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Abstract

K is a formal language semantics framework where programming languages are defined
using configurations and rewrite rules. Language tools such as interpreters and program verifiers
are automatically generated from language definitions. The wide applications ofK to real-world
languages raise interest in its logical foundation and formal semantics. Existing work only
considers fragments of K and formalizes a subset of its features. This paper proposes a simple
logic called applicative matching logic (AML) as a new logical foundation for K. We show that
AML captures all the logical frameworks that have been implemented fully or partially in K,
including: many-sorted first-order logic (MSFOL); constructors and term algebras, with the
inductive principle; MSFOL variants such as algebraic specifications, FOL with partial functions,
and FOL with least fixpoints; order-sorted algebras; and parametric sorts/types. We then put
everything together and formalize the semantics of K, by showing how program execution and
verification are heuristics for AML proof search. Finally, we propose two new features for K,
function and dependent sorts/types, based on the solid mathematical foundation provided by
AML.

1 Introduction

The K framework (www.kframework.org) [55] is an effort in pursuing the ideal language frame-
work (Fig. 1), where all programming languages must have formal semantic definitions and all
language tools are automatically derived in a correct-by-construction manner at no additional cost.
K has been used to develop the complete formal definitions of many real-world languages such as
C [30], Java [5], JavaScript [49], x86 [16] as well as emerging blockchain languages such as EVM [32]
and IELE [35]. All language tools such as parsers, interpreters, and deductive program verifiers
are automatically derived from the formal language definitions.

The wide practical applications ofKhave raised research interest in and questions about its own
logical foundations. That is: What is the semantics ofK? To answer that, we look for a foundational
logic where every K definition of a language L defines a logical theory ΓL, and different language
tools represent different best-effort implementations of logic reasoning within ΓL. For example,
the program verifier is a best effort implementation of the logic reasoning ΓL

`ϕpre⇒ϕpost, which
intuitively means that all program configurations that satisfy ϕpre must reach configurations that
satisfy ϕpost, on termination.
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Figure 1: An ideal language framework vision

There is a series of research work [56, 54, 53, 39, 45, 9] that aims at giving a formal semantics to
K. The implementation ofK has more than 130,00 lines of code. However, the existing work only
considers fragments ofK, each formalizing only a subset of its features; see also Section 10. In this
paper, we propose a simple logic that can formalize allK’s features.

1.1 A Running Example and MainK Features

We discuss the main features of K using the simple, prototypical imperative language IMP as a
running example. We show the complete formal K definition of IMP in Fig. 2. Readers need not
understand all details (which can be found in [11]); we explain the relevant parts below.

There are two modules: IMP-SYNTAX defines the concrete syntax of IMP, and IMP defines program
configurations, and formal semantics by rewrite rules. In IMP-SYNTAX,K uses the conventional BNF
notation, where nonterminals begin with capital letters and terminals are quoted strings. We call
nonterminals sorts; e.g., Exp is the sort of expressions; Stmt is the sort of program statements, etc.
Sorts can be ordered; e.g., Exp takes Int and Id as its subsorts (Fig. 2, line 2), meaning that integers
and identifiers (i.e., program variables) are well-formed expressions.
K has builtin support for parametric sorts; e.g., Ids is the sort of identifier lists (Fig. 2, line 13)

that is defined from Id using the generic parametric sort List. Intuitively, List is a sort constructor
that takes a base sort (e.g., Id) and a delimiter (e.g., ","), and produces the lists of that base sort.
The delimiter is a frontend detail, only relevant for parsing purpose, so it is not of our interest here.
Here we are interested in theK feature of defining parametric sorts such as List.
K uses configurations to structure semantic data needed for program execution. Configurations

are built from cells, possibly nested, written in XML format. The configurations of IMP (lines 18-19)
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have two cells: a <k/> cell that contains program code to be executed and a <state/> cell that
contains program states mapping program variables to values.

1 module IMP-SYNTAX imports DOMAINS-SYNTAX
2 syntax Exp ::= Int | Id | Exp "+" Exp | Exp "-" Exp
3 | "(" Exp ")" [bracket]
4

5 syntax Stmt ::= Id "=" Exp ";" [strict(2)]
6 | "if" "(" Exp ")" Stmt Stmt [strict(1)]
7 | "while" "(" Exp ")" Stmt
8 | "{" Stmt "}" [bracket]
9 | "{" "}"

10 > Stmt Stmt [left]
11

12 syntax Pgm ::= "int" Ids ";" Stmt
13 syntax Ids ::= List{Id, ","}
14 endmodule
15

16 module IMP imports IMP-SYNTAX imports DOMAINS
17 syntax KResult ::= Int
18 configuration
19 <T> <k> $PGM:Pgm </k> <state> .Map </state> </T>
20 rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
21 rule I1 + I2 => I1 +Int I2
22 rule I1 - I2 => I1 -Int I2
23 rule <k> X = I; => . ...</k>
24 <state>... X |-> (J => I) ...</state>
25 rule S1:Stmt S2:Stmt => S1 ˜> S2
26 rule if (I) S1 S2 => S1 requires I =/=Int 0
27 rule if (0) S1 S2 => S2
28 rule while(B) S => if(B) {S while(B) S} {}
29 rule {} => .
30 rule <k> int (X, Xs => Xs); S </k>
31 <state>... (. => X |-> 0) </state>
32 rule int .Ids; S => S
33 endmodule

Figure 2: The completeK definition of IMP.

K uses rewrite rules, or just rules, to de-
fine the formal semantics of IMP. Rules
have the form ϕlhs⇒ϕrhs, where ϕlhs, ϕrhs
are symbolic configuration patterns that can
be matched by concrete IMP configura-
tions; e.g., if (0) S1 S2 => S2 is a rule that
rewrites the program code if (0) S1 S2
in one step to S2, as expected. Rules
can be conditional; e.g., if (I) S1 S2 => S1
requires I =/=Int 0 rewrites the program
code if (I) S1 S2 in one step to S1, if I
is nonzero. In this way, the rewrite
rules in the module IMP define a tran-
sition system S

IMP over IMP configura-
tions. Then, executing an IMP pro-
gram $PGM is equivalent to generating
a trace of SIMP from the initial con-
figuration <k> $PGM </k> <state> . </state>,
where $PGM (line 19) is a special variable
that tellsK to put the program in the <k/>
cell, and “.” denotes “nothing”, i.e., the
empty program state. Similarly, various
formal program analyses are equivalent
to reasoning about all traces from initial
configuration patterns, which sometimes
can be symbolic.

Certain frontend syntactic sugar is in-
troduced to makeK rules more compact and modular, and to avoid duplication. For example, the
variable lookup rule (line 20)

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

puts the rewrite symbol => not at the top, but locally at where the rewrite happens, so we need
not duplicate or even mention (thanks to the “...” notation) irrelevant parts of the configuration,
called structural frame. Frontend sugar is important forK to be scalable and applicable to defining
formal semantics of large languages, but it is eliminated when parsing the definitions. Our interest
here is the after-parsingK features, that is, its logical foundation for defining transition systems as
logical theories and capturing program execution and verification as rigorous logic reasoning.

1.2 Our Contribution: Applicative Matching Logic

The main technical contribution of this paper is the proposal of applicative matching logic (AML) as a
new logic foundation ofK. We show existingK features (discussed in Section 1.1) can be defined as
logical theories in AML. Specifically, we use AML to capture all the following logical frameworks
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and systems that have been fully or partially supported by the current K implementations (also
shown in Fig. 3):

• many-sorted first-order logic (MSFOL), constructors, term algebras, and the inductive prin-
ciple (Section 4);

• MSFOL variants: algebraic specifications, FOL with partial functions, and FOL with fixpoints
(Section 5);

• order-sorted algebras (OSA) (Section 6);

• parametric sorts and operations (Section 7).

Then we put everything together in Section 8 and show that program execution and verification
inK can be regarded as best effort implementations of AML formal reasoning.

The development of K seems to be mostly driven by user requests. Many K features were
engineered and optimized to ease the development of formal semantics of large languages (e.g., C,
Java, JavaScript), rather than implemented following a well-established foundational theory. Even
today, more than 15 years after its inception, K seems to be a moving target that is continuously
evolving, according to the Github issues and feature requests [33, 34]. These make it difficult to find
a mathematically solid foundation forK. We hope this paper gives substantial evidence that AML
can be taken as the foundation of K, and due to its simplicity and flexibility, the K development
team will benefit from doing so, because AML not only gives a rigorous mathematical explanation
of all existing K features, but also establishes a solid foundation for developing new features.
As an example, we propose two new features in Section 9, function sorts/types and dependent
sorts/types, based on the foundation provided by AML.

The rest of the paper is organized as follows. We define the syntax and semantics of AML
in Section 2 and its proof system in Section 3. Then we follow the above agenda: defining all
logical systems in Fig. 3 in Sections 4-7, putting them together and formalizingK in Section 8, and
proposing new features in Section 9. Finally, we discuss related work in Section 10 and conclude
in Section 11.

Proofs for all the results are in the appendix

2 Applicative Matching Logic

Here we define the syntax and semantics of the novel AML.

2.1 Applicative Matching Logic Syntax

Definition 1. An AML signature (EVar, SVar,Σ) has a set EVar of element variables x, y, . . . , a set
SVar of set variables X,Y, . . . , and a set Σ of (constant) symbols σ, f , g, . . . . We often omit EVar and
SVar and use Σ to denote the signature. The set of AML patterns, denoted Pattern, is defined as:

ϕF x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x .ϕ | µX .ϕ

where in µX .ϕwe require that ϕ is positive in X, i.e., X is not nested in an odd number of times on
the left of an implication ϕ1 → ϕ2. Pattern ϕ1ϕ2 is called application and assumed associative to the
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Figure 3: K implements, fully or partially, many logical frameworks that can be subsumed in AML
as logical theories.

left. The scope of binders ∃ and µ goes farthest to the right. The notions of free variables FV(ϕ),
α-renaming, and capture-avoiding substitution (ϕ[ψ/x] and ϕ[ψ/X]) are defined in the usual way.

We argue that the above syntax is minimal while still being useful and expressive to formalize
language semantics and program properties. Element variables are FOL-style variables that are
necessary for ranging over individual elements, which can then be quantified (i.e., “abstracted”)
by the ∃ binder. Set variables are like propositional variables in modal logic that are necessary
for ranging over sets (i.e., predicates), which can then be quantified by µ to create least fixpoints.
Symbols are used to represent functions, predicates, constructors, and modal operators, in a
uniform way. Together with application, symbols build complex patterns from simpler ones (i.e.,
σϕ1 . . . ϕn), which can represent terms (e.g., σ ≡ f for function f ), FOL-style formulas (e.g., σ ≡ p
for predicate p), program configurations (e.g., σ being the <k/> cell), and modal formulas such
as temporal and reachability properties (e.g., σ being the “next” operator � in LTL [51]). Note
that application in AML is generic and can be instantiated with arbitrary patterns. This gives us
maximal flexibility and expressiveness, and at the same time minimal syntax complexity, because
we need not define multiary functions, predicates, constructors, or polyadic modal operators.
Instead, all of them are uniformly treated using symbols and the generic application. Finally, we
have the usual ⊥ and ϕ1 → ϕ2 to build arbitrary logical constraints.

We define the following derived constructs in the usual way. We assume the standard prece-
dence among logical connectives, where application binds the tightest.

¬ϕ ≡ ϕ→ ⊥ ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)
> ≡ ¬⊥ ∀x .ϕ ≡ ¬∃x .¬ϕ ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)
νX .ϕ ≡ ¬µX .¬ϕ[¬X/X] // if ϕ is positive in X

2.2 Applicative Matching Logic Semantics

AML has a pattern matching semantics. Patterns are interpreted to the sets of elements that match
them.
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Let us first look at some examples. Pattern ϕ1 ∧ϕ2 is matched by the elements that match both
ϕ1 and ϕ2. Pattern ¬ϕ is matched by the elements that do not match ϕ. Patterns > and ⊥ are
matched by all elements and no elements. Element variable x is matched by the unique element to
which x evaluates (valuations are defined later). Set variable X is matched by the elements in the
set to which X evaluates. Symbols also evaluate to sets, but their interpretations are given directly
by AML structures, not valuations (structures are defined later).

The meaning of ϕ1ϕ2 depends on how we interpret ϕ1 and ϕ2. If ϕ1 represents a constructor c
and ϕ2 represents its argument a, then ϕ1ϕ2 is matched by term c(a). If ϕ1 represent a function f and
ϕ2 represents its argument a, then ϕ1ϕ2 is matched by value f (a). If ϕ1 represents a predicate p and
ϕ2 represents its argument a, then ϕ1ϕ2 denotes truth value p(a). If ϕ1 represents a dynamic relation,
e.g., the “next operator �” in LTL [51], and ϕ2 represents a state s, then ϕ1ϕ2 is matched by all
states whose next states matchϕ2. In practice,K uses constructors and terms to represent language
concrete syntax and program configurations, uses functions to represent functions on mathematical
domains, uses predicates to specify mathematical assertions, and uses dynamic relations to support
program execution and verification. Thus, AML unifies constructors, functions, predicates, and
dynamic operations used inK, by application patterns.

The above interpretation can be generalized to the pattern matching semantics of AML. E.g., if
ϕ1 is matched by a set of constructors C and ϕ2 is matched by a set of arguments A, then ϕ1ϕ2 is
matched by all terms c(a) with c ∈ C and a ∈ A. Multiary constructors, functions, predicates, and
modalities, can be uniformly defined by currying the application.

Binder ∃ builds abstractions. Pattern ∃x .ϕ is matched by the elements matching ϕ for some
valuations of x, i.e., it “abstracts away” the irrelevant part x from the matched part ϕ. Binder µ
builds least fixpoints. Intuitively, a pattern ϕ(X) defines a function Fϕ,X over sets that maps X to
ϕ(X). The requirement that ϕ(X) is positive in X implies that Fϕ,X is monotone and has a unique
least fixpoint µFϕ,X, by the Knaster-Tarski fixpoint theorem (Theorem 19). Pattern µX .ϕ is then
matched by the elements in µFϕ,X.

Definition 2. An AML structure (M, • , {σM}σ∈Σ) has:

• a nonempty set M, called domain;

• a binary application function • : M ×M→ P(M);

• a subset σM ⊆M called interpretation of σ ∈ Σ.

We use M to denote the above structure and also call it a model. We extend pointwisely the
application function • from over elements to over sets, as follows (where A,B ⊆M)

• : P(M) × P(M)→ P(M) A • B =
⋃

a∈A,b∈B a • b

Note that A • B = ∅ whenever A = ∅ or B = ∅. We abbreviate a • b as ab and write ab1 · · · bn ≡

(· · · ((ab1) b2) · · · bn).

