
88

A General Approach to Define Binders using Matching Logic

XIAOHONG CHEN, University of Illinois at Urbana-Champaign, USA

GRIGORE ROŞU, University of Illinois at Urbana-Champaign, USA and Runtime Verification Inc., USA

We propose a novel definition of binders using matching logic, where the binding behavior of object-level

binders is directly inherited from the built-in ∃ binder of matching logic. We show that the behavior of binders

in various logical systems such as _-calculus, System F, 𝜋-calculus, pure type systems, can be axiomatically

defined in matching logic as notations and logical theories. We show the correctness of our definitions by

proving conservative extension theorems, which state that a sequent/judgment is provable in the original

system if and only if it is provable in matching logic, in the corresponding theory. Our matching logic definition

of binders also yieldsmodels to all binders, which are deductively complete with respect to formal reasoning in

the original systems. For _-calculus, we further show that the yielded models are representationally complete,

a desired property that is not enjoyed by many existing _-calculus semantics. This work is part of a larger effort

to develop a logical foundation for the programming language semantics framework K (http://kframework.org).

CCS Concepts: • Theory of computation→ Logic; Lambda calculus.

Additional Key Words and Phrases: binders, matching logic, conservative extension, completeness

ACM Reference Format:
Xiaohong Chen and Grigore Roşu. 2020. A General Approach to Define Binders using Matching Logic. Proc.

ACM Program. Lang. 4, ICFP, Article 88 (August 2020), 28 pages. https://doi.org/10.1145/3408970

1 INTRODUCTION
In this paper, we propose a novel definition of binders using matching logic [??], where the binding
behavior of object-level binders is directly inherited from the built-in ∃ binder of matching logic. An

appealing aspect of our definition is that it automatically yieldsmodels to all binders. Therefore, it is

interesting andmotivating to define a logical system that features binding in matching logic, because

it allows us to study the resulting model theory and properties, in addition to the proof theory. We

define _-calculus [?], System F [??], pure type systems [?], and 𝜋-calculus [?] in matching logic as

theories and prove the correctness of definitions as conservative extension theorems (Theorems 36

and 49). We also show that the models that matching logic yields for these theories are deductively

complete with respect to formal reasoning in each of the respective systems (Sections 7 and 9.2).

For _-calculus, we show that the corresponding matching logic models are also representationally

complete for all _-theories, a desired property that is not known to hold for many existing _-calculus

semantics [??????????] (see discussion in Section 8.2.2).

We use _-calculus as an example to illustrate our definition of binders in matching logic. We

define _-abstraction, _𝑥. 𝑒 , as the following matching logic formula (called pattern; see Definition 2):

_𝑥 . 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩) (1)

Intuitively, ⟨𝑥, 𝑒⟩ builds an argument-value pair; ∃ is the built-in binder in matching logic that thus

creates the binding of 𝑥 to 𝑒 ; ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ builds the set-theoretic union of all argument-value pairs

Authors’ addresses: Xiaohong Chen, xc3@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin Ave,

Urbana, Illinois, USA, 61801; Grigore Roşu, grosu@illinois.edu, University of Illinois at Urbana-Champaign, 201 N Goodwin

Ave, Urbana, Illinois, USA, 61801 and Runtime Verification Inc., 102 E Main St #500, Urbana, Illinois, USA, 61801.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/8-ART88

https://doi.org/10.1145/3408970

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

HTTPS://ORCID.ORG/0000-0003-3208-4061
HTTPS://ORCID.ORG/0000-0002-3102-0421
http://kframework.org
https://doi.org/10.1145/3408970
https://orcid.org/0000-0003-3208-4061
https://orcid.org/0000-0002-3102-0421
https://doi.org/10.1145/3408970

88:2 Xiaohong Chen and Grigore Roşu

⟨𝑥, 𝑒⟩, as 𝑥 ranging over all variables of sort Var ; this union set is called the graph of the function

𝑥 ↦→ 𝑒 , which is then “packed” by the operator intension into an object and passed to lambda.
Finally, lambda decodes/retracts the packed object and returns the intended interpretation of _𝑥. 𝑒 .

Binders in the other systems may require different retracts other than lambda, but all take the same

packed object as argument, which for convenience we write [𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩.
The main goal of this paper is to show that the matching logic definition of binders as illustrated

in Eq. (1), is mathematically interesting and can serve as a foundation of binders in language

frameworks. In Section 2, we start with a discussion on the major existing approaches to dealing

with binders and we compare them with our approach. Then we make the following contributions:

• We propose a novel functional variant of matching logic that is more suitable to capture

binders, and we comprehensively study its model theory (Section 3); we demonstrate the

expressiveness of this functional variant of matching logic by defining several important

mathematical instruments (such as equality and sorts) as theories and notations (Section 4);

• We define _-calculus (Section 5) as a theory in matching logic (Section 6), as an illustrative

case study. Then we prove the conservative extension theorem for _-calculus and show that

matching logic yields complete models, in terms of deduction, for _-calculus (Sections 7-8).

We also discuss the representability problem in _-calculus and show that matching logic

yields models that are representationally complete, in Section 8.2.2;

• We generalize our method to arbitrary binders (Section 9).

Finally, we conclude the paper with future work in Sections 10-11.

This paper marks an important step towards formalizing the logical foundation of the K semantic

framework (http://kframework.org), which has been used to define complete formal semantics of

several real-world languages [?????]. Prior attempts have been made to propose a logical foundation

of K using formalisms like rewriting logic [??] and graph rewriting [?], but none of them were

satisfactory. Recently, matching logic has been proposed as an alternative [??]. The main idea is that

arbitrarily complex programming languages and calculi defined in K become theories in matching

logic, and all the tools offered by K, such as execution engines, symbolic reasoning, and even

full functional correctness verification of program or language properties, become proof search

heuristics in matching logic, which admits a small proof system and thus a small trust base. Several

important logical systems have been defined in matching logic, but none where binders play a

major role, like _-calculus or type systems. On the other hand, the current K implementations

already provide built-in support for user-defined binders of certain restricted forms (Remark 43).

Thus, this paper fills this gap by giving the theoretical results about how to define logical systems

that feature binders in matching logic and thus in K, without any foundational compromise.

All proof details can be found in the companion technical report [?].

2 RELATEDWORK: EXISTING APPROACHES TO DEFINING BINDERS
We discuss some existing approaches to defining binders and compare themwith our approach using

matching logic. These approaches include: (1) de Bruijn techniques [?], which give 𝛼-equivalent

terms identical encodings; (2) combinators [?], which translate terms with binders to binder-free

combinator terms; (3) nominal logic [?], which uses first-order logic (FOL) to axiomatize name-

swapping and freshness, and uses them to axiomatize object-level binding; (4) higher-order abstract

syntax [?] (abbreviated HOAS), which uses fixed binders in the meta-language, often a variant of

typed _-calculus, to define arbitrary binders in the object-level systems; (5) explicit substitution [?],
which uses customized calculi where the meta-level operation of capture-free substitution is

incarnated in an object-level operation as part of the calculi; (6) term-generic logic [?] (abbreviated
TGL), which is a FOL variant parametric in a generic term set, defined axiomatically and not

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

http://kframework.org

A General Approach to Define Binders using Matching Logic 88:3

constructively, which can be instantiated by a concrete binder syntax. We discuss how these

approaches handle binders and binding behavior using the following _-expression as an example

(a closed expression with distinct bound variables, which requires 𝛼-renaming during reduction to

avoid variable-capture):

(_𝑧. (𝑧𝑧)) (_𝑥. _𝑦. (𝑥𝑦)) (†)

De Bruijn encodings eliminate bound variables by replacing them with indexes that denote the

number of (nested) binders that are in scope between them and their corresponding binders.
1
For

example, the de Bruijn encoding of (†) is (_(11)) (__(21)), where 1 means that it is bound by the

closest binder and 2 means that it is bound by the second closest binder. Bound variables are elimi-

nated so 𝛼-equivalent expressions have the same de Bruijn encoding. However, substitution requires

index shifting, to adjust the indexes. De Bruijn techniques are used as the internal representations

of terms in several theorem provers, but the encoding is not human readable, implementations are

often tricky to get right, and efficiency problems can still appear on large terms.

Combinators translate binders to binder-free terms, which are built with constants like 𝑘 and 𝑠 ,

and application. This translation is called abstraction elimination, and can be implemented using

term rewriting [?]. It may cause exponential growth in the translated term size. Reduction of

combinatory terms is done using equations like 𝑘𝑥𝑦 = 𝑥 and 𝑠𝑥𝑦𝑧 = (𝑥𝑧) (𝑦𝑧) regarded as rewrite

rules. Combinatory terms are not human readable; for example, (one of) the equivalent combinator

term of (†) is 𝑠 (𝑠𝑘𝑘) (𝑠𝑘𝑘)𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠𝑘𝑘))) (𝑘 (𝑠𝑘𝑘)). Using combinators, the binding behavior

of _ is captured implicitly through abstraction elimination.

Nominal logic refers to a family of FOL theories whose signatures contain a name-swapping

operation (𝑥 𝑦) · 𝑒 that swaps all (free and bound) occurrences of 𝑥 and 𝑦 in 𝑒 , and a freshness

predicate 𝑥 # 𝑒 stating that 𝑥 has no free occurrences in 𝑒 . The notions of 𝛼-equivalence and

capture-free substitution are then axiomatized using additional FOL axioms on top of the axioms

of name-swapping and freshness. As an example, the following is an axiom in [?, Appendix A.3]
that states that swapping two fresh names that do not occur free in a term has not effect:

(F1) ∀𝑥 :Var .∀𝑦:Var .∀𝑒:Exp. 𝑥 # 𝑒 ∧ 𝑦 # 𝑒 → (𝑥 𝑦) · 𝑒 = 𝑒

where Var and Exp are the sorts of variables (also called atoms) and expressions, respectively.

Nominal logic also defines a new sort [Var]Exp and a FOL binary function _._ : Var × Exp →
[Var]Exp for binding, whose properties such as 𝛼-equivalence are axiomatized. Then, 𝛽-reduction

in _-calculus, e.g., can be defined in the following way [?, pp. 251, Eq. (12.17)]:
(𝛽 in Nominal Logic) ∀𝑥 :Var .∀𝑒:Exp.∀𝑒′:Exp. app(lam(𝑥 .𝑒), 𝑒′) = subst ((𝑥 .𝑒), 𝑒′)

where subst (_, _) is a binary function defined by four axioms (see [?, pp. 8]), in accordance to the

four possible forms that 𝑒 can take (i.e., the variable 𝑥 ; a variable distinct from 𝑥 ; application; or

abstraction). E.g., the following is the substitution axiom for abstraction [?, Eq. (12.20)]:
∀𝑥 :Var .∀𝑦:Var .∀𝑒:Exp.∀𝑒′:Exp. 𝑦 # 𝑒′ → subst (𝑥 . lam(𝑦. 𝑒), 𝑒′) = lam(𝑦. subst (𝑥 . 𝑒, 𝑒′))

Besides nominal logic and its metatheory [???], there is a wider range of research on nominal

techniques in general, including studies on using Fraenkel-Mostowski sets [?], nominal sets [?]
or similar set-theoretic structures [?] as well as category-theoretic notions [?] to formalize and

reason about binders and operations on them, and have resulted in practical implementations that

support complex recursive and inductive reasoning over terms with bindings as well as algorithms

for unification [?] and narrowing [?]. These nominal approaches deal with variable names and

bindings directly, treat variable names as normal data that can be manipulated, quantified, and

reasoned about, and give explicit definitions to operations such as free variables and capture-free

substitution (via name-swapping and freshness).

1
Other de Bruijn encodings count the binders from the top of the terms.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:4 Xiaohong Chen and Grigore Roşu

Nominal approaches can be directly exploited in matching logic, because FOL is a method-

ological fragment of matching logic. Indeed, [?, Section 7] shows how matching logic symbols

(see Definition 2) can be used to uniformly represent both FOL predicates and FOL functions

(Sections 3.2.1 and 3.2.2), in a way where FOL theories become matching logic theories as are,

without any translations. Therefore, nominal logic variants can be defined as theories in matching

logic straightforwardly, via the FOL capability of matching logic. Future research shall reveal more

direct methods that capture the essence of nominal techniques (e.g., nominal sets) within matching

logic, without going through FOL. In this paper, however, we explore a different, more HOAS-style

treatment of binders using matching logic, where the built-in ∃ binder is used to define binders in

object-languages (explained below and revisited in Remark 1).

Higher-order abstract syntax (HOAS) is a design pattern where some expressive higher-order cal-

culus, usually one of the variants of typed _-calculus [??????] or second-order equational logic [??],
is used as a foundation to define object-level binders. As an example, we show (part of) the HOAS-

style definition of (untyped) _-calculus in the Twelf system [?]:

exp : type. // the type for _-expressions

app : exp -> exp -> exp. // application is defined as a constant of a function type

lam : (exp -> exp) -> exp. // lambda is defined as a constant of a function type whose

// argument also has a function type; e.g., the encoding of (†)

// is app (lam ([z] (app z z))) (lam ([x] lam ([y] (app x y))))
red : exp -> exp -> type. // reduction relation (its type result makes it a binary predicate)

red-beta : red (app (lam ([x] (F x))) E) (F E). // 𝛽-reduction, discussed below

where [x] _ is the built-in binder of (the HOAS variant underlying) Twelf; E is a variable of type

exp; F is a variable of the function type exp -> exp; and (F x) is the (metalevel) application of F
to x. Higher-order matching is needed when red-beta is applied, and the internal substitution

mechanism of Twelf is triggered when F is applied to E. The binding behavior of _ is obtained from

the binding behavior of the built-in binder [x] _, via a constant lam; specifically, _𝑥 .𝑒 is encoded as

lam ([x] e). Object-level substitution is avoided, but clearly this is not how 𝛽-reduction is usually

defined (for the usual definition, see (𝛽 , Reduction) below). Application in _-calculus is defined

by a simple desugaring to the builtin application, using a different constant app; that is, 𝑒1 𝑒2 is

defined as app 𝑒1 𝑒2 (rather than 𝑒1 𝑒2). Thus, the definition needs to be justified by proving adequacy

theorems that establish a bijection between the expressions and formal proofs of _-calculus, and

the HOAS terms and type derivations, which is a tedious and nontrivial task [?].
Explicit substitution turns the implicit meta-level substitution operation into more explicit and

atomic steps, in order to provide a better understanding of the operational semantics and execution

models of higher-order calculi (see [?, pp. 1–2]; see also [?, pp. 4] for historical remarks). By doing

so, it bridges the gap between higher-order formalisms and their implementations, and has resulted

in several practical tools. For example, [?] proposes a calculus for explicit substitution whose

implementation allows us to define executable formal representations of many logical systems

featuring binders with a close-to-zero representational distance.

Term-generic logic (TGL) is a FOL variant, where the set of terms 𝑇 is generic and given as a

parameter that exports two operations—free variables and capture-free substitution—satisfying

certain properties [?, Definition 2.1]. TGL formulas are then defined constructively as in FOL, from

predicates 𝜋 (𝑒1, . . . , 𝑒𝑛) and equations 𝑒1 = 𝑒2, to compound formulas built using ∧, ¬, and ∃, with
the important exception that 𝑒1, . . . , 𝑒𝑛 are not constructive terms like in FOL, but generic terms in

𝑇 . In the case of _-calculus, the set of _-expressions Λ can be proved to satisfy the definition of a

generic term set in TGL, so we can instantiate TGL by Λ. The binding behavior of _ is inherited

automatically, through the 𝑇 instance. The metalevel of _-calculus can be defined by TGL axioms.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:5

For example, 𝛽-reduction is captured either as an equation or as a relation:

(𝛽 , Eqation) (_𝑥 . 𝑒) 𝑒′ = 𝑒′ [𝑒/𝑥] (𝛽 , Reduction) reduces

(
(_𝑥 . 𝑒) 𝑒′, 𝑒′ [𝑒/𝑥]

)
where reduces is a binary predicate; (_𝑥. 𝑒) 𝑒′, 𝑒′ [𝑒/𝑥] ∈ Λ are generic terms (schemas) that represent

all the concrete instances. TGL has been used to define various systems featuring bindings. In this

paper, we use TGL as an intermediate to capture other systems with binders within matching logic.

