
RV-ECU: Maximum Assurance In-Vehicle Safety Monitoring
Philip Daian, Bhargava Manja

Runtime Verification Inc., USA

Shin’ichi Shiraishi
Toyota Info Technology Center Inc., USA

Akihito Iwai
DENSO International America Inc., USA

Grigore Rosu
University of Illinois at Urbana-Champaign and Runtime Verification Inc., USA

Copyright c© 2016 SAE International

ABSTRACT

The Runtime Verification ECU (RV-ECU) is a new de-
velopment platform for checking and enforcing the
safety of automotive bus communications and soft-
ware systems. RV-ECU uses runtime verification, a
formal analysis subfield geared at validating and ver-
ifying systems as they run, to ensure that all manu-
facturer and third-party safety specifications are com-
plied with during the operation of the vehicle. By
compiling formal safety properties into code using a
certifying compiler, the RV-ECU executes only prov-
ably correct code that checks for safety violations as
the system runs. RV-ECU can also recover from vi-
olations of these properties, either by itself in sim-
ple cases or together with safe message-sending li-
braries implementable on third-party control units on
the bus. RV-ECU can be updated with new specifica-
tions after a vehicle is released, enhancing the safety
of vehicles that have already been sold and deployed.

Currently a prototype, RV-ECU is meant to eventu-
ally be deployed as global and local ECU safety mon-
itors, ultimately responsible for the safety of the entire
vehicle system. We describe its overall architecture
and implementation, and demonstrate monitoring of
safety specifications on the CAN bus. We use past
automotive recalls as case studies to demonstrate
the potential of updating the RV-ECU as a cost effec-
tive and practical alternative to software recalls, while
requiring the development of rigorous, formal safety
specifications easily sharable across manufacturers,
OEMs, regulatory agencies and even car owners.

INTRODUCTION

Modern automobiles are highly computerized, with 70
to 100 complex and interconnected electronic control
units responsible for the operation of automotive sys-
tems, and roughly 35 to 40 percent of the develop-
ment cost of modern automobiles going towards soft-
ware. In the next 10 years this number is expected to
jump to between 50 and 80 percent, and even higher
for hybrid vehicles. This will only be more true with
the advent of autonomous vehicles [1, 2].

It is not surprising, then, that the automotive industry
suffers from nearly every possible software fault and
resulting error. Many unbelievable stories have hit the
news, including cases where cars are hacked and re-
motely controlled, including brakes and the engine,
completely ignoring drivers input. In some cases prior
physical access to the car was needed, in others the
car was not even touched. Massive automobile re-
calls in the past few years have been due to software
bugs, costing billions [3, 4, 5, 6, 7, 8, 9]. Moreover,
almost 80 percent of car innovations currently come
from computer software, which has therefore become
the major contributor of value in cars [1]. As software
becomes more and more integral to the function and
economics of vehicles, the safety and security of car
software has taken center stage.

LIMITATIONS OF CURRENT APPROACHES Tra-
ditional software development quality processes rely
on static analysis tools and techniques to improve the
quality, security and reliability of their code. Static
analysis tools analyze software code against a set

1

of known rules and heuristics and notify the opera-
tor of warnings and violations. Nearly all companies
developing a reasonably large code base use code
quality tools. The reader interested in how static anal-
ysis tools perform on automotive-related software is
referred to [10]. Even with all of the resources spent
on these tools, software is still full of bugs and reliabil-
ity weaknesses. This may be fine when the software
is running on something as simple as a cell phone,
or a laptop computer that your child uses for home-
work, but this is unacceptable at best, and dangerous
at worst, when the software runs in an automobile.

Model checking [11] is a complementary approach
that has found some use in the automotive industry.
While rigorous and thorough, this approach suffers
from serious drawbacks that make its use impractical.
Besides the infamous ”state explosion” problem, the
most significant drawback of model checking is the is-
sue of model faithfulness. Models being used must
be correct with regards to the system being inspected
and the environment it operates in. With the complex-
ity of modern software and hardware systems, and
the (often) specificity of the models involved, great
care must be taking in validating the model itself as
well as the system with regards to the model. This is
an extremely error prone and time intensive process.
A previous comparison of model checking to static
analysis by a team heavily invested in finding bugs
through model checking tools found that issues in the
model itself caused model checking to miss five errors
caught by static analysis, concluding that “the main
source of false negatives is not incomplete models,
but the need to create a model at all. This cost must
be paid for each new checked system and, given finite
resources, it can preclude checking new code.” [12].
Besides the model, the tool itself must also be trusted
to properly verify the properties over the model, re-
quiring either a highly-audited open source tool or an-
other source of high confidence in the tool itself.

The portability of these models and specifications is
also dubious: any changes in the underlying system
require a correct change in the model, a non-trivial
process that must be repeated often for complex sys-
tems [11]. Equivalent specifications can thus have dif-
ferent meanings based on the models being used.

While this does not matter if the model is spe-
cific to some standard, such as a programming lan-
guage [13], with many tools and applications of model
checking this is not the case [14, 15]. So, while ex-
pressive, models can be complex and non-portable.
Overall, while model checking has the potential for
detecting deep and subtle errors, the requirement for
a model introduces many restrictions and complexi-
ties that make the tools difficult to manage and in-

tegrate effectively into most engineering teams, re-
stricting their use to teams with high levels of formal
expertise and critical applications requiring the maxi-
mum possible assurance, thus preventing widespread
adoption by the automotive industry as a whole.

ENABLING SAFETY STANDARDIZATION Another
hurdle on the path to greater automotive safety is
the lack of standardized automotive safety specifica-
tions. Because many specifications are informally
expressed and never formalized, communication be-
tween Tier 1 suppliers and their OEM partners is of-
ten incomplete with regards to safety, producing com-
ponents that may behave unpredictably in the sys-
tem as a whole. Moreover, formalizations that exist
tend to be difficult or impossible to port between Tier
1 suppliers. One clear industry need stemming from
verification-based development methodologies is the
need for portable formal safety specifications. Specifi-
cations should be expressed in lightweight formalisms
that are easy to understand and communicate, and
should stay separate from the particular verification
approach that is employed for their checking.

