
}
int main(void){
while(true){
r = (r << 1) + flip();
}
}

At iteration n of the loop above, r can be any one of 2n values.
Because undefinedness can depend on the particular value of
a variable, all these possible states would need to be stored
and checked at each step of computation by a monitor. The
above argument could be reformulated to encode r using
allocated memory, avoiding the limited sizes of builtin types
like int, but the presentation would be more complicated.

If multiple threads are introduced, then the problem be-
comes undecidable. The reason is similar to the original
argument—because there are no fairness restrictions on
thread scheduling, at any point, the scheduler can decide
to let a long-running thread continue running.
// thread 1
while (guard()) {}
d = 0;

// thread 2
5 / d;

In this example, if one could show that the loop must eventu-
ally terminate, then running thread 1 to completion followed
by thread 2 would exhibit undefined behavior. However, show-
ing that the loop terminates is undecidable.

2.7 Undefinedness in Other Languages
It should be clear at this point that undefinedness is a huge
part of the C language, but other languages also have un-
defined behavior. The documentation or specifications of

5 Threads were added to C in C11 [11].
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many popular languages identify undefined programs that
are allowed to do anything (including crash). For example,
LLVM includes a number of undefined behaviors, including
calling a function using the wrong calling convention [15].
Scheme’s specification describes undefined behavior in rela-
tion to callcc and dynamic-wind [13, p. 34]. Even Haskell,
an otherwise safe and pure language, has undefined behav-
ior in a number of unsafe libraries, such as Unsafe.Coerce
and System.IO.Unsafe. There are many other examples of
this in other programming languages, including Perl [5] and
Ruby [27].6

Even languages without undefined behavior run into many
of the same specification problems. Any language with
constructs having exceptional behavior, such a division by
zero, needs to be able to specify or define the behavior of
these cases. These kinds of behavior are invariably of the
form, “the —– construct is defined as —–. However, in some
special case —–, it raises an exception instead.” For example,
the Java standard states,

The binary / operator performs division, produc-
ing the quotient of its operands [ . . . ] if the value
of the divisor in an integer division is 0, then an
ArithmeticException is thrown. [8, §15.17.2]

Similarly, the SML Basis Library standard states:

[i div j] returns the greatest integer less than or
equal to the quotient of i by j. [ . . . ] It raises [ . . . ] Div
when j = 0. [7]

This pattern comes up frequently enough in most languages
that it is worthy of investigation. We investigate ways of
formally specifying such behaviors in Section 4.

3. K Semantics of C
In this section we give a brief introduction to the K Frame-
work, which will be useful background information for Sec-
tion 4, as well give a brief summary of our previous work
giving a complete formal semantics to C [6].

3.1 K Framework
To give our semantics, we use a rewriting-based seman-
tic framework called K [25], inspired by rewriting logic
(RL) [18]. RL organizes term rewriting modulo equations
(namely associativity, commutativity, and identity) as a logic
with a complete proof system and initial model semantics.
The central idea behind using RL as a formalism for the se-
mantics of languages is that the evolution of a program can
be clearly described using rewrite rules. A rewriting theory
consists essentially of a signature describing terms and a set
of rewrite rules that describe steps of computation. Given
some term allowed by signature (e.g., a program together

6 Though the Ruby standard uses the word “unspecified”, they define this
to include behavior “not necessarily defined for any particular implementa-
tion” [27, §4.17].

〈
〈K〉k 〈Map〉genv 〈Map〉gtypes 〈Set〉locsWrittenTo 〈Set〉notWritable

〈Map〉mem

〈 〈
〈Map〉env 〈Map〉types

〉
control

〈List〉callStack

〉
local

〉
T

Figure 1. Subset of the C Configuration

with input), deduction consists of the application of the rules
to that term. This yields a transition system for any program.