Our Approach Using Matching Logic. Our matching logic encoding of binders is inspired by the

key observation that the meaning of a term with binders, say _𝑥 . 𝑒 , can be given on top of the

function that maps 𝑥 to 𝑒 , which can be encoded as its graph: the set of argument-value pairs⋃
𝑥 {(𝑥, 𝑒)}. This set is then packed as an object and passed to a retraction function lambda that

retracts/decodes the intended meaning of the term. We recall the encoding of _𝑥 . 𝑒 in Eq. (1) below:

_𝑥 . 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩)
Note that by introducing the following notation

[𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩
the encoding of _𝑥 .𝑒 becomes lambda ([𝑥 :Var] 𝑒), where Var is the sort for _-calculus variables
and thus a subsort of Exp for expressions (see Section 6). Note that our matching logic encoding of

binders is reminiscent of both the nominal encoding lam(𝑥 .𝑒) and the HOAS encoding lam ([x] E).
An important aspect of our approach is that it yields models. We will give a comprehensive study

on the model theory of matching logic, by which every theory is associated with default models

that can be used to give semantic interpretations of all matching logic formulas (called patterns)

of that theory. In particular, the matching logic theory of _-calculus will also yield a precise and

insightful description of how _𝑥. 𝑒 is interpreted (semantically) in matching logic models.

Models are insightful. They help us understand a logical system better, from a different angle. It is

not unusual that more than one notion or class of models are proposed for one logic, because each

has its unique merit in helping us understand the logic from a certain perspective. Since matching

logic has a built-in notion of models, by defining a logical system as a matching logic theory we

can immediately study its resulting model theory and properties. For example, in Section 8.2.2, we

show how by defining _-calculus in matching logic, we obtain a new semantics of _-calculus that

is representationally complete for all _-theories.

The importance of models has also been recognized by several HOAS approaches. For example, [?]
proposes presheaf models of variable binding in a second-order syntax of binding terms, where

the initial model is used to define recursive/inductive operations; this work also yields an explicit

connection to the scope-safe variant of De Bruijn approaches. [??] propose for the same binding

syntax yet another category of models, called second-order universal algebras, together with

completeness and conservative extension results w.r.t. first-order universal algebras; however, the

conservative extension w.r.t. the original logical systems that feature binding and their formal

reasoning is not investigated at our knowledge, and not known if it holds. In our work using

matching logic, we shall prove the conservative extension for all logical systems that feature

binders considered in the paper, but will not cover the topics of inductive reasoning and/or initial

models (although a special initial algebra will be discussed in Section 8 for _-calculus); this topic is

left as future work (see Section 10).

As a logic that features binding, we expect matching logic to be definable within HOAS. Such

a definition will likely work fine in capturing the syntax and binding behavior of matching logic

formulas/patterns as well as its proof theory, but it will not capture the semantics or models

of matching logic; see related discussion in Remark 52. In this paper, we will discuss the other

direction, that is to capture HOAS by matching logic. We will do that indirectly, by firstly capturing

term-generic logic (TGL) and then re-using the existing TGL definitions of HOAS (see [?]). This

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:6 Xiaohong Chen and Grigore Roşu

indirect approach has the advantage that we will be able to examine how the very general TGL

models are translated and preserved when defined in matching logic.

Remark 1. Dealing with binders has been and still is an active research topic. The variety of

proposals and approaches has occasionally caused heated arguments. We conclude this section by

reminding the reader that matching logic was designed to serve as a unified logical foundation for

the K framework, which is intended to support all languages and all definitional styles as logical

theories. That is, when looked at through the matching logic lenses, the various approaches to

binders above become different methodologies for how to define matching logic theories.

3 FUNCTIONAL VARIANT OF MATCHING LOGIC
Matching logic has been recently proposed in its full generality in [??]. In this paper, we will use

a variant of matching logic that has a more similar representation to functional programming

languages, where the main constructs are function application and constants. Since matching logic

is relatively new, we will not assume the reader familiar with it. Therefore, this section has a dual

goal: to introduce the reader to the basic intuitions and notations of matching logic, and to propose

and present in detail a functional variant of it. Section 3.1 defines its syntax and Section 3.2 its

models and semantics. We define matching logic theories in Section 3.3.

3.1 Matching Logic Syntax
Matching logic is parametric in a signature that includes variables and constant symbols:

Definition 2. A signature is a tuple Σ = (EV , SV , Σ), where EV ∩ SV = ∅ and

(1) EV is a countably infinite set of element variables denoted 𝑥,𝑦, . . . ;

(2) SV is a countably infinite set of set variables denoted 𝑋,𝑌, . . . ;

(3) Σ is an at most countable set of (constant) symbols, or just symbols, denoted 𝜎, 𝜎1, 𝜎2,

Matching logic formulas, called Σ-patterns or simply patterns, are inductively defined as follows:

𝜑 F 𝑥 | 𝑋 | 𝜎 | 𝜑1 𝜑2 | ⊥ | 𝜑1 → 𝜑2 | ∃𝑥 . 𝜑 (2)

where 𝜑1 𝜑2 is called an application and is assumed associative to the left; ∃𝑥 . 𝜑 is the built-in

binder in matching logic that binds 𝑥 within 𝜑 . Note that ∃ only binds element variables and not

set variables. We use Pattern(Σ), or simply Pattern, to denote the set of all Σ-patterns.

Remark 3. The syntax of the original matching logic has sorts and multiary many-sorted op-

erations [??]. Our functional variant syntax in Definition 2 is much simpler: it has no sorts and

contains only one binary operation, the application, and constants. Yet, as seen in this paper, this

simpler variant has the same expressiveness and reasoning capability.

As a convention, we assume the scope of ∃ goes as far as possible to the right, so for example,

∃𝑥 .𝑦 → 𝑥 should be understood as ∃𝑥 . (𝑦 → 𝑥). In addition, we assume the standard notions of free

variables FV(𝜑) ⊆ EV ∪ SV , 𝛼-equivalence 𝜑1 ≡𝛼 𝜑2, and capture-free substitution 𝜑 [𝜓/𝑥], which
are all summarized in Fig. 1. We regard 𝛼-equivalent patterns as syntactically identical patterns; in

other words, 𝜑1 ≡𝛼 𝜑2 implies that 𝜑1 ≡ 𝜑2. A set of common derived constructs are also included

in Fig. 1 in the usual way as syntactic sugar, and we assume the standard precedence among them.

The matching logic syntax of patterns given in Eq. (2) is similar to the FOL syntax of terms

and formulas, except that we drop the distinction between terms and formulas, and unify them as

patterns.
2
Also, we drop the multiary functions/predicates in FOL, and replace them with a set of

2
The syntax of a logic should be in harmony with its semantics. FOL distinguishes terms and formulas because their

interpretations are different: terms are interpreted as elements and formulas are interpreted as truth values. As we will see

in Section 3.2, the matching logic semantics interprets patterns uniformly to the sets of elements that match them, so there

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:7

free variables:

FV(𝑥) = {𝑥} FV(𝑋) = {𝑋 } FV(𝜎) = ∅ FV(𝜑1 𝜑2) = FV(𝜑1) ∪ FV(𝜑2)
FV(⊥) = ∅ FV(𝜑1 → 𝜑2) = FV(𝜑1) ∪ FV(𝜑2) FV(∃𝑥 . 𝜑) = FV(𝜑) \ {𝑥}

𝛼-renaming:

∃𝑥 . 𝜑 ≡ ∃𝑦. 𝜑 [𝑦/𝑥], for 𝑦 ∉ FV(𝜑)
capture-free substitution (where 𝑦 distinct from 𝑥 and 𝑧 is fresh):

(∃𝑥 . 𝜑) [𝜓/𝑥] ≡ ∃𝑥 . 𝜑 (∃𝑥 . 𝜑) [𝜓/𝑦] ≡ ∃𝑧. 𝜑 [𝑧/𝑥] [𝜓/𝑦]
derived constructs defined as syntactic sugar:

¬𝜑 ≡ 𝜑 → ⊥ 𝜑1 ∨ 𝜑2 ≡ ¬𝜑1 → 𝜑2 𝜑1 ∧ 𝜑2 ≡ ¬(¬𝜑1 ∨ ¬𝜑2)
⊤ ≡ ¬⊥ ∀𝑥 . 𝜑 ≡ ¬∃𝑥 .¬𝜑 𝜑1 ↔ 𝜑2 ≡ (𝜑1 → 𝜑2) ∧ (𝜑2 → 𝜑1)

Fig. 1. Above line: standard notions of free variables, 𝛼-equivalence, and capture-free substitution for ∃ in
matching logic. Below line: usual derived constructs defined as syntactic sugar. Standard precedence assumed.

constant symbols that can be applied to other patterns using the built-in application 𝜑1 𝜑2. This

simpler syntax of matching logic makes it easier to develop its metatheory, and yet, as we will show

in Section 4, we do not lose any specification or reasoning power, and can still define important

and necessary mathematical instruments as theories and notations in matching logic.

By unifying the syntax of terms and formulas, we can bind variables in terms, using the built-in

matching logic binder ∃. A minimal example is ∃𝑥 . 𝑥 , where 𝑥 is bound by ∃𝑥 , so FV(∃𝑥 . 𝑥) = ∅.
While ∃𝑥 . 𝑥 is a well-formed matching logic pattern, it is neither a well-formed term nor a well-

formed formula in FOL. As we will see in Section 6, being able to build terms and create bindings

over them is what makes our encoding of various binders in matching logic possible, and novel.

3.2 Matching Logic Semantics
Matching logic patterns are interpreted on an underlying carrier set of elements, and each pattern

is then interpreted as a set of elements, which are those that match the pattern. This is called the

pattern matching semantics of matching logic, and is what inspired the name “matching logic”.

Intuitively, the pattern ⊥ (called bottom) is matched by no elements, while ⊤ (called top, defined

in Fig. 1) is matched by all elements. Conjunction 𝜑1 ∧ 𝜑2 is matched by the elements that match

both𝜑1 and𝜑2, disjunction𝜑1∨𝜑2 by the elements that match𝜑1 or𝜑2, negation ¬𝜑 by the elements

that do not match 𝜑 , and implication 𝜑1 →𝜑2 by all elements 𝑎 such that if 𝑎 matches 𝜑1 then 𝑎

matches 𝜑2. Element variable 𝑥 is matched by the element to which 𝑥 evaluates (see Definition 7).

Set variable 𝑋 is matched by the set of elements to which 𝑋 evaluates; this set can be empty, or

total, or any subset of the carrier set. Quantification ∃𝑥 . 𝜑 is matched by the elements that match 𝜑

for some valuation of 𝑥 ; that is, it abstracts away the irrelevant part 𝑥 from the matched part 𝜑 .

Definition 4. Given Σ = (EV , SV , Σ), a Σ-model (or justmodel) is a tuple (𝑀, _•_, {𝜎𝑀 }𝜎∈Σ), where
(1) 𝑀 is an underlying carrier set, required to be non-empty (𝑀 ≠ ∅);
(2) _•_ : 𝑀 ×𝑀 → P(𝑀) is called the interpretation of application, where P(𝑀) is the powerset;
(3) 𝜎𝑀 ⊆ 𝑀 is a subset, called the interpretation of 𝜎 , defined for every 𝜎 ∈ Σ.

We often use the same letter𝑀 to denote the above model and refer to Σ as the signature of𝑀 .

Let us compare matching logic and FOL, w.r.t. models. Both logics require their models to have

nonempty carriers, so they agree on (1). For (3), however, FOL models interpret constants to

elements, while matching logic models interpret constants to any carrier subsets. Similarly, for (2),

FOL models interpret application (regarded as a binary function) as a function of𝑀 ×𝑀 → 𝑀 that

returns one element, while matching logic models interpret application to a function that returns

is no need to distinguish terms and formulas. Other such examples include modal logic [?] (which abandons terms entirely)

and separation logic [?] (which merges the syntax for memory heaps with formulas).

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:8 Xiaohong Chen and Grigore Roşu

(Curry.1) 𝑘 = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘)𝑘)) (𝑘 (𝑠𝑘𝑘))
(Curry.2) 𝑠 = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘 (𝑠 (𝑘𝑠))) (𝑠 (𝑘 (𝑠 (𝑘𝑘)))𝑠))) (𝑘 (𝑘 (𝑠𝑘𝑘)))
(Curry.3) 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠 (𝑘𝑠)𝑘))) (𝑘𝑘) = 𝑠 (𝑘𝑘)
(Curry.4) 𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘)) = 𝑠 (𝑘𝑘) (𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠𝑘𝑘))) (𝑘 (𝑠𝑘𝑘)))
(Curry.5) 𝑠 (𝑘 (𝑠 (𝑘𝑠))) (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑠))) = 𝑠 (𝑠 (𝑘𝑠) (𝑠 (𝑘𝑘) (𝑠 (𝑘𝑠) (𝑠 (𝑘 (𝑠 (𝑘𝑠)))𝑠)))) (𝑘𝑠)

(Meyer-Scott) ∀𝑥 .∀𝑦. (∀𝑧. 𝑥𝑧 = 𝑦𝑧) → 𝑠 (𝑘 (𝑠𝑘𝑘))𝑥 = 𝑠 (𝑘 (𝑠𝑘𝑘))𝑦
Fig. 2. Five axioms of Curry and the Meyer-Scott axiom for _-models [?, pp. 94] (•𝐴 is omitted).

a set. We use the terminology functional interpretation to refer to how FOL interprets functions

and terms. Functional interpretation is in harmony with the syntax of FOL terms, which represent

elements. Similarly, the set-theoretic interpretation of matching logic application and symbols is in

harmony with its syntax of patterns, which represent sets of elements.

Note that the FOL functional interpretation can be seen as a special instance of the matching

logic set-theoretic interpretation, due to the bijection between an element 𝑎 and the singleton {𝑎}:
for any set 𝑀 , the set of all singletons of 𝑀 is isomorphic to 𝑀 itself. This justifies our abuse of

notation (used often in this paper) in which {𝑎} is written as 𝑎 when there is no confusion. We

will use two examples to illustrate how the functional interpretation is a special instance of the

set-theoretic interpretation. These examples are also related to the model theory of _-calculus, so

we will re-visit them later; for now, we only use them as examples of matching logic models.

Example 5. Let (𝐴, _•𝐴_) be an applicative structure [?, Definition 5.1.1], where 𝐴 is a nonempty

carrier set and _•𝐴_ : 𝐴×𝐴 → 𝐴 is an application function. Let matching logic signature Σ∅
contain

no symbols. We define a Σ∅
-model (𝑀, _•_, {}), where 𝑀 = 𝐴 and 𝑎 • 𝑏 = {𝑎 •𝐴 𝑏} for all 𝑎, 𝑏 ∈ 𝐴.

Then,𝑀 is isomorphic to 𝐴 under the bijection between elements and singletons.

Example 6. Let (𝐴, _•𝐴_, 𝑘, 𝑠) be a combinatory algebra [?, Definition 5.1.7], where (𝐴, _•𝐴_) is
an applicative structure and 𝑘, 𝑠 ∈ 𝐴 are distinguished elements such that 𝑘 •𝐴 𝑎 •𝐴 𝑏 = 𝑎 and

𝑠 •𝐴 𝑎 •𝐴 𝑏 •𝐴 𝑐 = (𝑎 •𝐴 𝑐) •𝐴 (𝑏 •𝐴 𝑐), for all 𝑎, 𝑏, 𝑐 ∈ 𝐴. 𝐴 is called a _-model [?], if it additionally
satisfies the five axioms of Curry [?, Theorem 5.2.5] and the Meyer-Scott axiom [?, Definition 5.2.7],

shown in Fig. 2. Let Σks
be the matching logic signature Σks = {k, s} and define a Σks

-model

(𝑀, _•_, {k𝑀 , s𝑀 }), where𝑀 = 𝐴, k𝑀 = {𝑘}, s𝑀 = {𝑠}, and 𝑎 • 𝑏 = {𝑎 •𝐴 𝑏} for all 𝑎, 𝑏 ∈ 𝐴. Then𝑀

is isomorphic to 𝐴 under the element-singleton bijection.

Examples 5 and 6 show that the functional interpretation (of application and constants) is a

special instance of the set-theoretic interpretation of matching logic, and that applicative structures,

combinatory algebras, and _-models are special instances of matching logic models. In Section 4,

we will show how to enforce functional interpretation in matching logic models, axiomatically.

We continue with the semantics of matching logic and define the interpretation of patterns.

