
A Complete Formal Semantics of x86-64 User-Level
Instruction Set Architecture

Sandeep Dasgupta
University of Illinois at
Urbana-Champaign

USA
sdasgup3@illinois.edu

Daejun Park
Runtime Verification, Inc.

USA
dpark69@illinois.edu

Theodoros Kasampalis
University of Illinois at
Urbana-Champaign

USA
kasampa2@illinois.edu

Vikram S. Adve
University of Illinois at
Urbana-Champaign

USA
vadve@illinois.edu

Grigore Roşu∗

University of Illinois at
Urbana-Champaign

USA
grosu@illinois.edu

Abstract

We present the most complete and thoroughly tested formal
semantics of x86-64 to date. Our semantics faithfully formal-
izes all the non-deprecated, sequential user-level instructions
of the x86-64 Haswell instruction set architecture. This totals
3155 instruction variants, corresponding to 774 mnemonics.
The semantics is fully executable and has been tested against
more than 7,000 instruction-level test cases and the GCC
torture test suite. This extensive testing paid off, revealing
bugs in both the x86-64 reference manual and other existing
semantics. We also illustrate potential applications of our
semantics in different formal analyses, and discuss how it
can be useful for processor verification.

CCS Concepts · Theory of computation → Program

reasoning; ·Hardware→ Simulation and emulation; ·
Software and its engineering → Formal language def-

initions.

Keywords x86-64, ISA specification, Formal Semantics

ACM Reference Format:

Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram

S. Adve, and Grigore Roşu. 2019. A Complete Formal Semantics

of x86-64 User-Level Instruction Set Architecture. In Proceedings

of the 40th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’19), June 22ś26, 2019, Phoenix,

∗Also with Runtime Verification, Inc., USA.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314601

AZ, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.

1145/3314221.3314601

1 Introduction

The x86-64 instruction set architecture (ISA) is one of the
most complex and widely used ISAs on servers and desktops,
and ensuring the correctness of the x86-64 binary code is
important. The ability to directly reason about the binary
code is desirable, not only because it allows to analyze the
binary evenwhen the source code is not available (e.g., legacy
code or malware), but also because it avoids the need to trust
the correctness of compilers [22, 63].

A formal semantics of x86-64 is required for formal reason-
ing about binary code, one of the strongest ways to ensure
its correctness. An executable semantics is especially power-
ful because it allows direct testing to gain confidence in the
definitions of the semantics, and also because it can allow
additional tools based on symbolic execution, like deductive
verification and symbolic test generation. Completely for-
malizing the semantics of x86-64, however, is challenging
especially due to the complexity and the sheer number of
instructions that are informally specified in approximately
3,000-page standard [11].

Existing Semantics for x86-64 To date, to the best of our
knowledge, despite several explicit attempts [32, 33, 37] and
other related systems [13, 35, 36, 41, 42], no complete formal
semantics of x86-64 exists that can be used for formal reason-
ing about x86 binary programs. Heule et al. [37] presented
a formal semantics of x86-64, but it covers only a fragment
(∼47%) of all instructions; as the authors of [37] candidly
admitted, their synthesis methodology proved insufficient
to add the remaining instructions primarily due to limita-
tions of the underlying synthesis engine. Moreover, their
semantics misses certain essential details (Section 3.6 & 4).
Goel et al. [32, 33], on the other hand, specified a formal
semantics in the ACL2 proof assistant [38], allowing to rea-
son about functional correctness, but their semantics covers

1103

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601
https://doi.org/10.1145/3314221.3314601

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

only a small fragment (∼33%) of all user-level instructions.
There also have been several attempts [20, 24, 35, 60] to in-

directly describe the x86-64 semantics, where they define
an intermediate language (IL), specify the IL semantics, and
translate x86-64 to the IL. This indirect semantics, however,
may not be general enough to be used for different types of
formal analyses, since the IL might be designed with specific
purposes in mind, not to mention that the translation may
miss certain important details of the instruction behaviors.
Refer to Section 7 for a more detailed comparison to existing
semantics.

Our Approach We present the most complete and thor-
oughly tested formal semantics of user-level x86-64 assembly
instructions1 to date. We employed the K framework [59]
(Section 2.1) as our formalism medium to leverage its ca-
pability of deriving various correct-by-construction formal
analysis tools directly from the language semantics. We took
Heule et al. [37]’s semantics (Section 2.2) as our starting
point to avoid duplicating the formalization effort. We made
several corrections or improvements to this semantics, to im-
prove both soundness and efficiency. We automatically trans-
lated their semantics into K, and cross-checked the trans-
lated semantics against the original using an SMT solver. We
manually specified the semantics of the remaining instruc-
tions faithfully consulting the Intel manual [11] to obtain
the complete semantics. A manual specification may sound
like a daunting effort at first, but the fact that (1) x86-64
is largely stable and changes slowly over time, and (2) the
state-of-the-art synthesis techniques for language semantics
(notably, Strata [37] and Hasabnis et al. [35, 36]) suffer from
scalability and/or faithfulness issues (see Section 3.2 and 7
for details), makes the effort worth undertaking.
Like closely related previous work [33, 37], we omit the

relaxed memory model of x86-64 and thus the concurrency-
related operations. Modelling concurrency is a complex but
relatively orthogonal problem in the presence of small-step
operational semantics, as shown in priorwork [48, 57], where
they have integrated their memorymodel with a small subset
of 32-bit x86 instruction set. We believe that integrating
such a memory model into our instruction semantics is a
promising direction toward rigorously reasoning about real-
world programs running on modern multiprocessors. We
leave it for future work.

Contributions Below are our primary contributions.
Completeness. We present the most complete formal se-

mantics of x86-64 to date. Specifically, our semantics for-
malizes all the user-level instructions of the x86-64 Haswell
ISA (that is, 3155 instructions covering 774 mnemonics [11]),

1The current work do not include a formal model of the binary instruction

decoder. Note that, all future references of x86-64 łprogram(s)ž or łinstruc-

tions(s)ž, in the context of our model, are meant to refer to the łassembly

language programs(s)ž or łassembly instruction(s)ž.

except deprecated ones (336 instructions), the AES cryp-
tography extensions (35 instructions), and the system &
concurrency-specific instructions (210 instructions) (Sec-
tion 3.1).
Faithfulness. Being executable, the semantics of each in-

struction has been thoroughly tested against 7,000+ test cases
using the co-simulation method (Section 4). We found errors
in both the x86-64 standard document and other existing
semantics including the baseline semantics (Section 4).
Usability & portability. We illustrate the potential of our

semantics to be used for formal analyses such as deductive
program verification and program equivalence checking (Sec-
tion 5). The K framework also enables one to represent our
semantics as SMT theories, which allows others to easily
reuse our semantics for their own purposes. Indeed, we have
translated our semantics to Stoke [27] which can serve as a
drop-in replacement of Heule et al.’s semantics [37] and can
immediately benefit tools built on Stoke (e.g., [54]).
Our formal semantics is publicly available at [26].

1.1 Challenges in Formalizing x86-64

Size and Complexity The x86-64 ISA has a large number
of instructions, partly because of a large number of com-
plex instructions and partly because it keeps most of the
legacy and deprecated instructions (∼ 336+) for the sake of
backwards compatibility. It consists of 996 mnemonics, and
each mnemonic admits several variants, depending on the
types (i.e., register, memory, or constant) and the size (i.e.,
the bit-width) of operands.

Inconsistent Instruction Variants Some variants have
divergent behaviors more than the difference of their type
and size. For example, movsd, one of the 128-bit SSE instruc-
tions, has very different behaviors depending on whether the
type of the source operand is register or memory; it clears
the higher 64 bits of the target register only when the source
type is memory. Indeed, we revealed bugs in other semantics
due to their incorrect generalization of the variants’ behavior
(Details in Section 3.6, Instruction Variants).

Ambiguous Documentation The x86-64 reference man-
ual informally explains the instruction behaviors, leaving
certain details unspecified or ambiguous, which required
us to consult with an actual processor implementation to
clarify such details. Completely formalizing the vast number
of instructions with carefully identifying all the corner cases
from the informal document, thus, is highly non-trivial.

Undefined Behaviors The x86-64 standard also admits un-
defined behaviors that are implementation-dependent. Many
instructions (322 out of 996 mnemonics) have undefined be-
haviors: their output values of the destination register or the

2These numbers are obtained by parsing the official manual łVolume 2:

Instruction Set Referencež and cross checked with projects [16, 58] investing

similar efforts.

1104

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

%rflags register are undefined in certain cases. That is, the
processor is free to choose any behavior in undefined cases.
Many existing semantics, however, simply łdefinež the

undefined behaviors by following a specific behavior taken
by a processor implementation. This approach is problem-
atic because they do not capture all possible behaviors of
different processor implementations. Indeed, we found dis-
crepancies between existing semantics in specifying the un-
defined behaviors, where different semantics are valid only
for different groups of processors. That is, such semantics are
not adequate to formally reason about universal properties
(e.g., portability) of a program that need to be satisfied for
all standard-conforming processors. For example, the parity
flag %pf is undefined in the logical-and-not instruction andn,
where the processor implementation is allowed to either up-
date the flag value (to 0 or 1), or keep the previous value. We
found, e.g., that Remill [13] updates the flag with 0, whereas
Radare [20] keeps it unmodified. Identifying and faithfully
specifying all of the undefined behaviors, thus, are desirable
but challenging.
In our semantics, we faithfully modeled the undefined

value as a unique symbol (called undef) whose value is non-
deterministically decided each time within the proper range.
These nondeterministic values are enough to capture and
formally reason about all possible behaviors of the instruc-
tions for different processors (and even any future, standard-
conforming processor).

2 Preliminaries

Here we provide background on the K framework and the
Strata project [37] (used for our baseline semantics).

2.1 K Framework

K [59] is a framework for defining formal language seman-
tics. Given a syntax and a semantics of a language, K gener-
ates a parser, an interpreter, as well as formal analysis tools
such as model checkers and deductive program verifiers, at
no additional cost. Using the interpreter, one can test their
semantics immediately, which significantly increases the ef-
ficiency of semantics developments. Furthermore, the formal
analysis tools facilitate formal reasoning about the given
language semantics. This helps in terms of both applicability
of the semantics and engineering the semantics itself.

We refer the reader to [55, 59] for details. In a nutshell, inK,
a language syntax is given using conventional Backus-Naur
Form (BNF). A language semantics is given as a parametric
transition system, specifically a set of reduction rules over
configurations. A configuration is an algebraic representa-
tion of the program code and state. Intuitively, it is a tuple
whose elements (called cells) are labeled and possibly nested.
Each cell represents a semantic component, such as the mem-
ory or the registers. A special cell, named k, contains a list of
computations to be executed. A computation is essentially a

program fragment, while the original program is flattened
into a sequence of computations. A rule describes a one-
step transition between configurations, giving semantics to
language constructs. Rules are modular; they mention only
relevant cells that are needed in each rule, making many
rules far more concise and easy to read than in some other
formalisms.