The RV-ECU runtime verification approach we pro-
pose makes use of a model that is being automatically
extracted as an abstraction of the executing system it-
self, eliminating the need for expensive, heavyweight,
non-faithful or non-portable models covering all the
corner cases of the implementation. This specifica-
tion minimalism allows for reusable specifications that
can also be used to minimally communicate precise
requirements between partners and vendors involved
in the development of the final automotive system.

Lastly, we observe that in currently developed auto-
motive systems, both the safety and the functional-
ity of the system and its components are considered
and implemented together, as part of the same de-
velopment process. Because safety and function-
ality are necessarily related to each other, this ap-
pears to be logical. However, this intermixing of safety
checks in components that are primarily functional
represents a violation of the maximum possible sepa-
ration of concerns in an ideal system architecture, in
which safety would be considered and implemented
separately from the desired functionality, allowing for
a clean separation that promotes both safety testing
and rigorous reasoning about safety properties.

RV-ECU proposes and promotes an architecture that
achieves this separation of safety from functionality in
the vehicle, allowing them to be developed largely in-
dependently and easing the burden on engineers re-
sponsible for developing functionality while providing
a rigorous toolset for safety checks to engineers and
managers responsible for safety and compliance.

2

RUNTIME VERIFICATION

Runtime verification is a system analysis and ap-
proach that extracts information from the running sys-
tem and uses it to assess satisfaction or violation of
specified properties and constraints [16]. Properties
are expressed formally, as finite state machines, reg-
ular expressions, linear temporal logic formulas, etc.
These formal requirements are used to synthesize
monitors, and the existing code base is instrumented
with these monitors. Runtime verification can be used
for many purposes, including policy monitoring, de-
bugging, testing, verification, validation, profiling, be-
havior modification (e.g., recovery, logging), among
others. In the development cycle, runtime verification
can be used as a bug finding tool, a testing approach,
a development methodology focusing on the creation
of formally rigorous specifications, while in a produc-
tion system it can be used as a component respon-
sible for enforcing a set of safety requirements on a
system to preserve its global safety during operation.

Ideally, developers and software quality managers
would like to validate a system prior to its operation
and release, in the coding and testing phases of the
software engineering lifecycle. This would allow max-
imum assurance in the performance of the deployed
system before release, increasing software depend-
ability. However, as previously discussed, static val-
idation methods such as model-checking [17] suffer
from limits preventing their use in real large-scale ap-
plications. For instance, those techniques are often
bound to the design stage of a system and hence
they are not shaped to face-off specification evolution.
Even when static analysis techniques do scale, they
are limited by the properties they can check, and may
not be able to check interesting behavioral properties.
Thus, the verification of some properties, and elimina-
tion of some faults, have to be complemented using
methods relying on analysis of system executions.

Figure 1 shows an example of an automotive safety
specification being compiled to code that enforces it
at runtime using the technology underlying RV-ECU.
The specification is called “safe door lock”, and is first
stated in plain English informally, as safety require-
ments are currently expressed. This is translated to
a formal requirement manually by domain experts, as
shown in the orange box using linear temporal logic:
it is always the case that a valid door open event im-
plies that there has not been a door lock since the last
unlock; a recovery action is attached that closes the
door when a violation is detected (violation handler).

Previous efforts in the runtime verification field have
focused on the development of formalisms appropri-

ate for specifying expressive properties while syn-
thesizing efficient monitors [18, 19, 20, 21, 22, 23],
steering program and system executions to obtain de-
sirable behaviors [24], combining runtime verification
with other approaches including static analysis [25],
minimizing runtime overhead to make monitoring de-
ployed systems practical [22, 26], and integrating run-
time verification with existing projects automatically
through both binary and source instrumentation, of-
ten leveraging aspect-oriented programming [27, 28].

Because runtime verification is a relatively new field,
the number of practical and commercial applications
of the technology is less substantial than that of static
analysis tools, model checkers, or deductive program
verifiers. There have, however, been some practical
applications of the theory of runtime enforcement for
program safety and security [29, 30, 31], or to en-
force access control policies at system runtime [32,
33]. Runtime verification has also been applied to mo-
bile applications to provide fine-grained permissions
controls and enforce device security policies [34].

RV-ECU: A VEHICLE SAFETY ARCHITECTURE

Because the automotive industry develops some of
the most widely deployed safety critical software of
any industry, it represents an ideal context where the
benefits of runtime verification can make a significant
difference. Runtime verification is one of the few tech-
niques allowing for the complete separation of safety
and functionality concerns in the vehicle architecture.
Towards this goal we introduce RV-ECU, a develop-
ment platform, also referred to as a “workbench” or
a “system” in the paper, for checking and enforcing
the safety of automotive bus communications. For
brevity, whenever the context is non-ambiguous we
take the freedom to use the same name “RV-ECU” for
any of its components or even for other components
that make use of code produced using RV-ECU.

At its core, RV-ECU consists of a compiler from for-
mally defined safety specifications to monitoring code
running on embedded control units. The safety spec-
ifications can be designed in any known mathemati-
cal formalism, with RV-ECU providing a plugin-based
system to enable the development of custom for-
malisms for the specific automotive needs. Currently,
some supported specifications languages include fi-
nite state machines, regular expressions, linear tem-
poral logic, and context-free grammars.

Figure 2 shows an overview of the RV-ECU method-
ology, which takes formal specifications as input and
from them automatically outputs code checking these
specifications as well as a proof object certifying the

3

Figure 1: Example automotive specification being compiled into code that enforces it at runtime through RV-ECU

Figure 2: RV-ECU system, applying automatic certifying compilation of safety specifications

4

correctness of this code over the mathematical se-
mantics of the specification formalism and of the un-
derlying programming language. Thus, the code out-
put by the RV-ECU compiler provides correctness
proof certificates of the monitoring code as well as of
the recovering code which is executed when the orig-
inal specification is violated. These certificates can
be checked in third party theorem proving software,
providing the maximum known assurance guarantees
that the code running on-device implements the given
safety specifications and their recovery handlers.

