
Technical Report:
A General Approach to Define Binders Using Matching Logic∗

Xiaohong Chen and Grigore Roşu
University of Illinois at Urbana-Champaign

{xc3,grosu}@illinois.edu

June 9, 2020

Abstract

We propose a novel definition of binders using matching logic, where the binding behavior of object-
level binders is directly inherited from the built-in ∃ binder of matching logic. We show that the behavior
of binders in various logical systems such as λ-calculus, System F, π-calculus, pure type systems, can
be axiomatically defined in matching logic as notations and logical theories. We show the correctness
of our definitions by proving conservative extension theorems, which state that a sequent/judgment is
provable in the original system if and only if it is provable in matching logic, in the corresponding
theory. Our matching logic definition of binders also yields models to all binders, which are deductively
complete with respect to formal reasoning in the original systems. For λ-calculus, we further show that
the yielded models are representationally complete, a desired property that is not enjoyed by many
existing λ-calculus semantics. This work is part of a larger effort to develop a logical foundation for the
programming language semantics framework K (http://kframework.org).

1 Introduction
In this paper, we propose a novel definition of binders using matching logic [81, 21], where the binding
behavior of object-level binders is directly inherited from the built-in ∃ binder of matching logic. An appealing
aspect of our definition is that it automatically yields models to all binders. Therefore, it is interesting and
motivating to define a logical system that features binding in matching logic, because it allows us to study
the resulting model theory and properties, in addition to the proof theory. We define λ-calculus [28],
System F [43, 79], pure type systems [7], and π-calculus [66] in matching logic as theories and prove the
correctness of definitions as conservative extension theorems (Theorems 36 and 49). We also show that the
models that matching logic yields for these theories are deductively complete with respect to formal reasoning
in each of the respective systems (Sections 7 and 9.2). For λ-calculus, we show that the corresponding
matching logic models are also representationally complete for all λ-theories, a desired property that is not
known to hold for many existing λ-calculus semantics [85, 12, 44, 17, 87, 86, 33, 75, 83, 57] (see discussion
in Section 8.2.2).

We use λ-calculus as an example to illustrate our definition of binders in matching logic. We define
λ-abstraction, λx. e, as the following matching logic formula (called pattern; see Definition 2):

λx. e ≡ lambda (intension ∃x:Var . 〈x, e〉) (1)

Intuitively, 〈x, e〉 builds an argument-value pair; ∃ is the built-in binder in matching logic that thus creates
the binding of x to e; ∃x:Var . 〈x, e〉 builds the set-theoretic union of all argument-value pairs 〈x, e〉, as x

∗This technical report completes the ICFP’20 conference paper [23] with all the proofs that were not possible to include
there due to space restrictions.

1

{xc3,grosu}@illinois.edu
http://kframework.org

ranging over all variables of sort Var ; this union set is called the graph of the function x 7→ e, which is then
“packed” by the operator intension into an object and passed to lambda. Finally, lambda decodes/retracts
the packed object and returns the intended interpretation of λx. e. Binders in the other systems may require
different retracts other than lambda, but all take the same packed object as argument, which for convenience
we write [x:Var] e ≡ intension∃x:Var . 〈x, e〉.

The main goal of this paper is to show that the matching logic definition of binders as illustrated in
Eq. (1), is mathematically interesting and can serve as a foundation of binders in language frameworks.
In Section 2, we start with a discussion on the major existing approaches to dealing with binders and we
compare them with our approach. Then we make the following contributions:

• We propose a novel functional variant of matching logic that is more suitable to capture binders, and
we comprehensively study its model theory (Section 3); we demonstrate the expressiveness of this
functional variant of matching logic by defining several important mathematical instruments (such as
equality and sorts) as theories and notations (Section 4);

• We define λ-calculus (Section 5) as a theory in matching logic (Section 6), as an illustrative case
study. Then we prove the conservative extension theorem for λ-calculus and show that matching logic
yields complete models, in terms of deduction, for λ-calculus (Sections 7-8). We also discuss the repre-
sentability problem in λ-calculus and show that matching logic yields models that are representationally
complete, in Section 8.2.2;

• We generalize our method to arbitrary binders (Section 9).

Finally, we conclude the paper with future work in Sections 10-11.
This paper marks an important step towards formalizing the logical foundation of the K semantic frame-

work (http://kframework.org), which has been used to define complete formal semantics of several real-
world languages [15, 68, 50, 51, 30]. Prior attempts have been made to propose a logical foundation of K
using formalisms like rewriting logic [82, 65] and graph rewriting [88], but none of them were satisfactory.
Recently, matching logic has been proposed as an alternative [81, 21]. The main idea is that arbitrarily com-
plex programming languages and calculi defined in K become theories in matching logic, and all the tools
offered by K, such as execution engines, symbolic reasoning, and even full functional correctness verification
of program or language properties, become proof search heuristics in matching logic, which admits a small
proof system and thus a small trust base. Several important logical systems have been defined in matching
logic, but none where binders play a major role, like λ-calculus or type systems. On the other hand, the cur-
rent K implementations already provide built-in support for user-defined binders of certain restricted forms
(Remark 43). Thus, this paper fills this gap by giving the theoretical results about how to define logical
systems that feature binders in matching logic and thus in K, without any foundational compromise.

This technical report accompanies the conference paper [23].
All proof details can be found in the appendix.

2 Related Work: Existing Approaches to Defining Binders
We discuss some existing approaches to defining binders and compare them with our approach using matching
logic. These approaches include: (1) de Bruijn techniques [31], which give α-equivalent terms identical
encodings; (2) combinators [28], which translate terms with binders to binder-free combinator terms; (3)
nominal logic [72], which uses first-order logic (FOL) to axiomatize name-swapping and freshness, and uses
them to axiomatize object-level binding; (4) higher-order abstract syntax [70] (abbreviated HOAS), which
uses fixed binders in the meta-language, often a variant of typed λ-calculus, to define arbitrary binders in
the object-level systems; (5) explicit substitution [1], which uses customized calculi where the meta-level
operation of capture-free substitution is incarnated in an object-level operation as part of the calculi; (6)
term-generic logic [77] (abbreviated TGL), which is a FOL variant parametric in a generic term set, defined

2

http://kframework.org

axiomatically and not constructively, which can be instantiated by a concrete binder syntax. We discuss
how these approaches handle binders and binding behavior using the following λ-expression as an example
(a closed expression with distinct bound variables, which requires α-renaming during reduction to avoid
variable-capture):

(λz. (zz))(λx. λy. (xy)) (†)

De Bruijn encodings eliminate bound variables by replacing them with indexes that denote the number
of (nested) binders that are in scope between them and their corresponding binders.1 For example, the de
Bruijn encoding of (†) is (λ(11))(λλ(21)), where 1 means that it is bound by the closest binder and 2 means
that it is bound by the second closest binder. Bound variables are eliminated so α-equivalent expressions
have the same de Bruijn encoding. However, substitution requires index shifting, to adjust the indexes.
De Bruijn techniques are used as the internal representations of terms in several theorem provers, but the
encoding is not human readable, implementations are often tricky to get right, and efficiency problems can
still appear on large terms.

Combinators translate binders to binder-free terms, which are built with constants like k and s, and appli-
cation. This translation is called abstraction elimination, and can be implemented using term rewriting [55].
It may cause exponential growth in the translated term size. Reduction of combinatory terms is done us-
ing equations like kxy = x and sxyz = (xz)(yz) regarded as rewrite rules. Combinatory terms are not human
readable; for example, (one of) the equivalent combinator term of (†) is s(skk)(skk)s(s(ks)(s(kk)(skk)))(k(skk)).
Using combinators, the binding behavior of λ is captured implicitly through abstraction elimination.

Nominal logic refers to a family of FOL theories whose signatures contain a name-swapping operation
(x y) · e that swaps all (free and bound) occurrences of x and y in e, and a freshness predicate x# e stating
that x has no free occurrences in e. The notions of α-equivalence and capture-free substitution are then
axiomatized using additional FOL axioms on top of the axioms of name-swapping and freshness. As an
example, the following is an axiom in [72, Appendix A.3] that states that swapping two fresh names that do
not occur free in a term has not effect:

(F1) ∀x:Var .∀y:Var .∀e:Exp. x# e ∧ y # e→ (x y) · e = e

where Var and Exp are the sorts of variables (also called atoms) and expressions, respectively. Nominal logic
also defines a new sort [Var]Exp and a FOL binary function _._ : Var ×Exp → [Var]Exp for binding, whose
properties such as α-equivalence are axiomatized. Then, β-reduction in λ-calculus, e.g., can be defined in
the following way [74, pp. 251, Eq. (12.17)]:

(β in Nominal Logic) ∀x:Var .∀e:Exp.∀e′:Exp. app(lam(x.e), e′) = subst((x.e), e′)

where subst(_,_) is a binary function defined by four axioms (see [72, pp. 8]), in accordance to the four
possible forms that e can take (i.e., the variable x; a variable distinct from x; application; or abstraction).
E.g., the following is the substitution axiom for abstraction [74, Eq. (12.20)]:

∀x:Var .∀y:Var .∀e:Exp.∀e′:Exp. y # e′ → subst(x. lam(y. e), e′) = lam(y. subst(x. e, e′))

Besides nominal logic and its metatheory [24, 25, 39], there is a wider range of research on nominal
techniques in general, including studies on using Fraenkel-Mostowski sets [38], nominal sets [73] or similar
set-theoretic structures [90] as well as category-theoretic notions [41] to formalize and reason about binders
and operations on them, and have resulted in practical implementations that support complex recursive
and inductive reasoning over terms with bindings as well as algorithms for unification [3] and narrowing [4].
These nominal approaches deal with variable names and bindings directly, treat variable names as normal
data that can be manipulated, quantified, and reasoned about, and give explicit definitions to operations
such as free variables and capture-free substitution (via name-swapping and freshness).

Nominal approaches can be directly exploited in matching logic, because FOL is a methodological frag-
ment of matching logic. Indeed, [81, Section 7] shows how matching logic symbols (see Definition 2) can be

1Other de Bruijn encodings count the binders from the top of the terms.

3

used to uniformly represent both FOL predicates and FOL functions (Sections 3.2.1 and 3.2.2), in a way
where FOL theories become matching logic theories as are, without any translations. Therefore, nominal
logic variants can be defined as theories in matching logic straightforwardly, via the FOL capability of match-
ing logic. Future research shall reveal more direct methods that capture the essence of nominal techniques
(e.g., nominal sets) within matching logic, without going through FOL. In this paper, however, we explore
a different, more HOAS-style treatment of binders using matching logic, where the built-in ∃ binder is used
to define binders in object-languages (explained below and revisited in Remark 1).

Higher-order abstract syntax (HOAS) is a design pattern where some expressive higher-order calculus,
usually one of the variants of typed λ-calculus [70, 48, 63, 69, 34, 42] or second-order equational logic [37, 34],
is used as a foundation to define object-level binders. As an example, we show (part of) the HOAS-style
definition of (untyped) λ-calculus in the Twelf system [71]:

exp : type. // the type for λ-expressions
app : exp -> exp -> exp. // application is defined as a constant of a function type
lam : (exp -> exp) -> exp. // lambda is defined as a constant of a function type whose

// argument also has a function type; e.g., the encoding of (†)
// is app (lam ([z] (app z z))) (lam ([x] lam ([y] (app x y))))

red : exp -> exp -> type. // reduction relation (its type result makes it a binary predicate)
red-beta : red (app (lam ([x] (F x))) E) (F E). // β-reduction, discussed below

where [x]_ is the built-in binder of (the HOAS variant underlying) Twelf; E is a variable of type exp; F is
a variable of the function type exp -> exp; and (F x) is the (metalevel) application of F to x. Higher-order
matching is needed when red-beta is applied, and the internal substitution mechanism of Twelf is triggered
when F is applied to E. The binding behavior of λ is obtained from the binding behavior of the built-in binder
[x] _, via a constant lam; specifically, λx.e is encoded as lam ([x] e). Object-level substitution is avoided,
but clearly this is not how β-reduction is usually defined (for the usual definition, see (β, Reduction)
below). Application in λ-calculus is defined by a simple desugaring to the builtin application, using a
different constant app; that is, e1 e2 is defined as app e1 e2 (rather than e1 e2). Thus, the definition needs
to be justified by proving adequacy theorems that establish a bijection between the expressions and formal
proofs of λ-calculus, and the HOAS terms and type derivations, which is a tedious and nontrivial task [26].

Explicit substitution turns the implicit meta-level substitution operation into more explicit and atomic
steps, in order to provide a better understanding of the operational semantics and execution models of
higher-order calculi (see [54, pp. 1–2]; see also [14, pp. 4] for historical remarks). By doing so, it bridges the
gap between higher-order formalisms and their implementations, and has resulted in several practical tools.
For example, [89] proposes a calculus for explicit substitution whose implementation allows us to define exe-
cutable formal representations of many logical systems featuring binders with a close-to-zero representational
distance.

Term-generic logic (TGL) is a FOL variant, where the set of terms T is generic and given as a parameter
that exports two operations—free variables and capture-free substitution—satisfying certain properties [77,
Definition 2.1]. TGL formulas are then defined constructively as in FOL, from predicates π(e1, . . . , en)
and equations e1 = e2, to compound formulas built using ∧, ¬, and ∃, with the important exception that
e1, . . . , en are not constructive terms like in FOL, but generic terms in T . In the case of λ-calculus, the set
of λ-expressions Λ can be proved to satisfy the definition of a generic term set in TGL, so we can instantiate
TGL by Λ. The binding behavior of λ is inherited automatically, through the T instance. The metalevel of
λ-calculus can be defined by TGL axioms. For example, β-reduction is captured either as an equation or as
a relation:

(β, Equation) (λx. e) e′ = e′[e/x] (β, Reduction) reduces
(
(λx. e) e′, e′[e/x]

)
where reduces is a binary predicate; (λx. e) e′, e′[e/x] ∈ Λ are generic terms (schemas) that represent all the
concrete instances. TGL has been used to define various systems featuring bindings. In this paper, we use
TGL as an intermediate to capture other systems with binders within matching logic.

4

Our Approach Using Matching Logic Our matching logic encoding of binders is inspired by the key
observation that the meaning of a term with binders, say λx. e, can be given on top of the function that
maps x to e, which can be encoded as its graph: the set of argument-value pairs

⋃
x{(x, e)}. This set is then

packed as an object and passed to a retraction function lambda that retracts/decodes the intended meaning
of the term. We recall the encoding of λx. e in Eq. (1) below:

λx. e ≡ lambda (intension∃x:Var . 〈x, e〉)

Note that by introducing the following notation

[x:Var] e ≡ intension∃x:Var . 〈x, e〉

the encoding of λx.e becomes lambda ([x:Var] e), where Var is the sort for λ-calculus variables and thus a
subsort of Exp for expressions (see Section 6). Note that our matching logic encoding of binders is reminiscent
of both the nominal encoding lam(x.e) and the HOAS encoding lam ([x] E).

An important aspect of our approach is that it yields models. We will give a comprehensive study on the
model theory of matching logic, by which every theory is associated with default models that can be used to
give semantic interpretations of all matching logic formulas (called patterns) of that theory. In particular,
the matching logic theory of λ-calculus will also yield a precise and insightful description of how λx. e is
interpreted (semantically) in matching logic models.

Models are insightful. They help us understand a logical system better, from a different angle. It is not
unusual that more than one notion or class of models are proposed for one logic, because each has its unique
merit in helping us understand the logic from a certain perspective. Since matching logic has a built-in notion
of models, by defining a logical system as a matching logic theory we can immediately study its resulting
model theory and properties. For example, in Section 8.2.2, we show how by defining λ-calculus in matching
logic, we obtain a new semantics of λ-calculus that is representationally complete for all λ-theories.

The importance of models has also been recognized by several HOAS approaches. For example, [35]
proposes presheaf models of variable binding in a second-order syntax of binding terms, where the initial
model is used to define recursive/inductive operations; this work also yields an explicit connection to the
scope-safe variant of De Bruijn approaches. [36, 37] propose for the same binding syntax yet another category
of models, called second-order universal algebras, together with completeness and conservative extension
results w.r.t. first-order universal algebras; however, the conservative extension w.r.t. the original logical
systems that feature binding and their formal reasoning is not investigated at our knowledge, and not known
if it holds. In our work using matching logic, we shall prove the conservative extension for all logical systems
that feature binders considered in the paper, but will not cover the topics of inductive reasoning and/or
initial models (although a special initial algebra will be discussed in Section 8 for λ-calculus); this topic is
left as future work (see Section 10).

As a logic that features binding, we expect matching logic to be definable within HOAS. Such a definition
will likely work fine in capturing the syntax and binding behavior of matching logic formulas/patterns as well
as its proof theory, but it will not capture the semantics or models of matching logic; see related discussion
in Remark 52. In this paper, we will discuss the other direction, that is to capture HOAS by matching logic.
We will do that indirectly, by firstly capturing term-generic logic (TGL) and then re-using the existing TGL
definitions of HOAS (see [76]). This indirect approach has the advantage that we will be able to examine
how the very general TGL models are translated and preserved when defined in matching logic.

Remark 1. Dealing with binders has been and still is an active research topic. The variety of proposals and
approaches has occasionally caused heated arguments. We conclude this section by reminding the reader that
matching logic was designed to serve as a unified logical foundation for the K framework, which is intended
to support all languages and all definitional styles as logical theories. That is, when looked at through the
matching logic lenses, the various approaches to binders above become different methodologies for how to
define matching logic theories.

5

3 Functional Variant of Matching Logic
Matching logic has been recently proposed in its full generality in [81, 21]. In this paper, we will use a variant
of matching logic that has a more similar representation to functional programming languages, where the
main constructs are function application and constants. Since matching logic is relatively new, we will not
assume the reader familiar with it. Therefore, this section has a dual goal: to introduce the reader to the
basic intuitions and notations of matching logic, and to propose and present in detail a functional variant of
it. Section 3.1 defines its syntax and Section 3.2 its models and semantics. We define matching logic theories
in Section 3.3.

3.1 Matching Logic Syntax
Matching logic is parametric in a signature that includes variables and constant symbols:

Definition 2. A signature is a tuple � = (EV ,SV ,Σ), where EV ∩ SV = ∅ and
1. EV is a countably infinite set of element variables denoted x, y, . . . ;

2. SV is a countably infinite set of set variables denoted X,Y, . . . ;

3. Σ is an at most countable set of (constant) symbols, or just symbols, denoted σ, σ1, σ2,

Matching logic formulas, called �-patterns or simply patterns, are inductively defined as follows:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ (2)

where ϕ1 ϕ2 is called an application and is assumed associative to the left; ∃x. ϕ is the built-in binder in
matching logic that binds x within ϕ. Note that ∃ only binds element variables and not set variables. We
use Pattern(�), or simply Pattern, to denote the set of all �-patterns.

Remark 3. The syntax of the original matching logic has sorts and multiary many-sorted operations [81, 21].
Our functional variant syntax in Definition 2 is much simpler: it has no sorts and contains only one binary
operation, the application, and constants. Yet, as seen in this paper, this simpler variant has the same
expressiveness and reasoning capability.

As a convention, we assume the scope of ∃ goes as far as possible to the right, so for example, ∃x. y → x
should be understood as ∃x. (y → x). In addition, we assume the standard notions of free variables FV(ϕ) ⊆
EV ∪SV , α-equivalence ϕ1 ≡α ϕ2, and capture-free substitution ϕ[ψ/x], which are all summarized in Fig. 1.
We regard α-equivalent patterns as syntactically identical patterns; in other words, ϕ1 ≡α ϕ2 implies that
ϕ1 ≡ ϕ2. A set of common derived constructs are also included in Fig. 1 in the usual way as syntactic sugar,
and we assume the standard precedence among them.

The matching logic syntax of patterns given in Eq. (2) is similar to the FOL syntax of terms and formulas,
except that we drop the distinction between terms and formulas, and unify them as patterns.2 Also, we
drop the multiary functions/predicates in FOL, and replace them with a set of constant symbols that can be
applied to other patterns using the built-in application ϕ1 ϕ2. This simpler syntax of matching logic makes
it easier to develop its metatheory, and yet, as we will show in Section 4, we do not lose any specification
or reasoning power, and can still define important and necessary mathematical instruments as theories and
notations in matching logic.