2.2 Strata Project

Strata [37] automatically synthesized formal semantics of
1905 instruction variants (representing 466 unique mnemon-
ics) of the x86-64 Haswell ISA. The algorithm to learn the
formal semantics of an instruction, say IS, starts with a small
set of instructions, called base set B, whose semantics are
known and trusted; a set of test inputs T, and the output be-
havior of IS obtained by executing IS on T. Then Stoke [58]
is used to synthesize instruction sequences which contain
instructions from B and match the behavior of IS for all test
cases in T. Given two such generated instruction sequences
IS and IS′, their equivalence is decided using an SMT solver
and the trusted and known semantics from the base set. If
the two sequences are semantically distinct, then the model
produced by the SMT solver is used to obtain an input t that
distinguishes IS and IS′, and t is added to T. This process
of synthesizing instruction sequence candidates and accept-
ing or rejecting them based on equivalence checking with
previous candidates, is repeated until a threshold is reached,
which in their implementation is based on the number of
accepted instruction sequences.
For each instruction, Strata manifested its semantics in

terms of two related artifacts. The first artifact is an instruc-
tion sequence and the second is a set of SMT formulas in the
bit-vector theory, one for each output register. The second
is obtained by symbolically executing the first.

3 Formalization of x86-64 Semantics

This section presents how we get the complete semantics of
all the user-level instructions. Section 3.1 details the scope of
our work. Section 3.6 mentions howwe leverage the informa-
tion available in Strata, our baseline semantics. Section 3.3
explains how we formalize our model in K.

3.1 Scope of the Work

We support all but a few non-deprecated user-level instruc-
tions. The support includes 3155 total variants of the Haswell
x86-64 ISA (representing 774 out of 996 unique mnemonics).
The entire implementation took 8 man-months, with the
lead author having prior experience in binary decompilation
and strong familiarity with the x86-64 architecture and docu-
mentation. Below is a summary of the instruction categories
that we support.

1105

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

General-Purpose. These implement data-movement, arith-
metic, logic, control-flow, string operations (including fast-
and repeated- string operations).
Streaming SIMD Extensions (SSE) & subsequent extensions

(SSE-2, SSE-3, SSE-4.1, SSE-4.2). Instructions in this category
operate on integer, string or floating-point values stored in
128-bit xmm registers. Among other things, the category
features instructions related to conversions between integer
and floating-point values with selectable rounding mode,
and string processing.

Advanced Vector Extensions (AVX) & subsequent extensions

(Fused-Multiply-Add (FMA) & AVX2). These instructions op-
erate on integer or floating-point values stored in 256-bit
ymm registers; a majority of which are promoted from SSE
instruction sets. Additionally, the category features enhanced
functionalities specific to AVX & AVX2, like broadcast/per-
mute, vector shift, and non-contiguous data fetch operations
on data elements.
16-bit Floating-Point Conversion (or F16C). These instruc-

tions implement conversions between single-precision (32-
bit) and half-precision (16-bit) floating-point values.
Instructions which are not included in the current scope

of work are: (1) System-level instructions, which are re-
lated to the operating system, protection levels, I/O, cache
lines, and other supervisor instructions; (2) x87 & MMX in-
structions, consisting of legacy floating-point and vector
operations, respectively, which are now superseded by SSE;
(3) Concurrency-related operations, including atomic opera-
tions and fences; and (4) Cryptography instructions, which
support cryptographic processing specified by Advanced
Encryption Standard (AES). We note that while there is no
inherent limitation in supporting the above instructions with
our approach, the system-level instructions require to formu-
late an abstraction of different architectures and operating
systems, which is a significant effort that is orthogonal to the
presented effort of formalizing the user-level instructions.

3.2 Overview of the Approach

Briefly, our approach is as follows. We first defined the ma-
chine configuration and underlying infrastructure in the K
framework, in order to define, execute and test the x86-64
semantics. To leverage previous work as much as possible,
we took the semantic rules of all the instructions supported
in Strata, which amounts to about 60% of the instructions in
scope, in the form of SMT formulas. We corrected, improved
or simplified many of the baseline rules. We then translated
these SMT formulas from Strata into K rules using a script,
and tested the resulting rules by comparing with the Strata
rules using Z3. These steps give us a validated initial set of
semantic rules in K for about 60% of the target instructions
(our łbaselinež set).

We attempted to extend the stratification approach in
Strata to define additional rules automatically, in two ways:
(i) augmenting their base set B, and (ii) constraining the

〈

⟨K⟩ k ⟨IDregname 7→ Value⟩ regstate ⟨Address 7→ Value⟩ memstate · · ·
〉

T

Figure 1. Program Configuration

search space manually using knowledge of instruction be-
haviors. Both these attempts failed; they worked only for a
few instructions, but in general, we found them to be imprac-
tical. Specifically, we added 58 base instructions to the base
set, and learned the semantics of 70 new instructions, which
are variants of the added instructions, in 20 minutes, but
no more even after we kept running for two days. Also, we
tried constraining the search space by manually populating
it with relevant instructions. The lesson we learned from
these experiments is, getting the right set of base instruc-
tions or a constrained search space for a complex instruction
need an insight about the semantics of that instruction it-
self. We found that the effort to extract such information
from the manual is about the same as manually defining that
instruction.
We then manually added K rules for the remaining 40%

of the target instructions by systematically translating their
description of the Intel manual into K rules, in some cases
cross-referencing against semantics available in Stoke. The
outcome was a complete formal specification of user-level
x86-64 in K.

We validated this semantics in three ways, as described
in Section 4. First, we use the K interpreter to execute the
semantics of each instruction for 7,000+ test inputs (each
input is a processor state configuration) and compared the
output directly with the hardware behavior for the same
instruction. Second, we repeated this experiment using the
applicable programs in the GCCC-torture tests [7]. Third, we
compared against the semantics defined in the Stoke project
for about 330 instructions that were omitted in Strata (thus
not included in our baseline), using an SMT solver.

These validation experiments uncovered bugs in the Intel
manual, in Strata’s simplification rules, and in the Stoke
semantics. All these bugs were reported to the authors, and
most have been acknowledged and some have been fixed.
The details are in Section 4.

3.3 Program Configuration

Defining a language semantics in K requires defining the
program configuration, the semantics of how programs are
evaluated (i.e., the execution environment), and the seman-
tics of the statements or instructions. We begin with the
configuration.

TheK configuration of a running x86-64 program is shown
in Figure 1. The cells are represented using angle brackets.
The outer ⊤ cell contains the cells used during program

1106

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

evaluation. The inner k cell contains a list of computations
to be executed. Below we describe the two other inner cells.3

Register State. The regstate cell contains a map from reg-
isters or flag names to values. Note that, all the values or
addresses, stored in registers, memory (described next) or
flags, are represented as bit-vectors which are depicted in
this paper asW’V, and interpreted as a bit-vector of sizeW
and value V. The register names include the sixteen general
purpose registers, %rip, and the sixteen SIMD registers. The
value mapped to a register name is a 64-width bit-vector (or a
256-width one for the SIMD registers). Values for sub-register
variants are derived from the register values by extracting
the relevant bits. We store individual flag names (mapped to
a bit-vector value of width 1) as opposed to a 64-bit rflags
register. Every access (read/write) of %rflags retrieves the
entries in the regstate map for the individual flags.

Memory State. Our memory model is inspired by previous
efforts [29, 42]. The memstate cell is a map from 64-bit ad-
dresses to bytes, which specifies the byte-addressable mem-
ory4, but our implementation is flexible enough to use alter-
native memory representations with addressing of 2-byte
or 4-byte quantities. Our memory layout is łflatž, in which
all available memory locations can be addressed, but we do
have logical partitions5 of the memory into sections like
code, data and stack. The following is an example snapshot
of a memory state, holding a 4-bytes integer value 65535:

〈

4 7→ byte(0, 32′65535) 5 7→ byte(1, 32′65535)

6 7→ byte(2, 32′65535) 7 7→ byte(3, 32′65535)

〉

memstate

Here the memory address 4 stores the 0th byte of the bit-
vector 32’65535, the address 5 stores the 1st byte, and so
on. When memory is read, requested bytes are aggregated
according to the size of the memory access.

3.4 Semantics of Execution Environment

We now give the reader a flavor of our semantics, by dis-
cussing a few of the roughly 5, 200 rules6 that we defined to
model the entire semantics. We first explain the semantics of
the execution environment, which involves all the machin-
ery used for executing x86-64 programs. We will explain the
semantics of individual instructions in the next section.
The execution of an x86-64 program begins with initial-

ization of the configuration with the following contents of
the k cell.

<k> $PGM : I n s t r u c t i o n s ↷ f e t c h </k>

The symbol ↷ is used to separate the computations in the k
cell and ł:Tž to represent the type of a term.

3We omit other auxiliary cells (marked by ł· · · ž) for the simplicity of the

presentation.
4Byte-addressability allows the model to specify both aligned and unaligned

accesses in the same principle.
5These abstractions are useful for executing x86-64 programs.
6Each rule is 17 LOC on average, and the total size is 15 KB of text.

Concisely, the semantics of execution of an x86-64 pro-
gram involves initializing the memory by reading the pro-
gram instructions ($PGM), from the k cell, one at a time
until all the instructions are loaded in memory. The memory-
loaded instructions are then fetched one at a time, using the
fetch computation, to get executed. The instruction to be ex-
ecuted next is pointed to by the instruction pointer register
%rip.

Next, we describe the rule applied to initialize memory
with instructions one at a time.

r u l e <k> OpC : Mnemonic OpR : Operands ⇒ < / k>

<memstate > M:Map ⇒ M[L ← (OpC OpR)] </memstate >

<nex t l o c > L : Address ⇒ L + i n s t r S i z e (OpC OpR) </ nex t l o c >

The k cell contains the instruction to be processed next.
Mnemonic andOperands denote the types of the terms used
to represent an instruction. The ‘⇒’ symbol represents a
reduction (i.e., a transition relation). A cell without the ‘⇒’
symbol means that it is read but not changed by the rule.
K allows us to use ł.ž to represent an empty computation
and ł...ž to match the portions of a cell that are neither read
nor written by the rule. The above rule essentially stores
each instruction in memory, which is modeled as a map, at
an address L given by the nextloc7 cell. Subsequently, the
nextloc cell gets updated to an appropriate address used
for storing the next instruction. Once the entire program is
loaded, the fetch-and-execute cycle starts, which is realized
by the following rule:

r u l e <k> f e t c h ⇒ exec (OpC OpR) ↷ f e t c h . . . </k>

<memstate > . . . L 7→ (OpC OpR) . . . < / memstate >

< r e g s t a t e > . . .