The benefits of the RV-ECU approach are numerous.
In the design and production stage of the vehicle pro-
duction lifecycle, use of RV-ECU can augment manual
testing, as the technique provides strong guarantees
with regards to safety property violation and recov-
ery. This can greatly simplify and speed up the testing
cycle, saving many engineer man hours. RV-ECU’s
compatibility with many formalisms and its function as
a compiler to monitors completely decouples consid-
erations of functionality from those of safety. Auto-
motive software engineers are free to focus their ef-
forts on code that enhances the functionality of soft-
ware systems aboard the automobile, while safety en-
gineers can focus on formalizing and testing safety
properties. This decoupling allows for the develop-
ment of modular and reusable safety formalisms that
can easily be shared between automotive suppliers
and OEMs. This can be revolutionary, as it ensures
compatibility in safety specifications between OEMs
and Tier 1 suppliers. It even makes possible a stan-
dardized database of formal safety properties main-
tained and updated by state regulatory bodies.

GLOBAL AND LOCAL MONITORING Figure 3
shows the RV-ECU system running on a vehicle. It is
important to note that RV-ECU can be applied in two
places: the generated monitoring code can either run
on a separate control unit to monitor the global traffic
on the bus, or be integrated within an existing control
unit (e.g., the power steering ECU) to prevent it from
taking unsafe actions. We therefore distinguish two
categories of monitors, with “global” monitors observ-
ing the bus on a dedicated ECU and “local” monitors
observing the bus from the perspective of an existing
ECU responsible for some functionality.

These global and local monitors can then further com-
municate to increase their effectiveness. When used
together, the global monitors can track the state of
the entire vehicle system, with local monitors track-
ing only the state important to a particular controller.
By communicating over the CAN bus, they are able
to share messages and commands, and the global
monitor is able to instruct the local monitors to block

Figure 3: RV-ECU running both globally and locally,
checking and enforcing vehicle system-wide safety.

or modify messages they may otherwise allow.

For simple testing and safety specifications involv-
ing one component, local monitoring can be used.
With complex or resource-intensive properties involv-
ing multiple components, global monitoring can be
used. A combination of these approaches can be ap-
plied both in the testing cycle and the production auto-
mobile, spanning the extremes between global mon-
itoring of the entire system only with untrusted code
running on individual components and local monitor-
ing of specific components only with no global speci-
fications or dedicated hardware. This flexibility allows
OEMs and Tier 1 suppliers to choose how and where
they apply the runtime verification technology, allow-
ing for incremental rollouts of local monitors at first
followed by the eventual implementation of a global
monitor, or vice versa.

Figure 4 shows the ideal RV-ECU deployment, with
all ECUs on the bus containing local monitors and
a global monitor attached to the full system. In this
example, no communication can flow between un-
trusted, manually-written code implementing function-
ality (highlighted in yellow) and the vehicle bus without
approval from high-assurance, provably correct, au-
tomatically generated code implementing the safety
specifications of the vehicle.

The use of RV-ECU therefore protects the overall
safety of the system from both malfunctioning con-
trollers and malicious accesses (hackers), maintain-
ing a set of safety invariants specified rigorously

5

Figure 4: RV-ECU protecting the CAN bus from unsafe messages

during the development of the vehicle. Moreover,
the safety monitoring code generated by RV-ECU
uses state-of-the-art techniques and algorithms de-
veloped by the runtime verification community specif-
ically aimed at minimizing runtime overhead.

CERTIFIABLE CORRECTNESS

As previously mentioned, the code generated by the
RV-ECU system from safety specifications addition-
ally carries proof certificates. Proof certificates are
mathematical objects expressed as objects in the Coq
automated theorem proving assistant [35], a proof as-
sistant that has been widely successfully applied to
detect security flaws in popular software [36], prove
mathematical theorems [37], and create and prove
the most complete currently certified C compiler [38].

The proof objects we provide will mathematically
prove that the code we generate correctly implements
the specification inputs provided, with regards to the
mathematical formal semantics of the programming
language itself. These proofs will be machine check-
able by third party theorem proving tools including
but not limited to Coq, providing multiple independent
sources of assurance that the generated code is rig-
orously correct. Such proof objects can also be used
in the context of certifying vehicle safety, with their for-
mal rigor providing the maximum known standards for
software development in the context of rating develop-
ment assurance in standards like ISO 26262.

RECALLS AND RV-ECU, A CASE STUDY

One of the key problems in the automotive industry
we believe will be helped by the RV-ECU technology
is a reduction in the required number of software re-
calls, as well as a quicker and less costly response
when recalls must be performed. To demonstrate this
application of our technology, we consider previous
software-caused recalls in the automotive industry.

We do not have to look far to find good examples. Just
a few months ago two security researchers unveiled
an exploit that gave them full, remote access to the

CAN bus of the Chrysler Jeep Cherokee [39]. The
two researchers found an unauthenticated open port
on the car’s Uconnect cellular network interface, and
used this foothold, as well as the fact that firmware bi-
naries were unsigned, to update the car’s networking
hardware over the air with a backdoored firmware that
gave them the ability to sniff CAN messages.

An unauthenticated SPI line between their back-
doored chip and a CAN controller allowed them to
write arbitrary messages over the CAN bus. Their
control over the car was near total - they demon-
strated complete wireless control over braking, the
sound system, the driver display, door locks, AC,
windshield wipers, steering (in reverse), and trans-
mission [40]. They publicized their research, after
disclosing the issue to regulators the car companies
involved, with a dramatic article in Wired magazine.
A Wired journalist took a spin in a hacked car, which
the researchers remotely drove into a ditch [39]. This
announcement created waves both in the automotive
industry and among the general public, and continues
to inspire both continued media and public discussion,
as well as safety legislation citation. The hack led to
a recall of 1.4 million cars, the proposal of new vehi-
cle cyber safety regulation in Congress, and a $400
million drop in Fiat Chrysler’s market cap [41].