Definition 3. Given (EVar, SVar,Σ) and a structure M, a valuation is a function ρ : (EVar∪ SVar)→
(M∪P(M)) with ρ(x)∈M for all x∈EVar and ρ(X)⊆M for all X ∈ SVar. Its extension, ρ̄ : Pattern→
P(M), is defined as:
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ρ̄(x) = {ρ(x)} for x ∈ EVar
ρ̄(X) = ρ(X) for X ∈ SVar
ρ̄(⊥) = ∅
ρ̄(σ) = σM for σ ∈ Σ
ρ̄(ϕ1ϕ2) = ρ̄(ϕ1)ρ̄(ϕ2)
ρ̄(ϕ1 → ϕ2) = M \ (ρ̄(ϕ1) \ ρ̄(ϕ2))
ρ̄(∃x .ϕ) =

⋃
a∈M ρ[a/x](ϕ)

ρ̄(µX .ϕ) = µF
ρ
ϕ,X where F ρ

ϕ,X(A) = ρ[A/X](ϕ) for A ⊆M
Here, “\” is set difference; ρ[a/x] (resp. ρ[A/X]) denotes the valuation ρ′ such that ρ′(x) = a (resp.
ρ′(X) = A) and agrees with ρ on all other variables. The existence of µF ρ

ϕ,X is by the Knaster-Tarski
fixpoint theorem (Theorem 19).

AML patterns are not two-valued. They can evaluate to ∅, or M (i.e., the entire domain), or any
subsets in between. However, we can easily restore the classic two-valued semantics by letting ∅
denote “logical false” and M denote “logical true”. Since M is nonempty, no confusion is possible.
We call ϕ a predicate, if ρ̄(ϕ) ∈ {∅,M} for all ρ.

Proposition 4. The derived constructs defined in Section 2.1 have the expected semantics:
ρ̄(¬ϕ) = M \ ρ̄(ϕ)
ρ̄(ϕ1 ∨ ϕ2) = ρ̄(ϕ1) ∪ ρ̄(ϕ2)
ρ̄(>) = M
ρ̄(ϕ1 ∧ ϕ2) = ρ̄(ϕ1) ∩ ρ̄(ϕ2)
ρ̄(∀x .ϕ) =

⋂
a∈M ρ[a/x](ϕ)

ρ̄(ϕ1 ↔ ϕ2) = M \ (ρ̄(ϕ1)4ρ̄(ϕ2))
ρ̄(νX .ϕ) = νF

ρ
ϕ,X with F ρ

ϕ,X defined as in Definition 3
where set symmetric difference A 4 B = (A \ B) ∪ (B \ A).

The “predicate-ness” of patterns is preserved by all the above constructs. E.g., ϕ1 → ϕ2 andϕ1∧ϕ2
are predicates whenever ϕ1 and ϕ2 are, µX.ϕ is a predicate whenever ϕ is; etc.

What does it mean for a model M to satisfy ϕ? In classic two-valued logics such as FOL,
M satisfies ϕ, iff ϕ evaluates to “true” in M, under all valuations. In AML, the logical true is
represented by evaluating to the entire domain M, so naturally we have the following definition
of satisfaction.

Definition 5. We say M satisfies ϕ, written as M �ϕ, if ρ̄(ϕ) = M for all ρ. Let Γ be a set of patterns.
We write M �Γ iff M �ψ for all ψ∈Γ, and Γ �ϕ iff M �Γ implies M �ϕ for all M. Using conventional
terminology, we call Γ a theory, its elements axioms, and M a model of Γ whenever M � Γ.

Axioms and theories are used to restrict the models, so instead of considering all AML struc-
tures, we only consider those satisfy the axioms. In the following, when we say that we de-
fine/assume/introduce a symbol σ and/or an axiom ϕ, we mean to add σ to Σ and/or add ϕ to Γ,
and consider models of the thus extended Γ. In Section 3, we will introduce the proof system and
proof theory of AML. In there, axioms and theories are also used for formal reasoning.

2.3 Important Mathematical Instruments

Here we show how to define several important mathematical instruments, such as equality, mem-
bership, functions, and tuples, as notations and theories in AML.
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Definition 6. Let d e be a symbol, which we call the definedness symbol. We write dϕe instead of
d e ϕ. Also, let (Definedness) be the axiom ∀x.dxe, or just dxe. We introduce the following important
notations:

totality bϕc ≡¬d¬ϕe equality ϕ1 =ϕ2 ≡ bϕ1↔ϕ2c

membership x∈ϕ≡ dx∧ϕe inclusion ϕ1 ⊆ϕ2 ≡ bϕ1→ϕ2c

ϕ1,ϕ2 ≡¬(ϕ1=ϕ2) x<ϕ≡¬(x∈ϕ) ϕ1*ϕ2 ≡¬(ϕ1⊆ϕ2)

For convenience, we tacitly assume the definedness symbol and the (Definedness) axiom, as well
as all above notations. Note that we are not extending AML, but simply adding one symbol and
one axiom to all subsequent AML theories defined in this paper. In other words, we only consider
models that satisfy (Definedness), for example, a model M with a special element $ such that
$ • a = M for all a∈M. By pointwise extension, $ •A = M iff A, ∅, so we can use $ and application to
check if A is nonempty. In other words, dϕe is a predicate stating that ϕ is defined, i.e., ϕ is matched
by some elements.

It is straightforward to show all notations in Definition 6 are predicates with the expected
semantics (see Proposition 20). E.g., ρ̄(bϕc) = M iff ρ̄(¬d¬ϕe) = M, iff ρ̄(d¬ϕe) = ∅, iff ρ̄(¬ϕ) = ∅, iff
ρ̄(ϕ) = M, i.e., ϕ is total. Another example: ρ̄(ϕ1 =ϕ2) = M iff ρ̄(bϕ1↔ϕ2c) = M, iff ρ̄(ϕ1↔ϕ2) = M,
iff ρ̄(ϕ1) 4 ρ̄(ϕ2) = ∅, iff ρ̄(ϕ1) = ρ̄(ϕ2), i.e., ϕ1 equals ϕ2; etc.

Definedness and the related notations are important in writing axioms and defining theories.
For example, the following axiom defines functional constant symbols, which are symbols σ ∈ Σ that
are forced to be interpreted to singleton sets (instead of any subsets) in all models satisfying it

(Functional Constant) ∃z .σ = z

This is because, intuitively, that z is an element variable whose semantics is always a singleton set.
By σ = z, we let σ equal the singleton set denoted by z, and then abstract away z by ∃z, so σ is any
singleton set (but not any subset).

3 AML Proof System

We present the AML proof system, inspired by [9]. We first define application contexts, written C,
as patterns with a distinguished placeholder variable � such that the rooted path to � has only
applications. We abbreviate C[ϕ/�] as C[ϕ], to denote the result of plugging ϕ into C.

The Hilbert-style proof system of AML is shown in Fig. 4. It consists of four categories of proof
rules. The first contains four rules that provide complete FOL reasoning [58], which justifies the
use of SAT/SMT solvers [17, 2] in K. The second contains four rules that provide frame reasoning
over application contexts. Since K’s configurations and cells are built with symbols and the
generic application, this set of proof rules supports compositional reasoning inK. The third contains
three rules for fixpoint reasoning [36], where (Knaster-Tarski), also known as Park induction [19],
is a logical incarnation of the Knaster-Tarski fixpoint theorem (Theorem 19) into AML and is
the key to reasoning about inductively-defined data structures and dynamic properties such as
program reachability. Finally, we need two technical rules for certain completeness results [9]. The
provability relation is denoted Γ ` ϕ, which means that ϕ can be proved by the proof system with
patterns in Γ as additional axioms.

Equational reasoning is sound in AML for theories with definedness, from which equality is
derived (see Definition 6).
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Frame
Reasoning


Fixpoint
Reasoning


Technical
Rules



(Propositional Tautology) ϕ if ϕ is a propositional tautology
over patterns

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x .ϕ

(∃-Generalization)
ϕ1 → ϕ2

if x < FV(ϕ2)
(∃x.ϕ1)→ ϕ2

(Propagation⊥) C[⊥]→ ⊥
(Propagation∨) C[ϕ1 ∨ ϕ2]→ C[ϕ1] ∨ C[ϕ2]
(Propagation∃) C[∃x .ϕ]→ ∃x .C[ϕ] if x < FV(C)

(Framing)
ϕ1 → ϕ2

C[ϕ1]→ C[ϕ2]

(Set Variable Substitution)
ϕ

ϕ[ψ/X]
(Pre-Fixpoint) ϕ[µX . ϕ/X]→ µX . ϕ

(Knaster-Tarski)
ϕ[ψ/X]→ ψ

µX . ϕ→ ψ

(Existence) ∃x .x
(Singleton) ¬ (C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

Figure 4: The Hilbert-style proof system of applicative matching logic (where C, C1 and C2 are
application contexts as defined at the beginning of this section.

Proposition 7. For theories Γ with definedness, we have

• Γ ` ϕ = ϕ

• Γ ` ϕ1 = ϕ2 and Γ ` ϕ2 = ϕ3 implies Γ ` ϕ1 = ϕ3

• Γ ` ϕ1 = ϕ2 implies Γ ` ϕ2 = ϕ1

• Γ ` ϕ1 = ϕ2 implies Γ ` ψ[ϕ1/x] = ψ[ϕ2/x]

Here ψ can be any pattern, not only application context. In other words, the indiscernibility of
identicals holds in AML.

Hence, AML supports FOL reasoning, frame reasoning, fixpoint reasoning, and equational
reasoning. This forms the foundation of formal reasoning and analysis inK.

Theorem 8 (Soundness Theorem). Γ ` ϕ implies Γ � ϕ.

However, AML does not have any complete proof system. In Section 4.5, we define a finite
AML theory that captures (N,+,×), the standard model of natural numbers with addition and
multiplication, up to isomorphism. By Gödel’s first incompleteness theorem [22], any effective and
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sound proof system of AML cannot be complete for all theories. In practice, the proof system in
Fig. 4 is sufficient to do formal proofs supported by the logical systems in Fig. 3 and to formalize
program execution and verification inK (see Section 8).

? Agenda for the Rest of the Paper

We remind the readers that our main objective, as stated in Section 1.2, is to define all the existing
features of K and the logical systems implemented by K, as theories and notations in AML. The
challenge is essentially to show how an inherently unsorted logic like AML can deal with sorts
in their full generality, including constructors and inductively defined data-types, partiality and
subsorting, and parametric sorts and operations. We discuss these in Sections 4-7. In Section 8, we
put all these together in the context of the semantics of the existingK, and in Section 9, backed by
AML semantics, we propose two new features ofK requested by users.

4 Instance: Many-Sorted First-Order Logic

We use many-sorted first-order logic (abbreviated MSFOL) as an example to discuss in detail how
to deal with sorts in the unsorted AML. We consider both model-theoretic and proof-theoretic
aspects. Model-theoretically, we capture MSFOL structures, which are many-sorted algebras (ab-
breviated MSA) accompanied by multiary relations as interpretations of MSFOL predicates. Proof-
theoretically, we show how to re-produce MSFOL formal proofs within the AML proof system. The
main technical contribution is the conservative extension theorem, which states that the semantics
and provability of MSFOL and the corresponding AML theory, are all equivalent (see Theorem 16).

This is a core section. The techniques used here will be repeatedly used later. Our major objec-
tive is to demonstrate that AML, in spite of its simplicity, can recover, as notations and theories,
other important, familiar, but notationally heavier concepts. MSFOL has built-in systematic mech-
anisms and mathematical instruments for sorts and many-sorted structures. These make MSFOL
complex, and also too rigid to adapt to other variants or extension, e.g., order-sorted functions,
parametric operations, and partial functions. In contrast, AML takes a lighter approach by requir-
ing only the minimal, yet powerful logical infrastructure, this way giving maximal flexibility in
defining the necessary mathematical instruments, e.g., those for sorts and many-sorted functions,
as theories and notations with patterns as axioms, which are intuitive, simple, highly adaptive,
and easily extensible.

4.1 MSFOL Preliminaries

Definition 9 ([42, 14]). An MSFOL signature (S,F,Π) has a sort set S, an (S∗×S)-indexed set F =
{Fs1...sn,s}s1,...,sn,s∈S of functions, and an S∗-indexed set Π = {Πs1...sn }s1,...,sn∈S of predicates. We use x :s to
denote sorted variables. Sorted terms and formulas are inductively defined as follows:

ts F x :s | f (ts1 , . . . , tsn ) for f ∈ Fs1...sn,s

ϕF p(ts1 , . . . , tsn ) for p ∈ Πs1...sn | ⊥ | ϕ1 → ϕ2 | ∃x :s .ϕ

An MSFOL structure A = ({As}s∈S, { fA} f∈Σ, {pA}p∈Π) has a nonempty domain As for each s ∈ S, an
interpretation fA : As1 × · · · ×Asn → As for each f ∈ Fs1...sn,s, and an interpretation pA ⊆ As1 × · · · ×Asn

for each p ∈ Πs1...sn . Valuations of variables (denoted v) and interpretations of terms and formulas
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(denoted v̄(ts) ∈ As and v̄(ϕ) ∈ {true, false}, resp.) are defined as usual; see [42] for details. We
write A �MSFOL ϕ iff v̄(ϕ) = true for all v. An MSFOL theory Ω is a set of MSFOL formulas. We
define Ω �MSFOL ϕ iff A �MSFOL Ω implies A �MSFOL ϕ for all A. We define Ω `MSFOL ϕ iff ϕ can
be proved with formulas in Ω as additional axioms, by the MSFOL proof system, which has the
same FOL reasoning rules as AML (Fig. 4) except (∃-Quantifier) and (∃-Generalization), which
are changed to the sorted versions (assuming x :s < FV(ϕ2)):

(Sorted ∃-Quantifier) ϕ[ts/x :s]→ ∃x :s .ϕ (Sorted ∃-Generalization)
ϕ1 → ϕ2

(∃x :s .ϕ1)→ ϕ2

4.2 Defining MSFOL Syntax and Proofs in AML

Fix an MSFOL signature (S,F,Π) and an MSFOL theory Ω. We define an AML signature ΣMSFOL and
an AML theory ΓMSFOL that precisely captures Ω, both proof-theoretically and model-theoretically.
We follow the classic sort-as-predicate paradigm (see, e.g., [13, Section 5]), but thanks to the pattern
matching semantics of AML, our definition is more succinct.

Sorts. We define a symbol Sort ∈ ΣMSFOL to represent the sort set. For each s ∈ S, we define a
corresponding functional constant s ∈ ΣMSFOL (see Section 2.3), called a sort constant or a sort, and
add the following axiom to ΓMSFOL (for s ∈ S):

(Sort) s ∈ Sort // membership ∈ defined in Section 2.3

We define a symbol [[ ]] ∈ ΣMSFOL called the domain symbol and use [[ ]] s, written [[s]], to represent
the domain of s. Intuitively, [[s]] is matched by all elements of sort s. Properties about sorts can
be expressed by AML patterns. For example, x ∈ [[s]] states that x has sort s; ϕ ⊆ [[s]] states that
all elements matching ϕ have sort s. The nonemptiness of the domain of s is axiomatized by ( ,
defined in Section 2.3):

(Nonempty Domain) [[s]] , ⊥ for s ∈ S

Sorted quantification. AML is unsorted. Its quantification∃x .ϕ ranges over all elements. MSFOL
has sorted quantification∃x :s .ϕ, which only ranges over elements of s. Therefore, we define sorted
quantification as syntactic sugar in AML:

∃x :s .ϕ ≡ ∃x . (x ∈ [[s]]) ∧ ϕ ∀x :s .ϕ ≡ ∀x . (x ∈ [[s]])→ ϕ

Intuitively, ∃x :s .ϕ is matched by ϕ for some x of sort s. The following shows the duality between
∃x :s and ∀x :s in AML.