" RIP " 7→ (L ⇒ L + i n s t r S i z e (OpC OpR))

. . . < / r e g s t a t e >

The rule above says that if the next thing to be evaluated
is a fetch computation (referred in the rule as fetch), then
one should match %rip in the environment to find its value
L in regstate, where L is matched in memstate to find the
mapped instruction. The mapped instruction is then put at
the head of the k cell to be computed next, using a rule exec
for execution (defined later), along with the fetch computa-
tion to be executed in order. The rule also updates the value
of %rip to point to the following instruction. The execution
will be terminated when there is no instruction stored in the
memory at the address pointed to by %rip.8

3.5 Semantics of Individual Instructions

Here we explain how we define the semantics of an in-
struction in K using a running example of logical-and-not
andnq -4(%rsp), %rbx, %rax, which performs a bitwise

7The nextloc cell is a auxiliary cell that holds the next memory location to

store an instruction, which we omit in the program configuration (Figure 1)

for the sake of simplicity.
8While initializing the stack section of memory, we store an invalid address

just before the entry-point function as return address. When the entry point

function returned, the invalid return address is popped out of the stack and

stored in %rip leading to program termination.

1107

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

logical AND of inverted source register operand (%rbx) with
the source memory operand (-4(%rsp)) and writes the result
to destination register %rax. Additionally the instruction
affects all the 6 status flags (%sf, %zf, %of, %cf, %af and %pf).

The semantics of most of the instructions can be modeled
broadly in 3 phases: (1) read the data from source operand(s),
which could be a register, memory or constant value; (2)
operate on the data based on the mnemonic; and (3) write the
result(s) to destination operand(s), which could be a register
or memory. An instruction may exercise some or all of the
above phases.

Read from Source Operand(s) Instruction in the running
example reads from register (%rbx) and memory (-4(%rsp))
operands. A read from register is modeled as a lookup with
register name in the regstate map and subsequent read of
the mapped value or, for a sub-register, a portion of it. The
semantics of register read can be defined as:

r u l e <k> g e t R e g i s t e r V a l (R : R64) ⇒ BVr . . . < / k>

< r e g s t a t e > . . . R 7→ BVr . . . < / r e g s t a t e >

In the context of the running example, this rule is applied
when the current computation (at top of the k cell) is a 64-
bit register lookup, appeared as getRegisterVal(%rbx), and
regstate contains a register with name łRBXž. This rule re-
solves the register lookup to the mapped bit-vector value
BVr (or BVRBX for the running example).
A read from memory involves computing the effective

address in the memory, looking-up that address in memory,
and reading requested bytes from memory if the memory
access is within allowed range. The following rule is applied
to compute the effective address:

r u l e <k>

(O f f s e t : I n t (R : R64)) :Mem ⇒ (6 4 ' O f f s e t + BVr) : Address

. . . < / k>

< r e g s t a t e > . . . R 7→ BVr . . . </ r e g s t a t e >

The term to the left of ⇒ shows the memory addressing
expression, of type Mem, at the top of k cell, which gets
reduced to an effective memory address (or EA). The EA for
the memory operand used in the running example is (64’-4
+ BVrsp) and is used to do memory read access. The rule for
memory read access is responsible to read a memory value
of requested number of bits (64-bits for the current example)
starting from the EA.

Operate on Data The rules for operating on operands will
be different for each instruction based on the mnemonic.
For example, the mnemonic andnq requires logical-and-not
operation to be computed on the operands.

Write to Destination Operand(s) The example instruc-
tion writes the result to a destination register %rax. Also,
the flags sf and zf are updated based on the result; of and
cf are cleared, and af and pf are undefined. The rule shown
in Figure 2 realizes the destination write operation, where
memVal64 and BVr represents the 64-bit data values eval-
uated using the respective rules for reading register and

r u l e <k>

exec (andnq memVal64 , BVr , R : R64) ⇒ .

. . . < / k>

< r e g s t a t e >

"R " 7→ _ ⇒ (∼BVr & MemVal64)

" SF " 7→ (∼BVr & MemVal64) [6 3 : 6 3]

" ZF " 7→ (∼BVr & MemVal64) = 64 '0 ? 1 ' 1 : 1 ' 0

"OF " 7→ 1 '0

"CF " 7→ 1 '0

"AF " 7→ undef / / a f and

" PF " 7→ undef / / p f a r e unde f ined .

. . . < / r e g s t a t e >

Figure 2. Example instruction semantics of andn

memory operands (mentioned above). The operator ł[i:j]ž
extracts bits i down to j from a bit-vector of size n, yielding
another bit-vector of size i - j + 1, assuming that n > i ≥ j
≥ 0. The operator ł&ž implements bit-wise łandž operation.
The rule associated with memory write is similar to that for
memory read and is skipped here.

A x86-64 program is modeled as a list of instructions and
its semantics is given by composing the semantics of its
constituents.

3.6 Constructing the x86-64 Semantics

Systematic Translation of Strata Rules to K As men-
tioned in the introduction, we leverage the Strata [37] se-
mantics to develop our complete semantics, to minimize the
overall effort. We systematically translated their semantics
into K. Specifically, Strata offers the semantics of 1905 in-
struction variants as SMT formulas specifying the behavior
of output registers. For each instruction, we converted the
SMT formulas that Strata provides to a K specification using
a simple script (∼500 LOC).
To validate the translation, we generated SMT formulas

from the translated K specifications (using APIs provided
by the K framework), and use the Z3 SMT solver to check
their equivalence to the corresponding formulas provided
by Strata. While translating and validating their semantics,
we found various issues that we had to fix to establish our
baseline semantics. Below we describe the issues we found
in Strata.

Status Flags We found that Strata omitted to specify the
%af flag behaviors, as the flag is not commonly used. How-
ever, we faithfully specified the semantics of all the status
flags in the %rflags register, even if some of them are not
commonly used, since they may affect the overall program’s
behavior in some tricky cases, and we do not want to miss
any of such details when formally reasoning about the x86-64
programs.

Instruction Variants Strata essentially provides the se-
mantics of the register instructions, assuming that the seman-
tics of the memory and immediate instruction variants can

1108

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

be obtained by generalizing the register instructions9. How-
ever, we found that certain memory instructions cannot be
inferred by simply generalizing their corresponding register
instructions. For example, for movsd, one of the 128-bit SSE
instructions, its register variant has quite different seman-
tics from the memory variant. Below are their pseudo-code
semantics:

Semantics of Register Variant
(movsd %xmm1 , %xmm)

Semantics of Memory Variant
(movsd (%rax) , %xmm0)

S1. XMM0[63:0]← XMM1[63:0] S1. XMM0[63:0]←MEM_ADDR[63:0]
S2. XMM0[127:64] (Unmodified) S2. XMM0[127:64]← 0

As seen, only the memory instruction clears the higher 64
bits of the destination register, which cannot be inferred
from the register instruction behavior that does not touch
the higher bits at all. We found that another 128-bit SSE
instruction, movss, has the same generalization issue. For the
other instructions, we obtained the memory and immediate
variants by generalizing the register variants, and validated
the generalization by co-simulating the inferred semantics
against a processor.

Immediate Instruction Variants There are 118 immedi-
ate instruction variants (over the 8-bit constants) that do not
have corresponding register instructions. For those imme-
diate instructions, Strata provides the instruction semantics
for each individual constant, resulting in 30,208 (= 118× 256)
formulae10 for the immediate instructions’ semantics. We
generalized the set of formulae for each immediate instruc-
tion into a single semantic rule. We validated our generaliza-
tion by cross-checking the generalized semantics with the
original using the SMT solver.

Formula Simplification Due to the nature of the stratifi-
cation, Strata provides complex formulae for certain instruc-
tions. We simplified those complex formulae by either apply-
ing some simplification rules or manually translating into
simpler ones. Then we validated the simplification by check-
ing the equivalence between them using the SMT solver.
For example, the original Strata-provided formula for shrxl
%edx, %ecx, %ebx consists of 8971 terms (including the oper-
ator symbols), but we could simplify it to a formula consisting
of only 7 terms.

4 Validation of Semantics

A formal semantics is of limited use if one cannot generate
confidence in its correctness. In this section, we describe
how we establish that confidence in our model.

9Generalization is based on a hypothesis that the memory or immediate

variants will behave identically, on their operands, with corresponding

register variant.
10Indeed, Strata explicitly provides only 19,783 formulae by randomly sam-

pling ∼168 constants out of 256, in average, for each immediate instruction,

assuming that the remaining 10,425 formulae can be inferred.

4.1 Co-Simulations against Hardware

Empowered by the fact that we can directly execute the se-
mantics using the K framework, we validated our model by
co-simulating it against a realmachine. During co-simulation,
we execute a machine program on the processor as well as
on our K model and compare the execution results after ev-
ery instruction. In this work, we co-simulated our model
against two Intel implementations that were available to the
authors at the time of writing: łIntel Xeon CPU E3-1505M
v6ž and łIntel Xeon CPU E5-2640 v4ž. We admit that testing
the model against other hardwares (such as AMD) would
contribute to more thorough validation of our model, having
the potential of revealing flaws in those implementations
and/or additional imperfections in the manual as well, which
we leave as future work.

We first describe our test-infrastructure and then talk
about individual validation experiments and results.

Test Harness During co-simulations, we need tomake sure
that the program must be instrumented similarly both on
our model and the real hardware. We use the GNU Debug-
ger [10] to instrument programs on hardware. We developed
instrumentation tools based on K framework to gain similar
capabilities for our model. Using these tools we can record
the output state (including memory) after the execution of
each instruction. To facilitate debugging, in the event when
the output states do not match, we developed a tool which
points to the first instant when the output states diverge and
this saves debugging time.

The co-simulation experiments are done in the following
two phases: (1) Instruction level validation: testing individ-
ual instructions, and (2) Program level validation: testing a
combination of instructions as a part of real-world programs.

Instruction Level Validation The goal here is to execute
individual instructions both on hardware and our model
using test inputs and then compare the output states.
K already has matured library support for bit-vector, inte-

ger and floating-point theories. We use bit-vectors to imple-
ment the values stored in registers or memory. Depending
upon an instruction mnemonic, these values can be inter-
preted as integers (signed/unsigned) or floating-point values
(with various precisions). We augmented the library support
in K framework to interpret these bit-vectors accordingly.
With that support, we can execute and hence test instruc-
tions implementing various floating-point operations includ-
ing conversions (to and from integer/floating-point values)
with selectable rounding modes (e.g. Nearest, +Inf, -Inf and
Truncate).