By unifying the syntax of terms and formulas, we can bind variables in terms, using the built-in matching
logic binder ∃. A minimal example is ∃x. x, where x is bound by ∃x, so FV(∃x. x) = ∅. While ∃x. x is a
well-formed matching logic pattern, it is neither a well-formed term nor a well-formed formula in FOL. As
we will see in Section 6, being able to build terms and create bindings over them is what makes our encoding
of various binders in matching logic possible, and novel.

2The syntax of a logic should be in harmony with its semantics. FOL distinguishes terms and formulas because their
interpretations are different: terms are interpreted as elements and formulas are interpreted as truth values. As we will see in
Section 3.2, the matching logic semantics interprets patterns uniformly to the sets of elements that match them, so there is no
need to distinguish terms and formulas. Other such examples include modal logic [13] (which abandons terms entirely) and
separation logic [80] (which merges the syntax for memory heaps with formulas).

6

free variables:
FV(x) = {x} FV(X) = {X} FV(σ) = ∅ FV(ϕ1 ϕ2) = FV(ϕ1) ∪ FV(ϕ2)
FV(⊥) = ∅ FV(ϕ1 → ϕ2) = FV(ϕ1) ∪ FV(ϕ2) FV(∃x. ϕ) = FV(ϕ) \ {x} α-renaming:
∃x. ϕ ≡ ∃y. ϕ[y/x], for y 6∈ FV(ϕ)

capture-free substitution (where y distinct from x and z is fresh):
(∃x. ϕ)[ψ/x] ≡ ∃x. ϕ (∃x. ϕ)[ψ/y] ≡ ∃z. ϕ[z/x][ψ/y]

derived constructs defined as syntactic sugar:
¬ϕ ≡ ϕ→ ⊥ ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)
> ≡ ¬⊥ ∀x. ϕ ≡ ¬∃x.¬ϕ ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

Figure 1: Above line: standard notions of free variables, α-equivalence, and capture-free substitution for
∃ in matching logic. Below line: usual derived constructs defined as syntactic sugar. Standard precedence
assumed.

3.2 Matching Logic Semantics
Matching logic patterns are interpreted on an underlying carrier set of elements, and each pattern is then
interpreted as a set of elements, which are those that match the pattern. This is called the pattern matching
semantics of matching logic, and is what inspired the name “matching logic”.

Intuitively, the pattern ⊥ (called bottom) is matched by no elements, while > (called top, defined in
Fig. 1) is matched by all elements. Conjunction ϕ1 ∧ ϕ2 is matched by the elements that match both ϕ1

and ϕ2, disjunction ϕ1 ∨ ϕ2 by the elements that match ϕ1 or ϕ2, negation ¬ϕ by the elements that do not
match ϕ, and implication ϕ1→ϕ2 by all elements a such that if a matches ϕ1 then a matches ϕ2. Element
variable x is matched by the element to which x evaluates (see Definition 7). Set variable X is matched by
the set of elements to which X evaluates; this set can be empty, or total, or any subset of the carrier set.
Quantification ∃x. ϕ is matched by the elements that match ϕ for some valuation of x; that is, it abstracts
away the irrelevant part x from the matched part ϕ.

Definition 4. Given � = (EV ,SV ,Σ), a �-model (or just model) is a tuple (M,_•_, {σM}σ∈Σ), where

1. M is an underlying carrier set, required to be non-empty (M 6= ∅);

2. _•_ : M ×M → P(M) is called the interpretation of application, where P(M) is the powerset;

3. σM ⊆M is a subset, called the interpretation of σ, defined for every σ ∈ Σ.

We often use the same letter M to denote the above model and refer to � as the signature of M .

Let us compare matching logic and FOL, w.r.t. models. Both logics require their models to have
nonempty carriers, so they agree on (1). For (3), however, FOL models interpret constants to elements,
while matching logic models interpret constants to any carrier subsets. Similarly, for (2), FOL models
interpret application (regarded as a binary function) as a function ofM ×M →M that returns one element,
while matching logic models interpret application to a function that returns a set. We use the terminology
functional interpretation to refer to how FOL interprets functions and terms. Functional interpretation is in
harmony with the syntax of FOL terms, which represent elements. Similarly, the set-theoretic interpretation
of matching logic application and symbols is in harmony with its syntax of patterns, which represent sets of
elements.

Note that the FOL functional interpretation can be seen as a special instance of the matching logic
set-theoretic interpretation, due to the bijection between an element a and the singleton {a}: for any set M ,
the set of all singletons of M is isomorphic to M itself. This justifies our abuse of notation (used often in
this paper) in which {a} is written as a when there is no confusion. We will use two examples to illustrate
how the functional interpretation is a special instance of the set-theoretic interpretation. These examples
are also related to the model theory of λ-calculus, so we will re-visit them later; for now, we only use them
as examples of matching logic models.

7

(Curry.1) k = s(s(ks)(s(kk)k))(k(skk))

(Curry.2) s = s(s(ks)(s(k(s(ks)))(s(k(s(kk)))s)))(k(k(skk)))

(Curry.3) s(s(ks)(s(kk)(s(ks)k)))(kk) = s(kk)

(Curry.4) s(ks)(s(kk)) = s(kk)(s(s(ks)(s(kk)(skk)))(k(skk)))

(Curry.5) s(k(s(ks)))(s(ks)(s(ks))) = s(s(ks)(s(kk)(s(ks)(s(k(s(ks)))s))))(ks)

(Meyer-Scott) ∀x. ∀y. (∀z. xz = yz)→ s(k(skk))x = s(k(skk))y

Figure 2: Five axioms of Curry and the Meyer-Scott axiom for λ-models [6, pp. 94] (•A is omitted).

Example 5. Let (A,_•A_) be an applicative structure [6, Definition 5.1.1], where A is a nonempty carrier
set and _•A_ : A× A→ A is an application function. Let matching logic signature �∅ contain no symbols.
We define a �∅-model (M,_•_, {}), whereM = A and a •b = {a •A b} for all a, b ∈ A. Then, M is isomorphic
to A under the bijection between elements and singletons.

Example 6. Let (A,_•A_, k, s) be a combinatory algebra [6, Definition 5.1.7], where (A,_•A_) is an
applicative structure and k, s ∈ A are distinguished elements such that k •A a •A b = a and s •A a •A b •A c =
(a •A c) •A (b •A c), for all a, b, c ∈ A. A is called a λ-model [6], if it additionally satisfies the five axioms of
Curry [6, Theorem 5.2.5] and the Meyer-Scott axiom [6, Definition 5.2.7], shown in Fig. 2. Let �ks be the
matching logic signature �ks = {k, s} and define a �ks -model (M,_•_, {kM , sM}), where M = A, kM = {k},
sM = {s}, and a • b = {a •A b} for all a, b ∈ A. Then M is isomorphic to A under the element-singleton
bijection.

Examples 5 and 6 show that the functional interpretation (of application and constants) is a special
instance of the set-theoretic interpretation of matching logic, and that applicative structures, combinatory
algebras, and λ-models are special instances of matching logic models. In Section 4, we will show how to
enforce functional interpretation in matching logic models, axiomatically.

We continue with the semantics of matching logic and define the interpretation of patterns.

Definition 7. Let M be a matching logic model like in Definition 4. We extend the interpretation of
application _•_ pointwisely, from over elements to over sets, as A •B =

⋃
a∈A,b∈B a • b for any A,B ⊆M . An

M -valuation (or simply valuation), written ρ : (EV ∪ SV) → M ∪ P(M), is a function that maps element
variables to elements and set variables to sets, i.e., ρ(x) ∈ M for x ∈ EV and ρ(X) ⊆ M for X ∈ SV . It
yields a pattern valuation, written |_|ρ : Pattern→ P(M), defined as:

1. |x|ρ = {ρ(x)} for x ∈ EV ;

2. |X|ρ = ρ(X) for X ∈ SV ;

3. |σ|ρ = σM for σ ∈ Σ;

4. |ϕ1 ϕ2|ρ = |ϕ1|ρ • |ϕ2|ρ, where _•_ is pointwisely extended to sets;

5. |⊥|ρ = ∅;

6. |ϕ1 → ϕ2|ρ = M \ (|ϕ1|ρ \ |ϕ2|ρ), where “\” denotes set difference;

7. |∃x. ϕ|ρ =
⋃
a∈M |ϕ|ρ[a/x], where ρ[a/x] is the valuation ρ′ such that ρ′(x) = a, ρ′(y) = ρ(y) for all

y ∈ EV distinct from x, and ρ′(X) = ρ(X) for all X ∈ SV .

Remark 8. The above semantic rules should not be unexpected. Rules (1) and (2) interpret variables
according to ρ. Rules (3) and (4) interpret symbols and application according to M . For rules (5)-(7), if we
regard ∅ as “false” and M as “true”, then these rules become precisely the FOL semantic rules of bottom,
implication, and ∃-quantification, respectively.

8

We can prove that the derived constructs in Fig. 1 have the expected semantics:

Proposition 9. The following propositions hold:

1. |¬ϕ|ρ = M \ |ϕ|ρ;

2. |ϕ1 ∨ ϕ2|ρ = |ϕ1|ρ ∪ |ϕ2|ρ;

3. |ϕ1 ∧ ϕ2|ρ = |ϕ1|ρ ∩ |ϕ2|ρ;

4. |>|ρ = M ;

5. |ϕ1 ↔ ϕ2|ρ = M \ (|ϕ1|ρ 4 |ϕ2|ρ), where “4” denotes set symmetric difference;

6. |∀x. ϕ|ρ =
⋂
a∈M |ϕ|ρ[a/x].

Proof. We only prove (1) and (6). The others are in Appendix A. For (1), we have |¬ϕ|ρ = |ϕ→ ⊥|ρ =
M \ (|ϕ|ρ \ |⊥|ρ) = M \ (|ϕ|ρ \ ∅) = M \ |ϕ|ρ. For (6), we have |∀x. ϕ|ρ = |¬∃x.¬ϕ|ρ = M \ |∃x.¬ϕ|ρ =
M \

⋃
a∈M |¬ϕ|ρ[a/x] = M \

⋃
a∈M (M \ |ϕ|ρ[a/x]) = M \ (M \

⋂
a∈M |ϕ|ρ[a/x]) =

⋂
a∈M |ϕ|ρ[a/x].

Remark 10. Definition 7 and Proposition 9 show that there is a close connection between the matching
logic pattern constructs and the set operations in set theory: conjunction corresponds to intersection of
two sets; disjunction corresponds to union of two sets; negation corresponds to set complement; top (>)
corresponds to the total set; bottom (⊥) corresponds to the empty set; ∃-quantification corresponds to the
(big) union of a collection of sets; and ∀-quantification corresponds to the (big) intersection of a collection
of sets. This connection to the set-theoretic operations can be useful to understand the intuitive meaning of
complex matching logic patterns.

3.2.1 Predicate Patterns

A difference between FOL formulas and matching logic patterns is that the former can only be interpreted
as either true or false, while the latter can be interpreted as any subsets of the carrier set. Following up
on Remark 8, we identify two special sets, M and ∅, and use them to represent (logical) true and false,
respectively. Obviously, not all patterns are interpreted as M or ∅. Given a model M , we call ϕ an M -
predicate, if |ϕ|ρ ∈ {∅,M} for all ρ. We call ϕ a predicate (or predicate pattern), if it is an M -predicate in all
M . Predicate patterns can be built from ⊥, >, and matching logic logical constructs, e.g., ∀x. (σ x)∧¬(σ x).
More interesting patterns can be built from symbols and application. For example, σ x1 · · · xn is a predicate
pattern if the underlying matching logic theory (discussed in Section 3.3) enforces the models to interpret
σ as a predicate (i.e., either ∅ or M). We will see more predicate patterns in Section 4 and throughout
the paper. Roughly speaking, predicate patterns are the matching logic counterparts of FOL formulas.
They make “statements”, and can take only two possible values: M if the statements are facts, and ∅ if
the statements are not facts. Note that except the application, all matching logic constructs (primitive or
derived) preserve the predicate-ness of patterns. We can then use application to build FOL-style predicates,
and this way regard predicate logic as a methodological fragment of matching logic.

3.2.2 Functional Patterns

Examples 5 and 6 emphasized that any setM is isomorphic to the set of singletons ofM , and that functional
interpretation is a special instance of set-theoretic interpretation. Formally, given M , we call ϕ an M -
functional pattern if |ϕ|ρ is a singleton for all ρ. We call ϕ a functional pattern, if it is an M -functional
pattern for all M . Roughly speaking, functional patterns are the matching logic counterparts of FOL terms.
A functional pattern denotes exactly one element; e.g., x is the simplest functional pattern. More interesting
functional patterns can be built by symbols and application; e.g., σ x1 · · · xn is a function pattern if the
underlying matching logic theory (discussed in Section 3.3) enforces the models to interpret σ as a function.
We will show many examples of functional patterns in Section 4 and throughout the paper.

9

3.3 Matching Logic Theories
Examples 5 and 6 show that we sometimes want to consider only a subclass of matching logic models, those
that satisfy certain properties. This can be achieved by defining a matching logic theory—a set of patterns
regarded as axioms—and considering only the satisfying models. Formally:

Definition 11. For M and ϕ, we say M validates ϕ, or ϕ holds in M , written M � ϕ, iff |ϕ|ρ = M for all
ρ. For a pattern set Γ, we say M validates Γ, written M � Γ, iff M � ψ for all ψ ∈ Γ. We write Γ � ϕ, iff
M � Γ implies M � ϕ for all M . A matching logic theory (�,Γ) is a pair, where � is a signature and Γ is a
set of �-patterns. We often abbreviate (�,Γ) as Γ, if � is understood.

Note that ϕ holds in M if it represents a “logical truth”, i.e., its interpretation is the total set M .

Remark 12. The axiom set Γ may contain patterns that have free variables. By Definition 11, free (element
and set) variables are effectively universally quantified, as we need to check the validity of each axiom on all
possible valuations. Free element variables in an axiom can be eliminated using ∀-quantification, defined in
Fig. 1, as in FOL. However, free set variables in an axiom cannot be eliminated, because ∀-quantification is not
applicable to set variables. Allowing free set variables in axioms to be effectively universally quantified, makes
matching logic more expressive (in terms of capturing models) than FOL (see Section 4.4), and comparable
to the fragment of monadic second-order logic [29, 91] where all quantifiers over sets are universal quantifiers
and only appear at the top.

We will define various matching logic theories in the rest of the paper. To define a theory, we need to
define its sets of element variables, set variables, symbols, and axioms. We often omit explicit definitions
of the variable sets and only specify the symbol and axiom sets. For readability, we mix the definitions of
the symbol and axiom sets in our narrative texts. For example, when we say “we consider/define a symbol
σ ∈ Σ”, we mean to add σ to the symbol set of the theory we are defining. Similarly, when we say that “we
define/assume an axiom ψ”, we mean to add ψ to the axiom set of the theory we are defining. We will often
define a theory Γ′ by building it upon another more basic theory Γ. In that case, Γ′ is assumed to include
all components of Γ.

4 Important Mathematical Instruments
In this section, we (axiomatically) define several important mathematical instruments, like functions and
equality, which are required in order to define binders as theories within matching logic (as opposed to
extensions of the logic). We also propose appropriate notations for them. In Section 4.1, we define the de-
finedness symbol and use it to define equality, membership, set-theoretic inclusion, and functional constants.
In Section 4.2, we define the inhabitant symbol and use it to define sorts, subsorting, and many-sorted func-
tions and partial functions. This allows us to reason about sorts and to capture logical systems with sorts,
in the unsorted matching logic. In Sections 4.3 and 4.4, we define matching logic theories that completely
capture the models of product sets and powersets.

4.1 Definedness Symbol and Related Instruments
Recall the pattern matching semantics of matching logic: the interpretation of pattern ϕ is the set of elements
that match it. When ϕ is matched by at least one element, we say that ϕ is defined. The definedness symbol
(Definition 13) takes any pattern ϕ, and builds a new definedness pattern dϕe, which is a predicate pattern
stating that ϕ is defined. Many important mathematical instruments such as equality and membership, can
be derived from the definedness symbol as syntactic sugar.

Definition 13. Let us consider a (constant) symbol written d_e ∈ Σ, which we call the definedness symbol.
We write dϕe to mean d_eϕ, obtained by applying d_e to ϕ. We define the following axiom:

(Definedness) dxe // or, equivalently, ∀x . (d_ex)

10

We define totality b_ c, equality _=_, membership _∈_, and set inclusion _⊆_ as derived constructs:

bϕc ≡ ¬d¬ϕe ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c x ∈ ϕ ≡ dx ∧ ϕe ϕ1 ⊆ ϕ2 ≡ bϕ1 → ϕ2c

Intuitively, (Definedness) states that every individual element x is defined. This is clearly true with our
intended meaning of d_e, because x is matched by exactly one element to which it evaluates; this intended
meaning is precisely what the (Definedness) axiom captures. Specifically, in any model that validates
(Definedness), dxe is interpreted as the total set, according to matching logic validity (Definition 11).
Now, consider any pattern ϕ that is defined, and that ϕ is matched by one element, say x. By pointwise
extension (Definition 7), the interpretation of dϕe must include the interpretation of dxe, which we know
is the total set. Therefore, dϕe is also interpreted as the total set, as intended. On the other hand, if ϕ
is undefined, its interpretation is the empty set, and by pointwise extension, dϕe is also interpreted as the
empty set. This intuition is formalized below.

Proposition 14. For any model M , patterns ϕ,ϕ1, ϕ2, element variable x, and valuation ρ, we have

1. daeM = M for any a ∈M , where daeM means d_eM • a and d_eM is the interpretation of d_e;

2. |dϕe|ρ = M if |ϕ|ρ 6= ∅; otherwise, |dϕe|ρ = ∅;

3. |bϕc|ρ = M if |ϕ|ρ = M ; otherwise, |bϕc|ρ = ∅;

4. |ϕ1 = ϕ2|ρ = M if |ϕ1|ρ = |ϕ2|ρ; otherwise, |ϕ1 = ϕ2|ρ = ∅;

5. |x ∈ ϕ|ρ = M if ρ(x) ∈ |ϕ|ρ; otherwise, |x ∈ ϕ|ρ = ∅;

6. |ϕ1 ⊆ ϕ2|ρ = M if |ϕ1|ρ ⊆ |ϕ2|ρ; otherwise, |ϕ1 ⊆ ϕ2|ρ = ∅; note that |x ⊆ ϕ|ρ = |x ∈ ϕ|ρ;

Note that all the above patterns in (2)-(6) are predicate patterns (Section 3.2.1).

Not all models validate (Definedness). Indeed, as said in Section 3.3, the purpose of axioms and theories
is to restrict models under consideration. As an example, a model whose interpretation of application
is a function that always returns the empty set does not validate (Definedness), as it fails to satisfy
Proposition 14(1). On the other hand, models that satisfy (Definedness) are also easy to come by. A
canonical example is a model M with one distinguished element #def such that #def • a = M for all a ∈M ,
and let d_eM , the interpretation of d_e, to be {#def}. Then we have |dxe|ρ = d_eM •ρ(x) = {#def}•{ρ(x)} =
#def • ρ(x) = M , and thus M validates (Definedness). In fact, any model can be extended into one that
validates (Definedness) by adding an element like #def above to it and letting d_eM be {#def}. Since
definedness is so useful, we assume it in all subsequent theories defined in this paper, and hereby we do not
consider the models that do not satisfy the axiom (Definedness).

Remark 15. We explain why defining equality needs the definedness symbol, when there is already the
logical biconditional construct ϕ1 ↔ ϕ2, given in Fig. 3. It is not always the case that |ϕ1 = ϕ2|ρ =
|ϕ1 ↔ ϕ2|ρ for all ρ. By Proposition 14, ϕ1 = ϕ2 is a predicate stating that ϕ1 and ϕ2 are matched by
the same set of elements, while by Proposition 9, ϕ1 ↔ ϕ2 is a pattern (not necessarily a predicate) that is
matched by the elements a, such that a matches ϕ1 iff a matches ϕ2. If |ϕ1|ρ = |ϕ2|ρ, then both ϕ1 ↔ ϕ2

and ϕ1 = ϕ2 are interpreted as the total set, but if otherwise, ϕ1 = ϕ2 is interpreted as the empty set,
while ϕ1 ↔ ϕ2 is the complement of set difference. The fact that we can define equality axiomatically,
i.e. without extending the logic, to mean precise identity in models is particularly useful in our subsequent
developments, albeit surprising. Indeed, it is well-known that equality cannot be defined in FOL (which
justifies the extension of FOL with equality), while in second-order logic it requires quantification over sets.