For the purposes of this paper, the K formalism can be re-
garded as a front-end to RL designed specifically for defining
languages. In K, parts of the state are represented as labeled,
nested multisets, as seen in Figure 1. These collections con-
tain pieces of the program state like a computation stack or
continuation (e.g., k), environments (e.g., env, types), stacks
(e.g., callStack), etc. The configuration shown in Figure 1 is
a subset of the real C configuration we use, which contains
over 90 such cells. As this is all best understood through an
example, let us consider a typical rule for a simple imperative
language (see Section 4.1.2 for the equivalent rule in C) for
finding the address of a variable:

〈* X
V
···〉k 〈··· X 7→ L ···〉env 〈··· L 7→ V ···〉mem

We see here three cells: k, env, and mem. The k cell repre-
sents a list (or stack) of computations waiting to be performed.
The left-most (i.e., top) element of the stack is the next item
to be computed. The env cell is simply a map of variables to
their locations. The mem cell is a map of locations to their
values. The rule above says that if the next thing to be eval-
uated (which here we call a redex) is the application of the
dereferencing operator (*) to a variable X, then one should
match X in the environment to find its location L in memory,
then match L in memory to find the associated value V . With
this information, one should transform the redex into V .

This example exhibits a number of features of K. First,
rules only need to mention those cells (again, see Figure 1)
relevant to the rule. The cell context can be inferred, making
the rules robust under most extensions to the language.
Second, to omit a part of a cell we write “···”. For example,
in the above k cell, we are only interested in the current redex
*X, but not the rest of the context. Finally, we draw a line
underneath parts of the state that we wish to change—in the
above case, we only want to evaluate part of the computation,
but neither the context nor the environment change.

This unconventional notation is quite useful. The above
rule, written out as a traditional rewrite rule, would be:

〈* X y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

⇒ 〈V y κ〉k 〈ρ1,X 7→ L, ρ2〉env 〈σ1,L 7→ V , σ2〉mem

Items in the k cell are separated with “y”, which can now
be seen. The κ and ρ1, ρ2, σ1, σ2 take the place of the “···”
above. The most important thing to notice is that nearly the
entire rule is duplicated on the right-hand side. Duplication
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in a definition requires that changes be made in concert, in
multiple places. If this duplication is not kept in sync, it leads
to subtle semantic errors. In a complex language like C, the
configuration structure is much more complicated, and would
require actually including additional cells like control and
local (Figure 1). These intervening cells are automatically
inferred in K, which keeps the rules more modular.

3.2 Semantics of C
In our sister paper, we gave a complete formal semantics
to C. This semantics covered the entire freestanding C99
feature set and passed 99.2% of the GCC torture tests, a
regression test suite used by GCC. This was higher than the
GCC and Clang compilers, and only one test short of the
ICC compiler. We were able to test the semantics so easily
because it is executable. With a simple wrapper script around
the semantics, we made the definition act like a typical C
compiler, which we call kcc. kcc can run defined programs:
$ kcc helloworld.c
$ ./a.out
Hello world

and can also report on undefined programs. If we take the
third example in Section 2.3 and run it in kcc we get:
ERROR! KCC encountered an error.
===============================================
Error: 00016
Description: Unsequenced side effect on scalar
object with side effect of same object.
===============================================
Function: main
Line: 3

We also showed how the semantics was useful for explor-
ing program behaviors via search or model-checking tools
derived automatically from the semantics. Despite the success
of this venture, our previous work focused on the positive
semantics, i.e., the semantics of correct programs, and only
touched on the negative semantics, i.e., the rules identifying
undefined programs. In fact, at least as much of our time was
spent tailoring our semantics to catch undefinedness as was
spent giving semantics to correct programs.

Giving rules for correct programs is often not enough to
catch undefined ones. We give a number of examples of this
in the next section, but here is a simple one to give the idea.
In C, arrays must have length at least 1 [11, §6.7.6.2:1&5].
However, without taking this fact into consideration, it is
easy to give semantics to arrays of any non-negative length,
simply by allowing the size to be any natural number. If they
would be used at runtime, the problem would be detected, but
simply declaring them would slip through. We had precisely
this problem in earlier versions of our semantics. To detect
this problem, the semantics needs an additional constraint on
top of allowing any natural—it must also be non-zero. Again,
this additional check is not needed for correct programs—it
is only needed to detect programs that are undefined.

4. Semantics-Based Undefinedness Checking
As we explained in Section 2.7, most languages have some
form of undefined, or at least exceptional, behavior. When for-
malizing such languages, this behavior needs to be formalized
as well. We were faced with this problem when developing
our formal semantics for C [6]. At first we believed that de-
tecting undefinedness using a semantics would simply be a
matter of running the program using the semantics and letting
it get stuck where there was no semantic rule for a behavior.
We have come to realize that in fact, quite a lot of work needs
to go on to enable these behaviors to be caught.