Definition 7. Let𝑀 be a matching logic model like in Definition 4. We extend the interpretation

of application _•_ pointwisely, from over elements to over sets, as 𝐴 • 𝐵 =
⋃

𝑎∈𝐴,𝑏∈𝐵 𝑎 • 𝑏 for any

𝐴, 𝐵 ⊆ 𝑀 . An𝑀-valuation (or simply valuation), written 𝜌 : (EV ∪ SV) → 𝑀 ∪P(𝑀), is a function
that maps element variables to elements and set variables to sets, i.e., 𝜌 (𝑥) ∈ 𝑀 for 𝑥 ∈ EV and

𝜌 (𝑋) ⊆ 𝑀 for 𝑋 ∈ SV . It yields a pattern valuation, written |_|𝜌 : Pattern → P(𝑀), defined as:

(1) |𝑥 |𝜌 = {𝜌 (𝑥)} for 𝑥 ∈ EV ;

(2) |𝑋 |𝜌 = 𝜌 (𝑋) for 𝑋 ∈ SV ;

(3) |𝜎 |𝜌 = 𝜎𝑀 for 𝜎 ∈ Σ;
(4) |𝜑1 𝜑2 |𝜌 = |𝜑1 |𝜌 • |𝜑2 |𝜌 , where _•_ is pointwisely extended to sets;

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:9

(5) |⊥|𝜌 = ∅;
(6) |𝜑1 → 𝜑2 |𝜌 = 𝑀 \ (|𝜑1 |𝜌 \ |𝜑2 |𝜌), where “\” denotes set difference;
(7) |∃𝑥 . 𝜑 |𝜌 =

⋃
𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥] , where 𝜌 [𝑎/𝑥] is the valuation 𝜌 ′ such that 𝜌 ′ (𝑥) = 𝑎, 𝜌 ′ (𝑦) = 𝜌 (𝑦)

for all 𝑦 ∈ EV distinct from 𝑥 , and 𝜌 ′ (𝑋) = 𝜌 (𝑋) for all 𝑋 ∈ SV .

Remark 8. The above semantic rules should not be unexpected. Rules (1) and (2) interpret variables

according to 𝜌 . Rules (3) and (4) interpret symbols and application according to𝑀 . For rules (5)-(7),

if we regard ∅ as “false” and𝑀 as “true”, then these rules become precisely the FOL semantic rules

of bottom, implication, and ∃-quantification, respectively.
We can prove that the derived constructs in Fig. 1 have the expected semantics:

Proposition 9. The following propositions hold:

(1) |¬𝜑 |𝜌 = 𝑀 \ |𝜑 |𝜌 ;
(2) |𝜑1 ∨ 𝜑2 |𝜌 = |𝜑1 |𝜌 ∪ |𝜑2 |𝜌 ;
(3) |𝜑1 ∧ 𝜑2 |𝜌 = |𝜑1 |𝜌 ∩ |𝜑2 |𝜌 ;
(4) |⊤|𝜌 = 𝑀 ;

(5) |𝜑1 ↔ 𝜑2 |𝜌 = 𝑀 \ (|𝜑1 |𝜌 △ |𝜑2 |𝜌), where “△” denotes set symmetric difference;

(6) |∀𝑥 . 𝜑 |𝜌 =
⋂

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥] .
Proof. We only prove (1) and (6), as the others are similar. For (1), we have |¬𝜑 |𝜌 = |𝜑 → ⊥|𝜌 =

𝑀 \(|𝜑 |𝜌 \ |⊥|𝜌) = 𝑀 \(|𝜑 |𝜌 \∅) = 𝑀 \ |𝜑 |𝜌 . For (6), we have |∀𝑥 . 𝜑 |𝜌 = |¬∃𝑥 .¬𝜑 |𝜌 = 𝑀 \ |∃𝑥 .¬𝜑 |𝜌 =

𝑀 \⋃𝑎∈𝑀 |¬𝜑 |𝜌 [𝑎/𝑥] = 𝑀 \⋃𝑎∈𝑀 (𝑀 \ |𝜑 |𝜌 [𝑎/𝑥]) = 𝑀 \ (𝑀 \⋂𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥]) =
⋂

𝑎∈𝑀 |𝜑 |𝜌 [𝑎/𝑥] . □

Remark 10. Definition 7 and Proposition 9 show that there is a close connection between the

matching logic pattern constructs and the set operations in set theory: conjunction corresponds

to intersection of two sets; disjunction corresponds to union of two sets; negation corresponds

to set complement; top (⊤) corresponds to the total set; bottom (⊥) corresponds to the empty

set; ∃-quantification corresponds to the (big) union of a collection of sets; and ∀-quantification
corresponds to the (big) intersection of a collection of sets. This connection to the set-theoretic

operations can be useful to understand the intuitive meaning of complex matching logic patterns.

3.2.1 Predicate Patterns. A difference between FOL formulas and matching logic patterns is that

the former can only be interpreted as either true or false, while the latter can be interpreted as any

subsets of the carrier set. Following up on Remark 8, we identify two special sets,𝑀 and ∅, and use

them to represent (logical) true and false, respectively. Obviously, not all patterns are interpreted as

𝑀 or ∅. Given a model𝑀 , we call 𝜑 an𝑀-predicate, if |𝜑 |𝜌 ∈ {∅, 𝑀} for all 𝜌 . We call 𝜑 a predicate

(or predicate pattern), if it is an𝑀-predicate in all𝑀 . Predicate patterns can be built from ⊥, ⊤, and
matching logic logical constructs, e.g., ∀𝑥 . (𝜎 𝑥) ∧ ¬(𝜎 𝑥). More interesting patterns can be built

from symbols and application. For example, 𝜎 𝑥1 · · · 𝑥𝑛 is a predicate pattern if the underlying

matching logic theory (discussed in Section 3.3) enforces the models to interpret 𝜎 as a predicate

(i.e., either ∅ or 𝑀). We will see more predicate patterns in Section 4 and throughout the paper.

Roughly speaking, predicate patterns are the matching logic counterparts of FOL formulas. They

make “statements”, and can take only two possible values:𝑀 if the statements are facts, and ∅ if the

statements are not facts. Note that except the application, all matching logic constructs (primitive

or derived) preserve the predicate-ness of patterns. We can then use application to build FOL-style

predicates, and this way regard predicate logic as a methodological fragment of matching logic.

3.2.2 Functional Patterns. Examples 5 and 6 emphasized that any set 𝑀 is isomorphic to the

set of singletons of 𝑀 , and that functional interpretation is a special instance of set-theoretic

interpretation. Formally, given𝑀 , we call 𝜑 an𝑀-functional pattern if |𝜑 |𝜌 is a singleton for all 𝜌 .

We call 𝜑 a functional pattern, if it is an𝑀-functional pattern for all𝑀 . Roughly speaking, functional

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:10 Xiaohong Chen and Grigore Roşu

patterns are the matching logic counterparts of FOL terms. A functional pattern denotes exactly

one element; e.g., 𝑥 is the simplest functional pattern. More interesting functional patterns can be

built by symbols and application; e.g., 𝜎 𝑥1 · · · 𝑥𝑛 is a function pattern if the underlying matching

logic theory (discussed in Section 3.3) enforces the models to interpret 𝜎 as a function. We will

show many examples of functional patterns in Section 4 and throughout the paper.

3.3 Matching Logic Theories
Examples 5 and 6 show that we sometimes want to consider only a subclass of matching logic

models, those that satisfy certain properties. This can be achieved by defining a matching logic

theory—a set of patterns regarded as axioms—and considering only the satisfying models. Formally:

Definition 11. For𝑀 and 𝜑 , we say𝑀 validates 𝜑 , or 𝜑 holds in𝑀 , written𝑀 ⊨ 𝜑 , iff |𝜑 |𝜌 = 𝑀

for all 𝜌 . For a pattern set Γ, we say𝑀 validates Γ, written𝑀 ⊨ Γ, iff𝑀 ⊨ 𝜓 for all𝜓 ∈ Γ. We write

Γ ⊨ 𝜑 , iff 𝑀 ⊨ Γ implies 𝑀 ⊨ 𝜑 for all 𝑀 . A matching logic theory (Σ, Γ) is a pair, where Σ is a

signature and Γ is a set of Σ-patterns. We often abbreviate (Σ, Γ) as Γ, if Σ is understood.

Note that 𝜑 holds in𝑀 if it represents a “logical truth”, i.e., its interpretation is the total set𝑀 .

Remark 12. The axiom set Γ may contain patterns that have free variables. By Definition 11, free

(element and set) variables are effectively universally quantified, as we need to check the validity of

each axiom on all possible valuations. Free element variables in an axiom can be eliminated using

∀-quantification, defined in Fig. 1, as in FOL. However, free set variables in an axiom cannot be

eliminated, because ∀-quantification is not applicable to set variables. Allowing free set variables in

axioms to be effectively universally quantified, makes matching logic more expressive (in terms of

capturing models) than FOL (see Section 4.4), and comparable to the fragment of monadic second-

order logic [??] where all quantifiers over sets are universal quantifiers and only appear at the

top.

We will define various matching logic theories in the rest of the paper. To define a theory, we

need to define its sets of element variables, set variables, symbols, and axioms. We often omit

explicit definitions of the variable sets and only specify the symbol and axiom sets. For readability,

we mix the definitions of the symbol and axiom sets in our narrative texts. For example, when we

say “we consider/define a symbol 𝜎 ∈ Σ”, we mean to add 𝜎 to the symbol set of the theory we

are defining. Similarly, when we say that “we define/assume an axiom 𝜓”, we mean to add 𝜓 to

the axiom set of the theory we are defining. We will often define a theory Γ′ by building it upon

another more basic theory Γ. In that case, Γ′ is assumed to include all components of Γ.

4 IMPORTANT MATHEMATICAL INSTRUMENTS
In this section, we (axiomatically) define several important mathematical instruments, like functions

and equality, that are required in order to define binders as theories within matching logic (as

opposed to extensions of the logic). We also propose appropriate notations for them. In Section 4.1,

we define the definedness symbol and use it to define equality, membership, set-theoretic inclusion,

and functional constants. In Section 4.2, we define the inhabitant symbol and use it to define sorts,

subsorting, and many-sorted functions and partial functions. This allows us to reason about sorts

and to capture logical systems with sorts, in the unsorted matching logic. In Sections 4.3 and 4.4,

we define matching logic theories that completely capture the models of product sets and powersets.

4.1 Definedness Symbol and Related Instruments
Recall the pattern matching semantics of matching logic: the interpretation of pattern 𝜑 is the set

of elements that match it. When 𝜑 is matched by at least one element, we say that 𝜑 is defined. The

definedness symbol (Definition 13) takes any pattern 𝜑 , and builds a new definedness pattern ⌈𝜑⌉,

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:11

which is a predicate pattern stating that 𝜑 is defined. Many important mathematical instruments

such as equality and membership, can be derived from the definedness symbol as syntactic sugar.

Definition 13. Let us consider a (constant) symbol written ⌈_⌉ ∈ Σ, which we call the definedness

symbol. We write ⌈𝜑⌉ to mean ⌈_⌉ 𝜑 , obtained by applying ⌈_⌉ to 𝜑 . We define the following axiom:

(Definedness) ⌈𝑥⌉ // or, equivalently, ∀𝑥 . (⌈_⌉ 𝑥)
We define totality ⌊ _ ⌋, equality _=_, membership _∈_, and set inclusion _⊆_ as derived constructs:

⌊𝜑⌋ ≡ ¬⌈¬𝜑⌉ 𝜑1 = 𝜑2 ≡ ⌊𝜑1 ↔ 𝜑2⌋ 𝑥 ∈ 𝜑 ≡ ⌈𝑥 ∧ 𝜑⌉ 𝜑1 ⊆ 𝜑2 ≡ ⌊𝜑1 → 𝜑2⌋
Intuitively, (Definedness) states that every individual element 𝑥 is defined. This is clearly true

with our intended meaning of ⌈_⌉, because 𝑥 is matched by exactly one element to which it evaluates;

this intended meaning is precisely what the (Definedness) axiom captures. Specifically, in any

model that validates (Definedness), ⌈𝑥⌉ is interpreted as the total set, according to matching logic

validity (Definition 11). Now, consider any pattern 𝜑 that is defined, and that 𝜑 is matched by one

element, say 𝑥 . By pointwise extension (Definition 7), the interpretation of ⌈𝜑⌉ must include the

interpretation of ⌈𝑥⌉, which we know is the total set. Therefore, ⌈𝜑⌉ is also interpreted as the total

set, as intended. On the other hand, if 𝜑 is undefined, its interpretation is the empty set, and by

pointwise extension, ⌈𝜑⌉ is also interpreted as the empty set. This intuition is formalized below.

Proposition 14. For any model𝑀 , patterns 𝜑, 𝜑1, 𝜑2, element variable 𝑥 , and valuation 𝜌 , we have

(1) ⌈𝑎⌉𝑀 = 𝑀 for any 𝑎 ∈ 𝑀 , where ⌈𝑎⌉𝑀 means ⌈_⌉𝑀 • 𝑎 and ⌈_⌉𝑀 is the interpretation of ⌈_⌉;
(2) | ⌈𝜑⌉ |𝜌 = 𝑀 if |𝜑 |𝜌 ≠ ∅; otherwise, | ⌈𝜑⌉ |𝜌 = ∅;
(3) | ⌊𝜑⌋ |𝜌 = 𝑀 if |𝜑 |𝜌 = 𝑀 ; otherwise, | ⌊𝜑⌋ |𝜌 = ∅;
(4) |𝜑1 = 𝜑2 |𝜌 = 𝑀 if |𝜑1 |𝜌 = |𝜑2 |𝜌 ; otherwise, |𝜑1 = 𝜑2 |𝜌 = ∅;
(5) |𝑥 ∈ 𝜑 |𝜌 = 𝑀 if 𝜌 (𝑥) ∈ |𝜑 |𝜌 ; otherwise, |𝑥 ∈ 𝜑 |𝜌 = ∅;
(6) |𝜑1 ⊆ 𝜑2 |𝜌 = 𝑀 if |𝜑1 |𝜌 ⊆ |𝜑2 |𝜌 ; otherwise, |𝜑1 ⊆ 𝜑2 |𝜌 = ∅; note that |𝑥 ⊆ 𝜑 |𝜌 = |𝑥 ∈ 𝜑 |𝜌 ;

Note that all the above patterns in (2)-(6) are predicate patterns (Section 3.2.1).

Not all models validate (Definedness). Indeed, as said in Section 3.3, the purpose of axioms and

theories is to restrict models under consideration. A model whose interpretation of application is a

function that always returns the empty set does not validate (Definedness), as it fails to satisfy

Proposition 14(1). Models that satisfy (Definedness) are also easy to come by. A canonical example

is a model𝑀 with one distinguished element #def such that #def •𝑎 = 𝑀 for all 𝑎 ∈ 𝑀 , and let ⌈_⌉𝑀 ,

the interpretation of ⌈_⌉, to be {#def}. Then we have | ⌈𝑥⌉ |𝜌 = ⌈_⌉𝑀 • 𝜌 (𝑥) = {#def} • {𝜌 (𝑥)} =

#def • 𝜌 (𝑥) = 𝑀 , and thus𝑀 validates (Definedness). In fact, any model can be extended into one

that validates (Definedness) by adding an element like #def above to it and letting ⌈_⌉𝑀 be {#def}.
Since definedness is so useful, we assume it in all subsequent theories defined in this paper, and

hereby we do not consider the models that do not satisfy the axiom (Definedness).

Remark 15. We explain why defining equality needs the definedness symbol, when there is

already the logical biconditional construct 𝜑1 ↔ 𝜑2, given in Fig. 3. It is not always the case that

|𝜑1 = 𝜑2 |𝜌 = |𝜑1 ↔ 𝜑2 |𝜌 for all 𝜌 . By Proposition 14, 𝜑1 = 𝜑2 is a predicate stating that 𝜑1 and

𝜑2 are matched by the same set of elements, while by Proposition 9, 𝜑1 ↔ 𝜑2 is a pattern (not

necessarily a predicate) that is matched by the elements 𝑎, such that 𝑎 matches 𝜑1 iff 𝑎 matches 𝜑2.

If |𝜑1 |𝜌 = |𝜑2 |𝜌 , then both 𝜑1 ↔ 𝜑2 and 𝜑1 = 𝜑2 are interpreted as the total set, but if otherwise,

𝜑1 = 𝜑2 is interpreted as the empty set, while 𝜑1 ↔ 𝜑2 is the complement of set difference. The

fact that we can define equality axiomatically, i.e. without extending the logic, to mean precise

identity in models is particularly useful in our subsequent developments, albeit surprising. Indeed,

it is well-known that equality cannot be defined in FOL (which justifies the extension of FOL with

equality), while in second-order logic it requires quantification over sets.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:12 Xiaohong Chen and Grigore Roşu

As a simple example, we can use the definedness symbol (and derived constructs) to axiomatize

functional constants, which are matching logic symbols whose interpretations are singletons.