As a simple example, we can use the definedness symbol (and derived constructs) to axiomatize functional
constants, which are matching logic symbols whose interpretations are singletons.

11

Example 16. Let σ ∈ Σ be a matching logic symbol. Let us consider the following axiom

(Functional Constant) ∃x. σ = x

Then for any model M that validates this axiom, we have |∃x. σ = x|ρ =
⋃
a∈M |σ = x|ρ[a/x] = M . By

Proposition 14, |σ = x|ρ[a/x] is either ∅ or M , so there exists a ∈ M such that |σ = x|ρ[a/x] = M , which
implies that σM = |x|ρ[a/x] = {a}, i.e., σ is interpreted as a singleton in M .

4.2 Inhabitant Symbol and Related Instruments
Matching logic is an unsorted logic, but we can capture sorts by defining a set of functional constants
(Example 16) that represent the names of the sorts, and define a special symbol, which we call the inhabitant
symbol, to get the actual inhabitant set of each sort. This intuition is made formal below. From now on, we
will always assume the definedness symbol and the (Definedness) axiom.

Definition 17. A sort constant (or simply sort) is a symbol s ∈ Σ, which is a functional constant, as defined
in Example 16. Let us consider another symbol [[_]] ∈ Σ, which we call the inhabitant symbol. We write [[s]]
to mean [[_]] s, obtained by applying [[_]] to s, and call it the inhabitant of s.

In other words, the pattern s is matched by the sort name s itself, while [[s]] is matched by the actual
elements of sort s. For example, for two sorts Nat and Int of natural and integer numbers, Nat is matched
by one element—the sort name Nat ; Int is matched by one element—the sort name Int ; [[Nat]] is matched by
all natural numbers; and [[Int]] is matched by all integer numbers. Note that Definition 17 does not enforce
any particular axioms about sorts or the inhabitant symbol. Their interpretations are determined by the
models and can be constrained by axioms. For example, subsorting s1 ≤ s2 is a partial ordering on sorts
that enforces the subset relation between the inhabitants of s1 and s2. In matching logic, subsorting can be
axiomatically captured:

(Subsorting) [[s1]] ⊆ [[s2]]

which states that the inhabitant of s1 is included in the inhabitant of s2. In this paper we use subsorting
to define the syntax of λ-calculus and other logical systems that feature bindings. In Section 6 we define
a sort Var for λ-calculus variables and a sort Exp for λ-expressions, and we define the subsorting axiom
[[Var]] ⊆ [[Exp]] to specify that λ-calculus variables are also λ-expressions.

4.2.1 Sorted Quantification

The meaning of ∃x. ϕ is the set-theoretic (big) union of the interpretations of ϕ, with x ranging over all
elements in the carrier set (see Remark 10). Now that we have defined sorts, we will want to restrict x to
range over not all elements, but only those having sort s. For that, we define the following self-explanatory
derived constructs, called sorted quantification:

∃x:s. ϕ ≡ ∃x. (x∈ [[s]] ∧ ϕ) ∀x:s. ϕ ≡ ∀x. (x∈ [[s]]→ ϕ)

4.2.2 Many-Sorted Functions

Given sorts s, s1, . . . , sn, we call a (constant) symbol f ∈ Σ a many-sorted function from s1, . . . , sn to s,
written f : s1 × · · · × sn → s, if it satisfies the axiom:

(Function) ∀x1:s1. . . .∀xn:sn.∃y:s. f x1 · · · xn = y (3)

Application is left-associative (Definition 2), so f x1 · · · xn means (· · · (f x1) · · · xn). Intuitively, (Function)
requires that f x1 · · · xn consist of exactly one element, y, which is an inhabitant of s, given that x1, . . . , xn
are inhabitants of s1, . . . , sn, respectively. Note that while f , fx1, fx1x2, ..., fx1 · · ·xn−1 are all well-formed
patterns, they are not required to consist of exactly one element.

12

4.2.3 Many-Sorted Partial Functions

The axiom (Function) above is not unusual; it translates to matching logic a standard encoding of many-
sorted functions using an unsorted logic (see [67, pp. 8] for a related discussion). What is a lot harder
problem is how to capture partial functions that can be undefined in some arguments. Capturing partial
functions in a formal system is not just of theoretical interest. It is also a practical concern that has arisen
in the formal verification of programs with exceptional expressions, such as division by zero or the head of
an empty list, and has resulted in work on partial algebras [18], exception algebras [11], error algebras [46],
order-sorted algebras [47], and various logics for partial functions [2, 60].

On the other hand, it is surprisingly easy to capture partial functions in matching logic. We take the
axiom (Function) and change the equality _ = _ to set inclusion _ ⊆ _:

(Partial Function) ∀x1:s1. . . .∀xn:sn.∃y:s. f x1 · · · xn ⊆ y (4)

Intuitively, (Partial Function) requires f x1 · · · xn to consist of at most one element. The undefinedness
of f on x1, . . . , xn is captured, by f x1 · · · xn returning the empty set ∅. For notional simplicity, we will
write f : s1 × · · · × sn ⇀ s to mean that f is a partial function from s1, . . . , sn to s.

The reason why partial functions can be directly defined using (Partial Function), without needing to
extend or modify matching logic, is due to the pattern matching semantics of matching logic, where patterns
are not restricted to a functional interpretation, and are given a more general, set-theoretic interpretation,
which unifies (both syntactically and semantically) total functions and FOL terms, predicates and FOL
formulas, and partial functions and partial terms.

4.3 Product Sorts
In this and the next sections, we assume the definedness symbol, the inhabitant symbol, and all the related
instruments that are given in Sections 4.1 and 4.2. Our goal in this section is to axiomatize the product sort
s1 ⊗ s2, whose (intended) inhabitant is the (set-theoretic) product of the inhabitants of s1 and s2, up to
isomorphism. Formally:

Definition 18. Given two sorts s1, s2, we consider a functional constant s1 ⊗ s2 ∈ Σ, which we call the
product (sort) of s1 and s2. We define a function 〈_,_〉 : s1 × s2 → s1 ⊗ s2, called pairing, where the
function notation was introduced in Section 4.2.2. We write 〈ϕ1, ϕ2〉 to mean 〈_,_〉ϕ1 ϕ2, obtained by
applying 〈_,_〉 to ϕ1, and then to ϕ2. We define the following two axioms:

(Product) [[s1 ⊗ s2]] = ∃x1:s1.∃x2:s2. 〈x1, x2〉
(Injectivity) ∀x1:s1.∀x2:s2.∀y1:s1.∀y2:s2. 〈x1, x2〉 = 〈y1, y2〉 → x1 = y1 ∧ x2 = y2

Intuitively, 〈x1, x2〉 denotes the pair consisting of x1 and x2. (Product) states that the inhabitant of s1⊗s2

is the product of the inhabitants of s1 and s2. (Injectivity) states that 〈_,_〉 is injective.

Proposition 19. For any model M validating the axioms in Definition 18, we have Ms1⊗s2
∼= Ms1 ×Ms2 ,

where we use Ms = [[_]]M • sM to denote the inhabitant of s in M , for any sort s.

4.4 Power Sorts
Our goal in this section is to axiomatize the power sort 2s, whose (intended) inhabitant is the powerset of
the inhabitant of s, up to isomorphism. Formally:

Definition 20. Given a sort s, let us consider a functional constant 2s ∈ Σ, which we call the power (sort)
of s. For clarity, we use the Greek letters α, β, . . . for element variables whose intended range is in sort 2s.
Let us define a (constant) symbol extension ∈ Σ, called the extension symbol (explained later), and define
the following axioms:

13

(Arity) ∀α:2s. (extensionα) ⊆ [[s]]
(Powerset) X ⊆ [[s]]→ ∃α:2s. (extensionα) = X
(Extensionality) ∀α:2s.∀β:2s. (extensionα) = (extensionβ)→ α = β

Note that set variable X is free in (Powerset). By Remark 12, it is effectively universally quantified.

Definition 20 needs some explanation. Let us consider an intended model M , where the inhabitant of s
is Ms and the inhabitant of 2s is M2s = P(Ms), i.e., the powerset of Ms. We use a, b, · · · ∈ Ms to denote
elements inMs and A,B, · · · ∈M2s to denote elements inM2s , i.e., subsets ofMs. Note that α is an element
variable of sort 2s, so let us assume it evaluates to some A ∈ M2s . Then, the intended, intuitive meaning
of (extensionα), is that it is a pattern (of sort s) that is matched by all elements a in A. Please note the
difference between α and (extensionα). On one hand, α is an element variable of sort 2s, so it is matched
by one “element” A. On the other hand, (extensionα) is a pattern of sort s, so it is matched by all elements
in the set A. In other words, A is regarded as an individual “element” in sort 2s but a real “set” in sort s, on
which the pointwise extension (Definition 7) can apply. Thus, the matching logic symbol “extension” takes
A as an element and returns A itself as a set. This has a similar meaning to the term “extension” in logic
and philosophy—an extension of a concept consists of the things to which it applies. Here, we regard the
element A of the powerset as an intensional concept and the set A of its elements as its extension.

With the above intuition, the axioms in Definition 20 are self-explanatory. (Arity) states that (extensionα)
has sort s whenever α has sort 2s. (Powerset) states that any subset of the inhabitant of s, ranged by X,
has a corresponding “element” denoted α whose extension is X. Therefore, the inhabitant of 2s is at least
as large as the powerset of the inhabitant of s. On the other hand, (Extensionality) states that α and β
are equal whenever their extensions are equal, so the inhabitant of 2s is at most as large as the powerset of
the inhabitant set s. Putting the arguments together, we show that the inhabitant of 2s is the powerset of
the inhabitant of s, up to isomorphism:

Proposition 21. For any model M validating the axioms in Definition 20, we have M2s
∼= P(Ms).

The reverse of extension, called intension, can be defined as the following syntactic sugar:

intensionϕ ≡ ∃α:2s. α ∧ (extensionα = ϕ)

Intuitively, ϕ has sort s; (intensionϕ) has sort 2s, and is matched by the unique element α of sort 2s such
that extensionα = ϕ; the uniqueness is guaranteed by the axiom (Extensionality).

Remark 22. Proposition 21 shows that powersets can be completely, finitely axiomatized in matching
logic. This result is known to not hold in FOL, because by the Löwenheim-Skolem theorem [59], if a
FOL theory has infinite models, then it has a countable model. However, using powersets, we can enforce
uncountable models by first enforcing an infinite model and considering its powerset. As an example, we
define natural numbers Nat using zero and suc, and define the standard injectivity axioms zero 6= suc(x) and
suc(x) = suc(y)→ x = y to enforce Nat to be infinite, as it must contain zero, suc(zero), suc(suc(zero)), etc.,
which are all distinct. If powersets could have been completely axiomatizable in FOL, then we could define
the powerset of natural numbers 2Nat that is uncountable, contradicting the Löwenheim-Skolem theorem.

4.5 Matching Logic Proof System
There is a Hilbert-style proof system for matching logic that defines the provability relation Γ ` ϕ for
matching logic theory Γ and pattern ϕ. The proof system is not needed in order to understand the technical
results discussed in this paper (see Appendix B.3). We only review some meta-theorems about the proof
system, which are needed in order to prove the subsequent results, mentioning that any (sound) proof system
that has these properties would be equally suitable:3

Proposition 23. If Γ contains the definedness symbol and the axiom (Definedness), then
3Note that Γ is different from typing contexts in type systems (see, e.g., [19]) that share variables with judgment ϕ. Here,

Γ has variables independent from ϕ and its axioms are implicitly universally quantified; see also Remark 12.

14

free variables:
FV(x) = {x} FV(e1 e2) = FV(e1) ∪ FV(e2) FV(λx. ϕ) ≡ FV(ϕ) \ {x}

α-renaming:
λx. ϕ ≡ λy. ϕ[y/x], for y 6∈ FV(ϕ)

capture-free substitution (where y distinct from x and z is fresh):
(λx. ϕ)[ψ/x] ≡ λx. ϕ (λx. ϕ)[ψ/y] ≡ λz. ϕ[z/x][ψ/y]

Figure 3: Meta-properties about binder λ, similar to those for the binder ∃ in matching logic (Fig. 1).

1. Γ ` ϕ, if ϕ is a propositional tautology over patterns;

2. Γ ` ϕ1 and Γ ` ϕ1 → ϕ2 imply Γ ` ϕ2;

3. Γ ` ϕ[y/x]→ ∃x. ϕ;

4. Γ ` ϕ1 → ϕ2 and y 6∈ FV(ϕ2) imply Γ ` (∃y. ϕ1)→ ϕ2;

5. Γ ` ϕ = ϕ;

6. Γ ` ϕ1 = ϕ2 and Γ ` ϕ2 = ϕ3 imply Γ ` ϕ1 = ϕ3;

7. Γ ` ϕ1 = ϕ2 implies Γ ` ϕ2 = ϕ1;

8. Γ ` ϕ1 = ϕ2 implies Γ ` ψ[ϕ1/x] = ψ[ϕ2/x], known as the Leibniz characterization of equality.

Proposition 23 essentially states that FOL with equality reasoning is supported by the proof system of
matching logic, where patterns are conveniently regarded as either “predicates” or “terms”, depending on
the context. We require Γ to contain the definedness symbol and axiom, because they are needed to define
equality ϕ1 = ϕ2, as discussed in Definition 13.

We review the following soundness theorem of the matching logic proof system:

Theorem 24 (Soundness Theorem). Γ ` ϕ implies Γ � ϕ.

While several (deductive) completeness results (i.e., Γ � ϕ implies Γ ` ϕ) have been proved for some
theories Γ in [81, 21], it is incomplete in general for all Γ and ϕ. Fortunately, it does not affect this paper.
Instead, we prove a new completeness result as a corollary of the conservative extension theorem of λ-calculus
(Theorem 36), where Γ is the matching logic theory that captures λ-calculus and ϕ is an equation between
λ-expressions; see Section 5.

5 λ-Calculus Preliminaries
The syntax of λ-calculus [28] is parametric in a set of variables V λ, whose elements are written x, y, The
set Λ of λ-expressions is inductively defined by the following grammar:

e ::= x | e1 e2 | λx. e

Free variables FV(e), α-equivalence e1 ≡ e2, and capture-free substitution e[e′/x] are defined as usual, shown
in Fig. 3. We regard α-equivalent λ-expressions as identical expressions.

In λ-calculus, we are interested in proving equations of the form e1 = e2, for e1, e2 ∈ Λ. Equational
reasoning in λ-calculus includes the standard reflexivity, symmetry, transitivity, and congruence proof rules,
and the distinguished (β) axiom schema that specifies the result of function application:

(β) (λx. e) e′ = e[e′/x] for all x ∈ V λ and e, e′ ∈ Λ

We write `λ e1 = e2 to mean that e1 = e2 is provable in λ-calculus.

15

5.1 Our Goal and the Main Challenges
Our first goal is to define a matching logic theory Γλ that faithfully captures λ-calculus, in the sense that λ-
expressions are well-formed matching logic patterns and λ-reasoning is captured by matching logic reasoning.
Formally, our goal is to prove the conservative extension theorem:

Γλ ` e1 = e2
conservativeness−�============�−
extensiveness

`λ e1 = e2 for all e1, e2 ∈ Λ (5)

which says that we can safely reduce λ-calculus reasoning to matching logic reasoning, without proving fewer
or more equations between λ-expressions. Specifically, the extensiveness direction means that all provable
equations between λ-expressions can also be proved in Γλ, which is thus an extension of λ-calculus, while
the conservativeness direction says that no additional equations between λ-expressions can be proved. Note
that we are only concerned with equations between λ-expressions. Since matching logic has a richer syntax
than λ-calculus, of course there are equations, e.g. ⊥ = ⊥, which are provable in matching logic but do not
even exist in λ-calculus.

Main Challenges There are two main challenges. The first challenge is to capture the binding behavior
of λ, that is, to define λx. e as syntactic sugar in matching logic such that it satisfies the properties about
free variables, α-equivalence, and capture-free substitution in Fig. 3. The key observation is that λ plays
two important roles: (i) it builds a term λx. e, and (ii) it builds a binding of x into e. Matching logic allows
us to separate these two roles, where we define terms using symbols and application as shown in Section 4
and bindings using matching logic’s built-in binder ∃.

The other challenge is to prove the conservative extension theorem shown as Eq. (5). The extensiveness
direction is easy, because equational reasoning is supported in matching logic (Proposition 23). We only
need to include all instances of (β) in Γλ. The conservativeness direction is more involved and is a major
technical contribution of this paper. Indeed, matching logic has a richer syntax and a more complex proof
system than λ-calculus; we need to show that this more complex infrastructure cannot be used to prove more
equations between λ-expressions.

5.2 Our Plan
We will give two different proofs for the conservativeness of Γλ, each providing a unique insight about the
construction of Γλ. The first is based on a model theory of λ-calculus, discussed in Section 7. It considers a
special class of λ-calculus models, called concrete Cartesian closed category models, or simply concrete ccc
models, which are known to be complete with respect to λ-calculus reasoning (Lemma 26). This model-based
proof is easier to understand due to its close connection to the models, and is what inspired our encoding of
the λ binder in matching logic (see Eq. (1)). However, it does not generalize to other logical systems with
binders that do not have well-established models. Hence, in Section 8 we give an alternative conservativeness
proof, based on the syntax and proof derivations of λ-calculus, and not on models. The syntax-based proof
does not depend on the existence of a complete class of models, and is thus easier to generalize to other
logical systems.

5.3 Concrete ccc Models of λ-Calculus
We review the concrete Cartesian closed category (ccc) models of λ-calculus [6, Definition 5.5.9]. They will
be used in the model-based proof of the conservativeness of Γλ.

Definition 25 ([9, Definition 57]). Given an applicative structure (A,_•A_), its set of representable functions
is R(A)={f : A→A | there is a b ∈ A such that f(a) = b •A a for all a ∈ A}. A pre-model is a triple (A,_•A

_,L), where L : R(A)→ A is a retraction function such that A◦L is the identity on R(A), where A : A→ R(A)
is defined as A(b)(a) = b •A a for all b, a ∈ A. A pre-model A is called a concrete ccc model, if the following
definition of |e|λρ is well-defined for every ρ : V λ → A:

16

Γλ ` e1 = e2 =⇒1 Γλ � e1 = e2 =⇒2 M � e1 = e2 for all matching logic models M � Γλ

⇓3

`λ e1 = e2 ⇐=5 �λ e1 = e2 ⇐=4 A �λ e1 = e2 for all concrete ccc models A

Figure 4: The main proof steps of the model-based conservativeness proof of Γλ.

1. |x|λρ = ρ(x);

2. |e1e2|λρ = |e1|λρ •A |e2|λρ ;

3. |λx. e|λρ = L(fρe,x) where fρe,x(a) = |e|λρ[a/x] for a ∈ A, and that fρe,x ∈ R(A).

Given a concrete ccc model A, we write A �λ e1 = e2 iff |e1|λρ = |e2|λρ for all ρ. We write �λ e1 = e2 iff
A �λ e1 = e2 for all concrete ccc models A. In the latter, we say e1 = e2 is valid in λ-calculus.

We review two important results about concrete ccc models in the model-based conservativeness proof,
whose main proof steps are shown in Fig. 4. The first result is that concrete ccc models are a special instance
of matching logic models. In other words, Γλ includes all concrete ccc models as its validating models. This
result will be used in Step 3, from matching logic validity to λ-calculus validity. The second result is that
concrete ccc models are complete with respect to λ-calculus reasoning, i.e., all valid λ-calculus equations can
be proved.4 This known completeness result is restated in Lemma 26. It will be used in Step 5 in Fig. 4,
from λ-calculus validity to provability.

Lemma 26 ([56]). �λ e1 = e2 implies `λ e1 = e2 for any e1, e2 ∈ Λ.

Other λ-Calculus Models

We discuss the other relevant notions of λ-calculus models and discuss why we choose the concrete ccc models
in our conservativeness proof (given in Section 7).

There are three main notions of models in λ-calculus; see [61] for a survey. Firstly, there are λ-models [6,
Section 5.2], which are combinatory algebras that provide coherent interpretations to all λ-expressions.
Secondly, there are categorical models [6, Section 5.5], which are given as thereflexive objects of a Cartesian
closed category (ccc), where λ-expressions are interpreted as morphisms. Thirdly, there are Hindley-Longo
models [52], which form an alternative presentation of λ-models and interpret λ-expressions directly, without
translating them to combinatory terms. The concrete ccc models (Definition 25) in this paper belong
to the categorical models, where the underlying categories are strictly concrete categories (see, e.g., [6,
Definition 5.5.8]).