Proposition 10. ` ∀x :s .ϕ = ¬∃x :s .¬ϕ

Many-sorted functions and terms. We translate MSFOL terms to AML patterns. For MSFOL
variables x :s, we assume a corresponding AML variable denoted x and use the “well-sorted”
predicate to specify its sort; see Definition 11. For MSFOL functions f ∈ Fs1...sn,s, we define a
corresponding symbol f ∈ ΣMSFOL and the next axiom to specify its arity:

(Function) ∀x1 :s1 . . . .∀xn :sn .∃y :s . f x1 · · · xn = y

We use the functional notation f : s1× · · ·× sn → s as a shortcut for (Function) axiom. MSFOL sorted
terms f (ts1 , . . . , tsn ) are then defined in a “curried” way, as patterns f ts1 . . . tsn .
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Many-sorted predicates and formulas. We translate MSFOL formulas to AML patterns. Logical
connectives⊥ and→ are translated to themselves. Quantification ∃x :s .ϕ is translated to the sorted
quantification in AML. For many-sorted predicates p ∈ Πs1...sn , we define a symbol p and the next
axiom to specify that p is a predicate (see after Definition 3):

(Predicate)
∀x1 :s1 . . . .∀xn :sn .

(
p x1 · · · xn = >

)
∨

(
p x1 · · · xn = ⊥

)
Note the disjunction above cannot be replaced with p x1 · · · xn ∨ ¬(p x1 · · · xn), because the latter is
vacuously > in AML. We use p ts1 · · · tsn in AML to define MSFOL’s p(ts1 , . . . , tsn ).

Let ΓMSFOL contain all axioms so far. We need to show that it correctly captures the syntax of
MSFOL terms and formulas. The arities of functions and predicates are axiomatized in ΓMSFOL as
shown above. The sorts of variables, however, were all dropped during the translation. We need
to restore them, so we define the following “well-sorted” predicates.

Definition 11. For MSFOL terms t and formulas ϕ, let

ws(t),ws(ϕ) ≡ x1 ∈ [[s1]] ∧ · · · ∧ xn ∈ [[sn]]

be the well-sorted predicates, where x1 :s1, . . . , xn :sn are all free variables appearing in t or ϕ,
respectively.

The following shows that MSFOL terms/formulas are wellformed patterns/predicates, if vari-
ables have intended sorts.

Proposition 12. For MSFOL terms ts and formulas ϕ,

ΓMSFOL
` ws(ts)→ ∃y :s . ts = y

ΓMSFOL
` ws(ϕ)→ (ϕ = >) ∨ (ϕ = ⊥).

MSFOL theories. Finally, we translate MSFOL theories to AML theories, using Proposition 12.
Given an MSFOL axiom ϕ, we define its AML translation ϕMSFOL

≡ ws(ϕ) → (ϕ = >). Given
MSFOL theory Ω, we define its AML translation ΩMSFOL = {ψMSFOL

| ψ ∈ Ω}. Let ΓMSFOL include
all the translated axioms ΩMSFOL as well. The following shows that ΓMSFOL preserves MSFOL
reasoning within Ω.

Theorem 13. Ω `MSFOL ϕ implies ΓMSFOL
` ϕMSFOL.

4.3 Subsuming MSFOL Models in AML

So far we have shown that the AML axiomatization ΓMSFOL captures the MSFOL theory Ω in the
sense that it preserves its provability. Next, we show that the MSFOL models of Ω are subsumed
by the AML models of ΓMSFOL, which leads us to the conservative extension theorem (Theorem 16).

Since AML models make no distinction among elements, sorts, functions, or predicates, they
contain both the elements in MSFOL models and their sorts, functions, and predicates. To compare
with MSFOL models, we need to restrict the AML models, as formalized below.

Definition 14. Let (S,F,Π) be an MSFOL signature and (M, • , {σM}σ∈ΣMSFOL ) be an AML model of
ΓMSFOL. Its MSFOL-restricted model A = ({As}s∈S, { fA} f∈F, {pA}p∈Π) is an MSFOL structure with
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• a domain As = [[sM]]M for s ∈ S, where sM is the interpretation of s ∈ ΣMSFOL in M and
[[sM]]M ≡ [[ ]]M • sM;

• an interpretation fA : As1×· · ·×Asn → As for f ∈ Fs1...sn,s, defined by { fA(a1, . . . , an)} = fM•a1•· · ·•an
for a1 ∈ As1 , . . . , an ∈ Asn , where fM is the interpretation of f ∈ ΣMSFOL in M;

• an interpretation pA = {(a1, . . . , an) | pM • a1 • · · · • an = M, a1 ∈ As1 , . . . , an ∈ Asn } for p ∈ Πs1...sn .

The MSFOL structure A is well-defined. Its domain As is nonempty, due to axiom (Nonempty
Domain). Its interpretations fA are total functions, due to axiom (Function) that forces fM to return
singletons on all elements of the appropriate sorts. The following theorem shows that ΓMSFOL

captures precisely the MSFOL models of Ω when considering its MSFOL-restricted models.

Theorem 15. For MSFOL theory Ω and model A �MSFOL Ω, there is an AML model M � ΓMSFOL whose
MSFOL-restricted model is exactly A. In addition, ΓMSFOL�ϕMSFOL iff Ω�MSFOLϕ.

Theorems 13 and 15 together yield the following conservative extension theorem for MSFOL.

Theorem 16. For any MSFOL theory Ω and formula ϕ, the next diagram holds (where “X =⇒Y” means
“X implies Y”):

Ω `MSFOL ϕ ========⇒1 ΓMSFOL
` ϕ~ww4

ww�2

Ω �MSFOL ϕ ⇐========3 ΓMSFOL � ϕ

Proof. (=⇒1) is by Theorem 13. (=⇒2) is by Theorem 8 (i.e., the soundness of AML). (=⇒3) is by
Theorem 15, where we only need the direction from AML to MSFOL. (=⇒4) is by the completeness
of MSFOL (see, e.g., [42, 14]). �

4.4 Example: Natural Numbers (without Induction)

To emphasize that in spite of its generality AML recovers the familiar MSFOL-specific notions and
notations, here we show an example of defining an AML theory ΓNAT0 that defines (N,+,×), i.e.
natural numbers with addition and multiplication. We do not yet consider the inductive principle.

Let Sort be a symbol that represents the sort set and Nat be a sort symbol, axiomatized by
Nat∈Sort, like in Section 4.2. We define the following self-explanatory functions about natural
numbers (function notations are defined in Section 4.2):

0 :→ Nat succ : Nat→ Nat
plus : Nat ×Nat→ Nat mult : Nat ×Nat→ Nat

where 0:→ Nat means 0 is a nullary function, i.e., a functional constant of Nat. The above functions
are axiomatized by the expected patterns/axioms, e.g.:

∀x :Nat .plus x 0 = x.

For brevity, we omit the remaining axioms and call the resulting theory ΓNAT0. Of course, ΓNAT0 is
not a complete axiomatization, because it does not support inductive reasoning.
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4.5 Example: Natural Numbers (with Induction)

Here we show that by adding three intuitive axioms to ΓNAT0 we obtain a (finite) AML axiomatiza-
tion of natural numbers that allows us to derive the (infinite) Peano inductive theory as theorems.
We extend ΓNAT0 by the “no confusion” axioms for 0 and succ, and most importantly, the inductive
principle:

(No Confusion) ∀x :Nat .succ x , 0
(No Confusion) ∀x :Nat .∀y :Nat .succ x = succ y→ x = y
(Inductive Domain) [[Nat]] = µD .0 ∨ succ D

We call the resulting theory ΓNAT. Intuitively, (No Confusion I) says that 0 and succ build different
terms; (No Confusion II) says that succ is an injective function; (Inductive Domain) forces [[Nat]]
to be the smallest set closed under 0 and succ, yielding exactly the standard natural numbersN.

Peano induction [43, 50] in Peano arithmetic, shown below, can be proved from (Inductive
Domain) as AML theorems.

(Peano Induction)
ϕ(0) ∧ (∀y .ϕ(y)→ ϕ(succ(y)))→ ∀x .ϕ(x)

Recall that Peano arithmetic is a FOL theory of (N,+,×), whose formulas are built from equations
and FOL connectives. Since both are already defined in AML notationally, Peano arithmetic
formulas are well-formed AML patterns. Peano induction is an axiom schema defined for each
FOL formula ϕ(x), while in AML, we can achieve its effect with only one pattern theorem (not a
schema):

Proposition 17. ΓNAT
` 0 ∈ X ∧ (∀y :Nat .y ∈ X→ (succ y) ∈ X)→ ∀x :Nat .x ∈ X.

Intuitively, it says if X is closed under 0 and succ, then it contains all natural numbers. All instances
of (Peano Induction) can then be proved from this pattern theorem. The proof idea is to let
Ψ ≡ ∃z :Nat .z∧ϕ(z) be the pattern of all z such that ϕ(z) holds. Then by standard AML reasoning,
ΓNAT

` (x ∈ Ψ) = ϕ(x), which reduces (Peano Induction) to Proposition 17, using rule (SetVariable
Substitution) in Fig. 4, where ψ is substituted for X.

Finally, we show that ΓNAT captures precisely (N,+,×).

Proposition 18. The MSFOL-restricted model M of ΓNAT is exactly (N,+,×), up to isomorphism.

The main purpose of this section was to show that it is easy to define sorts and the related
concepts such as many-sorted functions and predicates, in the unsorted AML. Not only can we
capture precisely MSFOL (Theorem 16), both proof- and model-theoretically, but we can also define
inductively-defined structures such as (N,+,×). The latter is an example of term algebras, which
are many-sorted structures whose domains are the smallest set that is inductively generated from
a set of functions, or constructors. Term algebras represent an important instance of initial algebra
semantics [24, 27], which has important applications in the foundations of programming language
semantics and leads to various practical tools [27, 28, 12]). The technique that we used above to
define (N,+,×) can be easily generalized to term algebras; see Appendix F for details.
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5 Instance: MSFOL Variants

Here, we discuss MSFOL variants that play an important role in programming language semantics,
and thus K, and not only, to show the flexibility and extensibility of AML. Indeed, we can re-use
most of the theory ΓMSFOL for MSFOL (shown in Section 4), with the minimal, necessary changes.

Algebraic specifications. These are commonly used to formalize abstract data types [40, 24]
such as lists, sets, maps, graphs, stacks, queues, etc., and have led to various implementations in
algebraic specification languages [12, 46, 18, 8]. An algebraic specification has a MSFOL signature
(S,F, {=}) where equality is the only predicate, plus a set of equations E over MSFOL terms. Both
sides of an equation have the same sort, and variables are assumed universally quantified over the
entire equation. The models, called F-algebras, are MSFOL models where “=” is interpreted as the
identity relation. We write E �Alg e iff any F-algebra A satisfying all equations in E also satisfies e.

Algebraic specifications are special instances of MSFOL theories, whose only predicate is equal-
ity and all axioms are equations. By Theorem 16, algebraic specifications are precisely captured
in AML, by letting all functions in F be many-sorted functions with their (Function) axioms (see
Section 4.2), and all equations in E be equational patterns/axioms (see Definition 6). The resulting
AML theory, written EAlg, then precisely captures algebraic specifications: EAlg � e iff E �Alg e.

Partial functions. In MSFOL, function symbols are interpreted as total functions, which are
common but can cause inconvenience when defining formal semantics; e.g., what is head(list) inter-
preted to, when list is empty? Partial MSFOL [20] solves this inconvenience by considering partial
functions that can be undefined on some arguments. Partial MSFOL needs a different formalization
than MSFOL to properly capture the desired properties of definedness [20].

On the other hand, the pattern matching semantics of AML easily captures definedness as the
ability to match at least one element (recall Definition 6). Indeed, we can axiomatize a partial
function f : s1 × · · · × sn ⇀ s by adjusting the (Function) axiom for total functions (Section 4.2), to

(Partial Function) ∀x1 :s1 . . . .∀xn :sn .∃y :s . f x1 · · · xn ⊆ y

where the only change is from equality = to inclusion ⊆. Intuitively, the axiom enforces f x1 · · · xn
to return either a singleton (y), or nothing (the empty set), the latter meaning that f is undefined
on x1, . . . , xn.

Sorted fixpoints. Many MSFOL variants add support for recursion or fixpoints that are sorted. For
example, LFP [29] extends MSFOL with many-sorted recursive predicates

p(x1 :s1, . . . , xn :sn) =lfp Φ(x1 :s1, . . . , xn :sn),

where p may occur positively, recursively in Φ, and “=lfp” means that p is interpreted as the least
predicate1 satisfying the equation. Sorted recursion and fixpoints play an important role in defining
inductive and coinductive data structures as well as program dynamic behaviors.

Matching (µ-)logic [9] (MmL) is an important MSFOL variant that supports sorted fixpoints
µX :s .ϕ. MmL represents one of the latest attempts in formalizing K (see Section 10) and it
captures many logical systems with recursion or fixpoints, including LFP. Therefore, we use MmL

1Where p is “less than” q iff q holds whenever p holds.
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as an example to show how to define sorted fixpoints µX :s .ϕ in AML. Interestingly, and perhaps
unexpectedly, we need not do anything, besides using the “well-sorted” patterns (see Definition 11)
to constrain the sorted variables inϕ. We show thatµX .ϕ is neither bigger nor smaller thanµX :s .ϕ.
Firstly, µX .ϕ denotes the least solution of X = ϕ among all subsets, while µX :s .ϕ denotes the least
solution among subsets of sort s, so µX .ϕ is no bigger than µX :s .ϕ. This also tells us that µX .ϕ is of
sort s, too, so it is no smaller than µX :s .ϕ either, which is the smallest solution of sort s. Therefore, in
the presence of the wellsortedness constraints for ϕ, which are always required, the AML unsorted
fixpoint µX .ϕ captures the same semantics as the MmL sorted fixpoint µX :s .ϕ.

Due to the importance of MmL, we proved that the entire MmL, including syntax, semantics,
and formal proofs, can be captured in AML. As a result, all logical frameworks and systems
subsumed by MmL (see Fig. 3) are also subsumed by AML. We include the (difficult) proof details
in Appendix G.

6 Instance: Order-Sorted Algebras

K has built-in support for subsorting and symbol overloading. Even IMP, which is a trivial
language, has three subsorts (Fig.2, lines 2 and 17). Real languages tend to have dozens of subsorts
and overloaded symbols, such as various types of expressions and values with lists over them.
According to the GitHub issues and discussions [33, 34], dealing with subsorting and symbol
overloading correctly and efficiently is one of the most challenging problems that the development of
K faced. Using coercion functions (described at the end of this section) yields a correct but inefficient
implementation, which would makeK useless with real languages like C, Java or JavaScript. Using
specialized order-sorted algebra decision procedures for unification and rewriting, like OBJ [23] and
Maude [12], yields an efficient but too hermetic to extend and too complex to trust implementation.
Instead, the K team has decided to follow an ad hoc solution based on a series of heuristics that
work efficiently only with common cases, but whose correctness can be easily explained with
the two types of axioms discussed below. New heuristics are added continuously, as users of K
discover new situations of interest. The incapacity of matching µ-logic [9] to deal with subsorting,
and thus to serve as a logical foundation of K, was one of the main triggers for the development
of AML. Below we show how naturally AML can handle subsorting by means of showing how it
captures order-sorted algebra.