This incident highlights the deficiencies of the au-
tomotive industry with regards to safety, and the
adverse effects of informal software engineering
methodology on both end consumers and the bot-
tom line. Fiat was lucky in that the two security re-
searchers chose to disclose this exploit. More exploits
along the same vein are sure to exist. How then can
runtime verification technology help automobile man-
ufacturers improve vehicular safety?

In this specific case, RV-ECU could have come into
play in multiple ways. The researchers mention in
their Blackhat conference paper that, to their surprise,
while the Jeep’s firmware update mechanism was de-
signed to be operated via the dashboard display, noth-
ing prevented them from sending firmware update
commands over the air, without authentication. This
entire attack approach would have been rendered in-

6

valid with one simple global safety property formal-
izing the requirement that firmware updates must be
driven from the dashboard display only.

This does not, however, deal with the more funda-
mental problem that CAN traffic is unauthenticated
and multicast. This means that all an attacker needs
to do to gain control over an automobile is gain access
to the CAN bus and impersonate legitimate ECUs.
Through local and global monitors, RV-ECU easily
allows the implementation of authentication and au-
thorization protocols as lightweight formalisms com-
pletely orthogonal to the functionality of the software
components. In other words, the engineers develop-
ing the code that achieves the desired functionality of
the ECU need not worry about authentication, that be-
ing added automatically by RV-ECU. This achieves a
separation of concerns that makes authentication and
authorization simpler and more portable.

Even if the researchers found a way past that, proper
formalization of vehicle safety would prevent many
of their attacks from taking place, even if they could
impersonate legitimate ECUs. For example, the re-
searchers gained complete control over the transmis-
sion, and in a dramatic display of their work cut the
transmission while a Wired journalist took their car for
a ride down an interstate in St. Louis. This attack
could have been rendered useless by formalizing the
following simple and common sense safety property
of a vehicle: if a vehicle is traveling faster than some
x miles an hour and the brake is not engaged, do not
allow a shift into neutral gear. RV-ECU would assure
that, even if the attackers could send arbitrary CAN
messages over the bus, any attempt to violate safety
specifications would simply not work, thus maintain-
ing the safety of the overall vehicle system even in the
presence of malicious actors and commands.

Even if such a specification were not preinstalled with
the vehicle, new safety specifications could cause the
vehicle to be updated with the specification at a later
date and protect all newly sold vehicles from exhibit-
ing the same problem. With no impact on function-
ality assuming correct operation of the specification,
the costs to test, implement, and distribute the safety
updates would be significantly less than that of a
dealership-based reflash of the entire ECU, a change
directly affecting both the safety and the functionality
of the component.

A PRACTICAL DEMONSTRATION

The first step towards demonstrating the separation
of functionality and safety on a vehicle architecture
using RV-ECU is the creation of a real-vehicle demo

showcasing our architecture monitoring a realistic but
simplified safety property.

Consider the following body-related property of door
safety in a minivan, with electronic controllers that
open the rear sliding doors in response to messages
over the CAN bus: Unless the driver has unlocked
the rear doors from the global vehicle lock/unlock con-
trols, and the doors have not been locked since, the
motor responsible for opening the doors should not
do so. The safety monitoring code of this property as
well as its automatic generation using the technology
underlying RV-ECU have been illustrated in Figure 1.

It is not difficult to imagine a situation in which this
property could be violated. For example, with a mali-
cious attacker gaining control of only the infotainment
system, connected to the body CAN bus, the mali-
cious attacker could easily spoof a “rear door open”
message while the vehicle is moving at high speeds to
endanger the safety of any potential rear passengers.
Alternatively, even in situations where no malicious at-
tacker is present, a malfunctioning ECU connected to
the body bus anywhere in the car could create such
an unsafe situation by sending a message to the mo-
tor to engage. Finally and most likely, a passenger
seating in the rear seat may (mistakenly) push the
door open button, which subsequently sends the mo-
tor engage message. The last scenario above is ob-
viously checked by almost all cars, likely using a pro-
tocol implemented in the door ECU that sends data-
collecting messages to other ECUs and then it sends
the motor engage message only if it determines it is
safe to do so. Not only that the door ECU is more
complex than needs to be due to mixing functionality
and safety, but the overall systems is still unsafe, be-
cause the other two scenarios can still happen. With
RV-ECU, all three scenarios above are treated the
same way, with a global monitor ECU in charge of
monitoring the safety property possibly among tens
or hundreds of other similar properties, and with any
other ECU free of developer-provided safety checking
code. The overall system is simpler and safer.

Towards creating such a demo, we have obtained a
STM3210C-EVAL development board implementing
the popular STM32 embedded architecture. We are
mimicking a minimal AUTOSAR-like API exclusively
for interacting with the CAN bus, and running our cer-
tifiable high-assurance code to monitor and enforce
the previously mentioned property in a 2012 Honda
Odyssey minivan. We intend to demonstrate it as part
of our presentation in SAE 2016. Figure 5 shows our
development embedded board running on the CAN
bus of our demo vehicle, attached through a connec-
tion in the driver’s side lock control unit.

7

Figure 5: RV-ECU development prototype connected to the body CAN bus of a 2012 Honda Odyssey

FUTURE WORK AND APPLICATIONS

The main focus of Runtime Verification, Inc., in the
near future is to gather real specifications and use
cases for the RV-ECU technology and architecture
from automotive customers and partners. We are ac-
tively seeking customers and partners in this space,
and aim to rapidly bring our technology to industry.