We choose concrete ccc models because they have a non-categorical set-theoretical presentation (Defini-
tion 25) that fits well with the pattern matching semantics of matching logic. In concrete ccc models, the
interpretation of a λ-expression is inductively defined from the interpretation of its sub-expressions, so it is
more natural to turn concrete ccc models into matching logic models, needed for the conservativeness proof.
In contrast, λ-models and Hindley-Longo models interpret all λ-expressions at the same time. For example, in
Hindley-Longo models, |λx. e|λρ is defined as some unspecified element that satisfies that |λx. e|λρ •Aa = |e|λρ[a/x]

for all a. In concrete ccc models, instead, |λx. e|λρ is interpreted explicitly by |λx. e|λρ = L(fρe,x), using a given
(by the model) retraction function to encode functions into elements. Therefore, it is more convenient in our
context to consider concrete ccc models, as they provide an explicit, constructive interpretation of λx. e.

4Here we use the term “completeness” to mean deductive completeness, as given in Lemma 26. In the literature on λ-calculus,
representability completeness (of λ-calculus models) is also considered; see related discussion in Section 8.2.2.

17

6 Defining λ-Calculus in Matching Logic
In this section we define the matching logic theory Γλ that captures λ-calculus. Our definition is inspired by
the concrete ccc models of λ-calculus discussed in Section 5.3. The key ingredient is the retraction function
L that encodes representable functions into elements. Therefore, we first define representable functions and
the retraction function.

Recall that fρe,x is the representable function as defined in Definition 25, which corresponds to the inter-
pretation of λx. e under ρ in the concrete ccc model. We can capture fρe,x by defining its graph:

graph(fρe,x) =
{(
a, |e|λρ[a/x]

)
| for all elements a in the concrete ccc model A

}
(6)

which contains all the argument-value pairs of fρe,x. Note that this graph is an element in P(A×A), the
powerset of A× A, but not every element in P(A×A) is the graph of a representable function. Therefore,
the retraction function L is captured as a partial function from P(A×A) to A (see Remark 27) which is
defined only on the graphs of representable functions, and undefined elsewhere.

Now we start to define Γλ following the above intuition. Firstly, we include all λ-calculus variables
in V λ as element (and not set) variables in Γλ. Then, we define four sorts: Var as the sort of λ-calculus
variables; Exp as the sort of λ-expressions; Var × Exp as the product sort of Var and Exp (Definition 18); and
2Var×Exp as its power sort (Definition 20). Intuitively, 2Var×Exp is the sort of all binary relations, including
non-functions, over Var and Exp, because the inhabitant of 2Var×Exp is the powerset of the Cartesian product
of the inhabitants of Var and Exp, by Propositions 19 and 21.

Next, we define the subsorting axiom (Section 4.2), [[Var]] ⊆ [[Exp]], to specify that all variables are well-
formed λ-expressions. We define a partial function (Section 4.2.3), lambda : 2Exp2

⇀ Exp, to represent the
retraction function L in Definition 25, although the partial function requirement is included only for clarity
and is technically unnecessary, because it will be automatically validated by the intended canonical models
that we construct in Sections 7 and 8.

Remark 27. We include both sorts Var and Exp in theory Γλ so as to be completely faithful w.r.t. the
λ-calculus syntax defined in Section 5, which has two syntactic categories: V λ for variables and Λ for
expressions. As a result, lambda is a partial function with the power domain 2Exp2

. A valid alternative
is to use 2Exp⊗Exp as the domain. The conservative extension theorem (Theorem 36) still holds, and its
model-based proofs shown in Section 7 are still valid, because the models we will construct there interpret
both Var and Exp to the same inhabitant set.

Now, we define λ-expressions as syntactic sugar in matching logic. The λ-calculus variables and applica-
tion are already well-formed matching logic patterns, where x ∈ Var is represented by the element variables
x and e1 e2 is represented by the built-in matching logic application e1 e2. Abstraction λx. e is defined as the
following syntactic sugar, where we extract the general binding notation [x:Var] e for clarity and because it
can be used to define any other binders, not only λ:

[x:Var] e ≡ intension∃x:Var . 〈x, e〉 // the binding notation (7)
λx. e ≡ lambda [x:Var] e // λ-abstraction (8)

We assume that [x:Var] e binds the tightest, so lambda [x:Var] e is parsed as lambda ([x:Var] e).
Eq. (8) is a logical incarnation of the semantics of λx. e in the concrete ccc models (Definition 25),

into matching logic. Recall that in a concrete ccc model, |λx. e|λρ = L
(
fρe,x

)
, where fρe,x(a) = |e|λρ[a/x].

By Remark 10, ∃x:Var . 〈x, e〉 denotes the union set
⋃
x {(x, e)}, namely the graph of fρe,x. (Note that

∀x:Var . 〈x, e〉 also yields the correct binding behavior, but it does not have the right semantic meaning
of a graph.) The binding notation [x:Var] e takes this graph as a set of pairs and packs them into one
object in the power sort 2Var×Exp . Then, this packed object is passed to lambda, which decodes/retracts
it into the intended interpretation of λx. e. For now, we do not know any property about lambda, except
that it is a partial function from 2Var×Exp to Exp. Its intended behavior will be axiomatized by the axiom
schema (β)—the axiom schema that characterizes λ-abstraction and the semantics of λ.

18

Variables:
x, y, . . . element variables, including all λ-calculus variables in V λ

Symbols:
Var a sort constant
Exp a sort constant
lambda the retraction symbol, used to capture λ

Axioms:
(Subsorting) [[Var]] ⊆ [[Exp]]
(β) ∀x1:Var . · · · ∀xn:Var . (λx. e) e′ = e[e′/x]

where x1, . . . , xn are all the free variables in FV((λx. e) e′).

Figure 5: Summary of the matching logic theory Γλ that captures λ-calculus (infrastructure definitions
omitted)

We emphasize that the encoding of λx. e in Eqs. (7)-(8) is only possible because matching logic treats
terms and formulas uniformly as patterns, and it allows (FOL-style) quantification to be built on terms. A
similar definition will immediately fail in FOL, because FOL enforces a clear distinction between terms and
formulas at the syntax level and quantification only applies to formulas.

Remark 28. Under the above notations, all λ-expressions are well-formed matching logic patterns. Partic-
ularly, the syntactic sugar λx. e in Eqs. (7)-(8) satisfies all binding properties about λ in Fig. 3.

Definition 29. Let Γλ be the matching logic theory that contains all the axioms and notations that we
have defined in this section, and all instances of the (β) axiom schema, as shown in Fig. 5.

Remark 30. Remark 28 holds, not because of the axioms in Γλ, but because of the syntactic sugar definition
in Eqs. (7)-(8) and the binding behavior of ∃. In other words, the binding behavior of λ is directly inherited
from from the binding behavior of the built-in binder ∃ in matching logic, and is not specified by axioms.
The axioms specify the semantic behavior of λ, not its binding behavior.

We finish this section by proving the extensiveness theorem for λ-calculus.

Theorem 31. `λ e1 = e2 implies Γλ ` e1 = e2, for all e1, e2 ∈Λ.

Proof. By Proposition 23, because Γλ contains all instances of (β).

7 Model-Based Conservativeness Proof
Here we prove the conservativeness of Γλ, making use of the concrete ccc models of λ-calculus discussed in
Section 5.3. The main proof steps have been discussed in Section 5 and summarized in Fig. 4. The only
nontrivial one is Step 3, which requires to show that M � e1 = e2 for all matching logic models M � Γλ

implies A �λ e1 = e2 for all concrete ccc models A. The following is the key lemma establishing the
connection between concrete ccc models and matching logic models of Γλ:

Lemma 32. For any concrete ccc model A and any valuation ρ into A, there exists a matching logic model
MA � Γλ and a valuation ρA into MA such that |e|ρA =

{
|e|λρ
}

for every e ∈ Λ.

Proof. We give the high-level proof idea. The complete proof can be found in Appendix C. Let us fix a
concrete ccc model (A,_•A_,L), where R(A) is its set of representable functions and L : R(A) → A is its
retraction function. Let the carrier set MA include A. Recall that Γλ defines sorts Var and Exp, and partial
function lambda from 2Var×Exp to Exp (Fig. 5). Since A is the domain of both variable valuations and
expression interpretations in the concrete ccc model, in MA we let A be the inhabitants of both Var and

19

Exp (see Remark 27), validating axiom (Subsorting). We define lambdaMA accordingly to the retraction
function L; i.e., lambdaMA • P = {L(f)} whenever P = graph(f) and f ∈ R(A), and lambdaMA • P = ∅,
otherwise.

We define ρA as ρA(x) = ρ(x), for every x ∈ V λ, and prove that |e|ρA = {|e|λρ} for every e ∈ Λ. The
proof is based on structural induction on e and the only nontrivial case is when e is λx. e1. In this case,
we have |λx. e1|ρA = |lambda (intension (∃x:Var . 〈x, e1〉))|ρA = lambdaMA • |intension (∃x:Var . 〈x, e1〉)|ρA =

lambdaMA • |∃x:Var . 〈x, e1〉)|ρA = lambdaMA •
⋃
a∈A{(a, |e1|ρA[a/x])} = lambdaMA •

⋃
a∈A{(a, |e1|λρ[a/x])} =

lambdaMA • graph(fρe1,x) = {L(fρe1,x)} = {|λx. e1|λρ}.
Finally, we show that MA validates (β). Using the above result, for any x ∈ V λ, e, e′ ∈ Λ, and ρ, we

have that |(λx. e)e′|λρ = |e[e′/x]|λρ in A implies |(λx. e)e′|ρA = |e[e′/x]|ρA in MA. Noting that ρA is arbitrary
(as ρ is arbitrary), MA validates (β).

Remark 33. The operations, intension and lambda, have been crucial in the proof. Without them, the
pattern ∃x:Var . 〈x, e〉 itself is merely the graph set and is not even a functional pattern (in the sense
discussed in Section 4.2.2), and thus cannot be directly used to interpret λx. e.

Using Lemma 32, we can immediately prove Step 3 in Fig. 4:

Lemma 34. If M � e1 = e2 for all models M �Γλ, then A�λ e1 = e2 for all concrete ccc models A.

Proof. Let A be any concrete ccc and ρ be any valuation. By Lemma 32, there exists a matching logic
model MA � Γλ and a valuation ρA such that |e|ρA = {|e|λρ} for any e ∈ Λ. Since MA � e1 = e2, we have
|e1|ρA = |e2|ρA , and thus |e1|λρ = |e2|λρ . Since ρ is any valuation, we have A �λ e1 = e2.

Theorem 35. Γλ ` e1 = e2 implies `λ e1 = e2, for all e1, e2 ∈ Λ.

Proof. See Fig. 4, where Step 1 is by Theorem 24; Step 2 is by Definition 11; Step 3 is by Lemma 34; Step 4
is by Definition 25; and Step 5 is by Lemma 26.

Theorem 35 together with Theorem 31 show that Γλ is a conservative extension of λ-calculus. In fact,
we prove the following equivalence theorem (for e1, e2 ∈ Λ):

Theorem 36. These are equivalent: (1) Γλ ` e1 = e2; (2) Γλ � e1 = e2; (3) �λ e1 = e2; (4) `λ e1 = e2.

Proof. (1) =⇒ (2) is by Theorem 24. (2) =⇒ (3) is by Lemma 34. (3) =⇒ (4) is by Lemma 26. (4) =⇒ (1)
is by Theorem 35. Note: Conservative extension theorem is the equivalence (1) ⇐⇒ (4).

Remark 37. The equivalence (2) ⇐⇒ (4) shows the (deductive) completeness of the matching logic models
of Γλ with respect to λ-calculus. By defining λ-calculus in matching logic, we automatically obtain, from
the model theory of matching logic, models that are complete to λ-calculus.

8 Syntax-Based Conservativeness Proof
In this section we show an alternative conservativeness proof of Theorem 35 that is entirely based on the
syntactic structure of λ-expressions, and thus is easier to generalize to other logical systems and binders,
especially those which do not have well-established models. This syntax-based proof also shows that Γλ is
representationally complete for λ-calculus; see Section 8.2.2.

20

8.1 Proof Overview: Using the Term Model to Prove the Conservativeness
Theorem

We build a special matching logic model T � Γλ, which we call the term model of λ-calculus,5 and follow
the term algebra technique [49, 78, 8]: T has as elements the equivalence classes of λ-expressions modulo
αβ-equivalence, and each e ∈ Λ is interpreted in T as the equivalence class containing itself, [e]. Formally,
we will prove this:

Theorem 38. Let [e] = {e′ ∈ Λ | `λ e = e′} be the equivalence class of e modulo αβ-equivalence. Let
[Λ] = {[e] | e ∈ Λ} be the set of all these classes. Then, there is a matching logic model T � Γλ, called term
model, and a valuation ρT , called term valuation, such that |e|ρT = {[e]} for all e ∈ Λ.

Remark 39. For distinct variables x, y ∈ V λ, we have [x] 6= [y] [6, Fact 2.1.37]. Clearly, x ∈ [x], but [x]
also includes infinitely many expressions: (λy. y)x, (λy. y)((λy. y)x), etc.

We will construct T in Section 8.2. For now, we show how to prove Theorem 35 using Theorem 38:

Syntax-Based Proof of Theorem 35. We need to prove Γλ ` e1 = e2 implies `λ e1 = e2:

Γλ ` e1 = e2 implies Γλ � e1 = e2 by Theorem 24
implies T � e1 = e2 by Definition 11
implies |e1|ρT = |e2|ρT by Proposition 14

implies [e1] = [e2] by Theorem 38
implies `λ e1 = e2 by Definition of [e] in Theorem 38.

8.2 Construction of the Term Model T and the Term Valuation ρT

In this section we construct T and show that T � Γλ. Like for the matching logic model of Γλ in the proof
of Lemma 32, we need to give interpretations to the sorts Var and Exp, as well as to the retraction function
lambda. For Var and Exp, we define their inhabitants as TVar = [V λ] and TExp = [Λ], where [V λ] and [Λ]
are the set of equivalence classes of variables and λ-expressions. Clearly, we have [V λ] ⊆ [Λ], which validates
the axiom (Subsorting) [[Var]] ⊆ [[Exp]]. We define the interpretation of application on λ-expressions as the
application in λ-calculus, i.e., [e1] • [e2] = [e1 e2] for any e1, e2 ∈ Λ. Note that this definition is well-defined,
because `λ e1 e2 = e′1 e

′
2 whenever `λ e1 = e′1 and `λ e2 = e′2. Finally, we define the interpretation lambdaT

such that

lambdaT •

 ⋃
z∈V λ

(
[z], [e[z/x]]

) =
{

[λx. e]
}
, for any x ∈ V λ and e ∈ Λ. (9)

and lambdaT • P = ∅, if P is not a graph of the above form. The complete construction of T can be found
in Appendix D.

The construction of T , especially Eq. (9), is critically depending on the matching logic encoding λx. e ≡
lambda (intension∃x:Var . 〈x, e〉). The α-equivalence λx. e ≡ λz. (e[z/x]) is captured, both syntactically and
semantically, by collecting the pairs 〈z, e[z/x]〉 for all z, using the matching logic pattern ∃x:Var . 〈x, e〉 (see
Remark 10 for the connection between the ∃-patterns and the set-theoretic unions). Therefore, ∃x:Var . 〈x, e〉
encapsulates all the information about [λx. e], which is packed by intension and passed to lambda, and then
retracted to restore the original expression λx. e. The following proposition shows that the condition in
Eq. (9) on lambdaT is not inconsistent:

5In the literature on λ-calculus, term models have a different meaning. For example, in [6], term models are special λ-calculus
models constructed based on the combinatory algebra semantics; see Section 8.2.1 for a comparison.

21

Proposition 40. [λx. e] = [λx′. e′], whenever⋃
z∈V λ

([z], [e[z/x]]) =
⋃
z∈V λ

([z], [e′[z/x′]]) (10)

Proof. Assume the opposite, i.e., [λx. e] 6= [λx′. e′]. Let z∗ ∈ V λ be a fresh variable that does not occur in
λx. e or λx′. e′. Then we have λx. e ≡ λz∗. e[z∗/x] and λx′. e′ ≡ λz∗. e′[z∗/x′]. By the assumption, we have
[λz∗. e[z∗/x]] 6= [λz∗. e′[z∗/x′]], and thus [e[z∗/x]] 6= [e′[z∗/x′]]. Noting that [z1] = [z2] iff z1 = z2, for every
z1, z2 ∈ V λ (Remark 39), we have that the pair ([z∗], [e[z∗/x]]) is in the LHS of Eq. (10) but not its RHS,
which is a contradiction.

So far, we have constructed the term model T . We now define the term valuation ρT . Let

VarVal = {ρ | ρ(x)∈ [V λ] for all x∈V λ}

be the set of valuations that map λ-calculus variables (which have been taken as matching logic element
variables; see Section 6) to the equivalence classes of λ-calculus variables, and not any λ-expressions. We
define the term valuation ρT , as ρT (x) = [x] for every x ∈ V λ. Clearly, ρT ∈ VarVal .

Proposition 41. |e|ρT = {[e]}, and |e|ρ[ρ(z)/x] = |e[z/x]|ρ for all ρ ∈ VarVal .

Proof. We prove both properties simultaneously by induction on the λ-depth d(e) of e, the maximum number
of nested λ binders in e. If d(e) = 0 then e is a variable or is built from only application and has no λ
abstraction. In this case, both properties can be proved by another structural induction on e. If d(e) ≥ 1
then e has either the form e1 e2 where d(e1), d(e2) ≤ d(e), or the form λx. e1 where d(e1) ≤ d(e)− 1. Then
another structural induction on e proves both properties.

Proposition 42. If `λ e = e′, then |e|ρ = |e′|ρ for any ρ ∈ VarVal .

Proof. Note that the interpretation of a λ-expression relies on its free variables. Suppose FV(e)∪FV(e′) =
{x1, . . . , xn} and ρ(xi) = [yi] for i ∈ {1, . . . , n}. By Remark 39, yi is the unique variable that is in [yi].
Since ρ equals to ρT [[y1]/x1] · · · [[yn]/xn] restricted on x1, . . . , xn, we have |e|ρ = |e|ρT [[y1]/x1]···[[yn]/xn]. By
Proposition 41, |e|ρT [[y1]/x1]···[[yn]/xn] = |e[y1/x1] · · · [yn/xn]|ρT = {[e[y1/x1] · · · [yn/xn]]}; similarly |e′|ρ =

{[e′[y1/x1] · · · [yn/xn]]}. Then, `λ e[y1/x1] · · · [yn/xn] = e′[y1/x1] · · · [yn/xn], i.e., [e[y1/x1] · · · [yn/xn]] =
[e′[y1/x1] · · · [yn/xn]]. Hence, |e|ρ = |e′|ρ.

The only thing left is to prove Theorem 38. We have shown that |e|ρT = {[e]} for every e ∈ Λ, in
Proposition 41. It remains to show that T validates (β), i.e., |(λx. e) e′|ρ = |e[e′/x]|ρ for all ρ ∈ VarVal ,
which follows immediately from Proposition 42. Note that we only need to consider valuations in VarVal
because all variables in (β) are quantified over the sort Var .

8.2.1 Comparing Our Term Model T to the Classical Notion of Term Models in λ-Calculus

In the literature on λ-calculus, a term model [6, Definition 5.2.11] is a λ-model (Example 6), where the
underlying carrier set A is [Λ], the application function is the application function over equivalence classes,
and the two special constants are k = [λx. λy. x] and s = [λx. λy. λz. (xz)(yz)]; we will denote this λ-model
as A and call it a classical term model, to not confuse it with our term model T . Clearly, T and A represent
different approaches to capture λ-expressions. While A uses the name-free, combinators approach, where λ
is handled by abstraction elimination, our term model T gives an explicit and constructive interpretation to
λ, as shown in Eq. (9).

22

8.2.2 The Representabiltiy Problem

There has been a long-standing, concerning and open problem in the study of λ-calculus, called the repre-
sentability problem [10, pp. 8], which asks if a given class of λ-calculus models is representationally complete,
in the sense that there exists a model in the given class such that any two expressions e1 and e2 are prov-
ably equal if and only if they are interpreted as the same element/value in that model. Representability
completeness indicates that a class of λ-calculus models is sufficient in capturing the formal reasoning in
λ-calculus, so one may reduce the study of formal reasoning in λ-calculus to the study of models, where more
mathematical tools and techniques can be applied. Hence, reduction is the main motivation.