Order-sorted algebras (OSA) extend many-sorted algebras with a partial ordering ≤⊆S×S on
sorts, called subsort relation, which forces a subset relation on the domain sets: As ⊆As′ if s≤ s′. There
are many OSA presentations, e.g., Goguen and Meseguer’s [26, 44], Bidoit and Hennicker’s [1, 31],
and Axel Poigné’s [52], which yield dozens of different OSA definitions (see, e.g., [25] for a survey)
with slightly different requirements on the formalization. For concreteness, we consider the variant
in [44] that allows subsort overloading, i.e., f s1...sn,s ∈ Fs1...sn,s and f s′1...s

′
n,s′ ∈ Fs′1...s

′
n,s′ with the same f and

n but different argument and result sorts.
To define OSA as an AML theory, we reuse the theory of MSFOL (Section 4) and extend it to

handle subsorting and symbol overloading. For the former, we define:

(Subsort) [[s]] ⊆ [[s′]] for all s, s′ ∈ S with s ≤ s′

to specify that the domain of s is included in that of s′. For the latter, we define symbol set
{ f | f s1...sn,s ∈F}where we use one f for all its overloaded copies of various arity annotations. Then,
we axiomatize that f is a function of the appropriate arities as in Section 4, but now f may have
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multiple axioms, one for each overloaded copy f s1...sn,s ∈ Fs1...sn,s:

(Function) ∀x1 :s1 . . .∀xn :sn .∃y :s . f x1 . . . xn = y

With the above definitions, we proved AML captures precisely OSA (see Theorem 32). We do
not consider formal proofs in OSA, because unlike MSFOL, it does not appear to have a broadly-
accepted notion of Hilbert-style proof system in literature. However, we point out that our
definition of OSA naturally yields a complete proof system for OSA, for free, because one can use
the AML proof system and the axioms for OSA, to formally reason about OSA properties.

It is known (see, e.g., [26]) that OSA can be reduced to MSFOL where subsorting is captured
by coercion functions cs′

s ∈ Fs,s′ defined for all s ≤ s′. Intuitively, cs′
s denotes the injection from s

to s′. However, this approach is not practically useful as noticed in [47, pp. 9]. We explain why
by an example. Suppose there are three sorts s ≤ s′ ≤ s′′, a constant a of sort s, and a function
f ∈ Fs′′,s′′ . Then, f (a) has two different parses when translated to MSFOL: f (cs′′

s (a)) and f (cs′′
s′ (cs′

s (a))).
Therefore, all OSA tools that are based on the reduction to MSFOL, need to reason modulo the
triangle property cs′′

s (a) = cs′′
s′ (cs′

s (a)), which causes huge overhead. In contrast, our definition is
more succinct and closer to the nature of OSA, because subsorting and overloading are naturally
axiomatized, and no coercion functions are needed.

7 Instance: Parametric Sorts

Recall from Section 1.1 that K has built-in support for parametric sorts, e.g., parametric lists.
In general, parametric sorts are difficult to define in a purely many-sorted setting, because they
quickly lead to infinite theories with infinitely many sorts (e.g., base sort s, lists of s, lists of lists of
s, etc.) and infinitely many, highly-homogeneous axioms for them.

On the other hand, AML gives us the flexibility to treat sorts as normal elements and to define
functions over sorts, because there is no built-in distinction among elements, sorts, or functions.
Therefore, we can easily extend the theory ΓMSFOL to that of parametric sorts. As an example, we
show how to axiomatize parametric lists as a finite theory ΓLIST that extends ΓNAT, the theory of
natural numbers (Section 4.5). Let List ∈ ΣLIST and axiomatize it as a function over sorts

List : Sort→ Sort // (Function) ∀s :Sort .∃s′ :Sort .List s = s′

This may look suspicious, as we quantify on s and s′, which are sorts, but recall that the distinction
between sorts and elements is only conceptual. AML itself makes no such distinction, so it is totally
allowed to define List as above.

Parametric operations are also defined as functions. For example, cons takes x (of sort s) and l1
(of sort List s), producing the list with head x and tail l1. It is axiomatized by

∀s :Sort .︸   ︷︷   ︸
constrain the range of s

∀x :s .∀l1 :List s .∃l :List s .cons x l1 = l︸                                         ︷︷                                         ︸
specify that cons is a function

The above is similar to the (Function) axiom (see Section 4) but uses s to range over Sort. For
simplicity, we extend our function notation to also allow such “sort quantifiers”:

∀s :Sort . cons : s × List s→ List s
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Using this notation, we define nil and (parametric) append:

∀s :Sort . nil :→ List s
∀s :Sort . append : List s × List s→ List s

As in Section 4.5 where we precisely define natural numbers as the smallest set built with 0 and
succ, we can axiomatize the domain of List s to be the smallest set built with nil and cons, i.e., the
inductive principle for finite lists:

(Inductive List) ∀s :Sort . [[List s]] = µL .nil ∨ cons [[s]] L

The above axiom supports inductive reasoning about lists. For example, assume a super-sort
Int of Nat: [[Nat]]⊆ [[Int]]. We can prove [[List Nat]]⊆ [[List Int]], using the AML proof system and
(Inductive List) (see Proposition 33).

With parametric sorts, the sort set Sort also forms a term algebra built from base sorts such as
Nat and Int, and the parametric sort List. This is axiomatized below:

(Sorts) [[Sort]] = µS .Nat ∨ Int ∨ List S

We can also allow only primitive lists and forbid nested lists:

(No Nested Lists) [[Sort]] = Nat ∨ Int ∨ List Nat ∨ List Int

A more modular way is to introduce a new symbol PrimitiveSort, axiomatize it by PrimitiveSort =
Nat ∨ Int, and let Sort contain only the primitive sorts and lists over them:

Sort = PrimitiveSort ∨ List PrimitiveSort

In the above, we overloaded nil over all lists. We can also make it parametric, by replacing
nil :→ List s with:

(Parametric Nil) ∀s :Sort .∃l :List s .nil s = l

(Inductive List) is modified accordingly:

∀s :Sort . [[List s]] = µL .nil s ∨ cons [[s]] L // parametric nil

The main message is that there are no hard axioms or definitions, and AML offers much
extensibility and flexibility.

8 Putting Them Together: Semantics ofK

Here we complete our agenda of formalizing K’s features as AML axioms and notations. We
show that K definitions are AML theories, and that K’s execution and verification tools are best
effort implementations (heuristics) of AML proof search. Hence, AML gives a unifying logical
foundation forK.

For concreteness, we take IMP and itsK definition in Fig. 2 as an example. We consider a simple
(symbolic) IMP program, SUM ≡ int n,s; n=N:Int; while(n){s=s+n;n=n-1;}, which computes the sum
from 1 to the (symbolic) input N:Int. Let LOOP be the while loop of SUM.

In the following, we derive from the K definition of IMP (Fig. 2) an AML signature ΣIMP and
a theory ΓIMP that defines IMP syntax and semantics. Then we use AML reasoning within ΓIMP to
formalize program execution and verification for IMP. For simplicity, we use Lm to mean line m in
Fig. 2.
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IMP syntax and configurations. K sorts (i.e., nonterminals) such as Exp, Int, Id define corre-
sponding sorts in AML: Exp, Int, Id (∈ Sort). A production rule either defines a subsort relation or a
many-/order-sorted function. For example, production rule for Int in L2 defines the subsorting ax-
iom [[Int]]⊆ [[Exp]]; production rule for Exp "+" Exp in L2 defines a function plusExp : Exp×Exp→ Exp.
The parametric sort Ids in L13 is defined by the parametric sort List Id in Section 7.

Program configurations can be defined similarly to the concrete syntax. Every K cell, such as
<k/>, defines a sort kCell ∈ Sort and a function k : Pgm→ kCell. Similarly,K cells <state/> and <T/>
define the sorts stateCell and TCell and functions state : Map → stateCell and T : kCell × stateCell →
TCell, where Map is a predefined sort for finite maps (see, e.g., [53, Section 9.2]). We often write
TCell as Cfg, denoting the sort of top-level program configurations.

Rewrite rules. K defines language semantics in terms of rewrite rules of the form ϕlhs ⇒ ϕrhs,
where ϕlhs and ϕrhs are configuration patterns of sort Cfg, i.e., ϕlhs, ϕrhs ⊆ [[Cfg]]. These rewrite rules
yield a transition system over configurations as the formal language semantics, so we first capture
the transition relation in AML. Inspired by temporal logic, we define a symbol �∈ΣIMP, called
one-path next, and its arity axiom � [[Cfg]]⊆ [[Cfg]]. Intuitively, �γ contains configurations γ′ such
that γ is a next state of γ′. Then, rule ϕlhs⇒ϕrhs defines an axiom (Semantics) ϕlhs→ �ϕrhs, which
states that any configuration matching ϕlhs has at least one next state matching ϕrhs.

Program execution. One-path next � ∈ ΣIMP only defines one-step rewrites; e.g., ϕ→ �ψ means
ϕ rewrites to ψ in one step; ϕ→ ��ψ means ϕ rewrites to ψ in two steps; etc. However, program
execution can take arbitrarily, finitely many steps, so we need a pattern to denote that ϕ rewrites
to ψ in any finitely many steps. Such finiteness properties are known to be outside of the scope of
FOL, because fixpoints are needed. AML has built-in support for fixpoints, so it can define such
finiteness properties, such as the eventually operator ♦ϕ ≡ µX .ϕ ∨ �X. Then, we can use ϕ→♦ψ
to mean program executes from ϕ to ψ. As a concrete example, consider executing the SUM program
from the configuration:

Ψ(SUM,n, s) ≡ T (k SUM) (state (merge (mapsto n n)(mapsto s s)))

whose computation is code and whose state maps n to n and s to s. Here, merge and mapsto
are predefined map functions; see, e.g., [53, Section 9.2]. Then, ϕ0 ≡ Ψ(LOOP, 100, 0) denotes the
configuration that reaches the loop with n = 100. The following AML proof steps formalize the
first few execution steps thatK applies, until we reach the loop again:

ΓIMP
` ϕ0 → �ϕ1 where ϕ1 ≡ Ψ(if(n){s=s+n;n=n-1;LOOP}{}, 100, 0)

ΓIMP
` ϕ1 → �ϕ2 where ϕ2 ≡ Ψ(if(100){s=s+n;n=n-1;LOOP}{}, 100, 0)

ΓIMP
` ϕ2 → �ϕ3 where ϕ2 ≡ Ψ(s=s+n;n=n-1;LOOP, 100, 0)

ΓIMP
` · · ·

ΓIMP
` · · · → �ϕ12 where ϕ12 ≡ Ψ(LOOP, 99, 100)

By AML proof rule (Framing), we have ΓIMP
` �ϕ1→ � �ϕ2, ΓIMP

` � � ϕ2→ � � � ϕ3, etc.
We can “chain” them together by FOL reasoning and prove ΓIMP

` ϕ0→ � · · ·�︸ ︷︷ ︸
12 times

ϕ12. Finally, by

applying fixpoint reasoning and unfolding ♦ϕ12 12 times, we prove ΓIMP
`ϕ0→♦ϕ12. This is
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only an execution fragment. For full execution, we continue the process until we reach final
configuration ϕm ≡ Ψ(. , 0, 5050) (where m is the number of execution steps and “.” denotes the
empty computation, i.e., termination) and prove ΓIMP

`ϕ0→♦ϕM.
In conclusion,K’s program execution tool becomes best effort implementation of proof search-

ing for AML theorems ΓIMP
` ϕ0→♦ϕM. K’s debugger tool allows users to step through and

visualize executions of any programs in any programming languages that have aK semantics.

More dynamic patterns. Many dynamic properties and modal operators can be defined as AML
patterns. Here we define some modal operators necessary for program verification. “All-path
next” �ϕ ≡ ¬Cfg � ¬Cfgϕ is the dual of one-path next; it is matched by states whose next states all
match ϕ. Here, ¬Cfgϕ ≡ ¬ϕ ∧ [[Cfg]] is matched by all configurations not matching ϕ. “Always”
�ϕ ≡ ¬Cfg♦¬Cfgϕ is the dual of “eventually”, matched by all states whereϕ holds now and hereafter.
“Well-founded states” WF ≡ µX . � �X is matched by all well-founded states, i.e., those which do
not have infinite execution traces.

Program verification. Verification is different from execution, in that it considers partial correctness,
i.e., the post-condition ϕpost needs to be satisfied only on termination. Therefore, we weaken the
definition of ♦ϕ that is used to formalize execution, to ♦wϕ ≡ (¬CfgWF)∨♦ϕ, called weak-eventually,
and use ϕpre→♦wϕpost to mean that ϕpre either diverges (i.e. has an infinite execution trace) or
reaches ϕpost eventually, capturing precisely partial correctness semantics.

As a concrete example, we use AML to formalize the verification task of the invariant claim of
the while loop:

Φinv ≡ ∀n : Int .∀s : Int . (Ψ(LOOP,n, s) ∧ n ≥ 0)→ ♦wΨ(. , 0, s + n(n + 1)/2)

Intuitively, it says that if LOOP is executed at where n is n and s is s, then on termination n becomes 0
and s becomes s+n(n+1)/2. K’s verification tool is based on circular reasoning [54]; that is,Kmoves
Φinv to a set of circularities and starts executing LOOP symbolically. If n = 0, the program terminates
and verification finishes. For n ≥ 1,K consumes the loop body and reaches Ψ(LOOP,n−1, s+n)∧n ≥ 1.
Then it uses Φinv as a normal semantic axiom to finish the proof by instantiating n to n − 1 and s to
s + n.

We formalize the above circular reasoning as AML fixpoint reasoning; see Appendix J for
details. The key observation is that, by partial correctness, we only need to prove Φinv for well-
founded states; i.e., ΓIMP

`Φinv iff ΓIMP
`WF→Φinv, where WF ≡ µX . � �X denotes well-founded

states as defined earlier. Then by (Knaster-Tarski), it suffices to prove ΓIMP
` � �Φinv→Φinv

with ��Φinv being an additional condition, saying that Φinv holds after any rewrite step, thus
yielding circular reasoning. In conclusion, K’s program verification tool becomes a best effort
implementation of proof searching for AML theorems ΓIMP

` ϕpre→♦wϕpost.

9 NewK Features Based on AML

We propose two new features for K, frequently requested by users, based on AML. They are
nontrivial extensions of existing features but can be uniformly treated in AML and thus can
correctly extend existing K implementations. We use them to demonstrate the benefit of using a
logic like AML as the logical foundation and formal semantics ofK.
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9.1 Feature A: Function Sorts/Types

Our first feature proposal is function sorts/types. We define Function : Sort × Sort→ Sort to be a sort
constructor (like List in Section 7) and use Function s s′ to denote the sort of functions from s to s′,
as axiomatized below:

(Function Sort)
∀s :Sort .∀s′ :Sort . [[Function s s′]] = ∃ f .