One unanswered research question regarding the
proposed RV-ECU safety architecture, shared with
other formal analysis methods in the automotive do-
main, is what is the ideal formalism suited for math-
ematically defining automotive properties. Runtime
Verification, Inc., will work with their automotive part-
ners and customers to provide an intuitive domain-
specific formal representation and associated plugin
for our system allowing safety engineers or man-
agers to comfortably specify such properties, lower-
ing the barrier to entry for our technology and facilitat-
ing its uptake in industry. Such a plugin would likely
also support the definition of real-time and temporal
safety properties to fully specify the range of possible
safety specifications associated with a safety-critical
real time system.

As part of this process, we are seeking an automotive
manufacturer or supplier willing to experiment with our
technology in their development environment, evalu-
ating the benefits of our specification language, code
generation infrastructure, and the general separation
of safety and functionality we provide to the specifica-
tion and monitoring of complex software systems.

TECHNICAL LIMITATIONS AND DRAWBACKS

There are several limitations and drawbacks raised
by the potential vehicle architecture we propose. The
first is the additional communications on the CAN bus
required between the local and global monitors. In the
proposed architecture, traffic can be as much as dou-
bled for safety critical messages when the RV-ECU
acts as a relay point, as compared to when safety is
not checked at all. In an already overcrowded bus,
such limitations could be prohibitive to the implemen-
tation of our solution. To mitigate this, it is possible
to monitor properties primarily locally, monitoring only
properties involving multiple ECUs through the global
safety monitor. It is worth noting that existing architec-
tures also require a number of messages to be sent
specifically for checking safety, e.g., the door ECU re-
questing data from other ECUs when the door open
button is pushed; more research is needed to com-
pare the number of messages that RV-ECU requires
versus the existing architectures. In the long term,
our hope is that efforts aiming to replace the CAN
bus with faster and higher-throughput communication
standards will allow for our additional communication
without overburdening the system.

Another key technical challenge for our technology is
developing a formalism and infrastructure capable of
handling the real-time properties required by the au-
tomotive industry. Because we have no access to the
proprietary specifications currently used, we are un-
able to develop such a system. We thus wish to start
with an architecture capable of handling non-real-time
properties, extending it with real time support as is re-

8

quired to handle the needs of our customers.

The main risk in the adoption and development of run-
time verification in automotive however lies in the de-
velopment of accurate, rigorous specifications which
the automotive industry does not currently have in the
development process. With only a vague, often in-
formal notion of formal system safety, the majority of
OEMs and suppliers have not fully and rigorously de-
fined precisely what the safety of a vehicle system
consists of. This initial effort to formalize the notion
of safety in the vehicle may be cost prohibitive and
difficult, but remains necessary for the eventual cre-
ation of a system with strong safety guarantees and
high assurance. We believe this undertaking will have
a positive effect on the automotive industry, providing
a rigorous notion and understanding of what safety
means in the context of the vehicle system. This rig-
orous notion will help at every level of the develop-
ment cycle, facilitating testing, development of new
functionality, and regulatory certification.

One further and clear technical limitation of our ap-
proach is its inability to protect from hardware faults.
Because our approach operates at the software level,
any flaws in the CAN driver being used or the hard-
ware of any individual ECU can still cause prob-
lems undetectable and unforeseen by the specifica-
tion monitoring system. While the former can be mit-
igated by full verification of the CAN driver, a more
traditional fault detection approach is likely more suit-
able for detecting faults in the actuators, sensors, and
processing hardware involved in the vehicle system.

It is also important to note that extensive full-vehicle
testing will still be required despite the presence of
our safety architecture. The effects of our monitoring
code and the effects of the interactions of the spec-
ification monitors with the full system cannot be de-
termined without testing. We hope that with rigorous,
checkable specifications and descriptive error condi-
tions, our system will speed the testing cycle for safety
requirements by allowing rapid evaluation of the sys-
tem against its stated requirements. Despite this, rig-
orous conventional testing is still required to maintain
the safety of the full vehicle system.

Lastly, there is a risk that our specifications will
themselves introduce safety risks in the system: if
the specifications are inaccurate, unforseen circum-
stances can create unexpected programmatic behav-
iors actually detrimental to the safety of the system.
For example, in Figure 4, a monitor could theoreti-
cally override or exclude a message by the controller
it incorrectly believes to be unsafe, which would itself
cause safety problems in the vehicle. While this is
undoubtedly possible, our belief is that any unforseen

behaviors in the formal specifications provided could
just as readily be present in the code itself, which
implements informal specifications. Formalizing the
specifications implicit in the current codebase rigor-
ously will not inherently introduce unforseen behav-
iors, and we expect that such formal rigor in the test-
ing phase will actually help reveal previously uncon-
sidered safety-critical interactions. In the cases where
there are unintended interactions between the moni-
tors and the system itself, traditional testing should be
able to reveal them at least as readily as it reveals in-
consistencies between actual and expected behavior
in current systems.

CONCLUSION

Thus, we claim that separating safety and function-
ality in the modern automobile system would help
find software bugs early in development, avoid recalls,
and improve communication between original equip-
ment manufacturers and their suppliers. We propose
runtime verification as one solution allowing for this
separation, and introduce a potential architecture for
realizing such a practical separation.

We see that specifications checked at runtime can be
both concise and formally precise, allowing for their
development by engineers and managers not trained
in formal methods while ensuring they are modular
and easily sharable. We implement such a system
with a practical demonstration of a simplified body
safety property, and lay out the roadmap for future
work enabled by the separation of safety and function-
ality. We discuss the technical limitations and draw-
backs of our approach, including resource overhead,
incomplete specifications, and an inability to deal with
low level hardware faults.

Overall, we seek to develop a commercial product us-
able by the automotive industry to add runtime verifi-
cation to vehicles, both in the testing and development
cycles and in production. We intend to partner with
interested parties towards the development of such a
system, and target it to suit the needs of our partners
and customers.

ACKNOWLEDGEMENTS

We would like to thank our partners at Toyota Info
Technology Center, Inc., and DENSO International
America, Inc., for their collaboration, industry insight,
and generous funding. We would also like to thank the
National Science Foundation and NASA for funding
work related to this project under SBIR (small busi-
ness development) grants.