Example 16. Let 𝜎 ∈ Σ be a matching logic symbol. Let us consider the following axiom

(Functional Constant) ∃𝑥 . 𝜎 = 𝑥

Then for any model𝑀 that validates this axiom, we have |∃𝑥 . 𝜎 = 𝑥 |𝜌 =
⋃

𝑎∈𝑀 |𝜎 = 𝑥 |𝜌 [𝑎/𝑥] = 𝑀 .

By Proposition 14, |𝜎 = 𝑥 |𝜌 [𝑎/𝑥] is either ∅ or𝑀 , so there exists 𝑎 ∈ 𝑀 such that |𝜎 = 𝑥 |𝜌 [𝑎/𝑥] = 𝑀 ,

which implies that 𝜎𝑀 = |𝑥 |𝜌 [𝑎/𝑥] = {𝑎}, i.e., 𝜎 is interpreted as a singleton in𝑀 .

4.2 Inhabitant Symbol and Related Instruments
Matching logic is an unsorted logic, but we can capture sorts by defining a set of functional constants

(Example 16) that represent the names of the sorts, and define a special symbol, which we call the

inhabitant symbol, to get the actual inhabitant set of each sort. This intuition is made formal below.

From now on, we will always assume the definedness symbol and the (Definedness) axiom.

Definition 17. A sort constant (or simply sort) is a symbol 𝑠 ∈ Σ, which is a functional constant,

as defined in Example 16. Let us consider another symbol ⟦_⟧ ∈ Σ, which we call the inhabitant

symbol. We write ⟦𝑠⟧ to mean ⟦_⟧ 𝑠 , obtained by applying ⟦_⟧ to 𝑠 , and call it the inhabitant of 𝑠 .

In other words, the pattern 𝑠 is matched by the sort name 𝑠 itself, while ⟦𝑠⟧ is matched by the

actual elements of sort 𝑠 . For example, for two sorts Nat and Int of natural and integer numbers,

Nat is matched by one element—the sort name Nat; Int is matched by one element—the sort name

Int; ⟦Nat⟧ is matched by all natural numbers; and ⟦Int⟧ is matched by all integer numbers. Note

that Definition 17 does not enforce any particular axioms about sorts or the inhabitant symbol.

Their interpretations are determined by the models and can be constrained by axioms. For example,

subsorting 𝑠1 ≤ 𝑠2 is a partial ordering on sorts that enforces the subset relation between the

inhabitants of 𝑠1 and 𝑠2. In matching logic, subsorting can be axiomatically captured:

(Subsorting) ⟦𝑠1⟧ ⊆ ⟦𝑠2⟧

which states that the inhabitant of 𝑠1 is included in the inhabitant of 𝑠2. In this paper we use

subsorting to define the syntax of _-calculus and other logical systems that feature bindings. In

Section 6 we define a sort Var for _-calculus variables and a sort Exp for _-expressions, and we define

the subsorting axiom ⟦Var⟧ ⊆ ⟦Exp⟧ to specify that _-calculus variables are also _-expressions.

4.2.1 SortedQuantification. The meaning of ∃𝑥 . 𝜑 is the set-theoretic (big) union of the interpreta-

tions of 𝜑 , with 𝑥 ranging over all elements in the carrier set (see Remark 10). Now that we have

defined sorts, we will want to restrict 𝑥 to range over not all elements, but only those having sort 𝑠 .

For that, we define the following self-explanatory derived constructs, called sorted quantification:

∃𝑥 :𝑠 . 𝜑 ≡ ∃𝑥 . (𝑥 ∈ ⟦𝑠⟧ ∧ 𝜑) ∀𝑥 :𝑠 . 𝜑 ≡ ∀𝑥 . (𝑥 ∈ ⟦𝑠⟧ → 𝜑)

4.2.2 Many-Sorted Functions. Given sorts 𝑠, 𝑠1, . . . , 𝑠𝑛 , we call a (constant) symbol 𝑓 ∈ Σ a many-

sorted function from 𝑠1, . . . , 𝑠𝑛 to 𝑠 , written 𝑓 : 𝑠1 × · · · × 𝑠𝑛 → 𝑠 , if it satisfies the axiom:

(Function) ∀𝑥1:𝑠1∀𝑥𝑛 :𝑠𝑛 . ∃𝑦:𝑠 . 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑦 (3)

Application is left-associative (Definition 2), so 𝑓 𝑥1 · · · 𝑥𝑛 means (· · · (𝑓 𝑥1) · · · 𝑥𝑛). Intuitively,
(Function) requires that 𝑓 𝑥1 · · · 𝑥𝑛 consist of exactly one element, 𝑦, which is an inhabitant of

𝑠 , given that 𝑥1, . . . , 𝑥𝑛 are inhabitants of 𝑠1, . . . , 𝑠𝑛 , respectively. Note that while 𝑓 , 𝑓 𝑥1, 𝑓 𝑥1𝑥2, ...,

𝑓 𝑥1 · · · 𝑥𝑛−1 are all well-formed patterns, they are not required to consist of exactly one element.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:13

4.2.3 Many-Sorted Partial Functions. The axiom (Function) above is not unusual; it translates

to matching logic a standard encoding of many-sorted functions using an unsorted logic (see [?,
pp. 8] for a related discussion). What is a lot harder problem is how to capture partial functions,

which can be undefined in some arguments. Capturing partial functions in a formal system is not

just of theoretical interest. It is also a practical concern that has arisen in the formal verification of

programs with exceptional expressions, such as division by zero or the head of an empty list, and

has resulted in work on partial algebras [?], exception algebras [?], error algebras [?], order-sorted
algebras [?], and various logics for partial functions [??].

On the other hand, it is surprisingly easy to capture partial functions in matching logic. We take

the axiom (Function) and change the equality _ = _ to set inclusion _ ⊆ _:

(Partial Function) ∀𝑥1:𝑠1. . . .∀𝑥𝑛 :𝑠𝑛 . ∃𝑦:𝑠 . 𝑓 𝑥1 · · · 𝑥𝑛 ⊆ 𝑦 (4)

Intuitively, (Partial Function) requires 𝑓 𝑥1 · · · 𝑥𝑛 to consist of at most one element. The un-

definedness of 𝑓 on 𝑥1, . . . , 𝑥𝑛 is captured, by 𝑓 𝑥1 · · · 𝑥𝑛 returning the empty set ∅. For notional
simplicity, we will write 𝑓 : 𝑠1 × · · · × 𝑠𝑛 ⇀ 𝑠 to mean that 𝑓 is a partial function from 𝑠1, . . . , 𝑠𝑛 to 𝑠 .

The reason why partial functions can be directly defined using (Partial Function), without

needing to extend or modify matching logic, is due to the pattern matching semantics of matching

logic, where patterns are not restricted to a functional interpretation, and are given a more general,

set-theoretic interpretation, which unifies (both syntactically and semantically) total functions and

FOL terms, predicates and FOL formulas, and partial functions and partial terms.

4.3 Product Sorts
In this and the next sections, we assume the definedness symbol, the inhabitant symbol, and all the

related instruments that are given in Sections 4.1 and 4.2. Our goal in this section is to axiomatize

the product sort 𝑠1 ⊗ 𝑠2, whose (intended) inhabitant is the (set-theoretic) product of the inhabitants

of 𝑠1 and 𝑠2, up to isomorphism. Formally:

Definition 18. Given two sorts 𝑠1, 𝑠2, we consider a functional constant 𝑠1 ⊗ 𝑠2 ∈ Σ, which we

call the product (sort) of 𝑠1 and 𝑠2. We define a function ⟨_, _⟩ : 𝑠1 × 𝑠2 → 𝑠1 ⊗ 𝑠2, called pairing,

where the function notation was introduced in Section 4.2.2. We write ⟨𝜑1, 𝜑2⟩ to mean ⟨_, _⟩ 𝜑1 𝜑2,

obtained by applying ⟨_, _⟩ to 𝜑1, and then to 𝜑2. We define the following two axioms:

(Product) ⟦𝑠1 ⊗ 𝑠2⟧ = ∃𝑥1:𝑠1. ∃𝑥2:𝑠2 . ⟨𝑥1, 𝑥2⟩
(Injectivity) ∀𝑥1:𝑠1.∀𝑥2:𝑠2 .∀𝑦1:𝑠1.∀𝑦2:𝑠2. ⟨𝑥1, 𝑥2⟩ = ⟨𝑦1, 𝑦2⟩ → 𝑥1 = 𝑦1 ∧ 𝑥2 = 𝑦2

Intuitively, ⟨𝑥1, 𝑥2⟩ denotes the pair consisting of 𝑥1 and 𝑥2. (Product) states that the inhabitant of

𝑠1 ⊗ 𝑠2 is the product of the inhabitants of 𝑠1 and 𝑠2. (Injectivity) states that ⟨_, _⟩ is injective.
Proposition 19. For any model 𝑀 validating the axioms in Definition 18, we have 𝑀𝑠1⊗𝑠2

�
𝑀𝑠1

×𝑀𝑠2
, where we use𝑀𝑠 = ⟦_⟧𝑀 • 𝑠𝑀 to denote the inhabitant of 𝑠 in𝑀 , for any sort 𝑠 .

4.4 Power Sorts
Our goal in this section is to axiomatize the power sort 2

𝑠
, whose (intended) inhabitant is the

powerset of the inhabitant of 𝑠 , up to isomorphism. Formally:

Definition 20. Given a sort 𝑠 , let us consider a functional constant 2
𝑠 ∈ Σ, which we call the

power (sort) of 𝑠 . For clarity, we use the Greek letters 𝛼, 𝛽, . . . for element variables whose intended

range is in sort 2
𝑠
. Let us define a (constant) symbol extension ∈ Σ, called the extension symbol

(explained later), and define the following axioms:

(Arity) ∀𝛼 :2
𝑠 . (extension𝛼) ⊆ ⟦𝑠⟧

(Powerset) 𝑋 ⊆ ⟦𝑠⟧ → ∃𝛼 :2
𝑠 . (extension𝛼) = 𝑋

(Extensionality) ∀𝛼 :2
𝑠 .∀𝛽 :2

𝑠 . (extension𝛼) = (extension 𝛽) → 𝛼 = 𝛽

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:14 Xiaohong Chen and Grigore Roşu

Note that set variable 𝑋 is free in (Powerset). By Remark 12, it is effectively universally quantified.

Definition 20 needs some explanation. Let us consider an intended model𝑀 , where the inhabitant

of 𝑠 is𝑀𝑠 and the inhabitant of 2
𝑠
is𝑀2

𝑠 = P(𝑀𝑠), i.e., the powerset of𝑀𝑠 . We use 𝑎, 𝑏, · · · ∈ 𝑀𝑠 to

denote elements in𝑀𝑠 and 𝐴, 𝐵, · · · ∈ 𝑀2
𝑠 to denote elements in𝑀2

𝑠 , i.e., subsets of𝑀𝑠 . Note that 𝛼

is an element variable of sort 2
𝑠
, so let us assume it evaluates to some 𝐴 ∈ 𝑀2

𝑠 . Then, the intended,

intuitive meaning of (extension𝛼), is that it is a pattern (of sort 𝑠) that is matched by all elements 𝑎

in𝐴. Please note the difference between 𝛼 and (extension𝛼). On one hand, 𝛼 is an element variable

of sort 2
𝑠
, so it is matched by one “element” 𝐴. On the other hand, (extension𝛼) is a pattern of

sort 𝑠 , so it is matched by all elements in the set 𝐴. In other words, 𝐴 is regarded as an individual

“element” in sort 2
𝑠
but a real “set” in sort 𝑠 , on which the pointwise extension (Definition 7) can

apply. Thus, the matching logic symbol “extension” takes 𝐴 as an element and returns 𝐴 itself as a

set. This has a similar meaning to the term “extension” in logic and philosophy—an extension of a

concept consists of the things to which it applies. Here, we regard the element 𝐴 of the powerset as

an intensional concept and the set 𝐴 of its elements as its extension.

With the above intuition, the axioms in Definition 20 are self-explanatory. (Arity) states that

(extension𝛼) has sort 𝑠 whenever 𝛼 has sort 2
𝑠
. (Powerset) states that any subset of the inhabitant

of 𝑠 , ranged by 𝑋 , has a corresponding “element” denoted 𝛼 whose extension is 𝑋 . Therefore,

the inhabitant of 2
𝑠
is at least as large as the powerset of the inhabitant of 𝑠 . On the other hand,

(Extensionality) states that 𝛼 and 𝛽 are equal whenever their extensions are equal, so the

inhabitant of 2
𝑠
is at most as large as the powerset of the inhabitant set 𝑠 . Putting the arguments

together, we show that the inhabitant of 2
𝑠
is the powerset of the inhabitant of 𝑠 , up to isomorphism:

Proposition 21. For any model𝑀 validating the axioms in Definition 20, we have𝑀2
𝑠 � P(𝑀𝑠).

The reverse of extension, called intension, can be defined as the following syntactic sugar:

intension𝜑 ≡ ∃𝛼 :2
𝑠 . 𝛼 ∧ (extension𝛼 = 𝜑)

Intuitively, 𝜑 has sort 𝑠; (intension𝜑) has sort 2
𝑠
, and is matched by the unique element 𝛼 of sort

2
𝑠
such that extension𝛼 = 𝜑 ; the uniqueness is guaranteed by the axiom (Extensionality).

Remark 22. Proposition 21 shows that powersets can be completely, finitely axiomatized in

matching logic. This result is known to not hold in FOL, because by the Löwenheim-Skolem

theorem [?], if a FOL theory has infinite models, then it has a countable model. However, using

powersets, we can enforce uncountable models by first enforcing an infinite model and considering

its powerset. As an example, we define natural numbers Nat using zero and suc, and define the

standard injectivity axioms zero ≠ suc(𝑥) and suc(𝑥) = suc(𝑦) → 𝑥 = 𝑦 to enforce Nat to be

infinite, as it must contain zero, suc(zero), suc(suc(zero)), etc., which are all distinct. If powersets

could have been completely axiomatizable in FOL, then we could define the powerset of natural

numbers 2
Nat

that is uncountable, contradicting the Löwenheim-Skolem theorem.

4.5 Matching Logic Proof System
There is a Hilbert-style proof system for matching logic that defines the provability relation Γ ⊢ 𝜑
for matching logic theory Γ and pattern 𝜑 . The proof system is not needed in order to understand

the technical results discussed in this paper (see [?]). We only review some meta-theorems about

the proof system, which are needed in order to prove the subsequent results, mentioning that any

(sound) proof system that has these properties would be equally suitable:
3

Proposition 23. If Γ contains the definedness symbol and the axiom (Definedness), then

3
Note that Γ is different from typing contexts in type systems (see, e.g., [?]) that share variables with judgment 𝜑 . Here, Γ
has variables independent from 𝜑 and its axioms are implicitly universally quantified; see also Remark 12.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:15

free variables:

FV(𝑥) = {𝑥} FV(𝑒1 𝑒2) = FV(𝑒1) ∪ FV(𝑒2) FV(_𝑥. 𝜑) ≡ FV(𝜑) \ {𝑥}
𝛼-renaming:

_𝑥 . 𝜑 ≡ _𝑦. 𝜑 [𝑦/𝑥], for 𝑦 ∉ FV(𝜑)
capture-free substitution (where 𝑦 distinct from 𝑥 and 𝑧 is fresh):

(_𝑥 . 𝜑) [𝜓/𝑥] ≡ _𝑥. 𝜑 (_𝑥 . 𝜑) [𝜓/𝑦] ≡ _𝑧. 𝜑 [𝑧/𝑥] [𝜓/𝑦]

Fig. 3. Meta-properties about binder _, similar to those for the binder ∃ in matching logic (Fig. 1).

(1) Γ ⊢ 𝜑 , if 𝜑 is a propositional tautology over patterns;

(2) Γ ⊢ 𝜑1 and Γ ⊢ 𝜑1 → 𝜑2 imply Γ ⊢ 𝜑2;

(3) Γ ⊢ 𝜑 [𝑦/𝑥] → ∃𝑥 . 𝜑 ;
(4) Γ ⊢ 𝜑1 → 𝜑2 and 𝑦 ∉ FV(𝜑2) imply Γ ⊢ (∃𝑦. 𝜑1) → 𝜑2;

(5) Γ ⊢ 𝜑 = 𝜑 ;

(6) Γ ⊢ 𝜑1 = 𝜑2 and Γ ⊢ 𝜑2 = 𝜑3 imply Γ ⊢ 𝜑1 = 𝜑3;

(7) Γ ⊢ 𝜑1 = 𝜑2 implies Γ ⊢ 𝜑2 = 𝜑1;

(8) Γ ⊢ 𝜑1 = 𝜑2 implies Γ ⊢ 𝜓 [𝜑1/𝑥] = 𝜓 [𝜑2/𝑥], known as the Leibniz characterization of equality.