λ-calculus models are broadly divided into syntactic models and non-syntactic models [61, pp. 13], de-
pending on whether their construction is based on the syntax and provability of λ-calculus or not. All the
classical term models in λ-calculus, as well as our particular matching logic term model in Section 8.2, are
syntactic models. Syntactic models are often representationally complete, but studying them tends to be as
hard as studying the syntax and formal reasoning directly, and thus the reduction to syntactic models usually
does not help simplify the study of λ-calculus. Thus, for decades researchers have been searching for and
studying sub-classes of non-syntactic concrete ccc models, hoping they are also representationally complete.
So far, three main such sub-classes have been identified, known as the main semantics of λ-calculus: Scott’s
continuous semantics [85], Berry’s stable semantics [12, 44], and Bucciarelli-Ehrhard strongly stable seman-
tics [16]. The representability problem for the main semantics (and their sub-classes) has remained largely
open as of today, except for some negative results proved for some sub-classes (e.g., graph models [17]).

Theorem 38 shows that the class of matching logic models of Γλ is representationally complete, positively
answering the representability problem for our matching logic semantics of λ-calculus. Our proof does not
rely on any known results about the representational completeness of any existing semantics; instead, it
is entirely based on the model theory of matching logic, which is not specific to λ-calculus but which
allows for an appropriate axiomatization of λ-calculus as a theory that is hereby endowed with the desired
representationally complete models automatically. We can push Theorem 38 even further to any equational
extensions of λ-calculus, known as λ-theories. Indeed, the definition of the equivalence class [e] as the set
of αβ-equivalent expressions of e, has not been critical in the proof of Theorem 38, and the conclusion still
holds if we consider any equivalence class [e] that includes the basic αβ-equivalence. Therefore, we conclude
that the matching logic definition of λ-calculus is representationally complete for all λ-theories.

Although we do not solve any of the existing open problems, our work suggests the matching logic can be
a viable alternative to the existing λ-calculus models within the main semantics. The matching logic models
are as good as the existing models for λ-calculus in terms of theoretical properties w.r.t. formal reasoning and
semantics, yet unlike the existing models, they are general in the sense that they are not crafted specifically
for λ-calculus, but are obtained from the matching logic theory Γλ. We give a general solution for all the
binders, which for λ-calculus is as good as the state of the art, considering both the proof-theoretic and the
model-theoretic aspects.

9 Defining Binders in Other Logical Systems Using Matching Logic
We showed how to capture the binder λ in matching logic as the following notation (Eqs. (7)-(8)):

λx. e ≡ lambda [x:Var] e (11)

We defined a matching logic theory, Γλ (shown in Fig 5), and proved the conservative extension theorem
for λ-calculus, Eq. (5). In this section we show that our approach is not specific to λ-calculus. We provide
evidence that matching logic can serve as a general approach to dealing with binders. We will show how to use
patterns similar to Eq. (11) to define the binders in a variety of logical systems, including System F [43, 79],
pure type systems [7], π-calculus [66], and more, and prove a corresponding conservative extension theorem
for each of them. To do that, several challenges need to be solved.

A first challenge is that binders can have more complex binding behavior than in λ-calculus; see Fig. 6.
For example, λx:e1. e2 in System F binds x within e2, but not in e1; Inp(x, y, e) in π-calculus has the binding

23

Constructs Binding Behavior Meaning Origins
λx. e binding x into e function abstraction λ-calculus
λx:e1. e2 binding x into e2 function abstraction System F
λt. e binding t into e type abstraction System F
Πt. e binding t into e Π-type constructor System F
λx:e1. e2 binding x into e2 function abstraction Pure type system
πx:e1. e2 binding x into e2 type abstraction Pure type system
Inp(x, y, e) binding y into e input process π-calculus
νy. e binding y into e new process name creation π-calculus
Bout(e1, x, y, e2) binding y into e2 bound output transition π-calculus
Inp(e1, x, y, e2) binding y into e2 input transition π-calculus

Figure 6: Some example binding constructs and their binding behavior in logical systems.

variable in the second position (i.e., y), and not the first position. We deal with this binding behavior by
desugaring to binders whose binding variable is their first argument and is bound within the second argument
only; that is, we desugar an arbitrary binder to a binder of the form b(x, e1, . . . , en), where x is bound in
e1 but not in e2, . . . , en. Clearly, this desugaring process is just a sequence of argument swappings. Then,
we further desugar b(x, e1, . . . , en) to b′(b′′(x, e1), e2, . . . , en), where b′ is a (binding-free) symbol and b′′ is
a binder that binds x to e1, just like λ in λ-calculus. Finally, we define b′′(x, e1) as the following syntactic
sugar:

b′′(x, e) ≡ retractionb [x:Var] e (12)

in the same way as in Eq. (11), except that here we use a new retraction symbol retractionb that is specific
to the binder b. Each binder has its own retraction symbol, but the other infrastructure symbols, such as
products, powersets, and the binding notation [x:Var] e, are the same. From now on, we will only consider
binders b(x, e) that bind x within e, for technical convenience.

A second challenge is that logical systems featuring bindings are very different from each other, in terms
of the kinds of logical reasoning that is carried out in them. For example, System F derives typing judgments
Γ . e1:e2 to mean that e1 has type e2 under typing environment Γ; π-calculus derives transitions e1

act−−→ e2

to mean that process e1 transits by action act to process e2. It is tedious and non-systematic to consider
these logical systems separately, because we would need to capture their specific logical reasoning and prove
the conservative extension theorem for each of them, more or less similarly to the syntax-based proof in
Section 8.

Remark 43. The current K framework implementation provides a “binder” attribute, which allows one to
define a language construct that binds all variables occurring in its first argument within its other arguments.
The results demonstrated in this paper, particularly this section, will be used to improve K and let it support
binders with more complex binding behaviors. The reader who is interested in seeing examples about the
current K support for binders may look at [53], where the “binder” attribute is used to define the syntax of
λ-calculus.

To capture the various logical systems featuring bindings more systematically, we employ a parametric
framework for binders, called term-generic logic [77] (TGL). TGL is a parametric variant of FOL, whose
syntax is parametric on a set of (generic) terms that are not constructed from constants and functions, but
defined axiomatically. When we instantiate TGL with the term syntax of a given system (e.g., λ-calculus,
System F, π-calculus, etc), it becomes a (first-order) meta-logic of that system and can be used to specify
and reason about its meta-properties. Using TGL, we give a systematic treatment of binders in the various
logical systems. We will capture TGL in matching logic and prove a conservative extension theorem for
TGL, from which the conservative extension theorems for the other logical systems follow as corollaries.

Why not use TGL directly then, but instead use matching logic? There are two reasons. Firstly, TGL
in its full generality is not implementable, because it does not deal with any concrete syntax of binders.

24

Its notion of (generic) terms is given axiomatically and needs to be instantiated, which is what we will do
in Section 9.1, where we instantiate TGL to bridge matching logic and other logical systems with binders.
The second reason is that TGL is a logic specifically designed for binders, while matching logic serves as
the unifying logical foundation for the K framework, as discussed in Section 1 and other places in the paper.
Therefore, matching logic supports reasoning in many mathematical domains other than binders, and thus
it is more practical than TGL.

We next first introduce TGL in Section 9.1 and then its matching logic definition in Section 9.2.

9.1 Term-Generic Logic (TGL) Preliminaries
TGL [77] is a variant of many-sorted FOL whose syntax is parametric in a (generic) term set that is defined
axiomatically. In TGL, any set T exporting two operations—free variables FV(e) and capture-free substi-
tution e[e′/x]—and satisfying the conditions in [77, Definition 2.1], forms a generic term set. TGL formulas
are built like in FOL, from predicates π(e1, . . . , en), equations e1 = e2, and standard connectives ∧,¬,∃,
except that e1, . . . , en are generic terms, that is, arbitrary elements in T . The metatheory of TGL, including
its semantics and models, terms/formulas interpretation, proof system, and, importantly, a soundness and
completeness theorem, have been studied and presented in detail in [77].

For concreteness, we will not introduce TGL in its full generality. Instead, we instantiate TGL with a
concrete, constructive term syntax with binders (defined below) and introduce the metatheory of that TGL
instance. From the discussion at the beginning of Section 9, this term syntax is sufficient to capture the
binders in various logical systems with more complex bindings (Fig. 6).

Definition 44. A binder syntax is a tuple (S, V, F,B), where

1. S is a set of sorts denoted s, r, possibly with subscripts; we use s̄ ∈ S∗ to mean a list of sorts;

2. V = {Vs}s∈S is a sort-wise disjoint family of variables denoted x:s, y:s, etc;

3. F = {Fs̄,r}s̄∈S∗,s∈S is a family of many-sorted operations of argument sorts s̄ and result sort r;

4. B = {Bs,s′,r}s,s′,r∈S is a family of binders, where b(x:s, e) binds x:s to e (of sort s′) and returns a
term of sort r, for each b ∈ Bs,s′,r.

We use TGLTerm to denote the set of terms generated by the above syntax, where free variables, α-
equivalence, and capture-free substitution are defined in the usual way. We omit sorts when they can be
inferred. Note that when B = ∅, rules (1)-(3) generate the standard FOL terms.

Remark 45. TGLTerm forms a TGL generic term set in [77, Definition 2.1].

TGL formulas, interpretations, validity, and provability are defined in the standard way, (almost) iden-
tical to FOL, except that terms are interpreted simultaneously instead of constructively. Specifically, the
interpretation of compound term f(e) is not defined from the interpretation of its sub-term e,6 but instead
we have a Henkin-style definition for term interpretations:

Definition 46 ([77, Section 2]). For a given set of many-sorted predicates Π = {Πs̄}s̄∈S∗ , we define the set
TGLForm of TGL formulas by the following grammar:

ϕ ::= e1 = e2 | ϕ1 ∧ ϕ2 | ¬ϕ | ∃x:s′. ϕ | π(e1, . . . , en) for π ∈ Πs1···sn and ei has sort si for all i

Let A = {As}s∈S be an S-indexed carrier set. A TGL valuation ρ : V → A is a function such that
ρ(x:s) ∈ As for every s ∈ S and x:s ∈ Vs. Let TGLVal be the set of all TGL valuations. A TGL
model ({As}s∈S , {Ae}e∈TGLTerm , {Aπ}π∈Π) has a Henkin-style definition as follows:

1. As 6= ∅ for every s ∈ S.
6TGL in its full generality as in [77] does not even have a notion of compound terms or sub-terms.

25

2. Ae : TGLVal → As, where s is the sort of e, such that for any x:s, e, e′, ρ:

(a) Ax:s(ρ) = ρ(x:s).

(b) Ae[e′/x:s](ρ) = Ae(Se′,x:s(ρ)), where Se′,x:s(ρ) is the TGL valuation such that Se′,x:s(ρ)(x:s) =
Ae′(ρ) and Se′,x:s(ρ)(y:s′) = Ay:s′(ρ) for any y:s′ 6≡ x:s.

3. Aπ ⊆ As1 × · · · ×Asn for every π ∈ Πs1...sn .

We let Aϕ ⊆ TGLVal for ϕ ∈ TGLForm be the set of valuations under which ϕ holds, defined as:

1. ρ ∈ Ae1=e2 iff Ae1(ρ) = Ae2(ρ);

2. ρ ∈ Aπ(e1,...,e1) iff (Ae1(ρ), . . . , Aen(ρ)) ∈ Aπ;

3. ρ ∈ Aϕ1∧ϕ2
iff ρ ∈ Aϕ1

and ρ ∈ Aϕ2
;

4. ρ ∈ A¬ϕ iff ρ 6∈ Aϕ;

5. ρ ∈ A∀x:s. ϕ iff ρ[a/x:s] ∈ Aϕ for every a ∈ As.

TGL has a sound and complete Gentzen proof system [77, Figs. 1-2], which derives sequents of the
form E `TGL ∆1 . ∆2 for E,∆1,∆2 ⊆ TGLForm, which intuitively means that under TGL theory E,
the conjunction of the formulas in ∆1 implies the disjunction of the formulas in ∆2. It is required that E
contains formulas without free variables, and ∆1,∆2 are finite sets containing formulas with finitely many free
variables; these requirements are needed for TGL’s completeness theorem and all TGL sequents considered
in this paper satisfy these requirements.

Definition 47 ([77, Sections 2-3]). For a TGL model A and ϕ ∈ TGLForm, we write A �TGL ϕ iff Aϕ =
TGLVal . We write A �TGL E iff A �TGL ϕ for all ϕ ∈ E. TGL validity E �TGL ∆1 . ∆2 is defined as⋂
ϕ∈∆1

Aϕ ⊆
⋃
ϕ∈∆2

Aϕ, for all A �TGL E. TGL provability E `TGL ∆1 . ∆2 is defined by the Gentzen proof
system of TGL in the usual way.

Theorem 48 ([77, Theorem 3.1]). Under the above requirements about E,∆1,∆2, we have E �TGL ∆1 . ∆2

if and only if E `TGL ∆1 . ∆2.

9.2 Defining Term Generic Logic in Matching Logic
In this section we define a matching logic theory ΓTGL and introduce notations such that all TGL terms and
formulas are well-formed matching logic patterns. We show that ΓTGL is a conservative extension of TGL,
by proving the following equivalence theorem.

Theorem 49. Under the notations in Theorem 48, the following are equivalent: (1) (ΓTGL ∪ E) `
∧

∆1 →∨
∆2. (2) (ΓTGL ∪ E) �

∧
∆1 →

∨
∆2; (3) E �TGL ∆1 . ∆2; (4) E `TGL ∆1 . ∆2; Here,

∧
∆1 is the

conjunction of patterns in ∆1 and
∨

∆2 is the disjunction of patterns in ∆2.

Thanks to the mathematical instruments and notations that we have introduced in Section 4, the defini-
tion of ΓTGL is straightforward. The many-sorted binder syntax (Definition 44) and TGL terms are captured
by defining sorts and many-sorted functions as in Section 4.2, and defining binders as in Eq. (12). TGL
formulas, except π(e1, . . . , en), are captured by matching logic’s derived connectives (Fig. 1) and equality
(Definition 13). Predicate π(e1, . . . , en) for π ∈ Πs1···sn , is captured by defining a matching logic symbol π
and the following axiom:

(Predicate) ∀x1:s1. . . .∀xn:sn. (π x1 · · · xn = >) ∨ (π x1 · · · xn = ⊥) (13)

which specifies that π returns either > or ⊥, i.e., it indeed builds predicate patterns. Without such axioms,
π x1 · · ·xn could be any subset. Let ΓTGL contain all the above definitions and notations.

26

Remark 50. Under the above notations and axioms, all TGL terms are matching logic functional patterns
(Section 3.2.2) and all TGL formulas are matching logic predicate patterns (Section 3.2.1).

Theorem 49 is proved using a model-based approach similar to Fig. 4. The complete proof can be found
in Appendix E. Here we explain the only nontrivial proof step, which is (2) =⇒ (3). This is proved by
constructing a matching logic model MA from any given TGL model A, such that all TGL terms and
formulas are interpreted the same in MA and A, i.e., |e|ρ = {Ae(ρ)} for every e ∈ TGLTerm; |ϕ|ρ = MA

whenever ρ ∈ Aϕ, and |ϕ|ρ = ∅, whenever ρ 6∈ Aϕ, for every ϕ ∈ TGLForm.

Remark 51. Using TGL and Theorem 49, we obtain a systematic proof of the conservative extension
theorems and deductive completeness theorems for all logical systems that have been defined in TGL and
studied in [77, Section 4] and [76, Section 4], including System F [43, 79] (both the typing and reduction
versions), λ-calculus (including the untyped [28], sub-typed [20], illative [6], and linear versions [45, 58]),
pure type systems [7], and π-calculus [66]. The systematic proof works as follows. For each logical system L,
its set of terms TermL can be captured by a binder syntax using the desugaring discussed at the beginning
of Section 9. The proof/type system of L that derives sequents of the form `L Φ is captured by a set of
TGL axioms EL, where each axiom corresponds to one type/proof rule of L [77]. An adequacy theorem is
also proved there for each L, stating that `L Φ iff EL `TGL ΦTGL, where ΦTGL (of the form ∆Φ

1 . ∆Φ
2) is the

corresponding TGL encoding of the L-sequent Φ. Let ΓL = ΓTGL ∪ EL be the matching logic theory that
captures L, and ΦML =

∧
∆Φ

1 →
∨

∆Φ
2 be the matching logic encoding of Φ. By Theorem 48, we have that

`L Φ in L, iff EL `TGL ΦTGL in TGL, iff ΓL ` ΦML in matching logic, iff ΓL � ΦML in matching logic. Hence,
ΓL is a conservative extension of L and the class of matching logic models of ΓL is complete with respect to
L.

Remark 52. Note that the term “consistency” has different meanings in different contexts. In type systems,
inconsistency means the ability to prove any typing judgments t:τ . Similarly, in λ-calculus or other equational
logic theories, inconsistency means the ability to prove any equations e1 = e2. However, in matching logic
(and also FOL), inconsistency means the ability to prove logical false ⊥. Thus, inconsistency for classical
logics such as matching logic is stricter than that for type systems and λ-calculus. For example, if T is a
PTS that contains the typing axiom Type:Type, then T is inconsistent [62], but its matching logic theory
ΓT is still a consistent matching logic theory and has a model that interprets the typing relation _:_ as the
total relation on all PTS terms.

10 Future Work
Inductive Reasoning An important direction for future work is to investigate inductive reasoning on
terms with binders. We use λ-calculus as an example but the discussion applies to all binders.

The set of λ-expressions Λ is an inductive structure. This means that Λ is the smallest set closed
under variables, application, and abstraction, and it admits the principle of inductive reasoning, which can
be intuitively expressed by the following formula (this should be understood informally; in particular, the
inductive hypothesis for λx. e in (‡) takes various forms in the literature; e.g., [72, pp. 21] uses the N-
quantifier on x, meaning that there exists x:Var such that x is not free in e, while [5, pp. 5] uses ∀-quantifier
to quantify all x:Var that are not free in e):7

∀P. (∀x:Var . x ∈ P)

∧ (∀e:Exp.∀e′:Exp. e ∈ P ∧ e′ ∈ P → (e e′) ∈ P)

∧ (∀e:Exp. e ∈ P → ∀x:Var . λx. e ∈ P) (‡)
→ ∀e:Exp. e ∈ P

where P ⊆ Λ is a property of λ-expressions. Inductive reasoning on terms with binders is known to be hard
when the binding behavior of λ yields bindings in the meta-language, making it difficult to write pattern-
matching style recursive definitions and reasoning (see, e.g., [40]). For example, if we try to parse the above

7[5] gives credits to [64] and mentions that it can be used in many other logics.

27

inductive principle as a matching logic pattern, we will notice that ∀x:Var in (‡) binds nothing—x is already
bound in λx. e.

There is relevant research on this topic, e.g., [32, 84, 27] for HOAS approaches and [90, 74] for nominal
induction and recursion, which we will investigate and reconcile within matching logic. We believe that
matching logic is particularly suitable for defining such inductive principles. Indeed, matching logic allows set
variables, which are effectively universally quantified in formulas. Therefore, the second-order quantification
∀P in the inductive principle above can be effectively captured in matching logic by simply dropping the ∀P
quantifier and letting the set variable P stay free in the formula.

Replacing Axiom Schemas with Axioms The matching logic theory Γλ for λ-calculus (Section 6)
includes axiom schema (β) with meta-variables x, e, e′, the same as the original λ-calculus. Thus, Γλ is a
faithful definition of λ-calculus that captures it as is. This was intended and desired, because we believe
that as a unifying logic for semantic frameworks (like K), matching logic should allow us to define logics,
calculi and languages as a mirror of the original, without any encodings or translations except for defining
the necessary mathematical instruments and convenient notations. For practical reasons, it is also useful to
define λ-calculus (and other binders) using axioms (not schemas) and normal variables (not meta-variables),
as in nominal logic axiom (β in Nominal Logic) and HOAS (e.g., Twelf definition red-beta), both shown
in Section 2. Thus, one way to eliminate schemas and meta-variables is to follow nominal and/or HOAS
approaches methodologically, as explained in Remark 1; that is, we define nominal logic or HOAS in matching
logic as theories and notations, and then define binders through them. However, matching logic also gives
us an opportunity for alternative definitions. Below, we will show at a high level one example. Studying
such alternative encodings of calculi is interesting and practical, but will be addressed in other places.