9

Further assistance for this work was provided by
research and development performed at the For-
mal Systems Laboratory of the University of Illinois
at Urbana-Champaign, including funding from NSF,
NASA, DARPA, NSA, and Boeing grants.

References

[1] Robert N Charette. “This car runs on code.” In:
IEEE Spectrum 46.3 (2009), p. 3.

[2] Shinichi Shiraishi and Mutsumi Abe. “Auto-
motive system development based on col-
laborative modeling using multiple adls.” In:
ESEC/FSE 2011 (Industial Track) (2011).

[3] Larry P. Vellequette. Fiat Chrysler recalls 1.4
million vehicles to install anti-hacking software.
http : / / www . autonews . com / article /

20150724/OEM11/150729921/fiat-chrysler-

recalls - 1 . 4 - million - vehicles - to -

install-anti-hacking.

[4] Christiaan Hetzner. VW ordered to recall 2.4
million cars in Germany with cheat software.
http : / / www . autonews . com / article /

20151015/COPY01/310159986/vw- ordered-

to-recall-2-4-million-cars-in-germany-

with-cheat-software.

[5] Reuters. Toyota recalls 625,000 cars over soft-
ware malfunction. http : / / www . dw . com /

en / toyota - recalls - 625000 - cars - over -

software-malfunction/a-18585121.

[6] Associated Press. Ford Recalls 432,000 Cars
Over Software Problem. http : / / www .

dailyfinance . com / 2015 / 07 / 02 / ford -

recalls-cars-software-problem/.

[7] Associated Press. Honda recalling
143,000 Civics, Fits to fix faulty software.
http : / / bigstory . ap . org / article /

2f5f75fd91e64ec6bde06bacf9824867/honda-

recalling - 143000 - civics - fits - fix -

faulty-software.

[8] Eric Beech. GM recalls nearly 52,000 SUVs for
inaccurate fuel gauge. http://www.reuters.
com/article/2014/05/03/us- gm- recall-

suv-idUSBREA4209C20140503.

[9] Ben Klayman. Chrysler recalls 18,092 Fiat
500L cars for transmission issue. http :

/ / www . reuters . com / article / 2014 /

03 / 17 / us - chrysler - usrecall -

idUSBREA2G0PU20140317.

[10] Shinichi Shiraishi, Veena Mohan, and
Hemalatha Marimuthu. “Test Suites for Bench-
marks of Static Analysis Tools.” In: ISSRE 15
Industry Track. NIST. 2015.

[11] Christel Baier and Joost-Pieter Katoen. Prin-
ciples of model checking. Vol. 26202649. MIT
press Cambridge, 2008.

[12] Dawson Engler and Madanlal Musuvathi.
“Static Analysis Versus Software Model Check-
ing for Bug Finding.” In: In VMCAI. Springer,
2004, pp. 191–210.

[13] Java Path Finder. http : / / babelfish . arc .

nasa.gov/trac/jpf. Accessed: 2014-05-17.

[14] NuSMV Home Page. http://nusmv.fbk.eu/.
Accessed: 2014-05-17.

[15] UPPAAL: Academic Home. http : / / www .

uppaal.org/. Accessed: 2014-05-17.

[16] Klaus Havelund and Grigore Rosu. “Preface:
Volume 55, Issue 2.” In: Electronic Notes in
Theoretical Computer Science 55.2 (2001),
pp. 287–288.

[17] E. Allen Emerson and Edmund M. Clarke.
“Characterizing Correctness Properties of Par-
allel Programs Using Fixpoints.” In: Proceed-
ings of the 7th Colloquium on Automata,
Languages and Programming. Springer-Verlag,
1980, pp. 169–181. ISBN: 3-540-10003-2.

[18] Klaus Havelund and Grigore Rosu. “Monitor-
ing Programs Using Rewriting.” In: 16th IEEE
International Conference on Automated Soft-
ware Engineering (ASE 2001), 26-29 Novem-
ber 2001, Coronado Island, San Diego, CA,
USA. IEEE Computer Society, 2001, pp. 135–
143. ISBN: 0-7695-1426-X. DOI: 10.1109/ASE.
2001.989799.

[19] Amir Pnueli and Aleksandr Zaks. “PSL Model
Checking and Run-Time Verification Via
Testers.” In: FM 2006: Formal Methods, 14th
International Symposium on Formal Meth-
ods, Hamilton, Canada, August 21-27, 2006,
Proceedings. Ed. by Jayadev Misra, Tobias
Nipkow, and Emil Sekerinski. Vol. 4085. Lec-
ture Notes in Computer Science. Springer,
2006, pp. 573–586. ISBN: 3-540-37215-6. DOI:
10.1007/11813040_38.

[20] Andreas Bauer, Martin Leucker, and Christian
Schallhart. “The Good, the Bad, and the Ugly,
But How Ugly Is Ugly?” In: Runtime Verifica-
tion, 7th International Workshop, RV 2007, Van-
couver, Canada, March 13, 2007, Revised Se-
lected Papers. Ed. by Oleg Sokolsky and Ser-
dar Tasiran. Vol. 4839. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 126–138.
ISBN: 978-3-540-77394-8. DOI: 10.1007/978-
3-540-77395-5_11.