In this section we explain a number of techniques for
dealing with undefinedness semantically. In doing so, we
address most of the issues used as examples in Section 2.

4.1 Using Side Conditions and Checks to Limit Rules
By bolstering particular rules with side conditions, we can
catch some undefined behavior. We have employed this
technique in our semantics to catch much of the undefined
behavior we are capable of catching.

4.1.1 Division by Zero
The simplest example of using side conditions to catch
undefined behavior is in a division. In C, the following
unconditional rule gives the semantics of integer division
for correct programs:

〈 I / J
I /Int J

···〉k

Of course, this rule is not good for programs that do divide
by zero. In such a case, the rule might turn “/Int” into a
constructor for integers, where suddenly terms like 5 /Int 0
are introduced into the semantics. Programs like:
int main(void){
5/0;
return 0;
}

might actually be given complete meanings without getting
stuck, because the semicolon operator throws away the value
computed by its expression.

One way to solve this issue is simply by adding a side
condition on the division rule requiring “J , 0”. This will
cause the rule to only define the defined cases, and let the
semantics get stuck on the undefined case. In addition, human-
readable error messages, like the one shown in Section 3.2,
can be obtained by inverting the side conditions preventing
undefined behavior for occurring:

〈 I / J
reportError(“Division by zero”)

···〉k when J = 0
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4.1.2 Dereferencing
Another example, the dereferencing rule, defined in its most
basic form is:

〈* (L : ptrType(T))
[L] : T

···〉k(deref)

This rule says that dereferencing a location L of type pointer-
to-T (L : ptrType(T)) yields an lvalue L of type T ([L] : T).
This rule is completely correct according to the semantics of
C [11, §6.5.3.2:4] in that it works for any defined program.
However, it fails to detect undefined programs including
dereferencing void [11, §6.3.2.1:1] or null [11, §6.3.2.3:3]
pointers. In a program like:
int main(void){
*NULL;
return 0;
}

this rule would apply to *NULL, then the result ([NULL] :void)
would be immediately thrown away (according to the seman-
tics of “;”). The program would then return 0 and completely
miss the fact that the program was undefined.

In order to catch these undefined behaviors, it could be
rewritten as:

〈* (L : ptrType(T ))
[L] : T

···〉k when T , void ∧ L , NULL
(deref-safer)

If this is the only rule in the semantics for pointer deref-
erencing, then the semantics will get stuck when trying to
dereference NULL or trying to dereference a void pointer.

One major downside with this technique is in making
rules more complicated and more difficult to understand. For
complex side conditions involving multiple parts of the state,
including cells not otherwise needed by the positive rule,
this is a big problem. To take pointer dereferencing again
as an example, we also want to eliminate the possibility
of dereferencing memory that is no longer “live”—either
variables that are no longer in scope, or allocated memory that
has since been freed. Here is the safest (and most verbose)
version of the rule:

(deref-safest)
〈* (sym(B) + O : ptrType(T ))

[sym(B) + O] : T
···〉k 〈··· B 7→ obj(Len,—) ···〉mem

when T , void ∧ O < Len

The above rule now additionally checks that the location
is still alive (by matching an object in the memory), and
checks that the pointer is in bounds (by comparing against
the length of the memory object). Locations are represented
as base/offset pairs sym(B)+O, which is explained in detail in
Section 4.3.1. The rule has become much more complicated.
The beauty and simplicity of the original semantic rule has
been erased, simply to catch undesirable cases.

A slight variation involves embedding the safety checks
in the main computation. This is useful when the safety

condition is complicated or involves other parts of the state.
The above rule can be rewritten as two rules like so:

〈 * (L : ptrType(T ))
checkDeref(L,T) y [L] : T

···〉k(deref-safest-embedded)

(checkDeref)
〈 checkDeref(sym(B) + O,T)

·

···〉k 〈··· B 7→ obj(Len,—) ···〉mem

when O < Len ∧ T , void

The deref-safest-embedded rule could be rewritten to use a side
condition, but this would require passing the entire context
(in particular, memory) to the helper-function as an argument.
This works, but the rule becomes artificially complex.

4.2 Storing Additional Information
It is not enough to add new rules or side conditions to existing
rules if the semantics does not keep track of all the pertinent
data to be used in the specifications.