Test Inputs A test input is a CPU state which includes values
for all registers, flags andmemory. Our test input set contains
more than 7, 000 inputs, obtained from the following sources:
(1) In section 2.2, we mentioned that Strata starts its algo-
rithm with a set of test inputs which keeps on augmenting

1109

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

itself during the process of stratification. We used the final
augmented test-suite of 6630 test inputs, (2) While testing in-
structions implementing floating-point operations, we found
that many of the test inputs are representing a NaN or Infin-
ity and it makes no sense to test with such instances. We did
our best effort by manually generating more than 100 unique
floating-point values by consulting the IEEE floating-point
arithmetic standard [1], (3) We used the (∼100) test-inputs
offered by Remill [13], and (4) We manually implemented a
regression test-suite worth of around 200 test-inputs which
we accumulated over the course of the project.

Note that, each instruction semantics consists of one or
more semantic rules, where those rules cover different cases
of the instruction behaviors (including the undefined ones).
We ensure that our test inputs are sufficient enough to trigger
all of the semantic rules, achieving the full łsemantic-rulež
coverage.

Results Our current implementation of the fused-multiply-
add operation11 incorrectly rounds the operation twice (after
multiplication and addition) as opposed to once. As a result,
we encountered floating-point precision issues while testing
instructions implementing those operations (vfmadd132pd).
This is a limitation of the underlying K library and more
details about this limitation can be found in Section 6.
While performing the validation tests, we encountered

various cases where the output state obtained by executing
the semantics on our model does not agree with that of
the hardware execution. The instruction semantics in our
model is either based on the Strata project (for the part we
borrowed) or on the Intel manual. A difference in the output
state could mean a bug in Strata’s instruction semantics or in
our interpretation of the Intel manual or in the Intel manual
itself. We found many bugs in our interpretation which we
fixed, but in other cases, we found issues in Intel manual and
Strata project.

Inconsistencies Found in the Intel Manual Here are inconsis-
tencies found during development and testing. According to
the manual, the semantics of vpsravd %xmm3, %xmm2, %xmm1
seems to depend on the lower 100 bits of %xmm3, whereas
the actual hardware execution suggests that it should depend
on the lower 128 bits. Similar inconsistencies are found in
instructions with mnemonics vpsllvd, vpsllvq, vpsravd.
Also, we found misleading typos related to instructions with
opcodes vpsravw, vpsravd, vpsravq, packsswb. All these
findings were reported and acknowledged by Intel as issues
in the manual [4].

Inconsistencies Found in Strata’s Simplification Rules While
testing the instructions specifications borrowed from Strata,
we found inconsistent behaviors with the actual hardware.

11According to the standard IEEE-754-2008 [1] (Definition 2.1.28), the oper-

ation fused-multiply-add(x, y, z) computes x × y + z as if with unbounded

range and precision, rounding only once to the destination format.

Moreover, the inconsistencies were discovered in the for-
mulas of floating-point instructions. This is not surprising
because Strata models the floating-point instructions as un-
interpreted functions which cannot be executed or tested
on hardware. Their semantics are executable in our defi-
nition though, and thus we were able to test them thor-
oughly. Note that Strata generates the formulas for these
instructions by symbolically executing the corresponding
learned instruction sequences followed by a formula sim-
plification pass. Therefore, errors in those formulas can be
due to bugs either in the symbolic execution engine or in
the simplification stage. Our testing shows that the second
is true with the following evidence. The simplification rule
add_double(A, 0) == A does not hold for A = −0.0. Same for
add_single. These were reported [8]. Also, the simplification
rule sub_double(A, A) == 0 does not hold forA = NaN . Same
is true for sub_single. We found this bug in the branch of
Stoke which is used in Strata. But this has been already fixed
in the latest Stoke branch.

Program Level Validation The goal here is to test the
combination of instructions as part of real-world programs
and we chose to use GCC C-torture tests [7] for this purpose.
Specifically, we used the tests inside the łtestsuite/gcc.c-
torture/executež directory for GCC version 8.1.0. There are
originally 1576 tests, which we compiled using the GCC
switches ł-O0 -march=haswell -S -mlong-double-64 -mno-
80387ž. The last two switches avoid generating x87 instruc-
tions that are not in the scope of work. We had to exclude 6
programs containing system-level instruction prefetchnta,
which require modeling caches, which we currently do not
support. Many test-cases involve C-library functions, like
malloc, fprintf, most of whose semantics are modeled in K.
As our support of C-library functions is not exhaustive, we
have to exclude 22 programs containing un-supported func-
tions like vfprintf and vsprintf, which we plan to support in
future. This brings us to a grand total of 1548 viable tests,
which are all tested. Out of those, we found that there are 293
cases where floating-point instructions are used covering
35 unique floating-point operations. Moreover, all the test-
cases together cover about 963 instruction variants, covering
30% of our supported instructions. As before, we executed
each program on the processor as well as on our model and
compared the output state after every instruction, which
matches in all the cases12.

4.2 Comparing with Stoke

Stoke [58]13 contains manually written semantics for ∼1764
x86-64 instruction variants, a large fraction (81%) of which

12Note that none of test-cases include floating-point instructions imple-

menting fused-multiply-addition, which we already acknowledged to have

precision issues.
13Recall that Stoke is a stochastic super-optimizer leveraged by Strata for

stochastic search.

1110

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

is also supported by Strata. The remaining fraction is exclu-
sive to Stoke. Comparing with Stoke provides an additional
crosscheck on our model. Moreover, these manually written
formulas are based on a similar model of the CPU state to
ours, which makes it easier to compare them against ours by
using an SMT solver. While doing so we found inconsisten-
cies between the two formalisms in a total of 16 mnemonics
(42 instruction variants), and after careful analysis, identi-
fied these as errors in the Stoke specification of instruction
semantics, as follows.

Inconsistencies Found in Stoke First, for instructions like
addsubpd %xmm1, %xmm2 , the order of addition and sub-
traction specified by Stoke is opposite to the one specified in
the Intel Manual. Same is true with the mnemonic addsubps.
(Found in 12 instruction variants.)

Second, the instruction pslld %xmm1, %xmm2 implements
a logical left shift of packed data by a count specified in
%xmm1. Stoke’s specification vectorized the operand%xmm1

which is incorrect according to the manual. Similar issues
were found in instructions implementing the logical right
shift operations on packed data. (Found in 18 instructions.)
Third, cvtsi2sdl %eax, %xmm1 and vcvtsi2sdl %eax,

%xmm0, %xmm1 are respectively SSE- and AVX-versions of
the instruction to convert a double-word (32-bit) integer to
a scalar single-precision floating-point value. According to
the manual, in the AVX-version, the destination bits 127− 64
of the register %xmm1 are updated to the corresponding
bits in the first source operand %xmm0. This is in contrast
to the SSE-version of the instruction where the destination
bits 127 − 64 should remain unmodified. Stoke specifies the
semantics of the AVX-version similar to the SSE-version,
which is incorrect. (Found in 4 instruction variants.)

Finally, some instructions, like imulb %al, which drive
flag registers to an undefined state are not modeled correctly
in Stoke. (found in 8 instruction variants)
All these errors were reported and confirmed [5, 6].

5 Applications

In this section, we illustrate a few applications of our formal
semantics, in addition to the reference model mentioned
in the previous section. Our goal here is to explain that
our semantics can be used for formal reasoning of x86-64
programs for a wide variety of purposes. For this reason,
the applications are illustrative only, not meant to serve as a
comprehensive evaluation or make any claim of scalability.
Moreover, the reported performance of the applications is
not optimized, and there is room for improvement, e.g., by
providing custom abstractions and lemmas specific to x86-64,
similarly to [49]. However, we believe that each application
has the potential to be leveraged into a standalone tool, with
its own user interface and case studies, but this is not our
goal here. In fact, thanks to the language-parametric nature
of K, none of these reasoning approaches can be regarded

as novel per se, because they are already used in the context
of other languages defined in K and their implementation is
language-semantics agnostic. We begin with a discussion of
a use case for hardware verification.

5.1 Validating Processor Hardware

Verification is considered one of the most (if not the most)
important challenges in modern processor design, for several
reasons: (i) the enormous state spaces of modern systems;
(ii) the lack of formal specifications in the state-of-practice,
(iii) generating high-quality test inputs for simulation, (iv)
quantifying/analyzing the extent of coverage of simulation,
and (v) generating a complete set of properties for checking.
For post-silicon validation, an additional challenge is the
difficulty of debugging and diagnosing observed erroneous
behaviors. For all these reasons, verification is estimated to
use 70% of the resources and time, while design takes only
30% [31].
A fully executable formal ISA-level specification such as

the one developed here can improve the state of practice in
verification in two significant ways.

First, it can provide a reliable specification of the func-
tional behavior of hardware with respect to observable states.
This increases confidence in the input tests, for both directed
and random test generation. High confidence tests can re-
duce time and increase focus during debugging, triage and
diagnosis efforts. This is especially valuable in post-silicon
validation, where observability within the chip is very lim-
ited, and functional validation is a key goal. This method
can also help post-silicon failure diagnosis by identifying
buggy input/output pairs and pinpointing specific erroneous
output state bits.
Second, since our method can symbolically execute in-

structions, it can be used to generate input tests that have
high coverage. While such analyses have been done at the de-
tailed RTL level [19, 43, 44], we are unaware of similar tools
at the x86-64 ISA level14. The most significant advantage
of such symbolic execution is the ability to detect corner
case or hard to detect bugs [30, 44]. This is analogous to
finding security vulnerabilities due to corner-case software
bugs, illustrated in Section 5.3, but applied to the hardware
implementation instead of software. We expect that ISA level
symbolic analysis will uncover such subtle and complex bugs
due to the higher level of abstraction and greater scalability
(in terms of execution lengths) than the RTL analyses.

A closely related challenge is checking the accuracy of ISA
specifications, including reference manuals. By using such
manual specifications to construct a formal specification,
we may uncover errors in the manual specifications. This is

14It is worth mentioning the work by Martignoni et al. [45] about test-case

generation for 32-bit x86 ISA by symbolically executing the instruction

implementations in bochs [40] binary emulator. However, floating-point

instructions are excluded because the underlying symbolic execution engine

does not support them.