(
f ∧ ∀x :s .∃y :s′ . f x = y

)
Recall that ∃means set union (see Definition 3). Therefore, [[Function s s′]] is matched by all f such
that ∀x:s .∃y:s′. f x = y, i.e., f is a function from s to s′. Multiary functions can be defined as usual
making use of currying, as follows (quantification over sorts is defined in Section 7):

Function s1 · · · sn s
≡ Function s1 (Function s2 · · · (Function sn s) · · · )

Function sorts are useful to formalize functional languages such as OCaml [37] and Haskell [38]
inK, where functions are first-class citizens and can take functions as arguments. For example, we
extend ΓLIST with two higher-order functions fold and map as follows:

∀s :Sort .∀s′ :Sort .
fold : Function s′ s s′ × s′ × List s→ s′

∀ f :Function s′ s s′ .∀x :s′ . fold f x nil = x
∀ f :Function s′ s s′ .∀x :s′ .∀y :s .∀l :List s .

fold f x (cons y l) = fold f ( f xy) l

∀s :Sort .∀s′ :Sort .
map : Function s s′ × List s→ List s′

∀g :Function s s′ . map g nil = nil
∀g :Function s s′ .∀y :s .∀l :List s .

map g (cons y l) = cons (g y) (map g l)

We propose the K team to also incorporate conventional sort/type inference procedures in
future versions of K, because with those, all the non-gray parts above can be inferred, in which
case users would only write the gray equations, making defining semantics in K closely resemble
functional programming in languages like Haskell or OCaml.

9.2 Feature B: Dependent Sorts/Types

Our second feature proposal is dependent sorts (types), which are like parametric sorts but whose
parameters are elements, i.e., arbitrary data, instead of sorts. Since AML makes no distinction
between elements and sorts, they are defined uniformly by patterns, and it is straightforward to
define dependent sorts, following the definition of parametric lists in Section 7.

As an example, we define a dependent sort MInt for machine integers; for n ≥ 1, we let MInt n
denote the sort of machine integers of size n, i.e., natural numbers less than 2n. For clarity, we
define a new sort Size for positive naturals and define MInt : Size→ Sort as a function as below:
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[[Size]] = succ [[Nat]]
∀n :Size . [[MInt n]] = ∃x :Nat .x ∧ x < pow2 n

where pow2 : Nat→ Nat (power of 2) and < are defined as usual. Then we define functions over
machine integers, such as mplus and mmult, by defining their arities and reusing natural numbers
addition plus and multiplication mult:

∀n :Size .mplus : MInt n ×MInt n→MInt (succ n)
∀n :Size .∀x :MInt n .∀y :MInt n .mplus x y = plus x y
∀n :Size .∀m :Size .mmult : MInt n ×MInt m→MInt (plus n m)
∀n :Sizeldot∀m :Size .∀x :MInt n .∀y :MInt m .mmult x y = mult x y

10 Related Work

Other theoretical attempts to formalizingK. These include the double-pushout graph transfor-
mations [56], an Isabelle definition [39], and a Coq definition based on co-induction [45], all of
which require heavy theory transformations with a big representational distance from the original
definitions, and are targeted at only a subset ofK features such as reachability, partial correctness,
or coinduction, while with AML we aim at giving full formal semantics toK.

Reachability logic [54, 15] and matching logic [53, 9] are a series of research aiming at formalizing
K’s program verification tools and are what inspired AML. Reachability logic has built-in support
for reasoning about reachability properties, and matching logic (which is an MSFOL variant; see
Section 5) has built-in support for defining many-sorted structures, making them over-complicated
and less flexible to be extended to deal with more complex dynamic properties and sort structures
(e.g., ordered sorts, parametric sorts) needed by K. In contrast, AML adopts a minimalist design
and defines only the simplest building blocks, with which more complex and notationally heavier
concepts can be axiomatized as theories, as we have shown in this paper. We think AML is more
suitable to be taken by theK community to be the foundation ofK, due to its simplicity, minimality,
and high flexibility that make it easier to formalize existing features and develop new features,
especially at this stage whereK still seems to be continuously evolving and changing.

Other language frameworks. There are several other important language frameworks besidesK
for defining formal semantics of programming languages. CENTAUR [6] is one of the earliest sys-
tems that take formal language definitions and automatically generate programming environments
with language tools such as interpreters and debuggers, equipped with graphic interfaces. Proof
assistants such as Coq [3] and Isabelle [48] have been extensively used as language frameworks,
where program verification is framed as proving theorems, mostly interactively with remarkable
human effort, although (semi-)automation is available in some cases. Lightweight tools such as
Ott [57] provide an intuitive frontend language to define formal syntax and semantics, accom-
panied with automatic tools that sanity-check definitions and translate them to proof assistants
where proofs are done.

Our goal with AML is different. We aimed at a direct and minimal logical foundation for K,
without translation to other frameworks or logics, because such a translation often yields heavy
notational cost and, more importantly, causes difficulties to translate back (i.e., interpret) failed
verification attempts, error messages, etc. As discussed in Section 2.1, the syntax of AML is
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minimal, where every logical construct is critical and has a unique semantic meaning. The 13-
rule proof system of AML is succinct and compact, and it support all essential logical reasoning
(e.g., FOL, frame, fixpoint, and equational reasoning) that is required in program analysis and
verification.

There are several language frameworks that are also rewriting-based, like K. Component-based
specification [4] predefines a set of fundamental language constructs and uses them to define
languages modularly. Spoofax [7] is a platform for designing domain specific languages (DSL),
integrated with various language tools such as SDF [61] for formal syntax, Stratego [62] for code
generation, FlowSpec [59] for data flow analysis, etc. PLT Redex [21] is a DSL for designing
rewrite-based operational semantics, fully integrated within a target programming language such
as Scheme or Racket.

Since K is also rewriting-based and supports all the features of the above frameworks, AML
can be a proper logical foundation for the above-mentioned frameworks, too, so they can share the
same simple yet powerful AML prover and proof checkers to ensure semantic correctness of the
claims they make, no matter what heuristics or algorithms they employed.

11 Conclusion

Previously, the development and implementation of K seemed to be mostly driven by practical
needs from user requests instead of a clear and solid mathematical foundation. This resulted in
some ad hoc engineering hacks in existing K tools and uncertainties about the formal semantics of
K.

In this paper, we proposed applicative matching logic (AML) as what we believe is the right logical
foundation and formal semantics of K. Specifically, we took the major logical frameworks that
are fully or partially supported by K implementations and showed how they can be captured as
theories and notations in AML. We put all results together and showed from a theoretical point of
view thatK’s program execution and verification tools are best effort implementations in realizing
AML reasoning and proof searching. Finally, we proposed two nontrivial extensions ofK features
and showed that AML offers a natural treatment for both, showing additional benefits of adopting
a logic like AML as the foundation ofK.
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A Knaster-Tarski Fixpoint Theorem

Theorem 19 (Knaster-Tarski [60]). For any nonempty set M and any monotone functionF : P(M)→ P(M)
with F (A) ⊆ F (B) for all A ⊆ B, where P(M) denotes the powerset of M, we have that F has a unique least
fixpoint µF and a unique greatest fixpoint νF , given as:

µF =
⋂
{A ⊆M | F (A) ⊆ A} νF =

⋃
{A ⊆M | A ⊆ F (A)}

B Proofs of results in Sections 2

Here we prove all results in Section 2.

Proof of Proposition 4. Simple, by applying definitions directly.
(Case ¬ϕ): ρ̄(¬ϕ) = ρ̄(ϕ→ ⊥) = M \ (ρ̄(ϕ) \ ρ̄(⊥)) = M \ (ρ̄(ϕ) \ ∅) = M \ ρ̄(ϕ).
(Case ϕ1 ∨ ϕ2): ρ̄(ϕ1 ∨ ϕ2) = ρ̄(¬ϕ1 → ϕ2) = M \ (ρ̄(¬ϕ1) \ ρ̄(ϕ2)) = M \ ((M \ ρ̄(ϕ1)) \ ρ̄(ϕ2)) =

ρ̄(ϕ1) ∪ ρ̄(ϕ2).
(Caseϕ1∧ϕ2): ρ̄(ϕ1∧ϕ2) = ρ̄(¬ϕ1∨¬ϕ2) = ρ̄(¬ϕ1)∨ρ̄(¬ϕ2) = (M\ρ̄(ϕ1))∨(M\ρ̄(ϕ2)) = ρ̄(ϕ1)∧ρ̄(ϕ2).
(Case >): ρ̄(>) = ρ̄(¬⊥) = M \ ρ̄(⊥) = M \ ∅ = M.
(Case ϕ1 ↔ ϕ2): ρ̄(ϕ1 ↔ ϕ2) = ρ̄((ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)) = ρ̄(ϕ1 → ϕ2) ∩ ρ̄(ϕ2 → ϕ1) =

(M \ (ρ̄(ϕ1) \ ρ̄(ϕ2))) ∩ (M \ (ρ̄(ϕ2) \ ρ̄(ϕ1))) = M \ (ρ̄(ϕ1) 4 ρ̄(ϕ2)).
(Case∀x .ϕ): ρ̄(∀x .ϕ) = ρ̄(¬∃x .¬ϕ) = M\ρ̄(∃x .¬ϕ)= M\

⋃
a∈M ρ[a/x](¬ϕ)= M\

⋃
a∈M

(
M \ ρ[a/x](ϕ)

)
=⋂

a∈M ρ[a/x](ϕ).
(Case νX .ϕ): ρ̄(νX .ϕ) = ρ̄(¬µX .¬ϕ[¬X/X]) = M \ ρ̄(µX .¬ϕ[¬X/X]) = M \ µF ρ

¬ϕ[¬X/X],X. Note

that µF ρ
¬ϕ[¬X/X] =

⋃
{A ⊆ M | F

ρ
¬ϕ[¬X/X](A) ⊆ A} =

⋃
{A ⊆ M | ρ[A/X](¬ϕ[¬X/X]) ⊆ A}. Then

M \ µF ρ
¬ϕ[¬X/X],X = M \

⋃
{A ⊆ M | ρ[A/X](¬ϕ[¬X/X])} =

⋂
{M \ A | ρ[A/X](¬ϕ[¬X/X]) ⊆ A} =

⋂
{B |

ρ[B/X](¬ϕ) ⊆ (M \ B)} =
⋂
{B | ρ[B/X](ϕ) ⊇ B} = νF

ρ
ϕ,X �

Proposition 20. With the above notation, the following hold:

• ρ̄(dϕe) = M iff ρ̄(ϕ) , ∅; and ρ̄(dϕe) = ∅ iff ρ̄(ϕ) = ∅;

• ρ̄(bϕc) = M iff ρ̄(ϕ) = M; and ρ̄(bϕc) = ∅ iff ρ̄(ϕ) , ∅;

• ρ̄(ϕ1 = ϕ2) = M iff ρ̄(ϕ1) = ρ̄(ϕ2); and ρ̄(ϕ1 = ϕ2) = ∅ iff ρ̄(ϕ1) , ρ̄(ϕ2);

• ρ̄(x ∈ ϕ) = M iff ρ(x) ∈ ρ̄(ϕ); and ρ̄(x ∈ ϕ) = ∅ iff ρ(x) < ρ̄(ϕ);

• ρ̄(ϕ1 ⊆ ϕ2) = M iff ρ̄(ϕ1) ⊆ ρ̄(ϕ2); and ρ̄(ϕ1 ⊆ ϕ2) = ∅ iff ρ̄(ϕ1) * ρ̄(ϕ2).

Proof. These can be proved by simply applying the definitions.
(Case dϕe): ρ̄(dϕe) = M iff d eM • ρ̄(ϕ) = M iff there exists a ∈ ρ̄(ϕ) iff ρ̄(ϕ) , ∅. Otherwise, ρ̄(dϕe) = ∅

iff d eM • ρ̄(ϕ) = ∅ iff there exists no a ∈ ρ̄(ϕ) iff ρ̄(ϕ) = ∅.
(Case bϕc): ρ̄(bϕc) = M iff ρ̄(¬d¬ϕe) = M iff ρ̄(d¬ϕe) = ∅ iff ρ̄(¬ϕ) = ∅ iff ρ̄(ϕ) = M. Otherwise,

ρ̄(bϕc) = ∅ iff ρ̄(¬d¬ϕe) = ∅ iff ρ̄(d¬ϕe) = M iff ρ̄(¬ϕ) = M iff ρ̄(ϕ) = ∅.
(Case ϕ1 = ϕ2): ρ̄(ϕ1 = ϕ2) = M iff ρ̄(bϕ1 ↔ ϕ2c) = M iff ρ̄(ϕ1 ↔ ϕ2) = M iff ρ̄(ϕ1) 4 ρ̄(ϕ2) = ∅ iff

ρ̄(ϕ1) = ρ̄(ϕ2). Otherwise, ρ̄(ϕ1 = ϕ2) = ∅ iff ρ̄(bϕ1 ↔ ϕ2c) = ∅ iff ρ̄(ϕ1 ↔ ϕ2) = ∅ iff ρ̄(ϕ1) 4 ρ̄(ϕ2) = M
iff ρ̄(ϕ1) , ρ̄(ϕ2).

(Case x ∈ ϕ): ρ̄(x ∈ ϕ) = M iff ρ̄(dx ∧ ϕe) = M iff ρ̄(x ∧ ϕ) , ∅ iff {ρ(x)} ∩ ρ̄(ϕ) , ∅ iff ρ(x) ∈ ρ̄(ϕ).
Otherwise, ρ̄(x ∈ ϕ) = ∅ iff ρ̄(dx ∧ ϕe) = ∅ iff ρ̄(x ∧ ϕ) = ∅ iff {ρ(x)} ∩ ρ̄(ϕ) = ∅ iff ρ(x) < ρ̄(ϕ).

(Case ϕ1 ⊆ ϕ2): ρ̄(ϕ1 ⊆ ϕ2) = M iff ρ̄(bϕ1 → ϕ2c) = M iff ρ̄(ϕ1 → ϕ2) = M iff M\ (ρ̄(ϕ1)\ ρ̄(ϕ2)) = M
iff ρ̄(ϕ1)\ρ̄(ϕ2) = ∅ iff ρ̄(ϕ1) ⊆ ρ̄(ϕ2). Otherwise, ρ̄(ϕ1 ⊆ ϕ2) = ∅ iff ρ̄(bϕ1 → ϕ2c) = ∅ iff ρ̄(ϕ1 → ϕ2) , M
iff M \ (ρ̄(ϕ1) \ ρ̄(ϕ2)) , M iff ρ̄(ϕ1) \ ρ̄(ϕ2) , ∅ iff ρ̄(ϕ1) * ρ̄(ϕ2).

�
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C Proofs of Results in Section 3

Proposition 7. For theories Γ with definedness, we have

• Γ ` ϕ = ϕ

• Γ ` ϕ1 = ϕ2 and Γ ` ϕ2 = ϕ3 implies Γ ` ϕ1 = ϕ3

• Γ ` ϕ1 = ϕ2 implies Γ ` ϕ2 = ϕ1

• Γ ` ϕ1 = ϕ2 implies Γ ` ψ[ϕ1/x] = ψ[ϕ2/x]

Hereψ can be any pattern, not only application context. In other words, the indiscernibility of identicals
holds in AML.

Proof. See [10, Lemma 50 and 60].
�

Theorem 8 (Soundness Theorem). Γ ` ϕ implies Γ � ϕ.

Proof. See [10, Theorem 13].
�

D Some Discussion about Definedness Symbol

Note the following property about definedness.

Proposition 21. Let M be an AML model satisfying (Definedness). Then M • a = M for all a ∈M, i.e.,
for all a, b ∈M there exists c ∈M such that b ∈ c • a.