Recall that λx. e ≡ lambda (intension ∃x:Var . 〈x, e〉), where (intension ∃x:Var . 〈x, e〉) denotes the graph
of x 7→ e as an element of sort 2Exp2

. As pointed out in Section 6, not all elements of sort 2Exp2

represent a
graph, so we may identify and axiomatize a subsort Graph of 2Exp2

that includes precisely all graphs. And
thus, the schema (β) can be replaced by the following axiom:

(β, Not a Schema) ∀g:Graph.∀e′:Exp. (lambda g) e′ = graph-lookup g e′

where g and e′ are normal variables and graph-lookup is axiomatized as the graph lookup operation.

11 Conclusion
In this paper, we used (a functional variant of) matching logic to define binders in various logical systems.
The binding behavior of binders in the object-level systems is directly inherited from the built-in binder ∃ in
matching logic. We demonstrated our approach directly by defining λ-calculus as a matching logic theory,
and indirectly by capturing term-generic logic (TGL); the latter yields matching logic definitions for many
logical systems that feature bindings that were previously defined as TGL theories, including System F, pure
type systems, π-calculus, etc. We proved the conservative extension theorems for all of these. We illustrated
two proof methods: one based on models that is suitable for object-level systems that come equipped with
models, and another based on syntax and proof derivations that is more involved but available even when
the system lacks models. Our approach also yields models for the defined systems. For the systems discussed
in the paper, the obtained models are complete w.r.t. logical reasoning, which follows from the conservative
extension theorems. For λ-calculus, the models are representationally complete for all λ-theories, suggesting
that matching logic is a promising alternative semantics for λ-calculus.

Acknowledgments
We warmly thank the K Team for invaluable and continuous feedback on matching logic and its role as a
foundation of K, as well as for their creative yet hard work on turning theoretical results into practical tools.
We also warmly thank James Cheney, Maribel Fernández, Andrei Popescu, and Thomas Tuegel for many

28

insightful comments and concrete suggestions. We are indebted to the four anonymous reviewers, whose wit
and dedication helped us improve the presentation. This work was supported in part by NSF CNS 16-19275.
This material is based upon work supported by the United States Air Force and DARPA under Contract
No. FA8750-18-C-0092.

References
[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional

Programming, 1(4):375–416, 1991.

[2] Areski Nait Abdallah. Partial first-order logic. In The Logic of Partial Information, Monographs in The-
oretical Computer Science. An EATCS Series, chapter 14, pages 425–452. Springer, Berlin, Heidelberg,
1995.

[3] Mauricio Ayala-Rincón, Washington de Carvalho-Segundo, Maribel Fernández, and Daniele Nantes-
Sobrinho. Nominal C-unification. In Proceedings of the 27th International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’17), volume 10855 of Lecture Notes in Computer
Science, pages 235–251, Namur, Belgium, 2018. Springer International Publishing.

[4] Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal narrowing. In
Proceedings of the 1st International Conference on Formal Structures for Computation and Deduction
(FSCD’16), volume 52 of Leibniz International Proceedings in Informatics (LIPIcs), pages 11:1–11:17,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich.
Engineering formal metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’08), pages 3–15, New York, NY, USA, 2008. ACM.

[6] Henk Barendregt. The lambda calculus, its syntax and semantics. Studies in Logic. College Publications,
King’s College London, Strand, London WC2R 2LS, UK, 1984.

[7] Henk Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science, volume 2,
background: computational structures, chapter 2, pages 117–309. Oxford University Press, UK, 1993.

[8] John Bell and Moshe Machover. A course in mathematical logic. North Holland, Amsterdam, Nether-
lands, 1977.

[9] Chantal Berline. From computation to foundations via functions and application: the λ-calculus and
its webbed models. Theoretical Computer Science, 249(1):81–161, 2000.

[10] Chantal Berline. Graph models of λ-calculus at work, and variations. Mathematical Structures in
Computer Science, 16(2):185–221, 2006.

[11] Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with exception handling: An
initial approach based on a distinction between exceptions and errors. Theoretical Computer Science,
46:13–45, 1986.

[12] Gérard Berry. Stable models of typed λ-calculi. In Automata, Languages and Programming, pages
72–89, Berlin, Heidelberg, 1978. Springer.

[13] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge University Press, One
Liberty Plaza, New York, NY, 2001.

[14] C. J. Bloo. Preservation of termination for explicit substitution. PhD thesis, Technische Universiteit
Eindhoven, 1997.

29

[15] Denis Bogdănaş and Grigore Roşu. K-Java: A complete semantics of Java. In Proceedings of the 42nd

Symposium on Principles of Programming Languages (POPL’15), pages 445–456, Mumbai, India, 2015.
ACM.

[16] Antonio Bucciarelli and Thomas Ehrhard. A theory of sequentiality. Theoretical Computer Science,
113(2):273–291, 1993.

[17] Antonio Bucciarelli and Antonino Salibra. The sensible graph theories of lambda calculus. In Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), pages 276–285, Turku,
Finland, July 2004. IEEE.

[18] Peter Burmeister. Partial algebras—an introductory survey. In Algebras and orders, volume 389 of
NATO ASI Series, pages 1–70. Springer, Dordrecht, Netherlands, 1993.

[19] Luca Cardelli. Type systems. ACM Computing Surveys (CSUR), 28(1):263–264, 1996.

[20] Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of system F with
subtyping. Information and Computation, 109(1):4–56, 1994.

[21] Xiaohong Chen and Grigore Roşu. Matching µ-logic. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’19), pages 1–13, Vancouver, Canada, 2019. IEEE.

[22] Xiaohong Chen and Grigore Roşu. Matching µ-logic. Technical report, University of Illinois at Urbana-
Champaign, 2019.

[23] Xiaohong Chen and Grigore Roşu. A general approach to define binders using matching logic. In Pro-
ceedings of the 25th ACM SIGPLAN International Conference on Functional Programming (ICFP’20),
New Jersey, USA, 2020.

[24] James Cheney. Completeness and Herbrand theorems for nominal logic. Journal of Symbolic Logic,
71(1):299–320, 2006.

[25] James Cheney. A simple sequent calculus for nominal logic. Journal of Logic and Computation,
26(2):699–726, 2014.

[26] James Cheney, Michael Norrish, and René Vestergaard. Formalizing adequacy: a case study for higher-
order abstract syntax. Journal of Automated Reasoning, 49(2):209–239, 2012.

[27] Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Programming (ICFP’08), pages
143–156, British Columbia, Canada, 2008. ACM.

[28] Alonzo Church. The calculi of lambda-conversion. Princeton University Press, Princeton, New Jersey,
USA, 1941.

[29] Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a language-
theoretic approach, volume 138. Cambridge University Press, England, UK, 2012.

[30] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Roşu. A com-
plete formal semantics of x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’19), pages 1133–
1148, Phoenix, Arizona, USA, 2019. ACM.

[31] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae,
75(5):381–392, 1972.

30

[32] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order abstract syntax in Coq. In Typed
Lambda Calculi and Applications, pages 124–138, Berlin, Heidelberg, 1995. Springer.

[33] Erwin Engeler. Algebras and combinators. Algebra Universalis, 13(1):389–392, 1981.

[34] Amy Felty and Alberto Momigliano. Hybrid, a definitional two-level approach to reasoning with higher-
order abstract syntax. Journal of Automated Reasoning, 48(1):43–105, 2012.

[35] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings. 14th Symposium
on Logic in Computer Science (Cat. No. PR00158), pages 193–202, Trento, Italy, 1999. IEEE.

[36] Marcelo Fiore and Chung-Kil Hur. Second-order equational logic (extended abstract). In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, pages 320–335, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[37] Marcelo Fiore and Ola Mahmoud. Second-order algebraic theories. In Petr Hliněný and Antonín Kučera,
editors, Mathematical Foundations of Computer Science 2010, pages 368–380, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[38] M. Gabbay and A. Pitts. A new approach to abstract syntax involving binders. In Proceedings of
the 14th Symposium on Logic in Computer Science (LICS’19), pages 214–224, Trento, Italy, July 1999.
IEEE.

[39] Murdoch Gabbay and James Cheney. A sequent calculus for nominal logic. In Proceedings of the 19th

Annual IEEE Symposium on Logic in Computer Science (LICS’04), pages 139–148, Washington, DC,
USA, 2004. IEEE.

[40] Murdoch J. Gabbay. A theory of inductive definitions with α-equivalence: semantics, implementation,
programming language. PhD thesis, DPMMS and Trinity College, Cambridge University, 2000.

[41] Murdoch J. Gabbay and Michael J. Gabbay. Representation and duality of the untyped λ-calculus in
nominal lattice and topological semantics, with a proof of topological completeness. Annals of Pure and
Applied Logic Volume, 168(3):501–621, October 2017.

[42] Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic approach to reasoning about
computations. Journal of Automated Reasoning, 49(2):241–273, 2012.

[43] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Paris Diderot University, Paris, France, 1972.

[44] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer Science,
45:159–192, 1986.

[45] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[46] M. Gogolla, K. Drosten, U. Lipeck, and H.-D. Ehrich. Algebraic and operational semantics of specifi-
cations allowing exceptions and errors. Theoretical Computer Science, 34(3):289–313, 1984.

[47] Joseph Goguen and José Meseguer. Order-sorted algebra, part I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217–
273, 1992.

[48] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the
ACM, 40(1):143–184, 1993.

[49] Gisbert Hasenjaeger. Eine bemerkung zu Henkin’s beweis für die vollständigkeit des prädikatenkalküls
der ersten stufe. The Journal of Symbolic Logic, 18(1):42–48, 1953.

31

[50] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the undefinedness of C. In Proceedings
of the 36th annual ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’15), pages 336–345, Portland, OR, 2015. ACM.

[51] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian, Dwight Guth,
Brandon Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KEVM: A complete
semantics of the Ethereum virtual machine. In Proceedings of the 2018 IEEE Computer Security Foun-
dations Symposium (CSF’18), pages 204–217, Oxford, UK, 2018. IEEE. http://jellopaper.org.

[52] Roger Hindley and Giuseppe Longo. Lambda-calculus models and extensionality. Mathematical Logic
Quarterly, 26(4):289–310, 1980.

[53] K Team. K tutorials—λ-calculus. https://github.com/kframework/k/tree/master/
k-distribution/tutorial/1_k/1_lambda/lesson_2, 2020.

[54] Delia Kesner. A theory of explicit substitutions with safe and full composition. Logical Methods in
Computer Science, 5(3):1–29, 2009.

[55] Jan Willem Klop. Term rewriting systems. In Handbook of Logic in Computer Science, volume 2,
Background: computational structures, chapter 1, pages 1–116. Oxford University Press, Inc., USA,
1993.

[56] C. P. J. Koymans. Models of the lambda calculus. Information and Control, 52:306–332, 1982.

[57] Jean Louis Krivine. Lambda-calculus, types and models. Ellis Horwood, USA, 1993.

[58] Patrick Lincoln and John Mitchell. Operational aspects of linear lambda calculus. In Proceedings of
the 7th Annual IEEE Symposium on Logic in Computer Science (LICS’92), pages 235–246, California,
USA, June 1992. IEEE.

[59] Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen, 76(4):447–470,
1915.

[60] Francisca Lucio-Carrasco and Antonio Gavilanes-Franco. A first order logic for partial functions. In
Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer Science (STACS’89),
pages 47–58, Paderborn, Germany, 1989. Springer.

[61] Giulio Manzonetto. Models and theories of lambda calculus. PhD thesis, Università Ca’ Foscari di
Venezia, 2008.

[62] Per Martin-Löf. Twenty five years of constructive type theory, volume 36 of Oxford Logic Guides Book,
chapter An intuitionistic theory of types, pages 127–172. Oxford University Press, Oxford, UK, 1998.

[63] Raymond C. McDowell and Dale A. Miller. Reasoning with higher-order abstract syntax in a logical
framework. ACM Transactions on Computational Logic, 3(1):80–136, 2002.

[64] James McKinna and Robert Pollack. Pure type systems formalized. In Marc Bezem and Jan Friso
Groote, editors, Typed Lambda Calculi and Applications, pages 289–305, Berlin, Heidelberg, 1993.
Springer.

[65] José Meseguer and Grigore Roşu. The rewriting logic semantics project: a progress report. Information
and Computation, 231:38–69, October 2013. Invited paper at FCT 2011.

[66] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes (part 1). Information
and Computation, 100(1):1–40, 1992.

32

http://jellopaper.org
https://github.com/kframework/k/tree/master/k-distribution/tutorial/1_k/1_lambda/lesson_2
https://github.com/kframework/k/tree/master/k-distribution/tutorial/1_k/1_lambda/lesson_2

[67] Timothy Nelson, Daniel Dougherty, Kathi Fisler, and Shriram Krishnamurthi. On the finite model
property in order-sorted logic. Technical report, Worcester Polytechnic Institute, Brown University,
2010.

[68] Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A complete formal semantics of JavaScript.
In Proceedings of the 36th annual ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15), pages 346–356, Portland, OR, 2015. ACM.

[69] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5(3):363–397, 1989.

[70] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’88), pages 199–208, New
York, NY, USA, 1988. ACM.

[71] Frank Pfenning and Carsten Schürmann. System description: Twelf—a meta-logical framework for
deductive systems. In Proceedings of the 16th International Conference on Automated Deduction (CADE
99), pages 202–206, Trento, Italy, 1999. Springer.

[72] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and Compu-
tation, 186(2):165–193, 2003.

[73] Andrew M. Pitts. Alpha-structural recursion and induction. In Joe Hurd and Tom Melham, editors,
Theorem Proving in Higher Order Logics, pages 17–34, Berlin, Heidelberg, 2005. Springer Berlin Hei-
delberg.

[74] Andrew M. Pitts. Nominal sets: names and symmetry in computer science. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, New York, NY, USA, 2013.

[75] Gordon Plotkin. A set-theoretical definition of application. Technical report, University of Edinburgh,
1972.

[76] Andrei Popescu and Grigore Roşu. Term-generic logic (extended technical report). Technical report,
Technische Universitat Munchen, University of Illinois at Urbana-Champaign, 2013.

[77] Andrei Popescu and Grigore Roşu. Term-generic logic. Theoretical Computer Science, 577:1–24, 2015.

[78] Robert W. Quackenbush. Completeness theorems for universal and implicational logics of algebras via
congruences. Proceedings of the American Mathematical Society, 103(4):1015–1021, 1988.

[79] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, pages 408–425,
Berlin, Heidelberg, 1974. Springer.

[80] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the
17th Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages 55–74, Copenhagen,
Denmark, 2002. IEEE.

[81] Grigore Roşu. Matching logic. Logical Methods in Computer Science, 13(4):1–61, 2017.

[82] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic framework. Journal of Logic
and Algebraic Programming, 79(6):397–434, 2010.

[83] Harold Schellinx. Isomorphisms and nonisomorphisms of graph models. Journal of Symbolic Logic,
56(1):227–249, October 1991.

[84] Carsten Schürmann, Joëlle Despeyroux, and Frank Pfenning. Primitive recursion for higher-order ab-
stract syntax. Theoretical Computer Science, 266(1):1–57, 2001.

33

[85] Dana Scott. Continuous lattices. In Toposes, Algebraic Geometry and Logic, pages 97–136, Berlin,
Heidelberg, 1972. Springer.

[86] Dana Scott. Data types as lattices. SIAM Journal on Computing, 5(3):522–587, 1975.

[87] Dana Scott. Some philosophical issues concerning theories of combinators. In Proceedings of the Inter-
national Symposium on λ-Calculus and Computer Science Theory, pages 346–366, Berlin, Heidelberg,
1975. Springer.

[88] Traian Florin Şerbănuţă and Grigore Roşu. A truly concurrent semantics for the K framework based
on graph transformations. In Proceedings of the 6th International Conference on Graph Transformation
(ICGT’12), pages 294–310, Bremen, Germany, 2012. Springer.

[89] Mark-Oliver Stehr. CINNI—a generic calculus of explicit substitutions and its application to λ- ς- and
φ-calculi. Electronic Notes in Theoretical Computer Science, 36:70–92, 2000.

[90] Christian Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning, 40(4):327–356,
May 2008.

[91] Jonni Virtema, Jeremy Meyers, and Antti Kuusisto. Undecidable first-order theories of affine geometries.
Logical Methods in Computer Science, 9(4):1–23, 2013.

34

A Technical Details and Proofs for Section 3

A.1 Proof of Proposition 9
We have proved (1) and (6) in the main text. We prove the rest in the following.

Proof. For (2), we have |ϕ1 ∨ ϕ2|ρ = |¬ϕ1 → ϕ|ρ = M \ (|¬ϕ1|ρ \ |ϕ2|ρ) = M \ ((M \ |ϕ1|ρ) \ |ϕ2|ρ) =
|ϕ1|ρ ∪ |ϕ2|ρ. For (3), we have |ϕ1 ∧ ϕ2|ρ = |¬ϕ1 ∨ ¬ϕ2|ρ = |¬ϕ1|ρ ∪ |¬ϕ2|ρ = (M \ |ϕ1|ρ) ∪ (M \ |ϕ2|ρ) =
|ϕ1|ρ ∩ |ϕ2|ρ For (4), we have |>|ρ = |¬⊥|ρ = M \ |⊥|ρ = M \ ∅ = M . For (5), we have |ϕ1 ↔ ϕ2|ρ =
|(ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)|ρ = |ϕ1 → ϕ2|ρ ∩ |ϕ2 → ϕ1|ρ = (M \ (|ϕ1|ρ \ |ϕ2|ρ)) ∩ (M \ (|ϕ2|ρ \ |ϕ1|ρ)) =
M \ ((|ϕ1|ρ \ |ϕ2|ρ) ∪ (|ϕ2|ρ \ |ϕ1|ρ)) = M \ (|ϕ1|ρ 4 |ϕ2|ρ).

A.2 Proof of Proposition 14
Proof. For (1), we remind the reader that daeM means d_eM • a. Therefore, for a valuation ρ such that
ρ(x) = a, we have |dxe|ρ = |d_ex|ρ = d_eM • |x|ρ = d_eM • {a} = d_eM •a = M . For (2), let us first suppose
|ϕ|ρ 6= ∅. Then, there exists a ∈M such that a ∈ |ϕ|ρ. Then, we have |dϕe|ρ = d_eM •|ϕ|ρ ⊇ d_eM •{a} = M .
Therefore, |dϕe|ρ = M . Now, let us suppose |ϕ|ρ = ∅. Then, we have |dϕe|ρ = d_eM • |ϕ|ρ = d_eM • ∅ = ∅,
where the final step is by pointwise extension 4. For (3), let us first suppose |ϕ|ρ = M , and thus |¬ϕ|ρ =
M \ |ϕ|ρ = M \ M = ∅. Then, we have |bϕc|ρ = |¬d¬ϕe|ρ = M \ |d¬ϕe|ρ = M \ ∅ = M . Now, let
us suppose |ϕ|ρ 6= M , and thus there exists a ∈ M such that a 6∈ |ϕ|ρ, i.e., a ∈ |¬ϕ|ρ. Then, we have
|bϕc|ρ = |¬d¬ϕe|ρ = M \ |d¬ϕe|ρ = M \ M = ∅. For (4), let us first suppose |ϕ1|ρ = |ϕ2|ρ, and thus
|ϕ1 ↔ ϕ2|ρ = M \ (|ϕ1|ρ4|ϕ2|ρ) = M \∅ = M . Then, we have |ϕ1 = ϕ2|ρ = |bϕ1 ↔ ϕ2c|ρ = M . Now, let us
suppose |ϕ1|ρ 6= |ϕ2|ρ. Then, we have (|ϕ1|ρ 4 |ϕ2|ρ) 6= ∅, and thus |ϕ1 ↔ ϕ2|ρ = M \ (|ϕ1|ρ 4 |ϕ2|ρ) 6= M .
Therefore, we have |ϕ1 = ϕ2|ρ = |bϕ1 ↔ ϕ2c|ρ = ∅. For (5), let us first suppose ρ(x) ∈ |ϕ|ρ, and thus
|x ∧ ϕ|ρ = {ρ(x)} ∩ |ϕ|ρ = {ρ(x)} 6= ∅. Then, we have |x ∈ ϕ|ρ = |dx ∧ ϕe|ρ = M . Now, let us suppose
ρ(x) 6∈ |ϕ|ρ, and thus |x ∧ ϕ|ρ = {ρ(x)} ∩ |ϕ|ρ = ∅. Then, we have |x ∈ ϕ|ρ = |dx ∧ ϕe|ρ = ∅. For
(6), let us first suppose |ϕ1|ρ ⊆ |ϕ2|ρ, and thus |ϕ1 → ϕ2|ρ = M \ (|ϕ1|ρ \ |ϕ2|ρ) = M \ ∅ = M . Then,
we have |ϕ1 ⊆ ϕ2|ρ = |bϕ1 → ϕ2c|ρ = M . Now, let us suppose |ϕ1|ρ 6⊆ |ϕ2|ρ, and thus |ϕ1 → ϕ2|ρ =
M \ (|ϕ1|ρ \ |ϕ2|ρ) 6= M . Then, we have |ϕ1 ⊆ ϕ2|ρ = |bϕ1 → ϕ2c|ρ = ∅.