1111

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

i n t s = 0 ; i n t n = N ;

whi l e (n > 0) { s = s + n ; n = n − 1 ; }

r e t u r n s ;

(a) C source code

movl %ed i , −20 (% rbp) # %ed i ho l d s N

movl $0 , −4 (% rbp) # s = 0

movl −20(% rbp) , %eax

movl %eax , −8(% rbp) # n = N

L3 : # loop header

cmpl $0 , −8(% rbp) # check n <= 0

j l e L2 # i f n <= 0 , then jump to end , e l s e con t i nue

movl −8(% rbp) , %eax # n > 0 a t t h i s po i n t

add l %eax , −4(% rbp) # s = s + n

d e c l −8(% rbp) # n = n − 1

jmp L3 # jump back to loop header

L2 :

movl −4(% rbp) , %eax # n <= 0 a t t h i s po i n t

r e t

(b) x86-64 assembly code

Figure 3. sum-to-n program

explicitly demonstrated by the two bugs we discovered in
the Intel x86-64 manual while performing the instruction-
level validation tests described in Section 4. These bugs were
discovered as a result of running test cases using both the
formal semantics generated by reading the manuals and the
hardware, and finding a mismatch, then checking the manual
specification carefully to determine whether the bug lies in
the manuals or in the hardware. However, given an existing
semantics, a far more valuable strategy would be to auto-

matically generate human-readable documentation from the

formal specification. A basic version of this strategy is likely
quite feasible today, and much more sophisticated versions
that synthesize illustrative examples and even explanatory
text automatically could be possible soon, given recent ad-
vances in concolic test generation, program synthesis, and
natural language processing.

5.2 Program Verification

TheK framework provides a language-parametric, reachabil-
ity logic theorem prover [53, 62]. We instantiated it with our
semantics to generate a correct-by-construction deductive
verifier for x86-64 programs. Here, the functional correctness
properties are specified as reachability specifications, essen-
tially a pair of pre- and post-conditions for each function.
The derived x86-64 verifier uses a sound and relatively com-
plete proof system to prove the given specifications w.r.t. the
x86-64 semantics. Like in other deductive verifiers, repetitive
constructs such as loops and recursive functions need to be
annotated with invariants. The verifier is automatic: it re-
quires only the program, its specification, and the invariants.
To demonstrate that our semantics can be used to verify

x86-64 programs, we use the x86-64 verifier to prove the
functional correctness of the sum-to-n program as shown in
Figure 3. It takes N as input and returns the sum from 1 to N .
The functional correctness can be essentially described as:

< r e g s t a t e > . . .

" RDI " 7→ 64 'N

"RBP " 7→ 64 '56

" RIP " 7→ (6 4 ' 0 => 64 ' −1)

"RAX" 7→ (6 4 ' _ => 6 4 ' (N ∗ (N + 1)) / 2)

. . . < / r e g s t a t e >

<memstate > . . .

/ / −8(% rbp) : n

48 7→ (by t e (0 , _) => by te (0 , 3 2 ' 0))

49 7→ (by t e (0 , _) => by te (1 , 3 2 ' 0))

50 7→ (by t e (0 , _) => by te (2 , 3 2 ' 0))

51 7→ (by t e (0 , _) => by te (3 , 3 2 ' 0))

/ / −4(% rbp) : s

52 7→ (by t e (0 , _) => by te (0 , (3 2 ' (N ∗ (N + 1)) / 2)))

· · ·

55 7→ (by t e (0 , _) => by te (3 , (3 2 ' (N ∗ (N + 1)) / 2)))

. . . < / memstate >

r e q u i r e s N ≥ 0 and N < 2^31 and (N ∗ (N+1)) / 2 < 2^31

(a) Top-level specification

< r e g s t a t e > . . . " RIP " 7→ (L3 => L2) . . . < / r e g s t a t e >

<memstate > . . .

/ / −8(% rbp) : n

48 7→ (by t e (0 , A) => by te (0 , 3 2 ' 0))

49 7→ (by t e (1 , A) => by te (1 , 3 2 ' 0))

50 7→ (by t e (2 , A) => by te (2 , 3 2 ' 0))

51 7→ (by t e (3 , A) => by te (3 , 3 2 ' 0))

/ / −4(% rbp) : s

52 7→ (by t e (0 , B) => by te (0 , 3 2 ' (B + A ∗ (A + 1) / 2)))

· · ·

55 7→ (by t e (3 , B) => by te (3 , 3 2 ' (B + A ∗ (A + 1) / 2)))

. . . < / memstate >

r e q u i r e s A >= 0 and A < 2^31 and B >= 0 and B < 2^31

and B + ((A ∗ (A + 1)) / 2) >= 0

and B + ((A ∗ (A + 1)) / 2) < 2^31

(b) Loop invariant

Figure 4. Specification of sum-to-n program

%rax =
∑

N

1
n = N (N + 1)/2. We present the actual specifi-

cation that is fed to the x86-64 verifier. The specification has
two parts: the top-level specification and the loop invariant.

Figure 4(a) shows the functional correctness specification
of the sum-to-n program. The regstate cell specifies the rel-
evant registers used in the program, omitting the irrelevant
ones denoted by ł...ž. Specifically, it specifies that %rdi holds
the value N without being updated during the program ex-
ecution, and %rax will have the expected return value. The
memstate cell specifies the relevant part of the memory omit-
ting others (denoted by ł...ž). It specifies the stack memory
addresses -8(%rbp) and -4(%rbp) corresponding to n and s,
respectively. The requires clause specifies the condition of
N that prevents the arithmetic overflow. Figure 4(b) shows
the loop invariant specification. It specifies the behavior of
an arbitrary loop iteration. That is, assuming the values of n
and s beA and B, resp., in the beginning of an arbitrary loop
iteration, it specifies their final values in the end of the entire
loop execution, which are 0 and B +A(A+ 1)/2, respectively.
Note that whenA = N and B = 0, i.e., the first loop iteration,
the loop invariant captures the entire loop behavior. The K

1112

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

u i n t p t r _ t s a f e _ a d d p t r (i n t ∗ of , u i n t 6 4 _ t a , u i n t 6 4 _ t b) {

u i n t p t r _ t r = a + b ;

i f (r < a) { ∗ o f = 1 ; r e t u r n r ; } / / " e r r o r s t a t e "

e l s e { r e t u r n r ; } } / / " s a f e s t a t e "

(a) C source code

Address %ebp − 8 c on t a i n s 64− b i t v a l u e ' a '

Adress %ebp − 16 c on t a i n s 64− b i t v a l u e ' b '

Le t a [3 2 : 0] : lower 32 b i t s o f ' a '

b [3 2 : 0] : lower 32 b i t s o f ' b '

movl −8(%ebp) , %edx # a [3 2 : 0] moved to %edx

movl −16(% ebp) , %eax # b [3 2 : 0] moved to %eax

add l %edx , %eax # r = a [3 2 : 0] + b [3 2 : 0]

movl $0 , %edx # check i f (3 2 ' 0 ◦ r) < a

cmpl −8(%ebp) , %eax # ◦ : d eno t e s c on c a t e n a t i o n

movl %edx , %eax

s b b l −4(%ebp) , %eax

j n c L2 # t r u e branch : " e r r o r s t a t e "

. . . # s e t ∗ o f to 1 and %eax to r

jmp L3

L2 : # e l s e branch : " s a f e s t a t e "

. . . # s e t %eax to r

L3 : r e t

(b) x86-64 assembly code in a 32-bit target

Figure 5. A security vulnerability in the HiStar kernel

verifier takes a minute15 to verify the sum-to-n assembly
code satisfies the functional correctness specification.

5.3 Symbolic Execution

K automatically derives a correct-by-construction symbolic
execution engine from the given semantics. Being instan-
tiated with our semantics, the engine can be used to sym-
bolically execute and explore all possible paths in the given
x86-64 program. In this section, we demonstrate how this
capability can be used to find a security vulnerability.
Consider the code snippet of the HiStar [64] kernel, as

shown in Figure 5(a)16, in which the KLEE [25] team found a
security vulnerability. The safe_addptr function is supposed
to compute the sum of two arguments a and b, setting the
flag argument of when the arithmetic overflow occurs dur-
ing the addition. That is, one of the functional correctness
properties is that ł*of = 1 if a + b > rž, where + is the
mathematical addition (with no overflow). The functional
correctness, however, is not satisfied when the source code
is compiled to a 32-bit target, since the size of r becomes
32-bit (uintptr_t) while the sizes of a and b are still 64-bit

15The application is for illustrative purpose and evaluating its scalability is

left to future work. However, we note that the reported verification time

would not be a major concern for scalability because of the modularity of

deductive verification.
16For the simplicity of the presentation, in Figure 5(b), we highlight only

the key computations of the assembly compiled from the source. However,

in our experiment, the full unmodified compilation is used for the symbolic

execution.

i n t popcnt (u i n t 6 4 _ t x) {

i n t r e s = 0 ;

f o r (; x > 0 ; x >>= 1) { r e s += x & 0 x 1 u l l ; }

r e t u r n r e s ; }

Figure 6. popcnt program

(uint64_t).17 A suggested fix [25] is to change the condi-
tional expression from r < a to r < a || r < b.

Using the symbolic execution engine derived from our se-
mantics, we could find (in ∼80 seconds) that, in the assembly
code as shown in Figure 5(b), there exists a path that reaches
L2 (i.e., the else branch) even if the addition overflow occurs.
The (simplified) path condition provided by the symbolic
execution engine is:

a + b ≥ 2
32 ∧ (a + b mod 2

32) ≥ a

where 0 ≤ a < 2
64 and 0 ≤ b < 2

64. We asked Z3 to solve
the above path condition and it returned a solution (i.e.,
a concrete input to trigger the security vulnerability): a =
0x00000000ffffffff and b = 0xffffffff00000000.

5.4 Translation Validation of Optimizations

K also provides a program equivalence checker that can be
used for the translation validation of compiler optimizations.
We derived an x86-64 program equivalence checker from
our semantics and used it to validate different optimizations.
Figure 6 shows a program that we considered, popcnt, which
counts the number of set bits in the given input.

We compiled the programwith different optimizations: the
GCC compiler optimizations (-O0, -O1, -O2, and -O3), and the
Stoke super-optimization. On top of the baseline (-O0), the
-O1 optimization produces a code obtained by performing
the mem2reg optimization, the -O2 optimization produces
one by factoring out the common statement over different
branches,18 and the -O3 optimization produces the same code
with -O2. The Stoke super-optimization translates the as-
sembly code into a single instruction: popcnt %rdi, %rax,
where %rdi and %rax correspond to the input and the return
values, respectively.

We validated these optimizations by checking the equiv-
alence between the optimized programs. The equivalence
checker symbolically executes each program and compares
their return values (i.e., the symbolic expression of the %rax
register value) using Z3. It is able to prove successfully that
all optimization variants are equivalent, i.e., to check the
correctness of all these optimizations on popcnt.

17The function call safe_addptr(*of, address, size) is used to validate that

an user is allowed to access the memory range specified by the arguments

address and size. The access is denied if an overflow occurs. A bug in the

overflow detection might be exploited by an attacker to gain an access to a

memory region beyond the control of the running process.
18Specifically, by performing the common subexpression elimination, fol-

lowed by certain statement reordering optimization, followed by the

strength reduction.

1113

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

Note that the symbolic execution of the popcnt program
does not require an additional annotation about the loop
because the number of loop iterations is bound to a con-
stant (i.e., the bit-size of the input, 64).19 In general, however,
the equivalence checker may require us to provide an addi-
tional annotation about loops, which can be automatically
generated by augmenting the underlying compiler.