4.2.1 Unsequenced Reads and Writes
As explained in Section 2.3, unsequenced writes or an unse-
quenced write and read of the same object is undefined. In
order to catch this in our semantics, we keep track of all the
locations that have been written to since the last sequence
point in a set called locsWrittenTo (see Figure 1). Whenever
we write to or read from a location, we first check this set to
make sure the location had not previously been written to:

〈 writeByte
writeByte’

(Loc,V) ···〉k 〈S ·

Loc
〉locsWrittenTo when Loc < S

〈 readByte
readByte’

(Loc) ···〉k 〈S 〉locsWrittenTo when Loc < S

After either of the above rules have executed, the primed oper-
ations will take care of any additional checks and eventually
the actual writing or reading.

Finally, when we encounter a sequence point, we empty
the locsWrittenTo set:

〈 seqPoint
·

···〉k 〈 S
·

〉locsWrittenTo

4.2.2 Const-Correctness
Another example of needing to keep additional information
is specifying const-correctness. In C, a type can have the
type qualifier const, meaning it is unchangeable after initial-
ization. Writes can only occur through non-const types [11,
§6.3.2.1:1, §6.5.16:1]. For correct programs, this modifier
can be completely ignored, since it is only there to help the
programmer catch mistakes. To actually catch those mistakes
requires the semantics to keep track of const modifiers and
to check them during all modifications and conversions.
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One might think that it is possible to soundly and com-
pletely check for const-correctness statically—after all, it
is generally not allowed to drop qualifiers on pointers [11,
§6.3.2.3:2], meaning one cannot simply write code like this:
const char p[] = "hello";
char *q = (char*)p;

With this in mind, one could check that no consts are
dropped in conversion and no writes occur through const
types. However, this is not sufficient—there are ways around
the conversion, such as this:
const char p[] = "hello";
char *q = strchr(p, p[0]); // removes const

The strchr library function
char *strchr(const char *s, int c);

returns a pointer to the first instance of c in s. By calling it
with p and p[0], this function returns a pointer to the same
string, but without the const modifier. This is completely
defined by itself, but if a write occurs through pointer q, the
standard says that it is undefined [11, §6.7.3:6]. We handle
this in our semantics by marking memory that was defined
with const by placing these locations into a set named
notWritable, then checking this fact during subsequent writes:

〈 writeByte’
writeByte”

(Loc,V) ···〉k 〈S 〉notWritable when Loc < S

4.3 Symbolic Behavior
Through the use of symbolic execution, we can further
enhance the above idea by expanding the behaviors that we
consider undefined, while maintaining the good behaviors.
While some of the symbolic behavior was described in our
sister paper [6, §6.2.2], we explain it in more depth here.

4.3.1 Memory Locations
We treat pointers not as concrete integers, but as symbolic
values. By symbolic values, we mean base/offset pairs, which
we write as sym(B) + O, where B corresponds to the base
address of an object itself, while the O represents the offset
of a particular byte in the object. We wrap the base using
“sym” because it is symbolic—despite representing a location,
it is not appropriate to, e.g., directly compare B < B′ [11,
§6.5.8:5]. Our memory then is a map from base addresses to
blocks of bytes. Each base address represents the memory
of a single object.

This is the same technique used by Blazy and Leroy [1]
and by Ros, u et al. [26]. It takes advantage of the fact that
addresses of local variables and memory returned from allo-
cation functions like malloc() are unspecified [11, §7.20.3].
However, there are a number of restrictions on many ad-
dresses, such as the elements of an array being completely
contiguous and the fields in a struct being ordered (though
not necessarily contiguous).

For example, take the following program:

int main(void) {
int a, b;
if (&a < &b) { ... }
}

If we gave objects concrete, numerical addresses, then they
would always be comparable. However, this piece of code is
actually undefined according to the standard [11, §6.5.8:5].
Symbolic locations that are actually base/offset pairs allow
us to detect this program as problematic. We only give
semantics to pointer comparisons when the two addresses
share a common base. For example:

〈 (sym(B) + O : T ) < (sym(B) + O′ : T )
1 : int

···〉k when O < O′

〈 (sym(B) + O : T ) < (sym(B) + O′ : T )
0 : int

···〉k when O ≮ O′

Thus, evaluation gets stuck on the program above because &a
and &b do not share a common base B. Of course, sometimes
locations are comparable. If we take the following code
instead:
int main(void) {
struct { int a; int b; } s;
if (&s.a < &s.b) { ... }
}

the addresses of a and b are guaranteed to be in order [11,
§6.5.8:5], and in fact our semantics finds the comparison to
be true because the pointers share a common base.