10

http://www.autonews.com/article/20150724/OEM11/150729921/fiat-chrysler-recalls-1.4-million-vehicles-to-install-anti-hacking
http://www.autonews.com/article/20150724/OEM11/150729921/fiat-chrysler-recalls-1.4-million-vehicles-to-install-anti-hacking
http://www.autonews.com/article/20150724/OEM11/150729921/fiat-chrysler-recalls-1.4-million-vehicles-to-install-anti-hacking
http://www.autonews.com/article/20150724/OEM11/150729921/fiat-chrysler-recalls-1.4-million-vehicles-to-install-anti-hacking
http://www.autonews.com/article/20151015/COPY01/310159986/vw-ordered-to-recall-2-4-million-cars-in-germany-with-cheat-software
http://www.autonews.com/article/20151015/COPY01/310159986/vw-ordered-to-recall-2-4-million-cars-in-germany-with-cheat-software
http://www.autonews.com/article/20151015/COPY01/310159986/vw-ordered-to-recall-2-4-million-cars-in-germany-with-cheat-software
http://www.autonews.com/article/20151015/COPY01/310159986/vw-ordered-to-recall-2-4-million-cars-in-germany-with-cheat-software
http://www.dw.com/en/toyota-recalls-625000-cars-over-software-malfunction/a-18585121
http://www.dw.com/en/toyota-recalls-625000-cars-over-software-malfunction/a-18585121
http://www.dw.com/en/toyota-recalls-625000-cars-over-software-malfunction/a-18585121
http://www.dailyfinance.com/2015/07/02/ford-recalls-cars-software-problem/
http://www.dailyfinance.com/2015/07/02/ford-recalls-cars-software-problem/
http://www.dailyfinance.com/2015/07/02/ford-recalls-cars-software-problem/
http://bigstory.ap.org/article/2f5f75fd91e64ec6bde06bacf9824867/honda-recalling-143000-civics-fits-fix-faulty-software
http://bigstory.ap.org/article/2f5f75fd91e64ec6bde06bacf9824867/honda-recalling-143000-civics-fits-fix-faulty-software
http://bigstory.ap.org/article/2f5f75fd91e64ec6bde06bacf9824867/honda-recalling-143000-civics-fits-fix-faulty-software
http://bigstory.ap.org/article/2f5f75fd91e64ec6bde06bacf9824867/honda-recalling-143000-civics-fits-fix-faulty-software
http://www.reuters.com/article/2014/05/03/us-gm-recall-suv-idUSBREA4209C20140503
http://www.reuters.com/article/2014/05/03/us-gm-recall-suv-idUSBREA4209C20140503
http://www.reuters.com/article/2014/05/03/us-gm-recall-suv-idUSBREA4209C20140503
http://www.reuters.com/article/2014/03/17/us-chrysler-usrecall-idUSBREA2G0PU20140317
http://www.reuters.com/article/2014/03/17/us-chrysler-usrecall-idUSBREA2G0PU20140317
http://www.reuters.com/article/2014/03/17/us-chrysler-usrecall-idUSBREA2G0PU20140317
http://www.reuters.com/article/2014/03/17/us-chrysler-usrecall-idUSBREA2G0PU20140317
http://babelfish.arc.nasa.gov/trac/jpf
http://babelfish.arc.nasa.gov/trac/jpf
http://nusmv.fbk.eu/
http://www.uppaal.org/
http://www.uppaal.org/
http://dx.doi.org/10.1109/ASE.2001.989799
http://dx.doi.org/10.1109/ASE.2001.989799
http://dx.doi.org/10.1007/11813040_38
http://dx.doi.org/10.1007/978-3-540-77395-5_11
http://dx.doi.org/10.1007/978-3-540-77395-5_11

[21] Howard Barringer, Klaus Havelund, David E.
Rydeheard, and Alex Groce. “Rule Systems for
Runtime Verification: A Short Tutorial.” In: Run-
time Verification, 9th International Workshop,
RV 2009, Grenoble, France, June 26-28, 2009.
Selected Papers. 2009, pp. 1–24. DOI: 10 .

1007/978-3-642-04694-0_1.

[22] Feng Chen and Grigore Rosu. “Parametric
Trace Slicing and Monitoring.” In: Tools and
Algorithms for the Construction and Analy-
sis of Systems, 15th International Conference,
TACAS 2009, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings. Ed. by Stefan Kowalewski
and Anna Philippou. Vol. 5505. Lecture Notes
in Computer Science. Springer, 2009, pp. 246–
261. ISBN: 978-3-642-00767-5. DOI: 10.1007/
978-3-642-00768-2_23.

[23] Howard Barringer and Klaus Havelund. “Inter-
nal versus External DSLs for Trace Analysis -
(Extended Abstract).” In: Runtime Verification
- Second International Conference, RV 2011,
San Francisco, CA, USA, September 27-30,
2011, Revised Selected Papers. 2011, pp. 1–
3. DOI: 10.1007/978-3-642-29860-8_1.

[24] Moonjoo Kim, Insup Lee, Usa Sammapun,
Jangwoo Shin, and Oleg Sokolsky. “Monitor-
ing, Checking, and Steering of Real-Time Sys-
tems.” In: Electr. Notes Theor. Comput. Sci.
70.4 (2002), pp. 95–111. DOI: 10.1016/S1571-
0661(04)80579-6.

[25] Eric Bodden, Laurie J. Hendren, Patrick Lam,
Ondrej Lhoták, and Nomair A. Naeem. “Col-
laborative Runtime Verification with Trace-
matches.” In: Runtime Verification, 7th Interna-
tional Workshop, RV 2007, Vancouver, Canada,
March 13, 2007, Revised Selected Papers.
Ed. by Oleg Sokolsky and Serdar Tasiran.
Vol. 4839. Lecture Notes in Computer Science.
Springer, 2007, pp. 22–37. ISBN: 978-3-540-
77394-8. DOI: 10.1007/978- 3- 540- 77395-
5_3.

[26] Feng Chen and Grigore Rosu. “Mop: an ef-
ficient and generic runtime verification frame-
work.” In: Proceedings of the 22nd Annual ACM
SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applica-
tions, OOPSLA 2007, October 21-25, 2007,
Montreal, Quebec, Canada. Ed. by Richard P.
Gabriel, David F. Bacon, Cristina Videira Lopes,
and Guy L. Steele Jr. ACM, 2007, pp. 569–
588. ISBN: 978-1-59593-786-5. DOI: 10.1145/
1297027.1297069.

[27] Volker Stolz and Eric Bodden. “Temporal As-
sertions using AspectJ.” In: Electr. Notes Theor.
Comput. Sci. 144.4 (2006), pp. 109–124. DOI:
10.1016/j.entcs.2006.02.007.