6 Limitations

Our limitations mostly include missing features of the x86-64
and execution environment, as follows.
Floating-Point Operations. Our testing shows that we

have FP precision issues with instructions implementing
the fused-multiply-add operation. This is because the cur-
rent K’s floating-point library [12] implementation lacks
support of the FMA capabilities of GNU MPFR library [15],
which we plan to include in future.

Exceptions. We do not support exceptions, including the
FP exceptions. Moreover, we do not distinguish between
quiet and signaling NaN, i.e. all NaNs are quiet in our model.
When the exception condition is encountered, execution
proceeds after setting the exception flag.
Concurrency. Like the closest previous work [33, 37], we

do not model concurrent semantics or the relaxed memory
model as defined by other previous work [48, 57]. Our de-
sign, being parameterized on memory model, is amenable to
accommodate others’, which we plan to achieve in future.

Instruction Decoding. The instruction decoding semantics
is not modeled in the current work. However, we want to
note that we have formalized the Intel XED disassembler
algorithm, andwe areworking on formalizing the instruction
decoding.

7 Related Work

There have been many projects that host a formal semantics
of x86-64 either as their main contribution or as part of their
infrastructure. This section summarizes such previous work
and compares it to our formal semantics based on three
directions that reflect the primary contributions of our work:
completeness, in terms of supported user-level instructions;
faithfulness, in terms of whether it is executable and hence
can be evaluated with real code execution; and generality, in
terms of its applicability to formal reasoning techniques.
Strata [37] uses program synthesis to generate the in-

struction semantics of X86-64 as SMT bit-vector formulas.
Automatically learning the formal semantics of 60% of the
target x86-64 ISA is impressive, and we leverage this result

19However, an additional annotation about the loop (i.e., a loop invariant)

can be provided to improve the symbolic execution performance. For exam-

ple, symbolic execution of the popcnt program without the loop invariant

requires to iterate the loop 64 times, which takes ∼20 minutes, but it can be

reduced to a minute if the loop invariant is provided.

in our work. However, the other 40% of the user-level in-
structions are not straightforward to automatically learn by
their algorithm, mainly due to limitations of the underlying
synthesis engine. Moreover, the specifications are executable
only for non-floating-point (FP) instructions.
A contemporary work by Roessle et al. [54] presents a

method to extract the big step semantics of a binary pro-
gram using the small step instruction semantics extracted
mostly from Strata20 plus some manually drafted support
for branching instructions and stack operations. Like Strata,
their specification is executable only for the non-floating-
point instructions. Moreover, their work does not aim for
completeness of semantics, one of our primary goals.

Goel et al. [33] use the ACL2 theorem prover [38] to model
the x86-64 ISA and they support 33% of all user-level instruc-
tions [17], plus some system-level instructions, paging, and
segmentation. This list is far from a complete semantic defi-
nition of x86-64, but it is still the state-of-the-art in terms of
formal analysis applied directly to x86-64 code. It is also an
executable definition as demonstrated by its use for simula-
tions. In our work, we do not leverage this definition, since
Strata has defined many more instructions.
The CompCert verified compiler [41] includes semantics

definitions for all intermediate and target languages used
within the compiler, including a definition for 32-bit x86
assembly. The definition is specified in Coq [14] and has
been used in a formal setting for proving the correctness of
CompCert’s compilation step to assembly, as well as outside
CompCert, e.g., in proofs relating to the certified concurrent
OS kernel CertiKOS [34]. However, this definition focuses
on the 32-bit x86 instruction set, which is a subset of the
x86-64 instruction set. Moreover, it is part of the trust base
for CompCert and it is not clear whether or how it has been
tested against an actual processor, whereas Strata and ours
have been extensively tested.

TSL [42] is a system that can auto-generate tools for vari-
ous machine code analyses given a semantics definition of
the machine language written in the TSL specification. Such
a semantics definition for the integer instructions (i.e., no
floating-point instructions) of the 32-bit x86 instruction set
is given as part of the project. It is used to generate vari-
ous tools, including a machine code synthesizer [61]. This
definition, to our knowledge, has not been used for formal
verification proofs, i.e., to provewhether a given x86 program
meets its specification.
Our semantics, like all the other work cited above, uses

a sequential consistency memory model, and not weaker
memory models. Existing efforts to specify weaker memory
models for x86-64 such as Owens et al. [48] and Sarkar et
al. [57], however, suffer from their limited support for in-
struction semantics (i.e., they consider only a small subset of

20There are some minor omissions on immediate instructions with 8-bit

operands for which Strata learns 256 brute force formulas.

1114

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

32-bit x86 instruction set). We believe that integrating these
two complementary efforts is a promising direction toward
rigorously reasoning about real-world programs running on
modern multiprocessors (e.g., using the Sail framework as
we will describe below).

Sail is another language semantics framework, tailored for
describing an instruction-set architecture semantics. Sail has
been used to specify the semantics of ARMv8-A, RISC-V, and
CHERI-MIPS [21], as well as the semantics of a small subset
of x86 [2]. Sail is similar to the K framework we employed,
but K is far more general-purpose than Sail. Also, the Sail
x86 semantics is much more limited than ours. It describes
the semantics of a fragment of 32-bit user-mode x86 instruc-
tions, while ours covers also the 64-bit counterpart as well
as the floating-point instructions. Sail, however, allows us
to integrate a semantic definition with their relaxed mem-
ory models [18, 50] for concurrency semantics. We believe
that (automatically) translating our semantics into Sail21 is
a promising direction to obtain concurrency semantics and
thus enable concurrency reasoning for x86 programs, which
we leave as future work.

Overall, the key differentiator of our effort compared to the
existing work, as cited above, is that our semantics achieves
(A) completeness of supported user-level instructions, (B)
faithfulness, and (C) applicability to formal reasoning analy-
ses. In Section 8, we elaborate on our novel approaches that
allow us to achieve this unique combination.

There are various binary analysis projects that target x86-
64 binaries and lift them to a higher-level representation
more suitable for the specific analysis. These includeAngr [3]
using the VEX IR of Valgrind [47], the QEMU [23] emulator
using the TCG IR, the software fault isolation tool Rock-
Salt [46] using its own RTL DSL, the disassembler and bi-
nary analyzer Radare2 [20] using the ESIL IR [9], the binary
analysis tool BAP [24] using the BIL IR, and the static binary
translator Remill [56] using LLVM IR [39]. We refer to these
semantics as indirect because they give the semantics of the
x86-64 binary via the translation to their IR, as opposed to
a direct semantics such as ours and the others cited earlier.
A direct semantics has significant advantages over an indi-
rect semantics. For example, without the direct semantics
of x86-64, we cannot even formulate the correctness of a
translator from x86-64 to the IR. Analogously, many pro-
gramming languages (C, C++, Java, etc.) have been given
direct semantics, instead of indirect semantics by transla-
tion to other languages, for formal reasoning at the desired
language granularity.

Hasabnis et al. [35, 36] also present an indirect semantics
of x86-64, but in contrast to other indirect semantics, they
use machine learning [36] and symbolic execution [35] to

21Indeed, the Sail ARMv8-A semantics is automatically generated from

the ARM-internal specification of ARMv8-A [52] written in the ARM’s

architecture specification language, ASL [51], by using the ASL-to-Sail

translator [21].

automatically learn the translation of x86-64 instructions
to their IR, by extracting knowledge from the hard-coded
translation logic of compilers such as GCC. However, as they
admitted [35], their semantics omits some important details
of x86-64 semantics (e.g., the effect of various instructions
on CPU flags), and thus is not sufficient to serve as a solid
foundation for rigorous formal analyses of x86-64 binary.

8 Lessons Learned

Here we present the lessons we learned during our semantics
development, identifying important aspects to be considered,
and clarifying best practices for developing a large ISA se-
mantics. We also discuss the novel aspects of our semantics
development approach that allow us to obtain a complete
and faithful semantics with a practical amount of effort.

Automatic semantics synthesis Most previous efforts in
formalizing x86-64 semantics can be categorized based on
whether the underlying approach is fully manual [2, 33, 41,
42] or fully automatic [35ś37, 54]. We note that none of these
approaches, when used in isolation, sufficiently scale to a
complete and faithful semantics, as much as ours that com-
bines these complementary approaches so that they benefit
from each other.

Section 3.2 reports the challengeswe encountered in achiev-
ing fully automatic synthesis of the entire x86-64 semantics.
Specifically, in a vast instruction set like x86-64, it is common
that many instructions can be grouped together where the in-
structions of each group are similar to each other except for a
few differences. An automatic synthesis technique leveraging
such a group, such as the stratification approach [37], would
effectively synthesize such instruction variants’ semantics,
provided that the semantics of representative instructions in
each group are given in advance.22 The problem, however, is
that it is non-trivial to properly partition all the instructions
into such groups, providing the representative instruction
semantics for each group, without a priori knowledge about
the semantics of all instructions. The vanilla stratification
approach [37] turned out to be not sufficient to solve this
dilemma, leaving a substantial part of the semantics unspec-
ified. Thus, we decided to manually provide the information
about the partition and representatives, for which we had to
consult the manual to obtain knowledge about the remaining
part of semantics. Once we obtained the required knowledge,
however, we realized that it would be more straightforward
to directly turn the knowledge into the semantics than go-
ing through the synthesis process, and thus we ended up
manually specifying the remaining part of the semantics.

22For certain complex instructions, the size of their group is very small (i.e.,

they are quite different to each other), and thus the automatic synthesis

would not yield a sufficient gain over the effort of specifying the semantics

of their representatives, but we found that the number of such isolated

instructions of x86-64 is small.

1115

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

Another important step of the semantics synthesis is post-
processing. The generated semantics is often verbose and
not necessarily human-readable. The post-processing step is
desired to simplify the generated semantics to be succinct,
which helps to increase the human-readability as well as
to improve the efficiency when being employed in other
applications (e.g., the size of SMT formula encoding can
be reduced, which can reduce the burden of SMT solvers).
For our semantics development, we have written dozens
of simplification rules that are fed to the K framework to
simplify the synthesized semantics further (Section 3.6).