4.3.2 Storing Pointers
Another example of the use of symbolic terms in our seman-
tics is how we store pointers in memory. Because all data
must be split into bytes to be stored in memory, the same
must happen with pointers stored in memory. However, be-
cause our pointers are not actual numbers, they cannot be
split directly; instead, we split them symbolically. Assuming
a particular pointer sym(B) + O was four bytes long, it is split
into the list of bytes:

subObject(sym(B) + O, 0), subObject(sym(B) + O, 1),
subObject(sym(B) + O, 2), subObject(sym(B) + O, 3)

where the first argument of subObject is the object in question
and the second argument is which byte this represents. This
allows the reconstruction of the original pointer, but only if
given all the bytes. This program demonstrates its utility:
int main(void) {
int x = 5, y = 6;
int *p = &x, *q = &y;
char *a = (char*)&p, *b = (char*)&q;
a[0] = b[0]; a[1] = b[1]; a[2] = b[2];
// *p is not defined yet
a[3] = b[3]; // needs all bytes
return *p; // returns 6
}
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Any particular byte-splitting mechanism would mean over-
specification—a user could take advantage of it to run code
that is not necessarily defined.

4.3.3 Indeterminate Memory
Another example can be seen when copying a struct one
byte at a time (as in a C implementation of memcpy());
every byte needs to be copied, even uninitialized fields
(or padding), and no error should occur [11, §6.2.6.1:4].
Because of this, our semantics must give it meaning. Using
concrete, perhaps arbitrary, values to represent unknowns
would mean missing some incorrect programs, so we use
symbolic values that allow reading and copying to take place
as long as the program never uses those uninitialized values
in undefined ways. We store these unknown bytes in memory
as unknown(N) where N is the number of unknown bits.

In C99, unknown values are generally not allowed to be
used under the possibility that they may produce a trap (an
error) [9, §6.2.6.1:5]. Similarly, in our semantics, such un-
known bytes may not be used by most operations. How-
ever, exceptions are made when using an unsigned-character
type [9, §6.2.6.1:3–4]—this special case is represented in our
semantics by an additional rule allowing such an unknown
value to be read by lvalues of the allowed type.

4.4 A Semantics-Based Undefinedness Checker
By using the three techniques described above, we improved
our formal semantics of C [6] into a tool capable of recogniz-
ing a wide range of undefined behaviors. While the original
semantics was capable of catching a handful of undefined
behaviors, in general each additional behavior we caught
involved a reworking of at least one semantic rule.

Our tool is capable of detecting undefined behaviors
simply by running them through the semantics. As described
in Section 3.2, this is done using a wrapper, mimicking GCC,
we built around the semantics. We report on the capabilities
of this tool as compared to other analysis tools in Section 5.

4.5 Suggested Semantic Styles for Undefinedness
In this section, we suggest two new specification techniques
for capturing undefined or exceptional behavior based on
our experience in capturing undefinedness in C. These are
untested (we know of no semantic framework incorporating
them), but we think they would make expressing undefined
behavior much more straightforward.

4.5.1 Inclusion/Exclusion Rules
One nice way to specify exceptional behavior would be
to define additional “negative” semantic rules to catch the
special cases. For example, in addition to the deref rule given
earlier, add the following two rules:

〈 * (L : ptrType(void))
reportError(“Cannot dereference void pointers”)

···〉k

(deref-neg1)

〈 * (NULL : ptrType(T))
reportError(“Cannot dereference null pointers”)

···〉k

(deref-neg2)

For this definitional strategy to make sense, later rules must
be applied before earlier rules. Each additional rule acts as
a refinement on the previous rule. Simply having multiple
rules is much cleaner than rules with side conditions—it
allows the primary, unexceptional case to be emphasized
because it is presented without side conditions. However, this
strategy trades off the complexity of side conditions for the
complexity of rule precedence.

It is possible for rule precedence to be supported by a
semantic framework as syntactic sugar, where it automatically
adds side conditions necessary to prevent earlier rules from
executing first. It should be clear that one could hand-write
these side conditions, but the whole point of this strategy is
to avoid explicit side conditions in order to make the rules
simpler.