Proposition 23 essentially states that FOL with equality reasoning is supported by the proof

system of matching logic, where patterns are conveniently regarded as either “predicates” or “terms”,

depending on the context. We require Γ to contain the definedness symbol and axiom, because they

are needed to define equality 𝜑1 = 𝜑2, as discussed in Definition 13.

We review the following soundness theorem of the matching logic proof system:

Theorem 24 (Soundness Theorem). Γ ⊢ 𝜑 implies Γ ⊨ 𝜑 .

While several (deductive) completeness results (i.e., Γ ⊨ 𝜑 implies Γ ⊢ 𝜑) have been proved for

some theories Γ in [??], it is incomplete in general for all Γ and 𝜑 . Fortunately, it does not affect

this paper. Instead, we prove a new completeness result as a corollary of the conservative extension

theorem of _-calculus (Theorem 36), where Γ is the matching logic theory that captures _-calculus

and 𝜑 is an equation between _-expressions; see Section 5.

5 _-CALCULUS PRELIMINARIES
The syntax of _-calculus [?] is parametric in a set of variables 𝑉 _

, whose elements are written

𝑥,𝑦, The set Λ of _-expressions is inductively defined by the following grammar:

𝑒 F 𝑥 | 𝑒1 𝑒2 | _𝑥. 𝑒
Free variables FV(𝑒), 𝛼-equivalence 𝑒1 ≡ 𝑒2, and capture-free substitution 𝑒 [𝑒′/𝑥] are defined as

usual, shown in Fig. 3. We regard 𝛼-equivalent _-expressions as identical expressions.

In _-calculus, we are interested in proving equations of the form 𝑒1 = 𝑒2, for 𝑒1, 𝑒2 ∈ Λ. Equational
reasoning in _-calculus includes the standard reflexivity, symmetry, transitivity, and congruence

proof rules, and the distinguished (𝛽) axiom schema that specifies the result of function application:

(𝛽) (_𝑥 . 𝑒) 𝑒′ = 𝑒 [𝑒′/𝑥] for all 𝑥 ∈ 𝑉 _
and 𝑒, 𝑒′ ∈ Λ

We write ⊢_ 𝑒1 = 𝑒2 to mean that 𝑒1 = 𝑒2 is provable in _-calculus.

5.1 Our Goal and the Main Challenges
Our first goal is to define a matching logic theory Γ_ that faithfully captures _-calculus, in the

sense that _-expressions are well-formed matching logic patterns and _-reasoning is captured by

matching logic reasoning. Formally, our goal is to prove the conservative extension theorem:

Γ_ ⊢ 𝑒1 = 𝑒2

conservativeness−�===============�−
extensiveness

⊢_ 𝑒1 = 𝑒2 for all 𝑒1, 𝑒2 ∈ Λ (5)

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:16 Xiaohong Chen and Grigore Roşu

which says that we can safely reduce _-calculus reasoning to matching logic reasoning, without

proving fewer or more equations between _-expressions. Specifically, the extensiveness direction

means that all provable equations between _-expressions can also be proved in Γ_ , which is thus

an extension of _-calculus, while the conservativeness direction says that no additional equations

between _-expressions can be proved. Note that we are only concerned with equations between

_-expressions. Since matching logic has a richer syntax than _-calculus, of course there are equations,

e.g. ⊥ = ⊥, which are provable in matching logic but do not even exist in _-calculus.

Main Challenges. There are two main challenges. The first challenge is to capture the binding

behavior of _, that is, to define _𝑥. 𝑒 as syntactic sugar in matching logic such that it satisfies the

properties about free variables, 𝛼-equivalence, and capture-free substitution in Fig. 3. The key

observation is that _ plays two important roles: (i) it builds a term _𝑥 . 𝑒 , and (ii) it builds a binding of

𝑥 into 𝑒 . Matching logic allows us to separate these two roles, where we define terms using symbols

and application as shown in Section 4 and bindings using matching logic’s built-in binder ∃.
The other challenge is to prove the conservative extension theorem shown as Eq. (5). The

extensiveness direction is easy, because equational reasoning is supported in matching logic

(Proposition 23). We only need to include all instances of (𝛽) in Γ_ . The conservativeness direction
is more involved and is a major technical contribution of this paper. Indeed, matching logic has a

richer syntax and a more complex proof system than _-calculus; we need to show that this more

complex infrastructure cannot be used to prove more equations between _-expressions.

5.2 Our Plan
We will give two different proofs for the conservativeness of Γ_ , each providing a unique insight

about the construction of Γ_ . The first is based on amodel theory of _-calculus, discussed in Section 7.

It considers a special class of _-calculus models, called concrete Cartesian closed category models, or

simply concrete ccc models, which are known to be complete with respect to _-calculus reasoning

(Lemma 26). This model-based proof is easier to understand due to its close connection to the

models, and is what inspired our encoding of the _ binder in matching logic (see Eq. (1)). However, it

does not generalize to other logical systems with binders that do not have well-established models.

Hence, in Section 8 we give an alternative conservativeness proof, based on the syntax and proof

derivations of _-calculus, and not on models. The syntax-based proof does not depend on the

existence of a complete class of models, and is thus easier to generalize to other logical systems.

5.3 Concrete ccc Models of _-Calculus
We review the concrete Cartesian closed category (ccc) models of _-calculus [?, Definition 5.5.9]. They

will be used in the model-based proof of the conservativeness of Γ_ .

Definition 25 ([?, Definition 57]). Given an applicative structure (𝐴, _•𝐴_), its set of representable
functions is 𝑅(𝐴)= {𝑓 : 𝐴→𝐴 | there is a 𝑏 ∈ 𝐴 such that 𝑓 (𝑎) = 𝑏 •𝐴 𝑎 for all 𝑎 ∈ 𝐴}. A pre-model

is a triple (𝐴, _•𝐴_,L), where L : 𝑅(𝐴) → 𝐴 is a retraction function such that A ◦ L is the identity on

𝑅(𝐴), where A : 𝐴 → 𝑅(𝐴) is defined as A(𝑏) (𝑎) = 𝑏 •𝐴 𝑎 for all 𝑏, 𝑎 ∈ 𝐴. A pre-model 𝐴 is called a

concrete ccc model, if the following definition of |𝑒 |_𝜌 is well-defined for every 𝜌 : 𝑉 _ → 𝐴:

(1) |𝑥 |_𝜌 = 𝜌 (𝑥);
(2) |𝑒1𝑒2 |_𝜌 = |𝑒1 |_𝜌 •𝐴 |𝑒2 |_𝜌 ;
(3) |_𝑥. 𝑒 |_𝜌 = L(𝑓 𝜌𝑒,𝑥) where 𝑓

𝜌
𝑒,𝑥 (𝑎) = |𝑒 |_

𝜌 [𝑎/𝑥] for 𝑎 ∈ 𝐴, and that 𝑓
𝜌
𝑒,𝑥 ∈ 𝑅(𝐴).

Given a concrete ccc model 𝐴, we write 𝐴 ⊨_ 𝑒1 = 𝑒2 iff |𝑒1 |_𝜌 = |𝑒2 |_𝜌 for all 𝜌 . We write ⊨_ 𝑒1 = 𝑒2

iff 𝐴 ⊨_ 𝑒1 = 𝑒2 for all concrete ccc models 𝐴. In the latter, we say 𝑒1 = 𝑒2 is valid in _-calculus.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:17

Γ_ ⊢ 𝑒1 = 𝑒2 =⇒1 Γ_ ⊨ 𝑒1 = 𝑒2 =⇒2 𝑀 ⊨ 𝑒1 = 𝑒2 for all matching logic models𝑀 ⊨ Γ_

⇓3

⊢_ 𝑒1 = 𝑒2 ⇐=5 ⊨_ 𝑒1 = 𝑒2 ⇐=4 𝐴 ⊨_ 𝑒1 = 𝑒2 for all concrete ccc models 𝐴

Fig. 4. The main proof steps of the model-based conservativeness proof of Γ_ .

We review two important results about concrete ccc models in the model-based conservativeness

proof, whose main proof steps are shown in Fig. 4. The first result is that concrete ccc models are a

special instance of matching logic models. In other words, Γ_ includes all concrete ccc models as

its validating models. This result will be used in Step 3, from matching logic validity to _-calculus

validity. The second result is that concrete ccc models are complete with respect to _-calculus

reasoning, i.e., all valid _-calculus equations can be proved.
4
This known completeness result is

restated in Lemma 26. It will be used in Step 5 in Fig. 4, from _-calculus validity to provability.

Lemma 26 ([?]). ⊨_ 𝑒1 = 𝑒2 implies ⊢_ 𝑒1 = 𝑒2 for any 𝑒1, 𝑒2 ∈ Λ.

Other _-Calculus Models. We discuss the other relevant notions of _-calculus models and discuss

why we choose the concrete ccc models in our conservativeness proof (given in Section 7).

There are three main notions of models in _-calculus; see [?] for a survey. Firstly, there are

_-models [?, Section 5.2], which are combinatory algebras that provide coherent interpretations

to all _-expressions. Secondly, there are categorical models [?, Section 5.5], which are given as

the reflexive objects of a Cartesian closed category (ccc), where _-expressions are interpreted as

morphisms. Thirdly, there are Hindley-Longo models [?], which form an alternative presentation

of _-models and interpret _-expressions directly, without translating them to combinatory terms.

The concrete ccc models (Definition 25) in this paper belong to the categorical models, where the

underlying categories are strictly concrete categories (see, e.g., [?, Definition 5.5.8]).

We choose concrete ccc models because they have a non-categorical set-theoretical presentation

(Definition 25) that fits well with the pattern matching semantics of matching logic. In concrete

ccc models, the interpretation of a _-expression is inductively defined from the interpretation of

its sub-expressions, so it is more natural to turn concrete ccc models into matching logic models,

needed for the conservativeness proof. In contrast, _-models and Hindley-Longo models interpret

all _-expressions at the same time. For example, in Hindley-Longo models, |_𝑥 . 𝑒 |_𝜌 is defined as

some unspecified element that satisfies that |_𝑥 . 𝑒 |_𝜌 •𝐴 𝑎 = |𝑒 |_
𝜌 [𝑎/𝑥] for all 𝑎. In concrete ccc models,

instead, |_𝑥. 𝑒 |_𝜌 is interpreted explicitly by |_𝑥. 𝑒 |_𝜌 = L(𝑓 𝜌𝑒,𝑥), using a given (by the model) retraction

function to encode functions into elements. Therefore, it is more convenient in our context to

consider concrete ccc models, as they provide an explicit, constructive interpretation of _𝑥 . 𝑒 .

6 DEFINING _-CALCULUS IN MATCHING LOGIC
In this section we define the matching logic theory Γ_ that captures _-calculus. Our definition is

inspired by the concrete ccc models of _-calculus discussed in Section 5.3. The key ingredient is the

retraction function L that encodes representable functions into elements. Therefore, we first define

representable functions and the retraction function.

Recall that 𝑓
𝜌
𝑒,𝑥 is the representable function as defined in Definition 25, which corresponds to the

interpretation of _𝑥. 𝑒 under 𝜌 in the concrete ccc model. We can capture 𝑓
𝜌
𝑒,𝑥 by defining its graph:

graph(𝑓 𝜌𝑒,𝑥) =
{(
𝑎, |𝑒 |_

𝜌 [𝑎/𝑥]

)
| for all elements 𝑎 in the concrete ccc model 𝐴

}
(6)

4
Here we use the term “completeness” to mean deductive completeness, as given in Lemma 26. In the literature on _-calculus,

representability completeness (of _-calculus models) is also considered; see related discussion in Section 8.2.2.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:18 Xiaohong Chen and Grigore Roşu

which contains all the argument-value pairs of 𝑓
𝜌
𝑒,𝑥 . Note that this graph is an element in P(𝐴 ×𝐴),

the powerset of 𝐴 ×𝐴, but not every element in P(𝐴 ×𝐴) is the graph of a representable function.

Therefore, the retraction function L is captured as a partial function from P(𝐴 ×𝐴) to 𝐴 (see

Remark 27) which is defined only on the graphs of representable functions, and undefined elsewhere.

Nowwe start to define Γ_ following the above intuition. Firstly, we include all _-calculus variables
in 𝑉 _

as element (and not set) variables in Γ_ . Then, we define four sorts: Var as the sort of _-
calculus variables; Exp as the sort of _-expressions; Var ⊗ Exp as the product sort of Var and Exp

(Definition 18); and 2
Var⊗Exp

as its power sort (Definition 20). Intuitively, 2
Var⊗Exp

is the sort of all

binary relations, including non-functions, over Var and Exp, because the inhabitant of 2
Var⊗Exp

is

the powerset of the Cartesian product of the inhabitants of Var and Exp, by Propositions 19 and 21.

Next, we define the subsorting axiom (Section 4.2), ⟦Var⟧ ⊆ ⟦Exp⟧, to specify that all variables

are well-formed _-expressions. We define a partial function (Section 4.2.3), lambda : 2
Var⊗Exp ⇀ Exp,

to represent the retraction function L in Definition 25, although the partial function requirement is

included only for clarity and is technically unnecessary, because it will be automatically validated

by the intended canonical models that we construct in Sections 7 and 8.

Remark 27. We include both sorts Var and Exp in theory Γ_ so as to be completely faithful w.r.t.

the _-calculus syntax defined in Section 5, which has two syntactic categories:𝑉 _
for variables and

Λ for expressions. As a result, lambda is a partial function with the power domain 2
Var⊗Exp

. A valid

alternative is to use 2
Exp⊗Exp

as the domain. The conservative extension theorem (Theorem 36) still

holds, and its model-based proofs shown in Section 7 are still valid, because the models we will

construct there interpret both Var and Exp to the same inhabitant set.

Now, we define _-expressions as syntactic sugar in matching logic. The _-calculus variables

and application are already well-formed matching logic patterns, where 𝑥 ∈ Var is represented

by the element variables 𝑥 and 𝑒1 𝑒2 is represented by the built-in matching logic application 𝑒1 𝑒2.

Abstraction _𝑥 . 𝑒 is defined as the following syntactic sugar, where we extract the general binding

notation [𝑥 :Var] 𝑒 for clarity and because it can be used to define any other binders, not only _:

[𝑥 :Var] 𝑒 ≡ intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩ // the binding notation (7)

_𝑥. 𝑒 ≡ lambda [𝑥 :Var] 𝑒 // _-abstraction (8)

We assume that [𝑥 :Var] 𝑒 binds the tightest, so lambda [𝑥 :Var] 𝑒 is parsed as lambda ([𝑥 :Var] 𝑒).
Eq. (8) is a logical incarnation of the semantics of _𝑥 . 𝑒 in the concrete ccc models (Definition 25),

into matching logic. Recall that in a concrete ccc model, |_𝑥. 𝑒 |_𝜌 = L
(
𝑓
𝜌
𝑒,𝑥

)
, where 𝑓

𝜌
𝑒,𝑥 (𝑎) = |𝑒 |_

𝜌 [𝑎/𝑥] .

By Remark 10, ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ denotes the union set

⋃
𝑥 {(𝑥, 𝑒)}, namely the graph of 𝑓

𝜌
𝑒,𝑥 . (Note

that ∀𝑥 :Var . ⟨𝑥, 𝑒⟩ also yields the correct binding behavior, but it does not have the right semantic

meaning of a graph.) The binding notation [𝑥 :Var] 𝑒 takes this graph as a set of pairs and packs

them into one object in the power sort 2
Var⊗Exp

. Then, this packed object is passed to lambda, which
decodes/retracts it into the intended interpretation of _𝑥. 𝑒 . For now, we do not know any property

about lambda, except that it is a partial function from 2
Var⊗Exp

to Exp. Its intended behavior will be

axiomatized by the axiom schema (𝛽)—the axiom schema that characterizes _-abstraction and the

semantics of _.

We emphasize that the encoding of _𝑥. 𝑒 in Eqs. (7)-(8) is only possible because matching logic

treats terms and formulas uniformly as patterns, and it allows (FOL-style) quantification to be built

on terms. A similar definition will immediately fail in FOL, because FOL enforces a clear distinction

between terms and formulas at the syntax level and quantification only applies to formulas.

Remark 28. Under the above notations, all _-expressions are well-formed matching logic patterns.