Modeling and executing implementation-dependent be-

haviors The x86-64 ISA standard admits implementation-

dependent behaviors for certain operations on certain in-
put patterns, that is, each processor implementation can
freely choose the execution behavior for each such case (Sec-
tion 1.1). Faithfully modeling the implementation-dependent
behaviors is necessary for the correctness of the semantics.
For example, as mentioned in Section 4.2, Stoke [58] does
not faithfully model such behaviors, causing certain errors
in their semantics that we revealed [5].
There are two natural, faithful ways of specifying imple-

mentation dependent behaviors. One is to parameterize the
semantics over the implementation-dependent behaviors,
and later instantiate it with a profile that describes specific
behaviors taken by the processor of interest. This approach is
desirable for validating the semantics using concrete execu-
tion. Another is to introduce non-determinism in the seman-
tics, which captures a set of different possible behaviors in a
single semantics, which is desirable during symbolic interpre-
tation of the ISA code. We note that most of other existing di-
rect x86-64 semantics employ approaches similar to the ones
described above, faithfully modeling the implementation-
dependent behaviors. For example, Goel et al. [32] models
such behaviors using a constraint function which is guaran-
teed to be unique and non-deterministic, while they employ
the aforementioned profile-based approach for concrete ex-
ecution. TSL [42] makes both approaches available, from
which their users can choose.

In our semantics, we faithfully modeled the undefined
value as a unique symbol (called undef) whose value is non-
deterministically decided each time within the proper range.
For validating the semantics, we concretely executed the
semantics while the non-deterministic behaviors are repre-
sented symbolically using the undef symbol and then we
checked if the hardware output is matched by (an instance
of) the simulated output.

Employingmultiple semantic engineering frameworks

We found that employing multiple semantic frameworks is
helpful. Specifically, we employed the two semantic frame-
works,K and Stoke, where we enjoyed all of their (executive)
benefits that make it easier for us to write and validate the
semantics, and utilize the semantics in various applications.

For example, we wrote the semantics of certain complicated
instructions (e.g., pcmpestri, pcmpestrm, and pclmulqdq)
in K, as K provides an easy way to specify behaviors with
multiple cases, while Stoke would have required us to write
a big nested if-then-else expression, which is not convenient.
As another example of the benefits, we used Stoke to val-
idate most of our instruction semantics as Stoke provides
an infrastructure23 for hardware co-simulation, whereas we
employed K to validate the semantics of floating-point in-
structions as Stoke does not support executing floating-point
operations while K does.
In order to use the two frameworks interchangeably, we

developed a translator between the semantics of the two
frameworks. To check the correctness of the translation, we
verified equivalence between the original and the translated
semantics for each instruction using the Z3 SMT solver.

To summarize, employing multiple frameworks with vali-
dated translation between them improved both the ease of
specification (using K) and ease of validation (using Strata),
which expedited our semantics development process and
thus significantly contributed to the completeness of our
semantics. Moreover, we immediately benefit from all of
their formal analysis tools, increasing the applicability of
the semantics in various formal reasoning tasks. Existing
semantics development efforts (e.g., [33, 37]), however, em-
ploy a single framework without utilizing the potential of
other frameworks, which otherwise might have improved
completeness and/or faithfulness of their semantics with the
same amount of effort.

9 Conclusion

We have presented the most complete formal semantics of
x86-64 user-level instructions to date, and have thoroughly
tested it using synthesized test inputs and the GCC torture
tests. We have also illustrated several potential uses of the
semantics which are realized by the formal analysis tools
derived right from the K specification. The K framework
also enables us to represent a semantics as SMT theories,
which other projects can leverage for their own purposes.

Acknowledgments

We thank the K team, for their technical support throughout
the project, and the Strata developers, for promptly confirm-
ing our reported bugs and answering all our questions in
great detail. We thank our shepherd, June Andronick, for
her diligence and helpful guidance in responding to the re-
viewers’ comments. We are grateful to Alastair Reid and
Matthew Fernandez for their invaluable feedback. The work
presented in this paper was supported in part by the Office
of Naval Research under contract number N00014-17-1-2996,
NSF CNS 1619275, and DARPA Sub HRL 17090-181687 US.

23Indeed, we contributed to their infrastructure as well [27, 28].

1116

x86-64 Semantics PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

References
[1] 2008. IEEE Std 754-2008 - IEEE Standard for Floating-Point Arithmetic.

https://standards.ieee.org/findstds/standard/754-2008.html. https:

//doi.org/10.1109/IEEESTD.2008.4610935

[2] 2017. Sail x86 ISA model. https://github.com/rems-project/sail/tree/

sail2/x86. Last accessed: April 26, 2019.

[3] 2018. Angr: A powerful and user-friendly binary analysis platform!

http://angr.io/. Last accessed: April 26, 2019.

[4] 2018. Bug Reported in Intel Developer Zone: Possible errors

in instruction semantics. https://software.intel.com/en-us/forums/

intel-isa-extensions/topic/773342. Last accessed: April 26, 2019.

[5] 2018. Bug Reported in Stoke: Modelling the behavior of flags which

may or must take undef values. https://github.com/StanfordPL/stoke/

issues/986. Last accessed: April 26, 2019.

[6] 2018. Bug Reported in Stoke: Semantic bugs. https://github.com/

StanfordPL/stoke/issues/983. Last accessed: April 26, 2019.

[7] 2018. C Language Testsuites: C-torture version 8.1.0. https://gcc.gnu.

org/onlinedocs/gccint/C-Tests.html. Last accessed: April 26, 2019.

[8] 2018. Eric Schkufza. Personal communication.

[9] 2018. Evaluable Strings Intermediate Language. https://radare.

gitbooks.io/radare2book/content/disassembling/esil.html. Last ac-

cessed: April 26, 2019.

[10] 2018. GDB: The GNU Project Debugger. https://www.gnu.org/

software/gdb/. Last accessed: April 26, 2019.

[11] 2018. Intel 64 and IA-32 Architectures Software Developer Manuals.

https://software.intel.com/en-us/articles/intel-sdm. Published on

October 12, 2016, updated May 18, 2018.

[12] 2018. MPFR Java Bindings. https://github.com/kframework/mpfr-java.

Last accessed: April 26, 2019.

[13] 2018. Remill: Library for lifting of x86, amd64, and aarch64 machine

code to LLVM bitcode. https://github.com/trailofbits/remill. Last

accessed: April 26, 2019.

[14] 2018. The Coq Proof Assistant. https://coq.inria.fr/. Last accessed:

April 26, 2019.

[15] 2018. The GNU MPFR Library. https://www.mpfr.org/. Last accessed:

April 26, 2019.

[16] 2018. x86 and amd64 Instruction Reference (UnOfficial). http://www.

felixcloutier.com/x86/. Last accessed: April 26, 2019.

[17] 2018. X86isa: Implemented-opcodes: Opcodes supported by the x86

model. http://www.cs.utexas.edu/users/moore/acl2/manuals/current/

manual/index-seo.php/X86ISA____IMPLEMENTED-OPCODES. Last

accessed: April 26, 2019.

[18] 2019. rmem: Executable concurrency models for ARMv8, RISC-V,

Power, and x86. https://github.com/rems-project/rmem/. Last ac-

cessed: April 26, 2019.

[19] A. Ahmed, F. Farahmandi, and P. Mishra. 2018. Directed test generation

using concolic testing on RTL models. In 2018 Design, Automation Test

in Europe Conference Exhibition (DATE). 1538ś1543. https://doi.org/

10.23919/DATE.2018.8342260

[20] Sergi Alvarez. 2018. Radare2. https://rada.re/r/. Last accessed: April

26, 2019.

[21] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Was-

sell, Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krish-

naswami, and Peter Sewell. 2019. ISA Semantics for ARMv8-a, RISC-v,

and CHERI-MIPS. Proc. ACM Program. Lang. 3, POPL, Article 71 (Jan.

2019), 31 pages. https://doi.org/10.1145/3290384

[22] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You

See is Not What You eXecute. ACM Trans. Program. Lang. Syst. 32,

6, Article 23 (Aug. 2010), 84 pages. https://doi.org/10.1145/1749608.

1749612

[23] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.

In Proceedings of the Annual Conference on USENIX Annual Technical

Conference (ATEC ’05). USENIX Association, Berkeley, CA, USA, 41ś41.

http://dl.acm.org/citation.cfm?id=1247360.1247401

[24] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.

Schwartz. 2011. BAP: A Binary Analysis Platform. In Proceedings

of the 23rd International Conference on Computer Aided Verification

(CAV’11). Springer-Verlag, Berlin, Heidelberg, 463ś469. http://dl.acm.

org/citation.cfm?id=2032305.2032342

[25] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation (OSDI’08). USENIX As-

sociation, Berkeley, CA, USA, 209ś224. http://dl.acm.org/citation.

cfm?id=1855741.1855756

[26] Sandeep Dasgupta. 2018. Semantics of x86-64 in K. https://github.

com/kframework/X86-64-semantics. Last accessed: April 26, 2019.

[27] Sandeep Dasgupta. 2019. Defining semantics of instructions unsup-

ported in Strata/Stoke. https://github.com/StanfordPL/stoke/pull/996.

Last accessed: April 26, 2019.

[28] Sandeep Dasgupta. 2019. Improving Stoke ability to debug a circuit.

https://github.com/StanfordPL/stoke/pull/997. Last accessed: April

26, 2019.

[29] Chucky Ellison and Grigore Roşu. 2012. An Executable Formal Seman-

tics of C with Applications. In Proceedings of the 39th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL’12).

ACM, 533ś544. https://doi.org/10.1145/2103656.2103719

[30] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy.

2017. An Empirical Study on the Correctness of Formally Verified

Distributed Systems. In Proceedings of the Twelfth European Conference

on Computer Systems (EuroSys ’17). ACM, New York, NY, USA, 328ś343.

https://doi.org/10.1145/3064176.3064183

[31] Harry D. Foster. 2015. Trends in Functional Verification: A 2014

Industry Study. In Proceedings of the 52nd Annual Design Automa-

tion Conference (DAC ’15). ACM, New York, NY, USA, 48:1ś48:6.

https://doi.org/10.1145/2744769.2744921

[32] Shilpi Goel, Warren A. Hunt, and Matt Kaufmann. 2017. Engineering a

Formal, Executable x86 ISA Simulator for Software Verification. Springer

International Publishing, Cham, 173ś209. https://doi.org/10.1007/

978-3-319-48628-4_8

[33] Shilpi Goel, Warren A. Hunt, Matt Kaufmann, and Soumava Ghosh.

2014. Simulation and Formal Verification of x86 Machine-Code Pro-

grams That Make System Calls. In Proceedings of the 14th Conference

on Formal Methods in Computer-Aided Design (FMCAD ’14). FMCAD

Inc, Austin, TX, Article 18, 8 pages. http://dl.acm.org/citation.cfm?

id=2682923.2682944

[34] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Wu, Jieung Kim, Vil-

helm Sjöberg, and David Costanzo. 2016. CertiKOS: An Extensible

Architecture for Building Certified Concurrent OS Kernels. In Proceed-

ings of the 12th USENIX Conference on Operating Systems Design and

Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,

653ś669. http://dl.acm.org/citation.cfm?id=3026877.3026928

[35] NiranjanHasabnis and R. Sekar. 2016. Extracting Instruction Semantics

via Symbolic Execution of Code Generators. In Proceedings of the

2016 24th ACM SIGSOFT International Symposium on Foundations of

Software Engineering (FSE 2016). ACM, New York, NY, USA, 301ś313.

https://doi.org/10.1145/2950290.2950335

[36] Niranjan Hasabnis and R. Sekar. 2016. Lifting Assembly to Inter-

mediate Representation: A Novel Approach Leveraging Compilers.