It is not enough to consider exploring the transition system
for these reportError states, since this mechanism is also
useful for defined but exceptional behavior. In such cases, if
one were to allow the rules to apply in any order and then
analyze the resulting transition system, it would be difficult
to identify which paths should be removed. Consider the
following three rules for division:

〈 I / J
I /Real J

···〉k ← 〈 I / 0
Infinity

···〉k ← 〈 0/ 0
NaN

···〉k

These rules should be tried right to left until one matches.
They are similar to the rules of IEEE-754 floating point,
which evaluates division by zero to Infinity or NaN values.

4.5.2 Declarative Specification
An additional possibility is to again start with only the
original positive semantic rule, but then to add declarative
specifications on top of that. For example, using LTL and
configuration patterns, we could specify both

�¬〈* (L : ptrType(void)) ···〉k
and �¬〈* (NULL : ptrType(T )) ···〉k

The first property states that it is never the case that the next
action to perform is dereferencing a void pointer. The second
property states that it is never the case that the next action
to perform is dereferencing a null pointer. Using a temporal
logic to add these negative “axioms” to the semantics has the
advantage of being able to capture undefined behavior that
might only occur on one path in the transition system. For
example, this property states that read-write data races are
not allowed:

�¬
(
〈read(L,T ) ···〉k 〈write(L′,T ′,V) ···〉k

)
when overlaps((L,T ), (L′,T ′))
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5. Evaluation
In this section we evaluate the semantics-based approach
against special-purpose analysis tools. To do so, we explain
our testing methodology, which includes a third-party suite
of undefined tests as well as a suite of tests we developed.

5.1 Third Party Evaluation
In order to evaluate our analysis tool, we first looked for a
suite of undefined programs. Although we were unable to
find any test suite focusing on undefined behaviors, we did
find test suites that included a few key behaviors. Below we
briefly mention work we encountered that may evolve into
or develop a complete suite in the future, as well as one suite
that we use as a partial undefinedness benchmark.

5.1.1 Related Test Suites
There is a proposed ISO technical specification for program
analyzers for C [12], suggesting programmatically enforce-
able rules for writing secure C code. Many of these rules
involve avoiding undefined behavior; however, the specifica-
tion only focuses on statically enforceable rules. The above
classification is similar to MISRA-C [19], whose goal was
to create a “restricted subset” of C to help those using C
meet safety requirements. MISRA released a “C Exemplar
Suite”, containing code both conforming and non-conforming
code for the majority of the MISRA C rules. However, these
tests contain many undefined behaviors mixed into a single
file, and no way to run the comparable defined code with-
out running the undefined code. Furthermore, most of the
MISRA tests test only statically detectable undefined behav-
ior. The CERT C Secure Coding Standard [28] and MITRE’s
“common weakness enumeration” (CWE) classification sys-
tem [20] are other similar projects, identifying many causes
of program error and cataloguing their severity and other
properties. The projects mentioned above include many un-
defined behaviors—for example, the undefinedness of signed
overflow [11, §6.5:5] corresponds to CERT’s INT32-C and
to MITRE CWE-190.

5.1.2 Juliet Test Suite
NIST has released a suite of tests for security called the
Juliet Test Suite for C/C++ [23], which is based on MITRE’s
CWE classification system. It contains over 45,000 tests, each
of which triggers one of the 116 different CWEs supported
by the suite. Most of the tests (∼70%) are C and not C++.
However, again the Juliet tests focus on statically detectable
violations, and not all of the CWEs are actually undefined—
many are simply insecure or unsafe programming practices.

Because the Juliet tests include a single undefined be-
havior per file and come with positive tests corresponding
to the negative tests, we decided to extract an undefined-
ness benchmark from them. To use the Juliet tests as a
test suite for undefinedness, we had to identify which tests
were actually undefined. This was largely a manual process

that involved understanding the meaning of each CWE. It
was necessary due to the large number of defined-but-bad-
practice tests that the suite contains. Interestingly, the suite
contained some tests whose supposedly defined portions were
actually undefined. Using our analysis tool, we were able
to identify six distinct problems with these tests and have
submitted the list to NIST. We have not heard back from
them yet. We also wrote a small script automating the pro-
cess of extracting and in some cases fixing the tests, avail-
able at http://code.google.com/p/c-semantics/source/
browse/trunk/tests/juliet/clean.sh.