Particularly, the syntactic sugar _𝑥. 𝑒 in Eqs. (7)-(8) satisfies all binding properties about _ in Fig. 3.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:19

Variables:
𝑥,𝑦, . . . element variables, including all _-calculus variables in 𝑉 _

Symbols:
Var a sort constant

Exp a sort constant

lambda the retraction symbol, used to capture _

Axioms:
(Subsorting) ⟦Var⟧ ⊆ ⟦Exp⟧
(𝛽) ∀𝑥1:Var . · · · ∀𝑥𝑛 :Var . (_𝑥 . 𝑒) 𝑒′ = 𝑒 [𝑒′/𝑥]

where 𝑥1, . . . , 𝑥𝑛 are all the free variables in FV((_𝑥. 𝑒) 𝑒′).

Fig. 5. Summary of the matching logic theory Γ_ that captures _-calculus (infrastructure definitions omitted)

Definition 29. Let Γ_ be the matching logic theory that contains all the axioms and notations

that we have defined in this section, and all instances of the (𝛽) axiom schema, as shown in Fig. 5.

Remark 30. Remark 28 holds, not because of the axioms in Γ_ , but because of the syntactic sugar
definition in Eqs. (7)-(8) and the binding behavior of ∃. In other words, the binding behavior of _ is

directly inherited from from the binding behavior of the built-in binder ∃ in matching logic, and is

not specified by axioms. The axioms specify the semantic behavior of _, not its binding behavior.

We finish this section by proving the extensiveness theorem for _-calculus.

Theorem 31. ⊢_ 𝑒1 = 𝑒2 implies Γ_ ⊢ 𝑒1 = 𝑒2, for all 𝑒1, 𝑒2 ∈Λ.
Proof. By Proposition 23, because Γ_ contains all instances of (𝛽). □

7 MODEL-BASED CONSERVATIVENESS PROOF
Here we prove the conservativeness of Γ_ , making use of the concrete ccc models of _-calculus

discussed in Section 5.3. The main proof steps have been discussed in Section 5 and summarized in

Fig. 4. The only nontrivial one is Step 3, which requires to show that𝑀 ⊨ 𝑒1 = 𝑒2 for all matching

logic models𝑀 ⊨ Γ_ implies 𝐴 ⊨_ 𝑒1 = 𝑒2 for all concrete ccc models 𝐴. The following is the key

lemma establishing the connection between concrete ccc models and matching logic models of Γ_ :

Lemma 32. For any concrete ccc model 𝐴 and any valuation 𝜌 into 𝐴, there exists a matching logic

model𝑀𝐴 ⊨ Γ_ and a valuation 𝜌𝐴 into𝑀𝐴
such that |𝑒 |𝜌𝐴 =

{
|𝑒 |_𝜌

}
for every 𝑒 ∈ Λ.

Proof. We give the high-level proof idea. Let us fix a concrete ccc model (𝐴, _•𝐴_,L), where 𝑅(𝐴)
is its set of representable functions and L : 𝑅(𝐴) → 𝐴 is its retraction function. Let the carrier set

𝑀𝐴 include 𝐴. Recall that Γ_ defines sorts Var and Exp, and partial function lambda from 2
Var⊗Exp

to Exp (Fig. 5). Since 𝐴 is the domain of both variable valuations and expression interpretations in

the concrete ccc model, in 𝑀𝐴 we let 𝐴 be the inhabitants of both Var and Exp (see Remark 27),

validating axiom (Subsorting). We define lambda𝑀𝐴 accordingly to the retraction function L; i.e.,
lambda𝑀𝐴 • 𝑃 = {L(𝑓)} whenever 𝑃 = graph(𝑓) and 𝑓 ∈ 𝑅(𝐴), and lambda𝑀𝐴 • 𝑃 = ∅, otherwise.
We define 𝜌𝐴 as 𝜌𝐴 (𝑥) = 𝜌 (𝑥), for every 𝑥 ∈ 𝑉 _

, and prove that |𝑒 |𝜌𝐴 = {|𝑒 |_𝜌 } for every

𝑒 ∈ Λ. The proof is based on structural induction on 𝑒 and the only nontrivial case is when 𝑒

is _𝑥 . 𝑒1. In this case, we have |_𝑥. 𝑒1 |𝜌𝐴 = |lambda (intension (∃𝑥 :Var . ⟨𝑥, 𝑒1⟩)) |𝜌𝐴 = lambda𝑀𝐴 •

|intension (∃𝑥 :Var . ⟨𝑥, 𝑒1⟩) |𝜌𝐴 = lambda𝑀𝐴 •|∃𝑥 :Var . ⟨𝑥, 𝑒1⟩) |𝜌𝐴 = lambda𝑀𝐴 •
⋃

𝑎∈𝐴{(𝑎, |𝑒1 |𝜌𝐴 [𝑎/𝑥])}
= lambda𝑀𝐴 •

⋃
𝑎∈𝐴{(𝑎, |𝑒1 |_𝜌 [𝑎/𝑥])} = lambda𝑀𝐴 • graph(𝑓 𝜌𝑒1,𝑥) = {L(𝑓 𝜌𝑒1,𝑥)} = {|_𝑥 . 𝑒1 |_𝜌 }.

Finally, we show that𝑀𝐴
validates (𝛽). Using the above result, for any 𝑥 ∈ 𝑉 _

, 𝑒, 𝑒′ ∈ Λ, and 𝜌 ,

we have that | (_𝑥 . 𝑒)𝑒′ |_𝜌 = |𝑒 [𝑒′/𝑥] |_𝜌 in 𝐴 implies | (_𝑥. 𝑒)𝑒′ |𝜌𝐴 = |𝑒 [𝑒′/𝑥] |𝜌𝐴 in 𝑀𝐴
. Noting that

𝜌𝐴 is arbitrary (as 𝜌 is arbitrary),𝑀𝐴
validates (𝛽). □

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:20 Xiaohong Chen and Grigore Roşu

Remark 33. The operations, intension and lambda, have been crucial in the proof. Without them,

the pattern ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ itself is merely the graph set and is not even a functional pattern (in the

sense discussed in Section 4.2.2), and thus cannot be directly used to interpret _𝑥 . 𝑒 .

Using Lemma 32, we can immediately prove Step 3 in Fig. 4:

Lemma 34. If𝑀 ⊨ 𝑒1 = 𝑒2 for all models𝑀 ⊨ Γ_ , then 𝐴⊨_ 𝑒1 = 𝑒2 for all concrete ccc models 𝐴.

Proof. Let 𝐴 be any concrete ccc and 𝜌 be any valuation. By Lemma 32, there exists a matching

logic model𝑀𝐴 ⊨ Γ_ and a valuation 𝜌𝐴 such that |𝑒 |𝜌𝐴 = {|𝑒 |_𝜌 } for any 𝑒 ∈ Λ. Since𝑀𝐴 ⊨ 𝑒1 = 𝑒2,

we have |𝑒1 |𝜌𝐴 = |𝑒2 |𝜌𝐴 , and thus |𝑒1 |_𝜌 = |𝑒2 |_𝜌 . Since 𝜌 is any valuation, we have 𝐴 ⊨_ 𝑒1 = 𝑒2. □

Theorem 35. Γ_ ⊢ 𝑒1 = 𝑒2 implies ⊢_ 𝑒1 = 𝑒2, for all 𝑒1, 𝑒2 ∈ Λ.

Proof. See Fig. 4, where Step 1 is by Theorem 24; Step 2 is by Definition 11; Step 3 is by Lemma 34;

Step 4 is by Definition 25; and Step 5 is by Lemma 26. □

Theorem 35 together with Theorem 31 show that Γ_ is a conservative extension of _-calculus. In

fact, we prove the following equivalence theorem (for 𝑒1, 𝑒2 ∈ Λ):

Theorem 36. These are equivalent: (1) Γ_ ⊢ 𝑒1 = 𝑒2; (2) Γ
_ ⊨ 𝑒1 = 𝑒2; (3) ⊨_ 𝑒1 = 𝑒2; (4) ⊢_ 𝑒1 = 𝑒2.

Proof. (1) =⇒ (2) is by Theorem 24. (2) =⇒ (3) is by Lemma 34. (3) =⇒ (4) is by Lemma 26. (4)

=⇒ (1) is by Theorem 35. Note: Conservative extension theorem is the equivalence (1)⇐⇒ (4). □

Remark 37. The equivalence (2)⇐⇒ (4) shows the (deductive) completeness of the matching logic

models of Γ_ with respect to _-calculus. By defining _-calculus in matching logic, we automatically

obtain, from the model theory of matching logic, models that are complete to _-calculus.

8 SYNTAX-BASED CONSERVATIVENESS PROOF
In this section we show an alternative conservativeness proof of Theorem 35 that is entirely based

on the syntactic structure of _-expressions, and thus is easier to generalize to other logical systems

and binders, especially those which do not have well-established models. This syntax-based proof

also shows that Γ_ is representationally complete for _-calculus; see Section 8.2.2.

8.1 Proof Overview: Using the Term Model to Prove the Conservativeness Theorem
We build a special matching logic model 𝑇 ⊨ Γ_ , which we call the term model of _-calculus,5 and

follow the term algebra technique [???]: 𝑇 has as elements the equivalence classes of _-expressions

modulo 𝛼𝛽-equivalence, and each 𝑒 ∈ Λ is interpreted in 𝑇 as the equivalence class containing

itself, [𝑒]. Formally, we will prove this:

Theorem 38. Let [𝑒] = {𝑒′ ∈ Λ | ⊢_ 𝑒 = 𝑒′} be the equivalence class of 𝑒 modulo 𝛼𝛽-equivalence.

Let [Λ] = {[𝑒] | 𝑒 ∈ Λ} be the set of all these classes. Then, there is a matching logic model 𝑇 ⊨ Γ_ ,
called term model, and a valuation 𝜌𝑇 , called term valuation, such that |𝑒 |𝜌𝑇 = {[𝑒]} for all 𝑒 ∈ Λ.

Remark 39. For distinct variables 𝑥,𝑦 ∈ 𝑉 _
, we have [𝑥] ≠ [𝑦] [?, Fact 2.1.37]. Clearly, 𝑥 ∈ [𝑥],

but [𝑥] also includes infinitely many expressions: (_𝑦.𝑦)𝑥 , (_𝑦.𝑦) ((_𝑦.𝑦)𝑥), etc.

We will construct𝑇 in Section 8.2. For now, we show how to prove Theorem 35 using Theorem 38:

5
In the literature on _-calculus, term models have a different meaning. For example, in [?], term models are special _-calculus

models constructed based on the combinatory algebra semantics; see Section 8.2.1 for a comparison.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:21

Syntax-Based Proof of Theorem 35. We need to prove Γ_ ⊢ 𝑒1 = 𝑒2 implies ⊢_ 𝑒1 = 𝑒2:

Γ_ ⊢ 𝑒1 = 𝑒2 implies Γ_ ⊨ 𝑒1 = 𝑒2 by Theorem 24

implies 𝑇 ⊨ 𝑒1 = 𝑒2 by Definition 11

implies |𝑒1 |𝜌𝑇 = |𝑒2 |𝜌𝑇 by Proposition 14

implies [𝑒1] = [𝑒2] by Theorem 38

implies ⊢_ 𝑒1 = 𝑒2 by Definition of [𝑒] in Theorem 38. □

8.2 Construction of the Term Model 𝑇 and the Term Valuation 𝜌𝑇

In this section we construct 𝑇 and show that 𝑇 ⊨ Γ_ . Like for the matching logic model of Γ_ in
the proof of Lemma 32, we need to give interpretations to the sorts Var and Exp, as well as to

the retraction function lambda. For Var and Exp, we define their inhabitants as 𝑇Var = [𝑉 _] and
𝑇Exp = [Λ], where [𝑉 _] and [Λ] are the set of equivalence classes of variables and _-expressions.
Clearly, we have [𝑉 _] ⊆ [Λ], which validates the axiom (Subsorting) ⟦Var⟧ ⊆ ⟦Exp⟧. We

define the interpretation of application on _-expressions as the application in _-calculus, i.e.,

[𝑒1] • [𝑒2] = [𝑒1 𝑒2] for any 𝑒1, 𝑒2 ∈ Λ. Note that this definition is well-defined, because ⊢_ 𝑒1 𝑒2 = 𝑒′
1
𝑒′

2

whenever ⊢_ 𝑒1 = 𝑒′
1
and ⊢_ 𝑒2 = 𝑒′

2
. Finally, we define the interpretation lambda𝑇 such that

lambda𝑇 •

(⋃
𝑧∈𝑉 _

(
[𝑧], [𝑒 [𝑧/𝑥]]

))
=

{
[_𝑥 . 𝑒]

}
, for any 𝑥 ∈ 𝑉 _

and 𝑒 ∈ Λ. (9)

and lambda𝑇 • 𝑃 = ∅, if 𝑃 is not a graph of the above form.

The construction of 𝑇 , especially Eq. (9), is critically depending on the matching logic encoding

_𝑥. 𝑒 ≡ lambda (intension∃𝑥 :Var . ⟨𝑥, 𝑒⟩). The 𝛼-equivalence _𝑥 . 𝑒 ≡ _𝑧. (𝑒 [𝑧/𝑥]) is captured, both
syntactically and semantically, by collecting the pairs ⟨𝑧, 𝑒 [𝑧/𝑥]⟩ for all 𝑧, using the matching

logic pattern ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ (see Remark 10 for the connection between the ∃-patterns and the

set-theoretic unions). Therefore, ∃𝑥 :Var . ⟨𝑥, 𝑒⟩ encapsulates all the information about [_𝑥 . 𝑒], which
is packed by intension and passed to lambda, and then retracted to restore the original expression

_𝑥. 𝑒 . The following proposition shows that the condition in Eq. (9) on lambda𝑇 is not inconsistent:

Proposition 40. [_𝑥. 𝑒] = [_𝑥 ′ . 𝑒′], whenever⋃
𝑧∈𝑉 _

([𝑧], [𝑒 [𝑧/𝑥]]) =
⋃
𝑧∈𝑉 _

([𝑧], [𝑒′ [𝑧/𝑥 ′]]) (10)

Proof. Assume the opposite, i.e., [_𝑥. 𝑒] ≠ [_𝑥 ′ . 𝑒′]. Let 𝑧∗ ∈ 𝑉 _
be a fresh variable that does

not occur in _𝑥. 𝑒 or _𝑥 ′ . 𝑒′. Then we have _𝑥. 𝑒 ≡ _𝑧∗ . 𝑒 [𝑧∗/𝑥] and _𝑥 ′ . 𝑒′ ≡ _𝑧∗ . 𝑒′ [𝑧∗/𝑥 ′]. By the

assumption, we have [_𝑧∗ . 𝑒 [𝑧∗/𝑥]] ≠ [_𝑧∗ . 𝑒′ [𝑧∗/𝑥 ′]], and thus [𝑒 [𝑧∗/𝑥]] ≠ [𝑒′ [𝑧∗/𝑥 ′]]. Noting
that [𝑧1] = [𝑧2] iff 𝑧1 = 𝑧2, for every 𝑧1, 𝑧2 ∈ 𝑉 _

(Remark 39), we have that the pair ([𝑧∗], [𝑒 [𝑧∗/𝑥]])
is in the LHS of Eq. (10) but not its RHS, which is a contradiction. □

So far, we have constructed the term model 𝑇 . We now define the term valuation 𝜌𝑇 . Let

VarVal = {𝜌 | 𝜌 (𝑥) ∈ [𝑉 _] for all 𝑥 ∈𝑉 _} be the set of valuations that map _-calculus variables

(which have been taken as matching logic element variables; see Section 6) to the equivalence

classes of _-calculus variables, and not any _-expressions. We define the term valuation 𝜌𝑇 , as

𝜌𝑇 (𝑥) = [𝑥] for every 𝑥 ∈ 𝑉 _
. Clearly, 𝜌𝑇 ∈ VarVal.

Proposition 41. |𝑒 |𝜌𝑇 = {[𝑒]}, and |𝑒 |𝜌 [𝜌 (𝑧)/𝑥] = |𝑒 [𝑧/𝑥] |𝜌 for all 𝜌 ∈ VarVal.

Proof. We prove both properties simultaneously by induction on the _-depth 𝑑 (𝑒) of 𝑒 , the
maximum number of nested _ binders in 𝑒 . If 𝑑 (𝑒) = 0 then 𝑒 is a variable or is built from only

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:22 Xiaohong Chen and Grigore Roşu

application and has no _ abstraction. In this case, both properties can be proved by another structural

induction on 𝑒 . If 𝑑 (𝑒) ≥ 1 then 𝑒 has either the form 𝑒1 𝑒2 where 𝑑 (𝑒1), 𝑑 (𝑒2) ≤ 𝑑 (𝑒), or the form
_𝑥. 𝑒1 where 𝑑 (𝑒1) ≤ 𝑑 (𝑒) − 1. Then another structural induction on 𝑒 proves both properties. □

Proposition 42. If ⊢_ 𝑒 = 𝑒′, then |𝑒 |𝜌 = |𝑒′ |𝜌 for any 𝜌 ∈ VarVal.