Proof. Let d eM ⊆ M be the interpretation of definedness in M. Since M satisfies (Definedness), we
have d eM • a = M for all a ∈M. Then by pointwise extension, M • a = M.

�

For convenience and simplicity, when we construct an AML model, we assume there is a special
element, say $ ∈M, such that $•a = M for all a ∈M. Then, we use $ as the interpretation of definedness
in our model.

E Proof of Results in Section 4

Proposition 10. ` ∀x :s .ϕ = ¬∃x :s .¬ϕ

Proof. We prove the first one as follows:

∀x :s .ϕ = ∀x .x ∈ [[s]]→ ϕ // by definition
= ¬∃x .¬(x ∈ [[s]]→ ϕ) // by FOL reasoning
= ¬∃x .x ∈ [[s]] ∧ ¬ϕ // by FOL reasoning
= ¬∃x :s .ϕ // by definition

The second can be proved in the same way.
�

Proposition 12. For MSFOL terms ts and formulas ϕ,

ΓMSFOL
` ws(ts)→ ∃y :s . ts = y

ΓMSFOL
` ws(ϕ)→ (ϕ = >) ∨ (ϕ = ⊥).
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Proof. We first prove ΓMSFOL
` ws(t)→ ∃y :s . t = s. We carry out structural induction on t. When t is

a variable x :s, the proof obligation becomes ws(x :s)→ ∃y :s .x = y, i.e., x ∈ [[s]]→ ∃y .y ∈ [[s]] ∧ x = y,
which trivially holds. When t is a term f (t1, . . . , tn) with f ∈ Fs1...sn,s and t1 has sort s1, . . . , tn has sort
sn, the proof obligation becomes ws( f (t1, . . . , tn)) → ∃y :s . f (t1, . . . , tn) = t. Recall that MSFOL term
f (t1, . . . , tn) is translated to AML pattern f t1 · · · tn, the proof obligation becomes ws( f t1 · · · tn) →
∃y :s . f t1 · · · tn = t. By definition of the predicate ws, we have that ΓMSFOL

` ws( f t1 · · · tn) ↔
ws(t1) ∧ · · · ∧ ws(tn), because FV( f t1 · · · tn) =

⋃
i FV(ti). Additionally, by induction hypothesis on

t1, . . . , tn, we have that ΓMSFOL
` ws(ti)→ ∃yi :si . ti = yi, for 1 ≤ i ≤ n. Putting them together, we only

need to prove ΓMSFOL
`
∧

i ∃yi :si . ti = yi → ∃y :s . f t1 · · · tn = y. By FOL and equational reasoning, we
only need to prove ΓMSFOL

` ∀y1 :s1 . . . .∀yn :sn .∃y :s . f t1 · · · tn = y, which is exactly axiom (Function)
for f .

Next, we prove ΓMSFOL
` ws(ϕ) → (ϕ = >) ∨ (ϕ = ⊥). We carry out structural induction on ϕ.

Note that ϕ is an MSFOL formula, i.e., an AML pattern built from ⊥, or ϕ1 → ϕ2, or ∃x :s .ϕ, or
p(t1, . . . , tn) for predicate p ∈ Πs1...sn . Since the predicate-ness of patterns propagate through all AML
logic connectives and constructs, we only need to prove the two base cases: when ϕ is ⊥ and when
ϕ is p(t1, . . . , tn). For the former, it is trivial that the conclusion holds. For the latter, it is a direct
consequence of axiom (Predicate) for p.

�

Theorem 13. Ω `MSFOL ϕ implies ΓMSFOL
` ϕMSFOL.

Proof. We carry out structural induction on the length of Hilbert-style proof Ω `MSFOL ϕ. Note that
MmL and AML have a lot of proof rules in common. We only need to prove that the following two
MSFOL specific proof rules are derivable by the AML proof system:

(Sorted ∃-Quantifier) ϕ[ts/x :s]→ ∃x :s .ϕ

(Sorted ∃-Generalization)
ϕ1 → ϕ2

(∃x :s .ϕ1)→ ϕ2 if x :s < FV(ϕ2)

For (Sorted ∃-Quantifier), we need to prove that ΓMSFOL
` ϕ[ts/x :s] → ∃x .x ∈ [[s]] ∧ ϕ. To prove

that, we just need to prove ts is a functional pattern of sort s in AML. This has been proved in
Proposition 12.

For (Sorted ∃-Generalization), we only need to apply AML’s unsorted (∃-Generalization), and
the fact that ΓMSFOL

` (∃x :s .ϕ1)→ (∃x .ϕ1). The latter holds by standard FOL reasoning.
To sum up, we have proved the conclusion by induction on the length of the Hilbert-style proof

Ω `MSFOL ϕ that ΓMSFOL preserves all MSFOL reasoning.
�

The following proposition is useful in reasoning about the semantics of sorted quantification.

Proposition 22. Let M be a model, s be a sort, whose domain is denoted/defined as Ms = [[sM]]M.
Then for any valuation ρ, ρ̄(∃x :s .ϕ) =

⋃
a∈Ms

ρ[a/x](ϕ) and ρ̄(∀x :s .ϕ) =
⋂

a∈Ms
ρ[a/x](ϕ)

Proof. We prove for ∃x :s .ϕ. The proof of the other one is similar. By definition, ρ̄(∃x :s .ϕ) = ρ̄(∃x .x ∈
[[s]]∧ϕ) =

⋃
a∈M

(
ρ[a/x](x ∈ [[s]]) ∩ ρ[a/x](ϕ)

)
. Note that ρ[a/x](x ∈ [[s]]) = M iff ρ[a/x](x) ∈ ρ[a/x]([[s]]),

i.e., a ∈Ms; and ρ[a/x](x ∈ [[s]]) = ∅ iff a < Ms; see Proposition 4.
Therefore, ρ̄(∃x :s .ϕ) =

⋃
a∈Ms

(
ρ[a/x](x ∈ [[s]]) ∩ ρ[a/x](ϕ)

)
=

⋃
a∈Ms

ρ[a/x](ϕ). �

Theorem 15. For MSFOL theory Ω and model A �MSFOL Ω, there is an AML model M � ΓMSFOL whose
MSFOL-restricted model is exactly A. In addition, ΓMSFOL�ϕMSFOL iff Ω�MSFOLϕ.

Proof. Assume an MSFOL model A = ({As}s∈S, { fA} f∈F, {pA}p∈Π). We give an explicit construction on
M. Firstly, we define its domain, which (by abuse of notation) is also denoted as M. We let M
contain/include all the following elements/sets:
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• $, which is a distinguished element denoting definedness; see Appendix D;

• #, which is a distinguished element denoting the domain symbol;

• S, the sort set;

• As, for all s ∈ S;

• [Asi → [Asi+1 → [· · · → [Asn → As] . . . ]]] for all Fs1...sn,s , ∅ and 1 ≤ i ≤ n. Here [A → B] denotes
the set of all functions from A to B; intuitively, it is used to define the interpretations of functions
and their partial applications;

• Asi × · · · × Asn for all Πs1...sn , ∅ and 1 ≤ i ≤ n; intuitively, it is used to define the interpretations
of predicates and their partial applications.

Next, we define the following interpretations of constants:

• d eM = {$} and [[ ]]M = {#};

• sM = {s} for all s ∈ S;

• fM = { fA} for all f ∈ Fs1...sn,s; note that fA : As1 × · · · × Asn → As, under the curry-uncurry
isomorphism, is an element in [As1 → [As2 → [· · · → [Asn → As] · · · ]]]. Therefore, fA ∈M and that
fM is well-defined.

• for p ∈ Πε, i.e., constant predicate (atomic proposition) whose truth value is determined by the
structure A, we define pM = ∅ whenever pA is always false and pM = M whenever pA is always
true;

• for p ∈ Πs1...sn for n ≥ 1, we define pM = pA; note that pA ⊆ As1 × · · · × Asn is a subset of M, so pM
is well-defined.

Next, we define the application in M as the following:

• $ • a = M for all a ∈M;

• # • s = As for all s ∈ S; note that [[sM]]M = # • {s} = As;

• f • a = { f (a)} for all f ∈ [A → B] and a ∈ A; that is, application is interpreted as the normal
function application, if the first argument is a function and the second is an element of the
appropriate sort;

• for p ⊆ As for some s ∈ S, we define p • a = M iff a ∈ p and p • a = ∅ iff a 6
∫

p; intuitively, p is
the interpretation of a unary symbol, so when it is applied to an argument, the result is either ∅
(indicating false) or M (indicating true);

• p • a = {b | (a, b) ∈ p} for all p ⊆ A×B and a ∈ A; that is, application is interpreted as projections if
the first argument is an n-ary relation for n ≥ 2 and the second is an element of the appropriate
sort.

Next, we verify that M satisfies all axioms in ΓMSFOL
\ΩMSFOL; for axioms in ΩMSFOL, we will prove

that M satisfies them later. (Definedness) is satisfied by definition. (Nonempty Sort) is satisfied
because As , ∅ for all s ∈ S. (Function) for every f ∈ Fs1...sn,s is satisfied because fM is defined by
fA and the application • is interpreted as the normal function application. (Predicate) for every
p ∈ Πs1...sn is satisfied because pM is defined as a relation and the application • is interpreted as the
projection of relations, until it reaches the last argument (i.e., for unary relations), in which case either
∅ or M is returned. Therefore, M � ΓMSFOL

\ΩMSFOL.
Next, we prove the MSFOL-restricted model of M, denoted B, is exactly A. By definition, B =

({Bs}s∈S, { fB} f∈F) is an MSFOL structure consisting of:
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• the domain Bs = [[sM]]M, which equals As as we showed above, for all s ∈ S;

• the interpretation fB, for f ∈ Fs1...sn,s, is defined such that { fB(a1, . . . , an)} = fMa1 · · · an for all a1 ∈

As1 , . . . , an ∈ Asn ; note that fMa1 · · · an = { fA}a1 · · · an = { fA(a1, . . . , an)}, so we have fB(a1, . . . , an) =
fA(a1, . . . , an), for all a1 ∈ As1 , . . . , an ∈ Asn .

Therefore, B is exactly A (up to isomorphism).
Finally, we show that for any MSFOL formula ϕ, A �MSFOL ϕ iff M � ϕMSFOL. This immediately

implies that M � ΩMSFOL and that Ω �MSFOL ϕ iff ΓMSFOL � ϕMSFOL. For clarity, we move rest of the
proof to Lemma 23. �

Lemma 23. Under the notations of the proof of Theorem 15, we have that every MSFOL valuation derives a
corresponding AML valuation ρv, with ρv(x) = v(x :s) for all MSFOL variable x. Then for every MSFOL term
t of sort s and MSFOL formula ϕ, we have v̄(t) = ρv(t) and that (a) v̄(ϕ) = true iff ρv(ϕMSFOL) = M, and (b)
v̄(ϕ) = false iff ρv(ϕMSFOL) = ∅.

Proof. We fist prove v̄(t) = ρv(t) by structural induction on t. When t is x :s, the conclusion holds by
definition of ρv. When t is f (t1, . . . , tn), the conclusion holds by the induction hypotheses for t1, . . . , tn
and the definition of fM.

Next we prove both (a) and (b) simultaneously by carrying out structural induction on ϕ. When
ϕ is ⊥, we have v̄(ϕ) = false, always, and ρv(ϕMSFOL) = ρv(ws(⊥) → ⊥ = >) = ∅. When ϕ is
ϕ1 ∧ ϕ2, we have v̄(ϕ) = v̄(ϕ1 ∧ ϕ2). Suppose it is true, then v̄(ϕ1) = v̄(ϕ2) = true by the semantics of
MSFOL. By induction hypotheses on ϕ1 and ϕ2, we have ρv(ϕMSFOL

1 ) = ρv(ϕMSFOL
2 ) = M. Therefore,

ρv(ϕMSFOL) = ρv(ws(ϕ)→ ϕ = >) = ρv((ws(ϕ1)→ ϕ1 = >)∧(ws(ϕ2)→ ϕ2 = >) = M. We can prove the
case when v̄(ϕ1∧ϕ2) = false similarly and both reasonings are reversible. Whenϕ is ∃x :s .ϕ1, we have
v̄(ϕ) = v̄(∃x :s .ϕ1). Suppose it is true, then there exists an element a ∈ As such that v[a/x :s](ϕ1) = true.
By inductive hypothesis, ρv[a/x](ϕMSFOL

1 ) = M, i.e., ρv[a/x](ws(ϕ) → ϕ1 = ⊥) = M. Note that the
new valuation ρv[a/x] satisfies ws(ϕ1), so we have ρv[a/x](ϕ1 = ⊥) = M, i.e., ρv[a/x](ϕ1) = M,
i.e., ρ̄(∃x :s .ϕ1) = M, i.e., ρ̄(ws(ϕ) → ∃x :s .ϕ1 = >), i.e., ρ̄(ϕMSFOL) = M. Next, suppose v̄(ϕ) =

v̄(∃x :s .ϕ1) = false. Follow a similar reasoning we show that ρv[a/x](ws(ϕ1) → ϕ1 = >) = ∅ for all
a ∈ As, i.e., ρ̄(ws(ϕ)→ ∃x :s .ϕ1 = >) = ∅, which finishes the proof. Finally, when ϕ is p(t1, . . . , tn), the
conclusion follows by that v̄(t) = ρv(t) and the definition of pM.

�

F Instance: Constructors and Term Algebras

Constructors are extensively used in building programs and data, as well as semantic structures to
define and reason about languages and programs. They generate term algebras, whose elements are
terms and functions are constructors that build terms. In the broader context of defining formal
semantics of languages, term algebras, as a special case of initial algebras, play an important role and
have led to many applications and tools (see, e.g., [27, 28, 12]). In this section, we show how to define
constructors and term algebras using the least fixpoint patterns that support inductive reasoning. The
technique shown here can be naturally applied to defining initial algebra semantics [24, 27], which is
an important theoretical framework whose applications include context free grammars for formal
syntax and denotational semantics for formal semantics.

Let us fix an MSFOL signature ({Term},C, ∅) with one sort Term, a set C of functions, called
constructors, where at least one of them is a constant, and no predicates. The same technique applies
to multiple sorts. We use c, d, . . . to denote constructors. The set of C-terms, denoted as TC, is defined
as follows:

t F c ∈ Cε,Term

| c(t1, . . . , tn) for c ∈ CTerm ...Term,Term with n ≥ 1
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The C-term algebra is an MSFOL structure T = (TC, {cT}c∈C, ∅) with domain TC and interpretations
cT : TC × · · · × TC → TC for c ∈ CTerm...Term,Term such that cT(t1, . . . , tn) is c(t1, . . . , tn) when n ≥ 1 and c
when n = 0.

Now we define an AML theory ΓTerm that faithfully captures the term algebra T. Since T is
an MSFOL structure, we let ΓTerm contain all axioms in Section 4. In addition, we specify (1) all
constructors are injective functions; and (2) the domain of Term is precisely TC, as the following
axioms:

(No Confusion I, for all dinstinct c, d ∈ C of arities n and m, )
∀x1 :Term · · · ∀xn :Term .∀y1 :Term · · · ∀ym :Term .

cx1 · · · xn , dy1 · · · ym

(No Confusion II, for all c ∈ C)
∀x1 :Term · · · ∀xn :Term .∀x′1 :Term · · · ∀x′n :Term .

cx1 · · · xn = cx′1 · · · x
′

n → x1 = x′1 ∧ · · · ∧ xn = x′n
(Inductive Domain) [[Term]] = µD .