This extraction gave us 4113 tests, with about 96 source
lines of code (SLOC) per test (179 SLOC with the helper-
library linked in). The tests can be divided into six classes of
undefined behavior: use of an invalid pointer (buffer overflow,
returning stack address, etc.), division by zero, bad argument
to free() (stack pointer, pointer not at start of allocated
space, etc.), uninitialized memory, bad function call (incorrect
number or type of arguments), or integer overflow.

We then ran these tests using a number of analysis tools,
including our own semantics-based tool kcc. These tools
include Valgrind [22],7 CheckPointer [17],8 and the Value
Analysis plugin for Frama-C [2].9 Although the Juliet tests are
designed to exercise static analysis tools, all of the tools we
tested can be considered dynamic analysis tools.10 The results
of this benchmark can be seen in Figure 2. Valgrind, and
Value Analysis each took, on average, 0.5 s to run the tests,
kcc took 23 s, and CheckPointer took 80 s. CheckPointer has
a large, fixed startup time as it is mainly used to check large
software projects, not 100 line programs.

Based on initial results of these tests, we improved our tool
to catch precisely those behaviors we were missing. We also
contacted the authors of the Value Analysis plugin with their
initial results, and they were able to patch their tool within
a few days to do the same thing. Because not all tools had
this opportunity, the test results should not be taken as any
kind of authoritative ranking, but instead suggest some ideas.
First, no tool was able to catch behaviors accurately unless
they specifically focused on those behaviors. This reaffirms
the idea that undefinedness checking does not simply come
for free (e.g., by simply leaving out cases), but needs to be
studied and understood specifically. For example, Valgrind
does not try to detect division by zero or integer overflow,
and CheckPointer was not designed to detect division by zero,
uninitialized memory, or integer overflow. This shows up very
clearly in the test results. Second, tools were able to improve
performance simply by looking at concrete failing tests and
adapting their techniques. As an example, on its initial run
on the Juliet tests, kcc only caught about 93%.

7 v. 3.5.0, http://valgrind.org/
8 v. 1.1.5, http://www.semdesigns.com/Products/MemorySafety/
9 v. Nitrogen-dev, http://frama-c.com/value.html
10 Frama-C’s value analysis can be used in “C interpreter” mode [3, §2.1].
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Tools (% passed)

Undefined Behavior No. Tests Valgrind CheckPointer V. Analysis kcc

Use of invalid pointer 3193 70.9 89.1 100.0 100.0
Division by zero 77 0.0 0.0 100.0 100.0
Bad argument to free() 334 100.0 99.7 100.0 100.0
Uninitialized memory 422 100.0 29.3 100.0 100.0
Bad function call 46 100.0 100.0 100.0 100.0
Integer overflow 41 0.0 0.0 100.0 100.0

Figure 2. Comparison of analysis tools on Juliet Test Suite

These ideas mean it is critical that undefinedness bench-
marks continue to be developed and used to refine analysis
tools. Both we and the Value Analysis team found the Juliet
tests useful in improving our tools; in many cases, they gave
concrete examples of missing cases that were otherwise hard
to identify. The identification, together with the techniques
described in Section 4, enabled us to adapt our tools to catch
every behavior in the suite.

5.2 Undefinedness Test Suite
Because we were unable to find an ideal test suite for evaluat-
ing detection of undefined behaviors, we began development
of our own. This involved first trying to understand the be-
haviors, and then constructing test cases corresponding to
each behavior.

5.2.1 Our Classifications
To help develop our test suite, we first tried to understand
the undefined behaviors listed in the standard. Part of this
involves classifying the behaviors into categories depending
on difficulty. For example, the standard says: “The (nonex-
istent) value of a void expression (an expression that has
type void) shall not be used in any way, and implicit or ex-
plicit conversions (except to void) shall not be applied to
such an expression” [11, §6.3.2.2:1]. Depending on how one
interprets the word “use”, this could be a static or dynamic
restriction. If static, the code:
if (0) { (int)(void)5; }

is undefined according to §6.3.2.2:1; if dynamic, it is de-
fined since the problematic code can never be reached. The
intention behind the standard11 appears to be that, in gen-
eral, situations are made statically undefined if it is not easy
to generate code for them. Only when code can be gener-
ated, then the situation can be undefined dynamically. In the
above example, it is hard to imagine code being generated
for (int)(void)5, so we can conclude this is meant to be
statically undefined. When there was any confusion as to the
static/dynamic nature of any of the behaviors, we use the
above assumption.