Proof. Note that the interpretation of a _-expression relies on its free variables. Suppose FV(𝑒) ∪
FV(𝑒′) = {𝑥1, . . . , 𝑥𝑛} and 𝜌 (𝑥𝑖) = [𝑦𝑖] for 𝑖 ∈ {1, . . . , 𝑛}. By Remark 39, 𝑦𝑖 is the unique variable

that is in [𝑦𝑖]. Since 𝜌 equals to 𝜌𝑇 [[𝑦1]/𝑥1] · · · [[𝑦𝑛]/𝑥𝑛] restricted on 𝑥1, . . . , 𝑥𝑛 , we have |𝑒 |𝜌 =

|𝑒 |𝜌𝑇 [[𝑦1]/𝑥1] ·· · [[𝑦𝑛]/𝑥𝑛] . By Proposition 41, |𝑒 |𝜌𝑇 [[𝑦1]/𝑥1] ·· · [[𝑦𝑛]/𝑥𝑛] = |𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛] |𝜌𝑇 =

{[𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]}; similarly |𝑒′ |𝜌 = {[𝑒′ [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]}. Then, ⊢_ 𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛] =
𝑒′ [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛], i.e., [𝑒 [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]] = [𝑒′ [𝑦1/𝑥1] · · · [𝑦𝑛/𝑥𝑛]]. Hence, |𝑒 |𝜌 = |𝑒′ |𝜌 . □

The only thing left is to prove Theorem 38. We have shown that |𝑒 |𝜌𝑇 = {[𝑒]} for every 𝑒 ∈ Λ,
in Proposition 41. It remains to show that 𝑇 validates (𝛽), i.e., | (_𝑥. 𝑒) 𝑒′ |𝜌 = |𝑒 [𝑒′/𝑥] |𝜌 for all

𝜌 ∈ VarVal, which follows immediately from Proposition 42. Note that we only need to consider

valuations in VarVal because all variables in (𝛽) are quantified over the sort Var .

8.2.1 Comparing Our Term Model 𝑇 to the Classical Notion of Term Models in _-Calculus. In the

literature on _-calculus, a term model [?, Definition 5.2.11] is a _-model (Example 6), where the

underlying carrier set𝐴 is [Λ], the application function is the application function over equivalence

classes, and the two special constants are 𝑘 = [_𝑥. _𝑦. 𝑥] and 𝑠 = [_𝑥 . _𝑦. _𝑧. (𝑥𝑧) (𝑦𝑧)]; we will
denote this _-model as 𝐴 and call it a classical term model, to not confuse it with our term model

𝑇 . Clearly, 𝑇 and 𝐴 represent different approaches to capture _-expressions. While 𝐴 uses the

name-free, combinators approach, where _ is handled by abstraction elimination, our term model 𝑇

gives an explicit and constructive interpretation to _, as shown in Eq. (9).

8.2.2 The Representabiltiy Problem. There has been a long-standing, concerning and open problem

in the study of _-calculus, called the representability problem [?, pp. 8], which asks if a given class of

_-calculus models is representationally complete, in the sense that there exists a model in the given

class such that any two expressions 𝑒1 and 𝑒2 are provably equal if and only if they are interpreted

as the same element/value in that model. Representability completeness indicates that a class of

_-calculus models is sufficient in capturing the formal reasoning in _-calculus, so one may reduce

the study of formal reasoning in _-calculus to the study of models, where more mathematical tools

and techniques can be applied. Hence, reduction is the main motivation.

_-calculus models are broadly divided into syntactic models and non-syntactic models [?, pp. 13],
depending on whether their construction is based on the syntax and provability of _-calculus or

not. All the classical term models in _-calculus, as well as our particular matching logic term model

in Section 8.2, are syntactic models. Syntactic models are often representationally complete, but

studying them tends to be as hard as studying the syntax and formal reasoning directly, and thus

the reduction to syntactic models usually does not help simplify the study of _-calculus. Thus, for

decades researchers have been searching for and studying sub-classes of non-syntactic concrete ccc

models, hoping they are also representationally complete. So far, three main such sub-classes have

been identified, known as themain semantics of _-calculus: Scott’s continuous semantics [?], Berry’s
stable semantics [??], and Bucciarelli-Ehrhard strongly stable semantics [?]. The representability
problem for the main semantics (and their sub-classes) has remained largely open as of today,

except for some negative results proved for some sub-classes (e.g., graph models [?]).
Theorem 38 shows that the class of matching logic models of Γ_ is representationally complete,

positively answering the representability problem for our matching logic semantics of _-calculus.

Our proof does not rely on any known results about the representational completeness of any

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:23

existing semantics; instead, it is entirely based on the model theory of matching logic, which is not

specific to _-calculus but which allows for an appropriate axiomatization of _-calculus as a theory

that is hereby endowed with the desired representationally complete models automatically. We

can push Theorem 38 even further to any equational extensions of _-calculus, known as _-theories.

Indeed, the definition of the equivalence class [𝑒] as the set of 𝛼𝛽-equivalent expressions of 𝑒 ,
has not been critical in the proof of Theorem 38, and the conclusion still holds if we consider

any equivalence class [𝑒] that includes the basic 𝛼𝛽-equivalence. Therefore, we conclude that the
matching logic definition of _-calculus is representationally complete for all _-theories.

Although we do not solve any of the existing open problems, our work suggests the matching

logic can be a viable alternative to the existing _-calculus models within the main semantics. The

matching logic models are as good as the existing models for _-calculus in terms of theoretical

properties w.r.t. formal reasoning and semantics, yet unlike the existing models, they are general in

the sense that they are not crafted specifically for _-calculus, but are obtained from the matching

logic theory Γ_ . We give a general solution for all the binders, which for _-calculus is as good as

the state of the art, considering both the proof-theoretic and the model-theoretic aspects.

9 DEFINING BINDERS IN OTHER LOGICAL SYSTEMS USING MATCHING LOGIC
We showed how to capture the binder _ in matching logic as the following notation (Eqs. (7)-(8)):

_𝑥 . 𝑒 ≡ lambda [𝑥 :Var] 𝑒 (11)

We defined a matching logic theory, Γ_ (shown in Fig 5), and proved the conservative extension

theorem for _-calculus, Eq. (5). In this section we show that our approach is not specific to _-calculus.

We provide evidence that matching logic can serve as a general approach to dealing with binders.

We will show how to use patterns similar to Eq. (11) to define the binders in a variety of logical

systems, including System F [??], pure type systems [?], 𝜋-calculus [?], and more, and prove a

corresponding conservative extension theorem for each of them. To do that, several challenges

need to be solved.

A first challenge is that binders can have more complex binding behavior than in _-calculus; see

Fig. 6. For example, _𝑥 :𝑒1. 𝑒2 in System F binds 𝑥 within 𝑒2, but not in 𝑒1; Inp(𝑥,𝑦, 𝑒) in 𝜋-calculus

has the binding variable in the second position (i.e., 𝑦), and not the first position. We deal with

this binding behavior by desugaring to binders whose binding variable is their first argument and

is bound within the second argument only; that is, we desugar an arbitrary binder to a binder

of the form 𝑏 (𝑥, 𝑒1, . . . , 𝑒𝑛), where 𝑥 is bound in 𝑒1 but not in 𝑒2, . . . , 𝑒𝑛 . Clearly, this desugaring

process is just a sequence of argument swappings. Then, we further desugar 𝑏 (𝑥, 𝑒1, . . . , 𝑒𝑛) to
𝑏′ (𝑏′′ (𝑥, 𝑒1), 𝑒2, . . . , 𝑒𝑛), where 𝑏′ is a (binding-free) symbol and 𝑏′′ is a binder that binds 𝑥 to 𝑒1,

just like _ in _-calculus. Finally, we define 𝑏′′ (𝑥, 𝑒1) as the following syntactic sugar:

𝑏′′ (𝑥, 𝑒) ≡ retraction𝑏 [𝑥 :Var] 𝑒 (12)

in the same way as in Eq. (11), except that here we use a new retraction symbol retraction𝑏 that is

specific to the binder 𝑏. Each binder has its own retraction symbol, but the other infrastructure

symbols, such as products, powersets, and the binding notation [𝑥 :Var] 𝑒 , are the same. From now

on, we will only consider binders 𝑏 (𝑥, 𝑒) that bind 𝑥 within 𝑒 , for technical convenience.

A second challenge is that logical systems featuring bindings are very different from each other,

in terms of the kinds of logical reasoning that is carried out in them. For example, System F derives

typing judgments Γ ⊲ 𝑒1:𝑒2 to mean that 𝑒1 has type 𝑒2 under typing environment Γ; 𝜋-calculus

derives transitions 𝑒1

act−−→ 𝑒2 to mean that process 𝑒1 transits by action act to process 𝑒2. It is tedious

and non-systematic to consider these logical systems separately, because we would need to capture

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:24 Xiaohong Chen and Grigore Roşu

Constructs Binding Behavior Meaning Origins
_𝑥 . 𝑒 binding 𝑥 into 𝑒 function abstraction _-calculus

_𝑥 :𝑒1. 𝑒2 binding 𝑥 into 𝑒2 function abstraction System F

_𝑡 . 𝑒 binding 𝑡 into 𝑒 type abstraction System F

Π𝑡 . 𝑒 binding 𝑡 into 𝑒 Π-type constructor System F

_𝑥 :𝑒1. 𝑒2 binding 𝑥 into 𝑒2 function abstraction Pure type system

𝜋𝑥 :𝑒1 . 𝑒2 binding 𝑥 into 𝑒2 type abstraction Pure type system

Inp(𝑥,𝑦, 𝑒) binding 𝑦 into 𝑒 input process 𝜋-calculus

a𝑦. 𝑒 binding 𝑦 into 𝑒 new process name creation 𝜋-calculus

Bout(𝑒1, 𝑥,𝑦, 𝑒2) binding 𝑦 into 𝑒2 bound output transition 𝜋-calculus

Inp(𝑒1, 𝑥,𝑦, 𝑒2) binding 𝑦 into 𝑒2 input transition 𝜋-calculus

Fig. 6. Some example binding constructs and their binding behavior in logical systems.

their specific logical reasoning and prove the conservative extension theorem for each of them,

more or less similarly to the syntax-based proof in Section 8.

Remark 43. The current K framework implementation provides a “binder” attribute, which allows

one to define a language construct that binds all variables occurring in its first argument within

its other arguments. The results demonstrated in this paper, particularly this section, will be used

to improve K and let it support binders with more complex binding behaviors. The reader who is

interested in seeing examples about the current K support for binders may look at [?], where the
“binder” attribute is used to define the syntax of _-calculus.

To capture the various logical systems featuring bindings more systematically, we employ a

parametric framework for binders, called term-generic logic [?] (TGL). TGL is a parametric variant of

FOL, whose syntax is parametric on a set of (generic) terms that are not constructed from constants

and functions, but defined axiomatically. When we instantiate TGL with the term syntax of a given

system (e.g., _-calculus, System F, 𝜋-calculus, etc), it becomes a (first-order) meta-logic of that

system and can be used to specify and reason about its meta-properties. Using TGL, we give a

systematic treatment of binders in the various logical systems. We will capture TGL in matching

logic and prove a conservative extension theorem for TGL, from which the conservative extension

theorems for the other logical systems follow as corollaries.

Why not use TGL directly then, but instead use matching logic? There are two reasons. Firstly,

TGL in its full generality is not implementable, because it does not deal with any concrete syntax

of binders. Its notion of (generic) terms is given axiomatically and needs to be instantiated, which

is what we will do in Section 9.1, where we instantiate TGL to bridge matching logic and other

logical systems with binders. The second reason is that TGL is a logic specifically designed for

binders, while matching logic serves as the unifying logical foundation for the K framework, as

discussed in Section 1 and other places in the paper. Therefore, matching logic supports reasoning

in many mathematical domains other than binders, and thus it is more practical than TGL.

We next first introduce TGL in Section 9.1 and then its matching logic definition in Section 9.2.

9.1 Term-Generic Logic (TGL) Preliminaries
TGL [?] is a variant of many-sorted FOL whose syntax is parametric in a (generic) term set that

is defined axiomatically. In TGL, any set 𝑇 exporting two operations—free variables FV(𝑒) and
capture-free substitution 𝑒 [𝑒′/𝑥]—and satisfying the conditions in [?, Definition 2.1], forms a generic

term set. TGL formulas are built like in FOL, from predicates 𝜋 (𝑒1, . . . , 𝑒𝑛), equations 𝑒1 = 𝑒2, and

standard connectives ∧,¬, ∃, except that 𝑒1, . . . , 𝑒𝑛 are generic terms, that is, arbitrary elements

in 𝑇 . The metatheory of TGL, including its semantics and models, terms/formulas interpretation,

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:25

proof system, and, importantly, a soundness and completeness theorem, have been studied and

presented in detail in [?].
For concreteness, we will not introduce TGL in its full generality. Instead, we instantiate TGLwith

a concrete, constructive term syntax with binders (defined below) and introduce the metatheory of

that TGL instance. From the discussion at the beginning of Section 9, this term syntax is sufficient

to capture the binders in various logical systems with more complex bindings (Fig. 6).

Definition 44. A binder syntax is a tuple (𝑆,𝑉 , 𝐹, 𝐵), where
(1) 𝑆 is a set of sorts denoted 𝑠, 𝑟 , possibly with subscripts; we use 𝑠 ∈ 𝑆∗ to mean a list of sorts;

(2) 𝑉 = {𝑉𝑠 }𝑠∈𝑆 is a sort-wise disjoint family of variables denoted 𝑥 :𝑠 , 𝑦:𝑠 , etc;

(3) 𝐹 = {𝐹𝑠,𝑟 }𝑠∈𝑆∗,𝑠∈𝑆 is a family of many-sorted operations of argument sorts 𝑠 and result sort 𝑟 ;

(4) 𝐵 = {𝐵𝑠,𝑠′,𝑟 }𝑠,𝑠′,𝑟 ∈𝑆 is a family of binders, where 𝑏 (𝑥 :𝑠, 𝑒) binds 𝑥 :𝑠 to 𝑒 (of sort 𝑠′) and returns

a term of sort 𝑟 , for each 𝑏 ∈ 𝐵𝑠,𝑠′,𝑟 .

We use TGLTerm to denote the set of terms generated by the above syntax, where free variables,

𝛼-equivalence, and capture-free substitution are defined in the usual way. We omit sorts when they

can be inferred. Note that when 𝐵 = ∅, rules (1)-(3) generate the standard FOL terms.

Remark 45. TGLTerm forms a TGL generic term set in [?, Definition 2.1].

TGL formulas, interpretations, validity, and provability are defined in the standard way, (al-

most) identical to FOL, except that terms are interpreted simultaneously instead of constructively.

Specifically, the interpretation of compound term 𝑓 (𝑒) is not defined from the interpretation of its

sub-term 𝑒 ,6 but instead we have a Henkin-style definition for term interpretations:

Definition 46 ([?, Section 2]). For a given set of many-sorted predicates Π = {Π𝑠 }𝑠∈𝑆∗ , we define
the set TGLForm of TGL formulas by the following grammar:

𝜑 F 𝑒1 = 𝑒2 | 𝜑1 ∧ 𝜑2 | ¬𝜑 | ∃𝑥 :𝑠′ . 𝜑 | 𝜋 (𝑒1, . . . , 𝑒𝑛) for 𝜋 ∈ Π𝑠1 · · ·𝑠𝑛 and 𝑒𝑖 has sort 𝑠𝑖 for all 𝑖

Let 𝐴 = {𝐴𝑠 }𝑠∈𝑆 be an 𝑆-indexed carrier set. A TGL valuation 𝜌 : 𝑉 → 𝐴 is a function such that

𝜌 (𝑥 :𝑠) ∈ 𝐴𝑠 for every 𝑠 ∈ 𝑆 and 𝑥 :𝑠 ∈ 𝑉𝑠 . Let TGLVal be the set of all TGL valuations. A TGL model

({𝐴𝑠 }𝑠∈𝑆 , {𝐴𝑒 }𝑒∈TGLTerm, {𝐴𝜋 }𝜋∈Π) has a Henkin-style definition as follows:

(1) 𝐴𝑠 ≠ ∅ for every 𝑠 ∈ 𝑆 .