∨
c∈C c D · · · D︸    ︷︷    ︸

as many D’s as the arity of c

Intuitively, (No Confusion I) says different constructors build different terms; (No Confusion II)
says that constructors are injective functions; (Inductive Domain) forces that [[Term]] is the smallest
set closed under all constructors, yielding exactly TC, as shown in the following proposition.

Proposition 24. For any AML model M � ΓTerm, its MSFOL-restricted model as defined in Definition 14
is exactly T. In particular, [[Term]]M = TC.

The proof follows from the proof of [9, Proposition 22], which there was done for the more general
context of MmL, see Section G. Therefore, AML can define term algebras up-to-isomorphism, and not
only up-to-elementary-equivalence as with FOL [41].

Proof. By Theorem 30 and [9, Proposition 22]. �

As a direct corollary of Proposition 24, the AML axiomatization ΓNAT of (N,+,×) as defined in
Section 4.5 captures the standard model of natural numbers, which is a term algebra generated from
{0, succ}, up to isomorphism. This is shown as the following proposition.

Proposition 18. The MSFOL-restricted model M of ΓNAT is exactly (N,+,×), up to isomorphism.

Proof. By applying Proposition 24 on ΓNAT. �

Proposition 17. ΓNAT
` 0 ∈ X ∧ (∀y :Nat .y ∈ X→ (succ y) ∈ X)→ ∀x :Nat .x ∈ X.

Proof. To prove∀x :Nat .x ∈ X, we just need to show that [[Nat]] ⊆ X. Recall that [[Nat]] = µD .0∨succ D,
so we need to show µD .0 ∨ succ D → X. By (Knaster-Tarski), it suffices to prove 0 ∨ succ X → X,
which boils down to proving (1) 0 → X and (2) succ X → X. Firstly, (1) is directly proved by 0 ∈ X.
Secondly, (2) is proved by proving z ∈ succ X → z ∈ X for all z, which then boils down to proving
∃y .y ∈ X ∧ z = succ y→ z ∈ X, which is then proved from ∀y :Nat .y ∈ X→ succ y ∈ X. �

G Instance: Matching µ-Logic (MmL)

Here we show in full detail how to define matching µ-logic (abbreviated MmL) [9]. MmL is a
many-sorted FOL variant for pattern matching, with direct support for inductive reasoning and least
fixpoints. We choose MmL because it is so far the best unifying logic as the foundation of the K
framework and many important logics such as FOL with least fixpoints, separation logic, modal
logic, temporal logics, dynamic logic, and reachability logic have all been defined as theories and
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notations in MmL. The fact that we can define MmL in AML immediately shows that AML can also
subsume the aforementioned logics.

As we will see, MmL is essentially an extension of AML with many-sorted syntax and structures
or that AML is the fragment of MmL with only one sort, one binary symbol (for application), and
several constant symbols. The results shown in this section show that we can safely eliminate the
many-sorted infrastructure of MmL without losing any generality or power in model specification
or logic reasoning.

G.1 Matching µ-Logic Preliminaries

Definition 25 ([9, Definition 19]). A matching µ-logic signature (S,V,Σ) contains a sort set S, a variable
set V = EV∪SV with element variables EV = {EVs}s∈S and set variables SV = {SVs}s∈S, and a many-sorted
symbol set Σ = {Σs1...sn,s}s1,...,sn,s∈S. MmL formulas, also called patterns, are:

ϕs F x :s ∈ EVs | X :s ∈ SVs | σ(ϕs1 , . . . , ϕsn ) where σ ∈ Σs1...sn,s

| ϕs ∧ ϕ
′

s | ¬ϕs | ∃x :s′ .ϕs | µX :s .ϕs where ϕs positive in X :s

An MmL structure M = ({Ms}s∈S, {σM}σ∈Σ) contains a nonempty domain Ms for every s ∈ S and an
interpretation σM : Ms1 × · · · × Msn → P(Ms) for every σ ∈ Σs1...sn,s. We extend σM to its pointwise
extension, σM : P(Ms1 ) × · · · × P(Msn )→ P(Ms), defined as σM(A1, . . . ,An) =

⋃
ai∈Ai,1≤i≤n σ(a1, . . . , an) for

Ai ⊆ Msi , 1 ≤ i ≤ n. An M-valuation ρ : V → M ∪ P(M) is one such that ρ(x :s) ∈ Ms and ρ(X :s) ⊆ Ms
for all x :s,X :s ∈ V. Its extension ρ̄ is defined:

ρ̄(x :s) = {ρ(x :s)} ρ̄(X :s) = ρ(X :s) ρ̄(ϕs ∧ ϕ′s) = ρ̄(ϕs) ∩ ρ̄(ϕ′s)
ρ̄(σ(ϕs1 , . . . , ϕsn )) = σM(ρ̄(ϕs1 ), . . . , ρ̄(ϕsn )) for σ ∈ Σs1...sn,s

ρ̄(¬ϕs) = M \ ρ̄(ϕs) ρ̄(∃x :s′ .ϕs) =
⋃

a∈Ms′
ρ[a/x :s′](ϕs)

ρ̄(µX :s .ϕs) = µF
ρ
ϕ,X : s with F ρ

ϕ,X : s(A) = ρ[A/X :s](ϕ) for A ⊆Ms

We write M �MmL ϕs iff ρ̄(ϕ) = Ms for all ρ, and if Ω is an MmL theory then we write Ω �MmL ϕs iff
M �MmL ϕs for all MmL models M �MmL Ω. Provability relation Ω `MmL ϕs is defined in [9, Fig. 1].

G.2 Defining MmL Syntax and Proofs in AML

Given an MmL signature (S,V,Σ), we define a corresponding AML signature ΣMmL and an AML
theory ΣMmL that captures (S,V,Σ). Also, we show how to translate an MmL theory Ω to an AML
theory ΩVALID, preserving the semantics and provability. We basically follow the definition of MSFOL
shown in Section 4, with some special treatments to deal with MmL symbols and connectives.

Let us define Sort ∈ ΣMmL to represent the sort set and s ∈ ΣMmL to represent each sort s ∈ S, as in
MSFOL, with axiom [[s]] , ⊥ that specifies the nonemptiness of domains. For every σ ∈ Σs1...sn,s, we
define a corresponding constant σ ∈ ΣMmL and use the following axiom to specify its arity:

(Arity) σ [[s1]] · · · [[sn]] ⊆ [[s]]

Intuitively, (Arity) says the result of applying σ to arguments of appropriate sorts is contained in
the domain of s. Note that (Arity) is weaker than (Function) in Section 4, as the latter requires
additionally that σ produces singletons.

Let ΓMmL denotes the set of axioms we have defined so far. We translate an MmL pattern ϕs to an
AML pattern ϕMmL2AML

s as follows:

(x :s)MmL2AML
≡ x (X :s)MmL2AML

≡ X ∃x :s′ .ϕs ≡ ∃x :s′ .ϕMmL2AML
s

(ϕs ∧ ψs)MmL2AML
≡ ϕMmL2AML

s ∧ ψs
MmL2AML µX :s .ϕs ≡ µX .ϕMmL2AML

s
(σ(ϕs1 , . . . , ϕsn ))MmL2AML

≡ σϕMmL2AML
s1

· · · ϕMmL2AML
sn

(¬ϕs)MmL2AML
≡ ¬sϕMmL2AML

s where ¬sϕAML
s ≡¬ϕAML

s ∧ [[s]] called sorted negation
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In short, the MmL2AML translation is almost an identity function. The arities of MmL symbols
have been specified in ΓMmL. The sorts of MmL variables are dropped and will be recovered in
Proposition 26. by the “well-sorted” patternsws(ϕ) defined as in Definition 11. One special treatment
has been made to faithfully capture MmL negation ¬ϕs, which is matched by all elements of sort s
that does not match ϕs. Therefore, we define AML sorted negation ¬sϕ ≡ (¬ϕ) ∧ [[s]] to match the
semantics of MmL negation.

The following proposition shows that MmL patterns are wellformed AML patterns if sort con-
straints on variables are met. Note that we need to extend the definition of “well-sorted” patterns
ws(ϕ) defined in Definition 11. There, it was defined for only MSFOL variables, which are like
AML element variables. For AML set variables, we define the well-sorted pattern/predicate for X as
X ⊆ [[s]], that is, we change ∈ to ⊆, because X can be assigned to any set, rather than only a singleton.

Proposition 26. For MmL pattern ϕs of sort s, ΓMmL
` ws(ϕs)→ ϕAML

s ⊆ [[s]].

Proof. We carry out structural induction on ϕs. When ϕs is x :s, we need to prove ΓMmL
` ws(x :s) →

x ⊆ [[s]], which holds trivially. When ϕs is X :s, we need to prove ΓMmL
` ws(X :s) → X ⊆ [[s]],

which holds trivially. When ϕs is ϕ1 ∧ ϕ2, we need to prove, by induction hypothesis, that ΓMmL
`

ϕAML
1 ⊆ [[s]] ∧ ϕAML

2 ⊆ [[s]] → ϕAML
s ⊆ [[s]], which holds trivially. When ϕs is ¬ϕ1, we nee to prove, by

induction hypothesis, that ΓMmL
` ϕAML

1 ⊆ [[s]] → (¬ϕAML
1 ∧ [[s]]) ⊆ [[s]], which holds by simple FOL

reasoning. When ϕs is ∃x :s′ .ϕ1, we need to prove, by induction hypothesis, that ΓMmL
` ϕAML

1 ⊆

[[s]] → ∃x :s′ .ϕAML
1 ⊆ [[s]], which holds by noting that x < FV([[s]]). When ϕs is µX :s .ϕ1, we need to

prove, by induction hypothesis, that ΓMmL
` X ⊆ [[s]] ∧ ϕAML

1 ⊆ [[s]] → µX .ϕAML
1 ⊆ [[s]]. By Deduction

Theorem [10, Theorem 92], we need to prove that ΓMmL
∪ {X ⊆ [[s]]} ∪ {ϕAML

1 ⊆ [[s]]} ` µX .ϕAML
1 ⊆ [[s]].

By simple AML reasoning, we can change ⊆ to→ and the proof obligation becomes µX .ϕAML
1 → [[s]].

By (Knaster-Tarski), we need to prove ϕAML
1 [[[s]]/X]→ [[s]], which holds by the induction hypothesis

on ϕAML
1 [[[s]]/X], whose size (by certain reasonable measurement) is less than that of µX .ϕAML

1 . To sum
up, we prove by structural induction on ϕ the conclusion. �

MmL axioms and theories can be handled directly. For an MmL axiom ψs, we define its AML
translation ψVALID

s ≡ ws(ψ) → ψAML
s = [[s]], which specifies that ψAML

s matches all elements of sort s if
its variables have appropriate sorts. We define ΩVALID = {ϕVALID

| ϕ ∈ Ω} for a set of MmL axioms Ω.
Finally, let ΓMmL include all translated axioms, i.e., ΩVALID

⊆ ΓMmL.

Theorem 27. Ω `MmL ϕ implies ΓMmL
` ϕVALID.

Proof. We refer readers to [9, Fig. 1] for the proof system of MmL. At a high level, MmL proof
system is a many-sorted version of the AML proof system (Fig. 4) where AML’s constant symbols
are extended to MmL’s many-sorted symbols and AML’s application contexts are extended to MmL’s
symbol contexts [9, Definition 10].

The proof rules of MmL are also divided into four categories: (many-sorted) FOL reasoning,
(many-sorted symbol) frame reasoning, (many-sorted) fixpoint reasoning, and two technical rules.
In the following, we carry out mathematical induction on the length of the MmL proof Ω `MmL ϕ and
show that all MmL proof rules can be derived in AML.

For MmL proof rules that handle many-sorted FOL reasoning, the reasoning is similar to that of
MSFOL (Theorem 13). For MmL proof rules that handle many-sorted symbol frame reasoning, we
note that every MmL symbol context becomes AML application context after MmL2AML translation.
Indeed, for MmL many-sorted symbolσ ∈ Σs1...sn,s and MmL symbol contextσ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn),
its AML translation

σ ϕAML
1 · · · ϕAML

i−1 � ϕ
AML
i+1 · · · ϕ

AML
n ,

is an application context, where � appears under i nested (AML’s binary) applications. Therefore,
MmL frame reasoning proof rules are automatically subsumed in AML. The same reasoning holds
for the two technical proof rules of MmL (the last two rules of [9, Fig. 1]). For MmL’s (many-sorted)
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fixpoint proof rules, we can prove them using the corresponding AML’s (unsorted) fixpoint proof
rules, noting that the sorts of MmL variables are dropped after the MmL2AML translation. To sum up,
we proved by induction that MmL’s many-sorted reasoning is preserved after translation to AML. �

G.3 Subsuming MmL Models in AML

As in Section 4.3, we show that MmL structures are subclass of AML structures.

Definition 28. Let (S,V,Σ) be an MmL signature and (M, • , {σM}σ∈ΣMmL ) be an AML model with
M � ΓMmL. Its MmL-restricted structure is an MmL structure, denoted Mr = ({Mr

s}s∈S, {σMr }s∈S), consisting
of

• a domain Mr
s = [[sM]]M for s ∈ S;

• an interpretation σMr (a1, . . . , an) = σM a1 · · · an for σ ∈ Σs1...sn,s, a1 ∈Mr
s1

, . . . , an ∈Mr
sn

.

Theorem 29. Let Ω be any MmL theory and M0 be any MmL model of Ω. There exists an AML model M
with M � ΓMmL whose MmL-restricted structure Mr is exactly M0. In addition, ΓMmL � ϕVALID iff Ω �MmL ϕ.

Proof. Assume an MmL model M0 = ({M0
s }s∈S, {σM0 }σ∈Σ). We give an explicit construction of the AML

model M. We first define its domain, also denoted M, by letting it contain/include all the following
elements/sets:

• $ for definedness and # for domain symbol, as in the proof of Theorem 15;

• S, the sort set;

• M0
s for all s ∈ S;

• [M0
si
→ [M0

si+1
→ [· · · → [M0

sn
→ P(M0

s )] . . . ]]] for all Σs1...sn,s , ∅ and 1 ≤ i ≤ n; this is for
interpreting symbols and their partial applications; note that powerset semantics of MmL is
captured by the co-domain P(M0

s ).

Next, we define the following interpretations of constants:

• d eM = {$} and [[ ]]M = {#};

• sM = {s} for all s ∈ S;

• σM = {σM0 } for all σ ∈ Σs1...sn,s; note that σM0 : M0
s1
× · · · ×M0

sn
→ P(M0

s ) is an element in [M0
s1
→

[M0
s1
→ [· · · → [M0

sn
→ P(M0

s )] · · · ]]] under the curry-uncurry isomorphism.

Next, we define the application in M as follows:

• $ • a = M for all a ∈M;

• # • s = Ms for all s ∈ S; note that [[sM]]M = # • s = Ms

• σ • a = {σ(a)} for all σ ∈ [A → B] if B is a function space; and σ • a = σ(a) for all B of the form
P(M0

s ), for some s ∈ S.