11 Private correspondence with committee member.

We found that the majority of the categories of undefined
behavior in C are dynamic in nature. Out of 221 undefined be-
haviors, 92 are statically detectable and 129 are only dynami-
cally detectable. Because the argument for the undecidability
of detecting undefinedness (Section 2.6) does not depend
on the particular dynamic behavior, detecting any dynamic
behavior is equally hard. This does not apply to the static
behaviors, as they are undefined for static reasons and are not
subject to particular control flows.

5.2.2 Our Test Suite
An ideal test suite for undefined behaviors involves indi-
vidual tests for each of the 221 undefined behaviors. Some
behaviors require multiple tests, e.g., “If the specification of
a function type includes any type qualifiers, the behavior is
undefined.” [11, §6.7.3:9] requires at least one test for each
qualifier. Ideally the tests would also include control-flow,
data-flow, and execution-flow variations in order to make
static analysis more difficult.

As we discussed in Section 2.4, dynamic undefined behav-
ior on a reachable path (or any statically undefined behavior)
causes the entire program to become undefined. This means
that each test in the test suite needs to be a separate program,
otherwise one undefined behavior may interact with another
undefined behavior. In addition, each test should come with a
corresponding defined test. This “control” test makes it possi-
ble to identify false-positives in addition to false-negatives.
Without such tests, a tool could simply say all programs were
undefined and receive full marks.

Our suite currently includes 178 tests covering 70 of the
undefined behaviors. We hope it will serve as a starting point
for the development of a larger, more comprehensive test. Our
suite focuses almost entirely on the non-library behaviors,
and specifically on the dynamic behaviors therein. It includes
at least one test for each of the 42 dynamically undefined
behaviors relating to the non-library part of the language
that are not also implementation-specific. We have made
our test suite and categorization available for download at
http://code.google.com/p/c-semantics/downloads/.

These tests are much broader than the Juliet tests, covering
70 undefined behaviors as opposed to the 6 covered by the
Juliet tests. However, each behavior is tested shallowly, with
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Tools Static (% Passed) Dynamic (% Passed)

Valgrind 0.0 2.3
V. Analysis 1.6 45.3
CheckPtr. 2.4 13.1
kcc 44.8 64.0

Figure 3. Comparison of analysis tools against our tests.
These averages are across undefined behaviors, and no behav-
ior is weighted more than another.

only 2 tests per behavior on average. Some of the dynamic
behaviors it tests that the Juliet suite does not include:

• If the program attempts to modify [a character string
literal], the behavior is undefined. [11, §6.4.5:7]
• An object shall have its stored value accessed only by an

lvalue expression that has [an allowed type]. [11, §6.5:7]
• When two pointers are subtracted, both shall point to

elements of the same array object, or one past the last
element of the array object. [11, §6.5.6:9]
• If a side effect on a scalar object is unsequenced relative

to either a different side effect on the same scalar object
or a value computation using the value of the same scalar
object, the behavior is undefined. [11, §6.5:2]

There are many other such behaviors tested, and all are
equally bad from the C standard’s perspective. They can
all cause a compiler to generate unexpected code or cause a
running program to behave in an unexpected way.

We compared the same tools as before using our own cus-
tom made tests. The results can be seen in Figure 3. It is clear
that the tools focusing on a few common undefined behaviors
(Valgrind and CheckPointer) only detect a small percentage
of behaviors. Both Value Analysis and kcc, which were de-
signed to catch a large number of undefined behaviors, were
able to catch a much larger number of dynamic behaviors,
and in the case of kcc, many of the static behaviors as well.

6. Conclusion
In this paper we investigated undefined behaviors in C and
how one can capture these behaviors semantically. We dis-
cussed three techniques for formally describing undefined
behaviors. We also used these techniques in a semantics-
based analysis tool, which we tested against other popular
analysis tools. We compared the tools on a test suite of our
own devising, which we are making publicly available, as
well as on another publicly available test suite.

We hope that this work will bring more attention to the
problem of undefined behavior in program verification. Unde-
fined programs may behave in any way and undefinedness is
(in general) undecidable to detect; this means that undefined
programs are a serious problem that needs to be addressed
by analysis tools. Whether this is through semantic means
or some other mechanism, tools to verify the absence of

undefined behavior are needed on the road to fully verified
software.
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