(2) 𝐴𝑒 : TGLVal → 𝐴𝑠 , where 𝑠 is the sort of 𝑒 , such that for any 𝑥 :𝑠, 𝑒, 𝑒′, 𝜌 :
(a) 𝐴𝑥 :𝑠 (𝜌) = 𝜌 (𝑥 :𝑠).
(b) 𝐴𝑒 [𝑒′/𝑥 :𝑠] (𝜌) = 𝐴𝑒 (𝑆𝑒′,𝑥 :𝑠 (𝜌)), where 𝑆𝑒′,𝑥 :𝑠 (𝜌) is the TGL valuation such that 𝑆𝑒′,𝑥 :𝑠 (𝜌) (𝑥 :𝑠) =

𝐴𝑒′ (𝜌) and 𝑆𝑒′,𝑥 :𝑠 (𝜌) (𝑦:𝑠′) = 𝐴𝑦:𝑠′ (𝜌) for any 𝑦:𝑠′ . 𝑥 :𝑠 .

(3) 𝐴𝜋 ⊆ 𝐴𝑠1
× · · · ×𝐴𝑠𝑛 for every 𝜋 ∈ Π𝑠1 ...𝑠𝑛 .

We let 𝐴𝜑 ⊆ TGLVal for 𝜑 ∈ TGLForm be the set of valuations under which 𝜑 holds, defined as:

(1) 𝜌 ∈ 𝐴𝑒1=𝑒2
iff 𝐴𝑒1

(𝜌) = 𝐴𝑒2
(𝜌);

(2) 𝜌 ∈ 𝐴𝜋 (𝑒1,...,𝑒1) iff (𝐴𝑒1
(𝜌), . . . , 𝐴𝑒𝑛 (𝜌)) ∈ 𝐴𝜋 ;

(3) 𝜌 ∈ 𝐴𝜑1∧𝜑2
iff 𝜌 ∈ 𝐴𝜑1

and 𝜌 ∈ 𝐴𝜑2
;

(4) 𝜌 ∈ 𝐴¬𝜑 iff 𝜌 ∉ 𝐴𝜑 ;

(5) 𝜌 ∈ 𝐴∀𝑥 :𝑠. 𝜑 iff 𝜌 [𝑎/𝑥 :𝑠] ∈ 𝐴𝜑 for every 𝑎 ∈ 𝐴𝑠 .

TGL has a sound and complete Gentzen proof system [?, Figs. 1-2], which derives sequents of

the form 𝐸 ⊢TGL Δ1 ⊲ Δ2 for 𝐸,Δ1,Δ2 ⊆ TGLForm, which intuitively means that under TGL theory

𝐸, the conjunction of the formulas in Δ1 implies the disjunction of the formulas in Δ2. It is required

that 𝐸 contains formulas without free variables, and Δ1,Δ2 are finite sets containing formulas with

6
TGL in its full generality as in [?] does not even have a notion of compound terms or sub-terms.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:26 Xiaohong Chen and Grigore Roşu

finitely many free variables; these requirements are needed for TGL’s completeness theorem and

all TGL sequents considered in this paper satisfy these requirements.

Definition 47 ([?, Sections 2-3]). For a TGL model 𝐴 and 𝜑 ∈ TGLForm, we write 𝐴 ⊨TGL 𝜑 iff

𝐴𝜑 = TGLVal. We write 𝐴 ⊨TGL 𝐸 iff 𝐴 ⊨TGL 𝜑 for all 𝜑 ∈ 𝐸. TGL validity 𝐸 ⊨TGL Δ1 ⊲ Δ2 is

defined as

⋂
𝜑∈Δ1

𝐴𝜑 ⊆ ⋃
𝜑∈Δ2

𝐴𝜑 , for all 𝐴 ⊨TGL 𝐸. TGL provability 𝐸 ⊢TGL Δ1 ⊲ Δ2 is defined by

the Gentzen proof system of TGL in the usual way.

Theorem 48 ([?, Theorem 3.1]). Under the above requirements about 𝐸,Δ1,Δ2, we have 𝐸 ⊨TGL
Δ1 ⊲ Δ2 if and only if 𝐸 ⊢TGL Δ1 ⊲ Δ2.

9.2 Defining Term Generic Logic in Matching Logic
In this section we define a matching logic theory ΓTGL and introduce notations such that all TGL

terms and formulas are well-formed matching logic patterns. We show that ΓTGL is a conservative
extension of TGL, by proving the following equivalence theorem.

Theorem 49. Under the notations in Theorem 48, the following are equivalent: (1) (ΓTGL ∪ 𝐸) ⊢∧
Δ1 → ∨

Δ2. (2) (ΓTGL ∪ 𝐸) ⊨ ∧
Δ1 → ∨

Δ2; (3) 𝐸 ⊨TGL Δ1 ⊲ Δ2; (4) 𝐸 ⊢TGL Δ1 ⊲ Δ2; Here,

∧
Δ1

is the conjunction of patterns in Δ1 and

∨
Δ2 is the disjunction of patterns in Δ2.

Thanks to the mathematical instruments and notations that we have introduced in Section 4,

the definition of ΓTGL is straightforward. The many-sorted binder syntax (Definition 44) and TGL

terms are captured by defining sorts and many-sorted functions as in Section 4.2, and defining

binders as in Eq. (12). TGL formulas, except 𝜋 (𝑒1, . . . , 𝑒𝑛), are captured by matching logic’s derived

connectives (Fig. 1) and equality (Definition 13). Predicate 𝜋 (𝑒1, . . . , 𝑒𝑛) for 𝜋 ∈ Π𝑠1 · · ·𝑠𝑛 , is captured
by defining a matching logic symbol 𝜋 and the following axiom:

(Predicate) ∀𝑥1:𝑠1∀𝑥𝑛 :𝑠𝑛 . (𝜋 𝑥1 · · · 𝑥𝑛 = ⊤) ∨ (𝜋 𝑥1 · · · 𝑥𝑛 = ⊥) (13)

which specifies that 𝜋 returns either ⊤ or ⊥, i.e., it indeed builds predicate patterns. Without such

axioms, 𝜋 𝑥1 · · · 𝑥𝑛 could be any subset. Let ΓTGL contain all the above definitions and notations.

Remark 50. Under the above notations and axioms, all TGL terms are matching logic functional

patterns (Section 3.2.2) and all TGL formulas are matching logic predicate patterns (Section 3.2.1).

Theorem 49 is proved using a model-based approach similar to Fig. 4. Here we explain the only

nontrivial proof step, which is (2) =⇒ (3). This is proved by constructing a matching logic model

𝑀𝐴
from any given TGL model 𝐴, such that all TGL terms and formulas are interpreted the same in

𝑀𝐴
and 𝐴, i.e., |𝑒 |𝜌 = {𝐴𝑒 (𝜌)} for every 𝑒 ∈ TGLTerm; |𝜑 |𝜌 = 𝑀𝐴

whenever 𝜌 ∈ 𝐴𝜑 , and |𝜑 |𝜌 = ∅,
whenever 𝜌 ∉ 𝐴𝜑 , for every 𝜑 ∈ TGLForm.

Remark 51. Using TGL and Theorem 49, we obtain a systematic proof of the conservative extension

theorems and deductive completeness theorems for all logical systems that have been defined in

TGL and studied in [?, Section 4] and [?, Section 4], including System F [??] (both the typing and

reduction versions), _-calculus (including the untyped [?], sub-typed [?], illative [?], and linear

versions [??]), pure type systems [?], and 𝜋-calculus [?]. The systematic proof works as follows. For

each logical system 𝐿, its set of terms Term𝐿 can be captured by a binder syntax using the desugaring

discussed at the beginning of Section 9. The proof/type system of 𝐿 that derives sequents of the

form ⊢𝐿 Φ is captured by a set of TGL axioms 𝐸𝐿 , where each axiom corresponds to one type/proof

rule of 𝐿 [?]. An adequacy theorem is also proved there for each 𝐿, stating that ⊢𝐿 Φ iff 𝐸𝐿 ⊢TGL ΦTGL
,

where ΦTGL
(of the form ΔΦ

1
⊲ ΔΦ

2
) is the corresponding TGL encoding of the 𝐿-sequent Φ. Let

Γ𝐿 = ΓTGL ∪ 𝐸𝐿 be the matching logic theory that captures 𝐿, and ΦML =
∧

ΔΦ
1
→ ∨

ΔΦ
2
be the

matching logic encoding of Φ. By Theorem 48, we have that ⊢𝐿 Φ in 𝐿, iff 𝐸𝐿 ⊢TGL ΦTGL
in TGL, iff

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

A General Approach to Define Binders using Matching Logic 88:27

Γ𝐿 ⊢ ΦML
in matching logic, iff Γ𝐿 ⊨ ΦML

in matching logic. Hence, Γ𝐿 is a conservative extension

of 𝐿 and the class of matching logic models of Γ𝐿 is complete with respect to 𝐿.

Remark 52. Note that the term “consistency” has different meanings in different contexts. In type

systems, inconsistency means the ability to prove any typing judgments 𝑡 :𝜏 . Similarly, in _-calculus

or other equational logic theories, inconsistency means the ability to prove any equations 𝑒1 = 𝑒2.

However, in matching logic (and also FOL), inconsistency means the ability to prove logical false ⊥.
Thus, inconsistency for classical logics such as matching logic is stricter than that for type systems

and _-calculus. For example, if 𝑇 is a PTS that contains the typing axiom Type:Type, then 𝑇 is

inconsistent [?], but its matching logic theory Γ𝑇 is still a consistent matching logic theory and has

a model that interprets the typing relation _:_ as the total relation on all PTS terms.

10 FUTUREWORK
Inductive Reasoning. An important direction for future work is to investigate inductive reasoning

on terms with binders. We use _-calculus as an example but the discussion applies to all binders.

The set of _-expressions Λ is an inductive structure. This means that Λ is the smallest set closed

under variables, application, and abstraction, and it admits the principle of inductive reasoning,

which can be intuitively expressed by the following formula (this should be understood informally;

in particular, the inductive hypothesis for _𝑥 . 𝑒 in (‡) takes various forms in the literature; e.g., [?,
pp. 21] uses the N-quantifier on 𝑥 , meaning that there exists 𝑥 :Var such that 𝑥 is not free in 𝑒 ,

while [?, pp. 5] uses ∀-quantifier to quantify all 𝑥 :Var that are not free in 𝑒):7

∀𝑃 . (∀𝑥 :Var . 𝑥 ∈ 𝑃)
∧ (∀𝑒:Exp.∀𝑒′:Exp. 𝑒 ∈ 𝑃 ∧ 𝑒′ ∈ 𝑃 → (𝑒 𝑒′) ∈ 𝑃)
∧ (∀𝑒:Exp. 𝑒 ∈ 𝑃 → ∀𝑥 :Var . _𝑥 . 𝑒 ∈ 𝑃) (‡)

→ ∀𝑒:Exp. 𝑒 ∈ 𝑃

where 𝑃 ⊆ Λ is a property of _-expressions. Inductive reasoning on terms with binders is known to

be hard when the binding behavior of _ yields bindings in the meta-language, making it difficult to

write pattern-matching style recursive definitions and reasoning (see, e.g., [?]). For example, if we

try to parse the above inductive principle as a matching logic pattern, we will notice that ∀𝑥 :Var

in (‡) binds nothing—𝑥 is already bound in _𝑥 . 𝑒 .

There is relevant research on this topic, e.g., [???] for HOAS approaches and [??] for nominal

induction and recursion, which we will investigate and reconcile within matching logic. We believe

that matching logic is particularly suitable for defining such inductive principles. Indeed, matching

logic allows set variables, which are effectively universally quantified in formulas. Therefore, the

second-order quantification ∀𝑃 in the inductive principle above can be effectively captured in

matching logic by simply dropping the ∀𝑃 quantifier and letting the set variable 𝑃 stay free in the

formula.

Replacing Axiom Schemas with Axioms. The matching logic theory Γ_ for _-calculus (Section 6)

includes axiom schema (𝛽) with meta-variables 𝑥, 𝑒, 𝑒′, the same as the original _-calculus. Thus, Γ_

is a faithful definition of _-calculus that captures it as is. This was intended and desired, because we

believe that as a unifying logic for semantic frameworks (like K), matching logic should allow us to

define logics, calculi and languages as a mirror of the original, without any encodings or translations

except for defining the necessary mathematical instruments and convenient notations. For practical

reasons, it is also useful to define _-calculus (and other binders) using axioms (not schemas) and

normal variables (not meta-variables), as in nominal logic axiom (𝛽 in Nominal Logic) and HOAS

7
[?] gives credits to [?] and mentions that it can be used in many other logics.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

88:28 Xiaohong Chen and Grigore Roşu

(e.g., Twelf definition red-beta), both shown in Section 2. Thus, one way to eliminate schemas and

meta-variables is to follow nominal and/or HOAS approaches methodologically, as explained in

Remark 1; that is, we define nominal logic or HOAS in matching logic as theories and notations,

and then define binders through them. However, matching logic also gives us an opportunity for

alternative definitions. Below, we will show at a high level one example. Studying such alternative

encodings of calculi is interesting and practical, but will be addressed in other places.

Recall that _𝑥 . 𝑒 ≡ lambda (intension ∃𝑥 :Var . ⟨𝑥, 𝑒⟩), where (intension ∃𝑥 :Var . ⟨𝑥, 𝑒⟩) denotes
the graph of 𝑥 ↦→ 𝑒 as an element of sort 2

Var⊗Exp
. As pointed out in Section 6, not all elements of

sort 2
Var⊗Exp

represent a graph, so we may identify and axiomatize a subsort Graph of 2
Var⊗Exp

that

includes precisely all graphs. And thus, the schema (𝛽) can be replaced by the following axiom:

(𝛽 , Not a Schema) ∀𝑔:Graph.∀𝑒′:Exp. (lambda 𝑔) 𝑒′ = graph-lookup 𝑔 𝑒′

where 𝑔 and 𝑒′ are normal variables and graph-lookup is axiomatized as the graph lookup operation.

11 CONCLUSION
In this paper, we used (a functional variant of) matching logic to define binders in various logical

systems. The binding behavior of binders in the object-level systems is directly inherited from the

built-in binder ∃ in matching logic. We demonstrated our approach directly by defining _-calculus

as a matching logic theory, and indirectly by capturing term-generic logic (TGL); the latter yields

matching logic definitions for many logical systems that feature bindings that were previously

defined as TGL theories, including System F, pure type systems, 𝜋-calculus, etc. We proved the

conservative extension theorems for all of these. We illustrated two proof methods: one based

on models that is suitable for object-level systems that come equipped with models, and another

based on syntax and proof derivations that is more involved but available even when the system

lacks models. Our approach also yields models for the defined systems. For the systems discussed

in the paper, the obtained models are complete w.r.t. logical reasoning, which follows from the

conservative extension theorems. For _-calculus, the models are representationally complete for all

_-theories, suggesting that matching logic is a promising alternative semantics for _-calculus.

ACKNOWLEDGMENTS
We warmly thank the K Team for invaluable and continuous feedback on matching logic and its

role as a foundation of K, as well as for their creative yet hard work on turning theoretical results

into practical tools. We also warmly thank James Cheney, Maribel Fernández, Andrei Popescu, and

Thomas Tuegel for many insightful comments and concrete suggestions. We are indebted to the

four anonymous reviewers, whose wit and dedication helped us improve the presentation. This

work was supported in part by NSF CNS 16-19275. This material is based upon work supported by

the United States Air Force and DARPA under Contract No. FA8750-18-C-0092.

Proc. ACM Program. Lang., Vol. 4, No. ICFP, Article 88. Publication date: August 2020.

	Abstract
	1 Introduction
	2 Related Work: Existing Approaches to Defining Binders
	3 Functional Variant of Matching Logic
	3.1 Matching Logic Syntax
	3.2 Matching Logic Semantics
	3.3 Matching Logic Theories

	4 Important Mathematical Instruments
	4.1 Definedness Symbol and Related Instruments
	4.2 Inhabitant Symbol and Related Instruments
	4.3 Product Sorts
	4.4 Power Sorts
	4.5 Matching Logic Proof System

	5 -Calculus Preliminaries
	5.1 Our Goal and the Main Challenges
	5.2 Our Plan
	5.3 Concrete ccc Models of -Calculus

	6 Defining -Calculus in Matching Logic
	7 Model-Based Conservativeness Proof
	8 Syntax-Based Conservativeness Proof
	8.1 Proof Overview: Using the Term Model to Prove the Conservativeness Theorem
	8.2 Construction of the Term Model T and the Term Valuation T

	9 Defining Binders in Other Logical Systems Using Matching Logic
	9.1 Term-Generic Logic (TGL) Preliminaries
	9.2 Defining Term Generic Logic in Matching Logic

	10 Future Work
	11 Conclusion
	Acknowledgments