B Technical Details and Proofs for Section 4

B.1 Proof of Proposition 19
Proof. Let us fix a model M and an interpretation of the (constant) pairing symbol 〈_,_〉, which we denote
as 〈_,_〉M ⊆ M . For any a ∈ Ms1 and b ∈ Ms2 , we abbreviate 〈_,_〉M • a • b as 〈a, b〉M . Recall that
pairing is a function, defined as 〈_,_〉 : s1 × s2 → s1 ⊗ s2. By the axiom (Function), we have that
〈a, b〉M is a singleton, for any a, b ∈ Ms. By abuse of notation (see the discussion before Example 5), we
denote the only element in the singleton 〈a, b〉M also as 〈a, b〉M . By the (Product) axiom, we have that
Ms1⊗s2 =

⋃
a∈Ms1 ,b∈Ms2

〈a, b〉M , so there exists a surjective function i : Ms1 × Ms2 → Ms1⊗s2 , given as
i(a, b) = 〈a, b〉M for any a ∈ Ms1 , b ∈ Ms2 . By the axiom (Injectivity), we know that i is an injective
function, and thus it is a bijection. Therefore, Ms1 ×Ms2

∼= Ms1⊗s2 .

B.2 Proof of Proposition 21
Proposition 53. For any model M validating the axioms in Definition 20, we have M2s

∼= P(Ms).

Proof. Let us fix a model M and an interpretation of the (constant) extension symbol extension, which we
denote as extensionM ⊆ M . Let us define a function extensionM (_) : M2A → P(Ms) as extensionM (A) =
extensionM • A, for any A ∈ M2A . Note that the range of extensionM (_) is P(Ms) because of the axiom
(Arity) in Definition 20. In the following, we show that extensionM (_) is a bijection. For the injectivity,

35

FOL
Reasoning

Frame
Reasoning

Technical
Rules

(Propositional Tautology) ϕ if ϕ is a propositional tautology over patterns

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x. ϕ

(∃-Generalization)
ϕ1 → ϕ2

if x 6∈ FV(ϕ2)
(∃x.ϕ1)→ ϕ2

(Propagation⊥) C[⊥]→ ⊥
(Propagation∨) C[ϕ1 ∨ ϕ2]→ C[ϕ1] ∨ C[ϕ2]

(Propagation∃) C[∃x. ϕ]→ ∃x.C[ϕ] if x 6∈ FV(C)

(Framing)
ϕ1 → ϕ2

C[ϕ1]→ C[ϕ2]

(Set Variable Substitution)
ϕ

ϕ[ψ/X]

(Existence) ∃x. x
(Singleton) ¬ (C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

Figure 7: Matching logic proof system (where C[ϕ] denotes an application pattern ϕψ or ψ ϕ for some ψ)

we consider A,B ∈ M2s with A 6= B. Then by the axiom (Extensionality), we have extensionM (A) 6=
extensionM (B). For the surjectivity, we consider an arbitrary C ∈ P(Ms) and a valuation ρ such that
ρ(X) = C, where X is the free set variable that occurs in the axiom (Powerset) in Definition 20. Then by
the axiom, there exists A ∈M2s such that extensionM (A) = C. Therefore, extension(_)M is a bijection, and
we have proved M2s

∼= P(Ms).

Remark 54. We define intensionM (_) : P(Ms)→M2s to be the inverse of extensionM (_).

Remark 55. Given M , if M2s = P(Ms), then both extensionM (_) and intensionM (_) become the identity
function over P(Ms), i.e., extensionM (C) = intensionM (C) = C, for any C ⊆ Ms. For such M , it is
sometimes confusing whether pointwise extension is triggered because C can mean either an element in M2s

or a subset of Ms, and only the latter requires pointwise extension. To prevent this confusion, we will
use _•_ : M × M → P(M) to mean only the interpretation of application, and use a different notation
•pe : P(M) × P(M) → P(M) to mean its pointwise extension, defined the same as in Definition 4:
A •pe B =

⋂
a∈A,b∈B a • b for any A,B ⊆M ,

B.3 Matching Logic Proof System, Proof of Proposition 23, and Proof of The-
orem 24

The Hilbert-style proof system of ML is shown in Fig. 7. This proof system is obtained by instantiating
the Hilbert system given in [21] on the functional variant (Definition 2). Its meta-properties, including
Proposition 23 and Theorem 24, need to be proved.

We first prove Proposition 23.

Proof. (1)-(4) can be proved by the FOL reasoning rules (Fig. 7). In the following, we will use standard
propositional reasoning without explicitly showing their formal proofs in ML.

For (5), we need to prove Γ ` ϕ = ϕ, i.e., Γ ` d¬(ϕ ↔ ϕ)e → ⊥. By propositional reasoning, this can
be divided into proving (5a) Γ ` d¬(ϕ ↔ ϕ)e → d⊥e and (5b) Γ ` d⊥e → ⊥. Note that (5b) is proved by
(Propagation⊥). For (5a), we apply (Framing). Then, we need to prove Γ ` ¬(ϕ↔ ϕ)→ ⊥, which is a
propositional tautology.

For (6), we need to prove Γ ` ϕ1 = ϕ3. By a similar argument as in (5), we need to prove that
Γ ` ϕ1 ↔ ϕ3. In the following, we show that Γ ` ϕ1 = ϕ2 implies that Γ ` ϕ1 ↔ ϕ2. Clearly, once we prove
that, we can finish the proof of (7) by the standard propositional reasoning. We will prove a more general

36

result: Γ ` ¬dψe implies Γ ` ¬ψ. By propositional reasoning, we only need to prove that Γ ` ¬dψe → ¬ψ,
i.e., Γ ` ψ → dψe, whose proof is given in [22, Corollary 59].8

For (7), the proof is trivial by noting ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c, and by propositional reasoning, Γ ` (ϕ1 ↔
ϕ2)↔ (ϕ1 ↔ ϕ2).

For (8), we can apply a similar argument as in (5) and only need to prove that Γ ` ϕ1 ↔ ϕ2 implies
Γ ` ψ[ϕ/x] ↔ ψ[ϕ/x]. The latter can be proved by structural induction on ψ, and all cases can be proved
by standard propositional reasoning.

Next we prove Theorem 24.

Proof. We prove that all proof rules (and axioms) of the ML proof system in Fig. 7 are sound.
For the first four FOL rules, the proof follows directly by Remark 8.
For (Propagation⊥), we have |(⊥ϕ)→ ⊥|ρ = M \ |⊥ϕ|ρ = M \ (∅ • |ϕ|ρ) = M \ ∅ = M . The case for

(ϕ⊥) is proved similarly.
For (Propagation∨), we have |((ϕ1 ∨ ϕ2)ψ)→ ϕ1 ψ ∨ ϕ1 ψ|ρ = M \ (|(ϕ1 ∨ ϕ2)ψ|ρ \ |ϕ1 ψ ∨ ϕ1 ψ|ρ) =

M \ ((|ϕ1 ∨ ϕ2|ρ • |ψ|ρ) \ (|ϕ1 ψ|ρ ∪ |ϕ1 ψ|ρ)) = M \ ((|ϕ1|ρ ∪ |ϕ2|ρ • |ψ|ρ) \ (|ϕ1|ρ • |ψ|ρ ∪ |ϕ1|ρ • |ψ|ρ)), which,
by pointwise extension, equals to M \ ∅ = M . The case for (ψ (ϕ1 ∨ ϕ2)) is proved similarly.

For (Propagation∃), we have |((∃x. ϕ)ψ)→ ∃x. (ϕψ)|ρ = M \ (|(∃x. ϕ)ψ|ρ \ |∃x. (ϕψ)|ρ) = M \
(((
⋃
a |ϕ|ρ[a/x]) • |ψ|ρ)\

⋃
a |ϕψ|ρ[a/x]) = M \(((

⋃
a |ϕ|ρ[a/x]) • |ψ|ρ)\

⋃
a |ϕ|ρ[a/x]

• |ψ|ρ[a/x]), which, by pointwise
extension, equals to M \ ∅ = M . The case for (ψ (∃x. ϕ)) is proved similarly.

For (Framing), we have |(ϕ1 ψ)→ (ϕ2 ψ)|ρ = M \ (|ϕ1 ψ|ρ \ |ϕ2 ψ|ρ) = M \ ((|ϕ1|ρ • |ψ|ρ) \ (|ϕ2|ρ • |ψ|ρ)).
Now note that |ϕ1 → ϕ2|ρ = M , which implies that |ϕ1|ρ ⊆ |ϕ2|ρ, and therefore by pointwise extension,
(|ϕ1|ρ • |ψ|ρ)\ (|ϕ2|ρ • |ψ|ρ) = ∅, and thus |(ϕ1 ψ)→ (ϕ2 ψ)|ρ = M \ ((|ϕ1|ρ • |ψ|ρ)\ (|ϕ2|ρ • |ψ|ρ)) = M \∅ = M .

For (Set Variable Substitution), we have |ϕ[ψ/X]|ρ = |ϕ|ρ[|ψ|ρ/X] = M .
For (Existence), we have |∃x. x|ρ =

⋃
a{a} = M .

For (Singleton), we note that |x|ρ is a singleton, so exactly one of |x ∧ ϕ|ρ and |x ∧ ¬ϕ|ρ is ∅. Then by
pointwise extension, exactly one of |C1[x ∧ ϕ]|ρ and |C2[x ∧ ¬ϕ]|ρ is ∅, and thus we have |C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ]|ρ =
∅. Then we have that |¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])|ρ = M \ |C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ]|ρ = M \ ∅ = M .

In conclusion, all ML proof rules and axioms in Fig. 7 are sound.

C Technical Details and Proofs for Section 7
In this section, let us fix a concrete ccc model (A,_•A_,L). We recall the following notations (see Defini-
tion 25):

1. R(A) = {f : A→ A | there exists a b ∈ A such that f(a) = b •A b for all a ∈ A};

2. _•A_ : A×A→ A;

3. L : R(A)→ A.

For any f : A→ A, we define graph(f) = {(a, f(a)) | a ∈ A} ⊆ A×A.

Remark 56. For two arbitrary elements a, b, we write a b to mean the sequence consisting of a, b. In
general, for elements a1, . . . , an, we write a1 · · · an to mean the sequence consisting of a1, . . . , an. We
will use sequences to represent the results of a partial evaluation.

8The corollary is for the full ML, not for the functional variant, but we can re-use the formal ML proof verbatim, under the
notations introduced in Section 4.

37

C.1 Construction of the ML model MA

Definition 57. Let Σλ be the signature of Γλ, which contains:

1. d_e, the definedness symbol (Definition 13);

2. [[_]], the inhabitant symbol (Definition 17);

3. 〈_,_〉, the pairing symbol (Definition 18);

4. extension, the extension symbol (Definition 20);

5. Var ,Exp,Var × Exp, 2Var×Exp , the sort constants (Section 6);

6. lambda, the retraction symbol for λ (Section 6).

Given a concrete ccc model (A,_•A_,L), we define an ML model MA of signature Σλ in the following way.
For notational simplicity, we omit the superscript A and simply write M . Recall that an ML model is a
tuple (M,_•_, {σM}σ∈Σλ); see Definition 4.

Firstly, we define the carrier set M as the disjoint union of the following sets:

1. {#def}, where #def is a distinguished element, used to interpret the definedness symbol d_e;

2. {#inh}, where #inh is a distinguished element, used to interpret the inhabitant symbol [[_]];

3. {#Var,#Exp,#VarExp,#2VarExp}, each interpreting the sort names Var ,Exp,Var × Exp, 2Var×Exp ;

4. A;

5. A×A;

6. P(A×A);

7. {#pair,#ext,#lam}, each interpreting the (constant) symbols 〈_,_〉, extension, lambda;

8. {#pair a | a ∈ A}, where #pair a is the partial evaluation result of applying #pair to a.

Secondly, we define the interpretation of application _•_ : M ×M → P(M) as follows:

1. #def • a = M for every a ∈M ;

2. #inh • #Var = A;

3. #inh • #Exp = A;

4. #inh • #VarExp = A×A;

5. #inh • #2VarExp = P(A×A);

6. #pair • a = {#pair a} for every a ∈ A;

7. (#pair a) • b = {(a, b)} for every a, b ∈ A; note that (a, b) is the pair of a and b in A×A;

8. #ext • P = P for every P ∈ P(A×A) note that P ⊆ A×A ⊆ P(M);

9. #lam • P = {L(fP)}, if P ∈ P(A×A), fP ∈ R(A), P = graph(fP), and L(fP) is defined;

10. a • b = {a •A b} for every a, b ∈ A;

11. Otherwise, if none of the above rules applies, a • b = ∅ for a, b ∈M .

Thirdly, we give interpretations to all symbols in Σλ as follows:

38

1. d_eM = {#def};

2. [[_]]M = {#inh};

3. 〈_,_〉M = {#pair};

4. extensionM = {#ext};

5. VarM = {#Var};

6. ExpM = {#Exp};

7. (Var × Exp)M = {#VarExp};

8. (2Var×Exp)M = {#2VarExp};

9. lambdaM = {#lam}.

And now we finish the construction of the ML model M .

Lemma 58. For any pattern ϕ and valuation ρ such that |ϕ|ρ ⊆ A × A, we have |intensionϕ|ρ =
{
|ϕ|ρ

}
,

i.e., the singleton that contains |ϕ|ρ.

Proof. By the construction of the ML model M and Remark 55.

C.2 Proof of Lemma 32
Proof. Let us fix a valuation on A, say ρ : V λ → A. We define a corresponding ML M -valuation ρA as
ρA(x) = ρ(x) for every x ∈ V λ. We will prove that |e|ρA =

{
|e|λρ
}
for all e ∈ Λ by structural induction on e.

To prevent confusion, we will use _•_ to mean only the interpretation of application, and use _•pe_ to
mean its pointwise extension; see Remark 55.

When e is a variable x ∈ V λ, we have |x|ρA = {ρA(x)} = {ρ(x)} =
{
|x|λρ

}
.

When e has the form e1 e2, we have |e1 e2|ρA = |e1|ρA •pe |e2|ρA =
{
|e1|λρ

}
•pe

{
|e2|λρ

}
= |e1|λρ • |e2|λρ ={

|e1|λρ •A |e2|λρ
}

=
{
|e1 e2|λρ

}
.

When e has the form λx. e1, we have |λx. e1|ρA = |lambda (intension ∃x:Var . 〈x, e1〉)|ρA = {#lam} •pe
|intension ∃x:Var . 〈x, e1〉|ρA .Note that |∃x:Var . 〈x, e1〉|ρA =

⋃
a∈A |〈x, e1〉|ρA[a/x] =

⋃
a∈A{#pair}•pe |x|ρA[a/x]

•pe

|e1|ρA[a/x] =
⋃
a∈A{#pair}•pe{a}•pe

{
|e1|λρA[a/x]

}
=
⋃
a∈A

{
#pair • a • |e1|λρA[a/x]

}
=
⋃
a∈A

{(
a, |e1|λρA[a/x]

)}
=

graph(fρe1,x), where fρe1,x is defined in Definition 25. Then, using Lemma 58, we have that {#lam} •pe
|intension ∃x:Var . 〈x, e1〉|ρA = {#lam}•pe

{
|∃x:Var . 〈x, e1〉|ρA

}
= {#lam}•pe

{
graph(fρe1,x)

}
= #lam•graph(fρe1,x) =

{L(fρe1,x)} = |λx. e1|λρ .

D Technical Details and Proofs for Section 8
Some notations used in this section are defined in Appendix C.

D.1 Construction of the Term Model T
Definition 59. Recall that Σλ is the signature of Γλ that contains:

1. d_e, the definedness symbol (Definition 13);

2. [[_]], the inhabitant symbol (Definition 17);

39

3. 〈_,_〉, the pairing symbol (Definition 18);

4. extension, the extension symbol (Definition 20);

5. Var ,Exp,Var × Exp, 2Var×Exp , the sort constants (Section 6);

6. lambda, the retraction symbol for λ (Section 6).

We define an ML model T of signature Σλ in the following way. Recall that an ML model is a tuple
(T,_•_, {σT }σ∈Σλ); see Definition 4.

Firstly, we define the carrier set T as the disjoint union of the following sets:

1. {#def}, where #def is a distinguished element, used to interpret the definedness symbol d_e;

2. {#inh}, where #inh is a distinguished element, used to interpret the inhabitant symbol [[_]];

3. {#Var,#Exp,#VarExp,#2VarExp}, each interpreting the sort names Var ,Exp,Var × Exp, 2Var×Exp ;

4. [Λ]; note that this includes [V λ];

5. [V λ]× [Λ];

6. P
(
[V λ]× [Λ]

)
;

7. {#pair,#ext,#lam}, each interpreting the (constant) symbols 〈_,_〉, extension, lambda;

8. {#pair [e] | e ∈ Λ}.

Secondly, we define the interpretation of application _•_ : T × T → P(T) as follows:

1. #def • a = T for every a ∈ T ;

2. #inh • #Var = [V λ];

3. #inh • #Exp = [Λ];

4. #inh • #VarExp = [V λ]× [Λ];

5. #inh • #2VarExp = P
(
[V λ]× [Λ]

)
;

6. #pair • [e] = {#pair a} for every e ∈ Λ;

7. (#pair [e]) • [e′] = {([e], [e′])} for every e, e′ ∈ Λ;

8. #ext • P = P for every P ∈ P
(
[V λ]× [Λ]

)
note that P ⊆ [V λ]× [Λ] ⊆ P(T);

9. #lam • P = {[λx. e]}, if P =
⋃
z∈V λ([z], [e[z/x]]); well-definedness is proved in Proposition 40.

10. [e] • [e′] = {[e e′]} for every e, e′ ∈ [Λ];

11. Otherwise, if none of the above rules applies, a • b = ∅ for a, b ∈ T .

Thirdly, we give interpretations to all symbols in Σλ as follows:

1. d_eM = {#def};

2. [[_]]M = {#inh};

3. 〈_,_〉M = {#pair};

4. extensionM = {#ext};

40

5. VarM = {#Var};

6. ExpM = {#Exp};

7. (Var × Exp)M = {#VarExp};

8. (2Var×Exp)M = {#2VarExp};

9. lambdaM = {#lam}.

And now we finish the construction of the term model T .

Note that Lemma 58 also holds for T .

D.2 Proof of Proposition 41
Proof. We prove both properties simultaneously by induction on d(e).

When d(e) = 0, we have that e is either a variable x ∈ V λ or an application e1 e2 where d(e1) = d(e2) = 0.
We do structure induction on e. When e is variable x, we have |x|ρT = {ρT (x)} = {[x]}, and |x|ρ[ρ(z)/x] =

{ρ(z)} = |z|ρ = |x[z/x]|ρ. When e is variable y distinct from x, we have |y|ρT = {ρT (y)} = {[y]}, and
|y|ρ[ρ(z)/x] = {ρ(y)} = |y|ρ = |y[z/x]|ρ. When e is e1 e2, we have |e1e2|ρT = |e1|ρT •pe |e2|ρT = {[e1]} •pe
{[e2]} = [e1] • [e2] = {[e1e2]}, and |e1e2|ρ[ρ(z)/x] = |e1|ρ[ρ(z)/x]

•pe |e2|ρ[ρ(z)/x] = |e1[z/x]|ρ •pe |e2[z/x]|ρ =

|e1[z/x] e2[z/x]|ρ = |(e1e2)[z/x]|ρ. We have proved the case when d(e) = 0 by structural induction on e.
When d(e) ≥ 1, we have that e is either e1e2 with d(e1), d(e2) ≤ d(e), or λx. e1 with d(e1) ≤ d(e) − 1.