[28] Justin Seyster, Ketan Dixit, Xiaowan Huang,
Radu Grosu, Klaus Havelund, Scott A. Smolka,
Scott D. Stoller, and Erez Zadok. “Aspect-
Oriented Instrumentation with GCC.” In: Run-
time Verification - First International Confer-
ence, RV 2010, St. Julians, Malta, November 1-
4, 2010. Proceedings. 2010, pp. 405–420. DOI:
10.1007/978-3-642-16612-9_31.

[29] Mads Dam, Bart Jacobs, Andreas Lundblad,
and Frank Piessens. “Security Monitor Inlining
for Multithreaded Java.” In: Genoa: Proceedings
of the 23rd European Conference on ECOOP —
Object-Oriented Programming. 2009, pp. 546–
569. ISBN: 978-3-642-03012-3.

[30] Irem Aktug, Mads Dam, and Dilian Gurov.
“Provably Correct Runtime Monitoring.” In: FM
’08: Proceedings of the 15th int. symposium
on Formal Methods. Turku, Finland, 2008,
pp. 262–277. ISBN: 978-3-540-68235-6.

[31] Úlfar Erlingsson and Fred B. Schneider. “SASI
enforcement of security policies: a retrospec-
tive.” In: NSPW ’99: workhop on New security
paradigms. 2000, pp. 87–95. ISBN: 1-58113-
149-6.

[32] Horatiu Cirstea, Pierre-Etienne Moreau, and
Anderson Santana de Oliveira. “Rewrite Based
Specification of Access Control Policies.” In:
Electron. Notes Theor. Comput. Sci. 234
(2009), pp. 37–54. ISSN: 1571-0661. DOI: http:
//dx.doi.org/10.1016/j.entcs.2009.02.

071.

[33] Anderson Santana de Oliveira, Eric Ke Wang,
Claude Kirchner, and Hélène Kirchner. “Weav-
ing rewrite-based access control policies.” In:
FMSE’07: Proceedings of the ACM workshop
on Formal Methods in Security Engineering.
2007, pp. 71–80.

[34] Yliès Falcone, Sebastian Currea, and Mo-
hamad Jaber. “Runtime verification and en-
forcement for Android applications with RV-
Droid.” In: Runtime Verification. Springer. 2013,
pp. 88–95.

[35] ProofObjects: Working with Explicit Evidence
in Coq. http : / / www . cs . cornell . edu /

~clarkson / courses / sjtu / 2014su / terse /

ProofObjects.html. Accessed: 2015-09-1.

11

http://dx.doi.org/10.1007/978-3-642-04694-0_1
http://dx.doi.org/10.1007/978-3-642-04694-0_1
http://dx.doi.org/10.1007/978-3-642-00768-2_23
http://dx.doi.org/10.1007/978-3-642-00768-2_23
http://dx.doi.org/10.1007/978-3-642-29860-8_1
http://dx.doi.org/10.1016/S1571-0661(04)80579-6
http://dx.doi.org/10.1016/S1571-0661(04)80579-6
http://dx.doi.org/10.1007/978-3-540-77395-5_3
http://dx.doi.org/10.1007/978-3-540-77395-5_3
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1145/1297027.1297069
http://dx.doi.org/10.1016/j.entcs.2006.02.007
http://dx.doi.org/10.1007/978-3-642-16612-9_31
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.02.071
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.02.071
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.02.071
http://www.cs.cornell.edu/~clarkson/courses/sjtu/2014su/terse/ProofObjects.html
http://www.cs.cornell.edu/~clarkson/courses/sjtu/2014su/terse/ProofObjects.html
http://www.cs.cornell.edu/~clarkson/courses/sjtu/2014su/terse/ProofObjects.html

[36] How I discovered CCS Injection Vulnerability
(CVE-2014-0224). http : / / ccsinjection .

lepidum . co . jp / blog / 2014 - 06 - 05 / CCS -

Injection-en/index.html. Accessed: 2014-
05-15.

[37] Formalizing 100 theorems in Coq. http : / /

perso . ens - lyon . fr / jeanmarie . madiot /

coq100/. Accessed: 2015-09-1.

[38] CompCert - The CompCert C Compiler. http:
//compcert.inria.fr/compcert-C.html. Ac-
cessed: 2015-09-1.

[39] Andy Greenberg. Hackers Remotely Kill a Jeep
on the HighwayWith Me in It. http : / / www .

wired . com / 2015 / 07 / hackers - remotely -

kill-jeep-highway/.

[40] Charlie Miller and Chris Valasek. Remote Ex-
ploitation of an Unaltered Passenger Vehi-
cle. www . illmatics . com / Remote % 20Car %

20Hacking.pdf. Accessed: 2015-08-14.

[41] Remote Exploitation of an Unaltered Passenger
Vehicle. https://www.youtube.com/watch?v=
OobLb1McxnI.

[42] Oleg Sokolsky and Serdar Tasiran, eds. Run-
time Verification, 7th International Workshop,
RV 2007, Vancouver, Canada, March 13, 2007,
Revised Selected Papers. Vol. 4839. Lecture
Notes in Computer Science. Springer, 2007.
ISBN: 978-3-540-77394-8.

12

http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/
http://perso.ens-lyon.fr/jeanmarie.madiot/coq100/
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
www.illmatics.com/Remote%20Car%20Hacking.pdf
www.illmatics.com/Remote%20Car%20Hacking.pdf
https://www.youtube.com/watch?v=OobLb1McxnI
https://www.youtube.com/watch?v=OobLb1McxnI

	abstract
	Introduction
	Limitations of Current Approaches
	Enabling Safety Standardization

	Runtime Verification
	RV-ECU: A Vehicle Safety Architecture
	Global and Local Monitoring

	Certifiable Correctness
	Recalls and RV-ECU, A Case Study
	A Practical Demonstration
	Future Work and Applications
	Technical Limitations and Drawbacks
	Conclusion
	Acknowledgements