In Proceedings of the Twenty-First International Conference on Ar-

chitectural Support for Programming Languages and Operating Sys-

tems (ASPLOS ’16). ACM, New York, NY, USA, 311ś324. https:

//doi.org/10.1145/2872362.2872380

[37] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.

Stratified Synthesis: Automatically Learning the x86-64 Instruction Set.

In Proceedings of the 37th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’16). ACM, New York, NY,

USA, 237ś250. https://doi.org/10.1145/2908080.2908121

1117

https://standards.ieee.org/findstds/standard/754-2008.html
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://github.com/rems-project/sail/tree/sail2/x86
https://github.com/rems-project/sail/tree/sail2/x86
http://angr.io/
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/773342
https://software.intel.com/en-us/forums/intel-isa-extensions/topic/773342
https://github.com/StanfordPL/stoke/issues/986
https://github.com/StanfordPL/stoke/issues/986
https://github.com/StanfordPL/stoke/issues/983
https://github.com/StanfordPL/stoke/issues/983
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://gcc.gnu.org/onlinedocs/gccint/C-Tests.html
https://radare.gitbooks.io/radare2book/content/disassembling/esil.html
https://radare.gitbooks.io/radare2book/content/disassembling/esil.html
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/kframework/mpfr-java
https://github.com/trailofbits/remill
https://coq.inria.fr/
https://www.mpfr.org/
http://www.felixcloutier.com/x86/
http://www.felixcloutier.com/x86/
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/X86ISA____IMPLEMENTED-OPCODES
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/X86ISA____IMPLEMENTED-OPCODES
https://github.com/rems-project/rmem/
https://doi.org/10.23919/DATE.2018.8342260
https://doi.org/10.23919/DATE.2018.8342260
https://rada.re/r/
https://doi.org/10.1145/3290384
https://doi.org/10.1145/1749608.1749612
https://doi.org/10.1145/1749608.1749612
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://github.com/kframework/X86-64-semantics
https://github.com/kframework/X86-64-semantics
https://github.com/StanfordPL/stoke/pull/996
https://github.com/StanfordPL/stoke/pull/997
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1145/2744769.2744921
https://doi.org/10.1007/978-3-319-48628-4_8
https://doi.org/10.1007/978-3-319-48628-4_8
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://dl.acm.org/citation.cfm?id=3026877.3026928
https://doi.org/10.1145/2950290.2950335
https://doi.org/10.1145/2872362.2872380
https://doi.org/10.1145/2872362.2872380
https://doi.org/10.1145/2908080.2908121

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA S. Dasgupta et al.

[38] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. 2000.

Computer-Aided Reasoning: An Approach. Kluwer Academic Publishers,

Norwell, MA, USA.

[39] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings

of the 2004 International Symposium on Code Generation and Optimiza-

tion (CGO’04). Palo Alto, California.

[40] Kevin P. Lawton. 1996. Bochs: A Portable PC Emulator for Unix/X.

Linux J. 1996, 29es, Article 7 (Sept. 1996). http://dl.acm.org/citation.

cfm?id=326350.326357

[41] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Com-

mun. ACM 52, 7 (July 2009), 107ś115. https://doi.org/10.1145/1538788.

1538814

[42] Junghee Lim and Thomas Reps. 2013. TSL: A System for Generating

Abstract Interpreters and Its Application to Machine-Code Analysis.

ACM Trans. Program. Lang. Syst. 35, 1, Article 4 (April 2013), 59 pages.

https://doi.org/10.1145/2450136.2450139

[43] L. Liu and S. Vasudevan. 2011. Efficient validation input generation in

RTL by hybridized source code analysis. In 2011 Design, Automation

Test in Europe. 1ś6. https://doi.org/10.1109/DATE.2011.5763253

[44] Lingyi Liu and Shobha Vasudevan. 2014. Scaling Input Stimulus Gen-

eration Through Hybrid Static and Dynamic Analysis of RTL. ACM

Trans. Des. Autom. Electron. Syst. 20, 1, Article 4 (Nov. 2014), 33 pages.

https://doi.org/10.1145/2676549

[45] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn

Song, and Petros Maniatis. 2012. Path-exploration Lifting: Hi-fi Tests

for Lo-fi Emulators. In Proceedings of the Seventeenth International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 337ś348.

https://doi.org/10.1145/2150976.2151012

[46] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan,

and Edward Gan. 2012. RockSalt: better, faster, stronger SFI for the

x86. PLDI: Programming Languages Design and Implementation (2012),

395ś404. https://doi.org/10.1145/2254064.2254111

[47] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program

Supervision Framework. Electronic Notes in Theoretical Computer

Science 89, 2 (2003), 44 ś 66. https://doi.org/10.1016/S1571-0661(04)

81042-9 RV ’2003, Run-time Verification (Satellite Workshop of CAV

’03).

[48] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86

Memory Model: X86-TSO. In Proceedings of the 22Nd International

Conference on Theorem Proving in Higher Order Logics (TPHOLs ’09).

Springer-Verlag, Berlin, Heidelberg, 391ś407. https://doi.org/10.1007/

978-3-642-03359-9_27

[49] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore

Roşu. 2018. A Formal Verification Tool for Ethereum VM Bytecode. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 912ś915.

https://doi.org/10.1145/3236024.3264591

[50] Christopher Pulte, Shaked Flur,Will Deacon, Jon French, Susmit Sarkar,

and Peter Sewell. 2017. Simplifying ARM Concurrency: Multicopy-

atomic Axiomatic and Operational Models for ARMv8. Proc. ACM

Program. Lang. 2, POPL, Article 19 (Dec. 2017), 29 pages. https://doi.

org/10.1145/3158107

[51] Alastair Reid. 2016. ARM’s Architecture Specification Language. https:

//alastairreid.github.io/specification_languages/. Last accessed: April

26, 2019.

[52] Alastair Reid. 2017. Trustworthy specifications of ARM® v8-A and

v8-M system level architecture. Proceedings of the 16th Conference

on Formal Methods in Computer-Aided Design, FMCAD 2016 (2017),

161ś168. https://doi.org/10.1109/FMCAD.2016.7886675
[53] Grigore Roşu and Andrei Ştefănescu. 2012. Checking Reachability

using Matching Logic. In Proceedings of the 27th Conference on Object-

Oriented Programming, Systems, Languages, and Applications (OOP-

SLA’12). ACM, 555ś574. https://doi.org/citation.cfm?doid=2384616.

2384656

[54] Ian Roessle, Freek Verbeek, and Binoy Ravindran. 2019. Formally

Verified Big Step Semantics out of x86-64 Binaries. In Proceedings of

the 8th ACM SIGPLAN International Conference on Certified Programs

and Proofs (CPP 2019). ACM, New York, NY, USA, 181ś195. https:

//doi.org/10.1145/3293880.3294102

[55] Grigore Roşu and Traian Florin Şerbănuţă. 2010. An Overview of the

K Semantic Framework. Journal of Logic and Algebraic Programming

79, 6 (2010), 397ś434. https://doi.org/10.1016/j.jlap.2010.03.012

[56] Andrew Ruef and Artem Dinaburg. 2014. Static Translation of X86

Instruction Semantics to LLVM with McSema. REcon (2014). https:

//github.com/trailofbits/mcsema

[57] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,

Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.

2009. The Semantics of x86-CC Multiprocessor Machine Code. In

Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL ’09). ACM, New York, NY,

USA, 379ś391. https://doi.org/10.1145/1480881.1480929

[58] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Su-

peroptimization. In Proceedings of the Eighteenth International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS ’13). ACM, New York, NY, USA, 305ś316.

https://doi.org/10.1145/2451116.2451150

[59] Traian Florin Şerbănuţa, Andrei Arusoaie, David Lazar, Chucky Ellison,

Dorel Lucanu, and Grigore Roşu. [n. d.]. The K Primer (version 3.2).

Technical Report.

[60] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,

Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe

Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State

of) The Art of War: Offensive Techniques in Binary Analysis. (2016).

[61] Venkatesh Srinivasan and Thomas Reps. 2015. Synthesis of machine

code from semantics. Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation - PLDI 2015

(2015), 596ś607. https://doi.org/10.1145/2737924.2737960

[62] Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore

Roşu. 2016. Semantics-based Program Verifiers for All Languages.

In Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA 2016). ACM, New York, NY, USA, 74ś91. https://doi.org/10.

1145/2983990.2984027

[63] Ken Thompson. 1984. Reflections on Trusting Trust. Commun. ACM

27, 8 (Aug. 1984), 761ś763. https://doi.org/10.1145/358198.358210

[64] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maz-

ières. 2006. Making Information Flow Explicit in HiStar. In Proceedings

of the 7th USENIX Symposium on Operating Systems Design and Imple-

mentation - Volume 7 (OSDI ’06). USENIX Association, Berkeley, CA,

USA, 19ś19. http://dl.acm.org/citation.cfm?id=1267308.1267327

1118

http://dl.acm.org/citation.cfm?id=326350.326357
http://dl.acm.org/citation.cfm?id=326350.326357
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1109/DATE.2011.5763253
https://doi.org/10.1145/2676549
https://doi.org/10.1145/2150976.2151012
https://doi.org/10.1145/2254064.2254111
https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3236024.3264591
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
https://alastairreid.github.io/specification_languages/
https://alastairreid.github.io/specification_languages/
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/citation.cfm?doid=2384616.2384656
https://doi.org/citation.cfm?doid=2384616.2384656
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1016/j.jlap.2010.03.012
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/mcsema
https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/2737924.2737960
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/358198.358210
http://dl.acm.org/citation.cfm?id=1267308.1267327

	Abstract
	1 Introduction
	1.1 Challenges in Formalizing x86-64

	2 Preliminaries
	2.1 K Framework
	2.2 Strata Project

	3 Formalization of x86-64 Semantics
	3.1 Scope of the Work
	3.2 Overview of the Approach
	3.3 Program Configuration
	3.4 Semantics of Execution Environment
	3.5 Semantics of Individual Instructions
	3.6 Constructing the x86-64 Semantics

	4 Validation of Semantics
	4.1 Co-Simulations against Hardware
	4.2 Comparing with Stoke

	5 Applications
	5.1 Validating Processor Hardware
	5.2 Program Verification
	5.3 Symbolic Execution
	5.4 Translation Validation of Optimizations

	6 Limitations
	7 Related Work
	8 Lessons Learned
	9 Conclusion
	Acknowledgments
	References