We do structural induction on e. When e is e1e2, the proof is the same as above for the case d(e) = 0,
and thus we omit it here. When e is λy. e1 for fresh y, we have that |(λy. e1)[z/x]|ρ = |λy. (e1[z/x])|ρ =
|lambda (intension∃y:Var . 〈y, e1[z/x]〉)|ρ = {#lam} •pe |intension∃y:Var . 〈y, e1[z/x]〉|ρ
= {#lam} •pe

{
|∃y:Var . 〈y, e1[z/x]〉|ρ

}
= {#lam} •pe

{⋃
[w]∈[V λ] |〈y, e1[z/x]〉|ρ[[w]/y]

}
= {#lam} •pe

{⋃
[w]∈[V λ]{#pair} •pe {[w]} •pe |e1[z/x]|ρ[[w]/y]

}
= {#lam} •pe

{⋃
[w]∈[V λ]{#pair} •pe {[w]} •pe |e1|ρ[[w]/y][ρ(z)/x]

}
= {#lam} •pe

{⋃
[w]∈[V λ]{#pair} •pe {[w]} •pe |e1|ρ[ρ(z)/x][[w]/y]

}
= {#lam} •pe

{
|∃y:Var . 〈y, e1〉|ρ[ρ(z)/x]

}
= |lambda (intension∃y:Var . 〈y, e1〉)|ρ[ρ(z)/x] = |λy. e1|ρ[ρ(z)/x] .

E Technical Details and Proofs for Section 9
We remind the reader that in this paper, we do not consider TGL in its most general form. We are
considering TGL instances, where the term syntax of the binder syntax as defined in Definition 44. For
language simplicity, we will call these TGL instances simply TGL.

E.1 The Gentzen-Style Proof System of TGL and the Proof of Theorem 48
We show in Fig. 8 the Gentzen-style proof system of TGL [77, Figs. 1-2]. We add additionally the last rule
(Binder) to specify that equality is a congruence relation on binders. Note that the substitution rule (Sbs)
implies that equality is a congruence relation on functions.

Now we prove Theorem 48.

Proof. The proof is the same to the proof of [77, Theorem 3.2], by noting that the new rule (Binder) can
be simulated by adding axioms of the form:

∀x. ∀FV(t, t′). t = t′ → b(x, t) = b(x, t′).

41

E.2 Construction of the ML Theory ΓTGL

Let us fix a binder syntax (S, V, F,B) like the one in Definition 44.

Definition 60. Let the ML signature ΣTGL contain the following symbols:

1. d_e, the definedness symbol (Definition 13);

2. [[_]], the inhabitant symbol (Definition 17);

3. 〈_,_〉, the pairing symbol (Definition 18);

4. extension, the extension symbol (Definition 20);

5. s, a sort constant for every s ∈ S (Section 4.2);

6. s2, 2s
2

, the square and power sorts of s, for every s ∈ S (Section 4.2);

7. f for every f ∈ F ;

8. π for every π ∈ Π;

9. restractionb, the retraction symbol for every binder b ∈ B (Definition 44).

Let the ML theory ΓTGL contain the infrastructure axioms about sorts, product sorts, power sorts, the
functional axioms of f ∈ F , and predicate axioms of π ∈ Π, the partial function axioms of restractionb for
each b ∈ B, and the following functional binder axioms:

(Functional Binder) ∀x:s.∀FV(e).∃y. b(x, e) = y

The purpose of (Functional Binder) is to enforce that in any model M � ΓTGL, the interpretations of
binders b(x, e) is a singleton. Therefore, all TGL terms are functional ML patterns.

E.3 Construction of the ML model MA from a TGL model A
Let us fix a TGL model ({As}s∈S , {Ae}e∈TGLTerm , {Aπ}π∈Π). We show how to construct a corresponding
ML model MA of ΣTGL below. For notational simplicity, we will omit the superscript and write M for MA

throughout this section.
We first prove a lemma about the TGL model A.

Lemma 61. Let x1, . . . , xn, x
′
1, . . . , x

′
n be variables and ρ, ρ′ be valuations. If ρ(x1) = a1, . . . , ρ(xn) = an,

ρ′(x′1) = a1, . . . , ρ′(x′n) = an, then we have Af(x1,...,xn)(ρ) = Af(x′1,...,x
′
n)(ρ

′).

Proof. Let y1, . . . , yn be n fresh variables. Since f(x1, . . . , xn) ≡ f(y1, . . . , yn)[x1/y1] · · · [xn/yn], we have
that Af(x1,...,xn)(ρ) = Af(y1,...,yn)[x1/y1]···[xn/yn](ρ) = Af(y1,...,yn)(δ), where
δ = ρ[ρ(x1)/y1] · · · [ρ(xn)/yn] = ρ[a1/y1] · · · [an/yn], by [77, Definition 2.4]. Similarly, we haveAf(x′1,...,x

′
n)(ρ

′) =

Af(y1,...,yn)(δ
′) where δ′ = ρ′[a1/y1] · · · [an/yn]. Note that FV(f(y1, . . . , yn)) = {y1, . . . , yn}, and δ

∣∣
y1,...,yn

=

δ′
∣∣
y1,...,yn

. By [77, Lemma 2.5], we have Af(y1,...,yn)(δ) = Af(y1,...,yn)(δ
′), and thus Af(x1,...,xn)(ρ) =

Af(x′1,...,x
′
n)(ρ

′).

Definition 62. We define the ML model (M,_•_, {σM}σ∈ΣTGL) as follows. Firstly, we define M to be the
disjoint union of the following sets:

1. {#def}, where #def is a distinguished element, used to interpret the definedness symbol d_e;

2. {#inh}, where #inh is a distinguished element, used to interpret the inhabitant symbol [[_]];

3. {#s,#sos′,#2sos′}, each interpreting the sorts s, s⊗ s′, 2s⊗s′ , for every s, s′ ∈ S;

42

4. As, for every s ∈ S;

5. As ×As′ , for every s, s′ ∈ S;

6. P(As ×As′), for every s, s′ ∈ S;

7. {#pair,#ext,#f,#pi,#resb}, each interpreting 〈_,_〉, extension, f, π, restractionb;

8. {#pair a | a ∈
⋃
sAs};

9. {#f a1 · · · ak | f ∈ Fs1···sk···sn,s, 1 ≤ k < n, a1 ∈ As1 , . . . , ak ∈ Ask};

10. {#pi a1 · · · ak | π ∈ Πs1···sk···sn , 1 ≤ k < n, a1 ∈ As1 , . . . , ak ∈ Ask}.

As we have seen in Definitions 57 and 59, Items 8-10 include the results of partial evaluations.
Secondly, we define the interpretation of application _•_ : M ×M → P(M) as follows:

1. #def • a = T for every a ∈ T ;

2. #inh • #s = As, for every s ∈ S;

3. #inh • #sos′ = As ×As′ , for every s, s′ ∈ S;

4. #inh • #2sos′ = P(As ×As′), for every s, s′ ∈ S;

5. #pair • a = {#pair a} for every a ∈
⋃
sAs;

6. (#pair a) • a′ = {(a, a′)} for every a, a′ ∈
⋃
sAs;

7. #ext • P = P for every P ∈ P(As ×As′);

8. (#f a1 · · · ak−1) • ak = {#f a1 · · · ak−1 ak} for every f ∈ Fs1···sn,s, 1 ≤ k < n,
a1 ∈ As1 , . . . , ak ∈ Ask ;

9. (#f a1 · · · an−1) • an = {Af(x1,...,xn)(ρ)} where ρ(x1) = a1, . . . , ρ(xn) = an, for every
f ∈ Fs1···sn,s, a1 ∈ As1 , . . . , an ∈ Asn ; we should verify that the choices of x1, . . . , xn and ρ do not
matter; see Lemma 61;

10. (#pi a1 · · · ak−1) • ak = {#pi a1 · · · ak−1 ak} for every π ∈ Πs1···sn , 1 ≤ k < n,
a1 ∈ As1 , . . . , ak ∈ Ask ;

11. (#pi a1 · · · an−1) • an = M , for every π ∈ Πs1···sn , a1 ∈ As1 , . . . , an ∈ Asn , such that
(a1, . . . , an) ∈ Aπ;

12. (#pi a1 · · · an−1) • an = ∅, for every π ∈ Πs1···sn , a1 ∈ As1 , . . . , an ∈ Asn , such that
(a1, . . . , an) 6∈ Aπ;

13. #resb • P = {Ab(x,t)(ρ)}, if P ⊆ As × As′ , b ∈ Bs,s′,r, and there exists F : Ms → Ms′ defined as
F(a) = At(ρ[a/x]) for every a ∈ Ms such that P = graph(F); the well-definedness is proved in
Lemma 63;

14. Otherwise, if none of the above rules applies, a • b = ∅ for a, b ∈ T .

Thirdly, we define symbol interpretations as follows:

1. d_eM = {#def};

2. [[_]]M = {#inh};

3. 〈_,_〉M = {#pair};

43

4. extensionM = {#ext};

5. sM = {#s};

6. (s⊗ s′)M = {#sos′};

7. (2s⊗s
′
)M = {#2sos′};

8. fM = {#f};

9. πM = {#pi};

10. (restractionb)M = {#resb}.

Now we finish the construction of M .

Lemma 63. The application interpretation #resb • P given in Definition 62 is well-defined.

Proof. We need to show that the choice of b(x, t) and ρ does not matter. Therefore, let us assume there are
x, t, ρ and x′, t′, ρ′ such that they yield the same function F , i.e.:

At(ρ[a/x]) = At′(ρ
′[a/x′]), for all a ∈ As.

Our goal is to prove that Ab(x,t)(ρ) = Ab(x′,t′)(ρ
′).

Let y be a fresh variable. We enumerate all the free variables in b(x, t) as FV(b(x, t)) = {z1, . . . , zm}.
Let z′′1 , . . . , z′′m be fresh variables, and we define t′′ = t[y/x][z′′1 /z1] · · · [z′′m/zm]. Clearly, We have FV(t′′) ⊆
{y, z′′1 , . . . , z′′m}. Similarly, we enumerate FV(b(x′, t′)) = {z′1, . . . , z′m}. Let z′′′1 , . . . , z

′′′
m′ be fresh variables,

and define t′′′ = t′[y/x][z′′′1 /z
′
1] · · · [z′′′m′/z′m′]. We have FV(t′′′) ⊆ {y, z′′′1 , . . . , z

′′′
m′}.

Let us consider valuation ρ∗, such that ρ∗(z′′1) = ρ(z1), . . . , ρ∗(z′′1), ρ∗(z′′′1) = ρ′(z′1), . . . , ρ∗(z′′′m′) =
ρ′(z′m′). By [77, Lemma 2.5], we have Ati(ρ[a/x]) = At′′i (ρ∗[a/y]) and At′i(ρ[a/x]) = At′′′i (ρ∗[a/y]) for
every a ∈ As. By [77, Definition 2.4], we have ρ∗ ∈ A∀y:s. t′′=t′′′ . Recall that our goal is to prove
Ab(x,t)(ρ) = Ab(x′,t′)(ρ

′). By [77, Lemma 2.5], we need to prove Ab(y,t′′)(ρ∗) = Ab(y,t′′′)(ρ
∗), i.e., to prove

ρ∗ ∈ Ab(y,t′′)=b(y,t′′′), which holds by the proof rule (Binder).

E.4 Proof of Theorem 49
Let us first prove the following lemma:

Lemma 64. For any ρ ∈ TGLVal , t ∈ T , and ϕ ∈ TGLForm, we have that |t|ρ = {At(ρ)}, and

|ϕ|ρ =

{
M if ρ ∈ Aϕ
∅ if ρ 6∈ Aϕ

Proof. The proof is by structural induction on t and ϕ. Let us first prove that |t|ρ = {At(ρ)}.
When t is a variable x, we have |x|ρ = {ρ(x)} = {Ax(ρ)}.
When t has the form f(t1, . . . , tn) for f ∈ Fs1···sn,s, we have |f(t1, . . . , tn)|ρ = {#f}•pe |t1|ρ •pe · · ·•pe |tn|ρ =

{#f} •pe {At1(ρ)} •pe · · · •pe {Atn(ρ)} = #f • At1(ρ) • · · · • Atn(ρ) = {Af(x1,...,xn)(ρ
′)}, where ρ′(x1) = At1(ρ),

. . . , ρ′(xn) = Atn(ρ). By [77, Lemma 2.6], we have {Af(x1,...,xn)(ρ
′)} = {Af(t1,...,tn)(ρ)}.

When t has the form b(x, t1) for b ∈ Bs,s′,r, we have that |b(x, t1)|ρ = |restractionb (intension∃x:s. 〈x, t1〉)|ρ =
{#resb}•pe |intension∃x:s. 〈x, t1〉|ρ = {#resb}•pe{|∃x:s. 〈x, t1〉|ρ} = #resb•|∃x:s. 〈x, t1〉|ρ = #resb•

⋃
a∈As{#pair}•pe

{a} •pe |t1|ρ[a/x] = #resb •
⋃
a∈As{#pair} •pe {a} •pe {At1(ρ[a/x])} = #resb •

⋃
a∈As{(a,At1(ρ[a/x]))} =

{Ab(x,t1)(ρ)}, by Definition 62.
Now we prove the conclusion about |ϕ|ρ by structural induction. For notational simplicity, let us define

the “indicator operator” I such that I(S) = M if S is a valid mathematical statement and I(S) = ∅, otherwise.
Then, our goal is to prove that |ϕ|ρ = I(ρ ∈ Aϕ).

44

When ϕ is π(t1, . . . , tn), we have |π(t1, . . . , tn)|ρ = {#pi} •pe |t1|ρ •pe · · · •pe |tn|ρ = {#pi} •pe {At1(ρ)} •pe
· · · •pe {Atn(ρ)} = #pi • At1(ρ) • · · · • Atn(ρ) = I((At1(ρ), . . . , Atn(ρ)) ∈ Aπ), by Definition 62. Also note that
(At1(ρ), . . . , Atn(ρ)) ∈ Aπ iff ρ ∈ Aπ(t1,...,tn)(ρ).

When ϕ is t = t′, we have |t = t′|ρ = I(|t|ρ = |t′|ρ), by Proposition 14. Then, we have |t|ρ = |t′|ρ, iff
At(ρ) = At′(ρ), iff ρ ∈ At=t′(ρ).

When ϕ is ϕ1 ∧ ϕ2, we have |ϕ1 ∧ ϕ2|ρ = |ϕ1|ρ ∩ |ϕ2|ρ = I(ρ ∈ Aϕ1) ∩ I(ρ ∈ Aϕ2) = I(ρ ∈ Aϕ1 and ρ ∈
Aϕ2) = I(ρ ∈ Aϕ1∧ϕ2).

When ϕ is ¬ϕ1, we have |¬ϕ1|ρ = M \ |ϕ1|ρ = M \ I(ρ ∈ Aϕ1
) = I(ρ 6∈ Aϕ1

) = I(ρ ∈ A¬ϕ1
).

When ϕ is ∀x. ϕ1 where x has sort s, we have |∀x. ϕ1|ρ =
⋂
a∈As |ϕ1|ρ[a/x] =

⋂
a∈As I(ρ[a/x] ∈ Aϕ1

) =

I(for all a ∈ As, ρ[a/x] ∈ Aϕ1) = I(ρ ∈ A∀x. ϕ1).

Now we prove Theorem 49.

Proof. We will prove that (3) =⇒ (4) =⇒ (1) =⇒ (2) =⇒ (3). The only nontrivial case is (2) =⇒ (3).
Indeed, (3) =⇒ (4) is by Theorem 48. (4) =⇒ (1) is by Proposition 23 and noting that the TGL proof
system is identical to the FOL proof system. (1) =⇒ (2) is by Theorem 24.

To prove (2) =⇒ (3), we assume the opposite. Then, there exists a TGL model A such that A � E, but⋂
ϕ∈∆1

Aϕ 6⊆
⋃
ϕ∈∆2

Aϕ. By Definition 46, we have
⋂
ϕ∈∆1

Aϕ = A∧
∆1

and
⋃
ϕ∈∆2

Aϕ = A∨
∆2

, and thus
ρ 6∈ A∧

∆1→
∨

∆2
. By Lemma 64, we know that for the ML model M � ΓTGL as defined in Definition 62, we

have M � E and M 6�
∧

∆1 →
∨

∆2, which is a contradiction. Therefore, we prove that (2) =⇒ (3).

45

(Ax)
·

if ∆1 ∩∆2 6= ∅
∆1 . ∆2

(Left→)
∆1 . ∆2, ϕ1 ∆1, ϕ2 . ∆2

∆1, (ϕ1 → ϕ2) . ∆2

(Right→)
∆1, ϕ . ∆2, ϕ2

∆1 . ∆2, (ϕ1 → ϕ2)

(Left∧)
∆1, ϕ1, ϕ2 . ∆2

∆1, (ϕ1 ∧ ϕ2) . ∆2

(Right∧)
∆1 . ∆2, ϕ1 ∆1 . ∆2, ϕ2

∆1 . ∆2, (ϕ1 ∧ ϕ2)

(Left∀)
∆1,∀x. ϕ, ϕ[t/x] . ∆2

∆1,∀x. ϕ . ∆2

(Right∀)
∆1 . ∆2, ϕ[y/x]

if y fresh
∆1 . ∆2,∀x. ϕ

(Reflexivity)
∆1, t = t . ∆2

∆1 . ∆2

(Symmetry)
∆1 . ∆2, t1 = t2 ∆1, t2 = t1 . ∆2

∆1 . ∆2

(Transitivity)
∆1 . ∆2, t1 = t2 ∆1 . ∆2, t2 = t3 ∆1, t1 = t3 . ∆2

∆1 . ∆2

(Cmpπ)
∆1 . ∆2, ti = t′i ∆1 . ∆2, π(t1, . . . , tn) ∆1, π(t′1, . . . , t

′
n) . ∆2

for every i ∈ {1, . . . , n}
∆1 . ∆2

(Sbs)
∆1 . ∆2, t1 = t2 ∆1, t[t1/x] = t[t2/x] . ∆2

∆1 . ∆2

(Binder)
∆1 . ∆2, t = t′ ∆1, b(x, t) = b(x, t′) . ∆2

∆1 . ∆2

Figure 8: The Gentzen-style proof system of TGL [77, Figs. 1-2], plus one congruence rule (Binder) for
binders

46

	Introduction
	Related Work: Existing Approaches to Defining Binders
	Functional Variant of Matching Logic
	Matching Logic Syntax
	Matching Logic Semantics
	Predicate Patterns
	Functional Patterns

	Matching Logic Theories

	Important Mathematical Instruments
	Definedness Symbol and Related Instruments
	Inhabitant Symbol and Related Instruments
	Sorted Quantification
	Many-Sorted Functions
	Many-Sorted Partial Functions

	Product Sorts
	Power Sorts
	Matching Logic Proof System

	-Calculus Preliminaries
	Our Goal and the Main Challenges
	Our Plan
	Concrete ccc Models of -Calculus

	Defining -Calculus in Matching Logic
	Model-Based Conservativeness Proof
	Syntax-Based Conservativeness Proof
	Proof Overview: Using the Term Model to Prove the Conservativeness Theorem
	Construction of the Term Model T and the Term Valuation T
	Comparing Our Term Model T to the Classical Notion of Term Models in -Calculus
	The Representabiltiy Problem

	Defining Binders in Other Logical Systems Using Matching Logic
	Term-Generic Logic (TGL) Preliminaries
	Defining Term Generic Logic in Matching Logic

	Future Work
	Conclusion
	Technical Details and Proofs for Section 3
	Proof of Proposition 9
	Proof of Proposition 14

	Technical Details and Proofs for Section 4
	Proof of Proposition 19
	Proof of Proposition 21
	Matching Logic Proof System, Proof of Proposition 23, and Proof of Theorem 24

	Technical Details and Proofs for Section 7
	Construction of the ML model MA
	Proof of Lemma 32

	Technical Details and Proofs for Section 8
	Construction of the Term Model T
	Proof of Proposition 41

	Technical Details and Proofs for Section 9
	The Gentzen-Style Proof System of TGL and the Proof of Theorem 48
	Construction of the ML Theory TGL
	Construction of the ML model MA from a TGL model A
	Proof of Theorem 49