We split the last case into two cases, depending on if B is a function space. If not, then σ • a = σ(a) is
already a set in P(M0

s ).
We first verify that M � ΓMmL

\ΩVALID and prove M � ΩVALID later. For the former, (Definedness)
and (Nonempty Sort) are satisfied as in Theorem 16. (Arity) for σ ∈ Σs1...sn,s is satisfied, because σM is
defined as σM0 and application is interpreted as the normal function application.

Next, we prove that the restricted model Mr is exactly M. By definition, Mr = ({Mr
s}s∈S, {σMr }σ∈Σ) is

an MmL model defined as follows:
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• the domain Mr
s = [[sM]]M, which equals M0

s as mentioned, for all s ∈ S;

• the interpretation σMr , for σ ∈ Σs1...sn,s, is defined as σMr (a1, . . . , an) = σMa1 · · · an, for all a1 ∈

M0
s1
, . . . , an ∈M0

sn
; note thatσMa1 · · · an = {σM0 }a1 · · · an = σM0 (a1, . . . , an), so we haveσMr (a1, . . . , an) =

σM0 (a1, . . . , an), for all a1 ∈M0
s1
, . . . , an ∈M0

sn
.

Therefore, Mr is exactly M0 up to isomorphism.
Finally, we prove that ΓMmL � ϕVALID iff Ω �MmL ϕ, which immediately implies that M � ΩVALID.

For clarity, we move the proof to Theorem 30.
�

Theorem 30. Under the notations in the proof of Theorem 29 and the MmL2AML translation, any Mr-
valuation ρ of MmL derives an M-valuation ρAML of AML, with ρAML(xs) = ρ(x :s) and ρAML(Xs) = ρ(X :s).
Furthermore, ρAML(ϕAML

s ) = ρ̄(ϕs) for all ρ; and ΩVALID
|= ϕVALID

s iff Ω |=MmL ϕs for all Ω.

Proof. For simplicity, we drop the sort s and write ϕs as ϕ and ϕAML
s as ϕAML.

We first prove ρAML(ϕAML) = ρ̄(ϕ) by structural induction on ϕ.
Suppose ϕ ≡ x :s. Then ρAML((x :s)AML) = ρAML(xs) = {ρAML(xs)} = {ρ(x :s)} = ρ̄(x :s).
Suppose ϕ ≡ X :s. Then ρAML((X :s)AML) = ρAML(Xs) = ρAML(Xs) = ρ(X :s) = ρ̄(X :s).
Suppose ϕ ≡ σ(ϕ1, . . . , ϕn). Then ρAML((σ(ϕ1, . . . , ϕn))AML) = ρAML(σϕAML

1 · · ·ϕAML
n )

= σMρAML(ϕAML
1 ) · · ·ρAML(ϕAML

n ) = σMρ̄(ϕ1) · · · ρ̄(ϕn) = σMr (ρ̄(ϕ1), . . . , ρ̄(ϕn)) = ρ̄(σ(ϕ1, . . . , ϕn)).

Suppose ϕ ≡ ϕ1 ∧ϕ2. Then ρAML((ϕ1 ∧ϕ2)AML) = ρAML(ϕAML
1 ∧ϕAML

2 ) = ρAML(ϕAML
1 )∩ ρAML(ϕAML

2 ) =
ρ̄(ϕ1) ∩ ρ̄(ϕ2) = ρ̄(ϕ1 ∧ ϕ2).

Suppose ϕ ≡ ¬ϕ1. Then ρAML((¬ϕ1)AML) = ρAML(¬ϕAML
1 ∧ [[s]]) = ρAML((¬ϕ1)AML) ∧ ρAML([[s]]) =

(M \ ρAML(ϕAML
1 )) ∩ [[sM]]M = [[sM]]M \ ρAML(ϕAML

1 ) = Mr
s \ ρ̄(ϕ1) = ρ̄(¬ϕ1).

Suppose ϕ ≡ ∃x :s .ϕ1. Then ρAML((∃x :s .ϕ1)AML) = ρAML(∃xs :s .ϕAML
1 )

=
⋃

a∈[[sM]]M
ρAML[a/xs](ϕAML

1 ) =
⋃

a∈Mr
s
ρ[a/x :s](ϕ1) = ρ̄(∃x :s .ϕ1).

Supposeϕ ≡ µX :s .ϕ1. ThenρAML((µX :s .ϕ1)AML) = ρAML(µXs .ϕAML
1 ) = µF

ρAML

ϕAML
1 ,Xs , whereF ρAML

ϕAML
1 ,Xs (A) =

ρAML[A/Xs](ϕAML
1 ) for all A ⊆ M. Note that for all A ⊆ Mr

s = [[sM]]M ⊆ M, by inductive hy-

pothesis, ρAML[A/Xs](ϕAML
1 ) = ρ[A/X :s](ϕ1). On the other hand, ρ̄(µX :s .ϕ1) = µF

ρ
ϕ1,X : s where

F
ρ
ϕ1,X : s(A) = ρ[A/X :s](ϕ1) for all A ⊆ Mr

s, so F ρ
ϕ1,X : s and F ρAML

ϕAML
1 ,Xs are equal over Mr

s, and thus have the

same least fixpoints.
In conclusion, ρAML(ϕAML

s ) = ρ̄(ϕs) for all Mr-valuations ρ.
Next, we show that Mr �MmL ϕs iff M � ϕVALID

s . Recall that ϕVALID
s ≡ ψ → (ϕAML

s = [[s]]) where
ψ ≡

∧
xs′∈FV(ϕAML

s ) xs′
∈ [[s′]] ∧

∧
Xs′∈FV(ϕAML

s ) Xs′
⊆ [[s′]].

(Case “if”): Suppose M � ϕVALID
s and we want to show that Mr �MmL ϕs. Let ρ be any Mr-valuation.

Then we know ρAML(ψ) = M, as ρAML is derived from ρ and thus it evaluates variables into their
corresponding domains. Since M � ϕVALID

s , we have ρAML(ϕAML
s = [[s]]) = M, which implies that

ρAML(ϕAML
s ) = ρAML([[s]]), i.e., ρ̄(ϕs) = Mr

s. Since ρ is arbitrary, we have Mr �MmL ϕs.
(Case “only if”): Suppose Mr �MmL ϕs and we want to show that M � ϕVALID

s . Let ρ∗ be any
M-valuation. There are two cases. If there exists a variable xs′ (or Xs′ ) such that ρ∗(xs′ ) < Mr

s′ (or
ρ∗(Xs′ ) * Mr

s′ ), then ρ∗(ψ) = ∅, and thus ρ∗(ϕVALID
s ) = M. If otherwise, then all variables evaluate

to their corresponding domain sets, and thus there exists an Mr-valuation ρ such that ρ∗ = ρAML.
Then, ρ∗(ϕAML

s = [[s]]) = M iff ρ∗(ϕAML
s ) = ρ∗([[s]]) iff ρAML(ϕAML

s ) = Mr
s iff ρ̄(ϕs) = Mr

s, which holds by
assumption.

In conclusion, M � ϕVALID
s iff Mr �MmL ϕs.
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Finally, we show that ΩVALID
|= ϕVALID

s iff Ω |=MmL ϕs. Recall that ΩVALID = ΓMmL
∪ {ϕVALID

| ϕ ∈ Ω}.
(Case “if”): Suppose Ω �MmL ϕs and we want to show that ΩVALID � ϕAML

s . Consider any AML
model M such that M � ΩVALID. Note that ΩVALID

⊇ ΓMmL. By Theorem 29, its restricted model Mr is an
MmL model. We just proved in the above that M � ϕVALID

s iff Mr �MmL ϕs for any ϕs. Since M � ΩVALID,
we have Mr �MmL Ω, which implies Mr �MmL ϕs, which implies M � ϕAML

s . Since M is arbitrary, we
have ΩVALID � ϕAML

s .
(Case “only if”). Suppose ΩVALID � ϕVALID

s and we want to show that Ω �MmL ϕs. Consider any
MmL model M∗ such that M∗ �MmL Ω. By Theorem 29, there exists an AML model, say M, whose
restricted model is exactly M∗; in other words, M∗ = Mr. Therefore, we have Mr �MmL Ω, which is
equivalent to M � ΩVALID as we just proved. By assumption, M � ϕVALID

s , which then implies that
Mr
`MmL ϕs. Since Mr is an arbitrary MmL model, we have Ω �MmL ϕs.

�

H Proof of Results about Order-Sorted Algebras (OSA)

Our main theorem for OSA is Theorem 32. We first define the OSA-restricted models, similar to
Definition 28.

Definition 31. Let (M, • , {σM}σ∈ΣOSA ) be an AML model of ΓOSA. Its OSA-restricted model is an OSA,
denoted A = ({As}s∈S, { f s1...sn,s

A } f s1 ...sn ,s∈F), with

• a carrier set As = [[sM]]M for every s ∈ S;

• an interpretation f s1...sn,s
A : As1 × · · · × Asn → As, defined such that

{ f s1...sn,s
A (a1, . . . , an)} = fM • a1 • · · · • an for all a1 ∈ As1 , . . . , an ∈ Asn .

The above construction of A is well-defined, because its subset relation is enforced by axiom
(Subsort) and its subsort-overloaded functions f s1...sn,s

A and f s′1...s
′
n,s′

A coincide on their overlapped part
as they are both defined by fM.

Theorem 32. (S,≤,F)-OSA are exactly the OSA-restricted ΓOSA-models.

Proof. All restricted ΓOSA-models w.r.t. (S,≤,F) are (S,≤,F)-OSA, by definition. We just need to show
the other direction. For any (S,≤,F)-OSA, say A = ({As}s∈S, { f s1...sn,s

A } f s1 ...sn ,s∈F), we need find an AML
model M � ΓOSA, whose restricted model is exactly A. We first define its domain, also denoted M, by
letting it contain/include the following elements/sets:

• $ for definedness and # for domain;

• S, the sort set;

• As, for all s ∈ S;

• [Asi → [Asi+1 → [· · · → [Asn → As] . . . ]]] for all Fs1...sn,s , ∅ and 1 ≤ i ≤ n;

Next, we define following interpretations of constants:

• d eM = {$} and [[ ]]M = {#};

• sM = {s} for all s ∈ S;

• fM = { f s′1...s
′
n,s′

A } for all f ∈ Fs1...sn,s, where f s′1...s
′
n,s′ denotes the overloaded copy of f with the largest

arity (w.r.t. subsorting).

Next, we define the application function in M as the following:
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• $ • a = M for all a ∈M;

• # • s = As for all s ∈ S; note that [[sM]]M = # • {s} = As;

• f • a = { f (a)} for all f ∈ [A→ B] and a ∈ A.

The unmentioned cases are irrelevant.
Now we verify that M satisfies all axioms in ΓOSA. Indeed, we only need to consider (Subsort),

which is satisfied, because [[s]]M = As ⊆ As′ = [[s′]]M, for all s ≤ s′. Therefore, M � ΓOSA.
Finally, we prove that the restricted model Mr is exactly A. By definition, Mr = ({Mr

}s∈S, { fMr } f∈F)
is an (S,≤,F)-OSA defined as follows:

• the domain Mr
s = [[sM]]M, which equals As as we showed above, for all s ∈ S;

• the interpretation f s1...sn,s
Mr , for every f s1...sn,s ∈ Fs1...sn,s, is defined such that { f s1...sn,s

Mr (a1, . . . , an)} =

fMa1 · · · an for all a1 ∈ A1, . . . , an ∈ An; note that fMa1 · · · an = { f s′1...s
′
n,s′

A }a1 · · · an = { f s′1...s
′
n,s′

A (a1, . . . , an)} =
{ f s1...sn,s

A (a1, . . . , an)}, because f s1...sn,s and f s′1...s
′
n,s′ are subsort overloaded. Thus, we have fMr (a1, . . . , an) =

fA(a1, . . . , an) for all a1 ∈ A1, . . . , an ∈ An.

Therefore, Mr is exactly A up to isomorphism. �

I Proof of Results in Section 7

Proposition 33. Under the above axioms, ` [[List Nat]] ⊆ [[List Int]].

Proof. By (Inductive List), we need to prove ` (µL .nil ∨ cons [[Nat]] L) ⊆ [[List Int]]. By [10], we re-
place “⊆” with “→”: ` (µL .nil ∨ cons [[Nat]] L) → [[List Int]]. By (Knaster Tarski), we need to prove
` nil ∨ cons [[Nat]] [[List Int]]
→ [[List Int]]. Since ` [[Nat]] ⊆ [[Int]], by (Framing), we have ` cons [[Nat]] [[List Int]]→ cons [[Int]] [[List Int]].
Then by FOL reasoning, we need to prove that ` nil∨ cons [[Int]] [[List Int]]→ [[List Int]], which is done
by (Pre-Fixpoint). �

J Using AML to Reason about Transition Systems

Here we show more details about the dynamic properties/modalities that can be define in AML as
patterns; see also [9, 10].

• Cfg is the configuration sort, and [[Cfg]] is matched by all program configurations; In the
following, we use ϕ,ψ to denote configuration patterns, i.e., ϕ,ψ ⊆ [[Cfg]];

• ¬Cfgϕ ≡ (¬ϕ) ∧ [[Cfg]] is matched by all configurations that do not match ϕ;

• �ϕ, called one-path next, is matched by all states which have a next state matchingϕ; specifically,
�[[Cfg]] is matched by all non-terminating states;

• �ϕ ≡ ¬Cfg � ¬Cfgϕ, called all-path next, is matched by all state whose all next states match ϕ;
specifically, �⊥ is matched by all terminating states;

• ♦ϕ ≡ µX .ϕ ∨ �X, called (one-path) eventually, is matched by all states who can reach to
a state matching ϕ in finitely many rewrite steps; by unfolding the fixpoint we can prove
♦ϕ = ϕ ∨ �♦ϕ = ϕ ∨ �ϕ ∨ � � ♦ϕ = . . . .

• �ϕ ≡ ¬Cfg♦¬Cfgϕ, called (all-path) always, is matched by states whereϕ holds now and hereafter
on all possible future states;
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• WF ≡ µX . �X = µX . ��X, called well-founded states, is matched by all states that do not have
an infinite execution path;

• ♦wϕ ≡ WF → ♦ϕ, called weak eventually, is matched by states that either not well-founded or
eventually reaches ϕ in finitely many steps; it is used to define one-path reachability.

Let us review the invariant claim that we are about to prove:

Φinv ≡ ∀n : Int .∀s : Int . (Ψ(LOOP,n, s) ∧ n ≥ 0)→ ♦wΨ(. , 0, s + n(n + 1)/2)

By definition of ♦wϕ, we only need to prove the above invariant for well-founded states, leading us
to prove the following (weakened) claim:

Φ′inv ≡ µX . � �X→ ∀n : Int .∀s : Int . (Ψ(LOOP,n, s) ∧ n ≥ 0)→ ♦wΨ(. , 0, s + n(n + 1)/2)

By (Knaster-Tarski), we need to prove that

ΓIMP
` ��Φinv → ∀n : Int .∀s : Int . (Ψ(LOOP,n, s) ∧ n ≥ 0)→ ♦wΨ(. , 0, s + n(n + 1)/2)

By FOL reasoning, we can remove the quantifiers ∀n : Int .∀s : Int:

ΓIMP
` ��Φinv → (Ψ(LOOP,n, s) ∧ n ≥ 0)→ ♦wΨ(. , 0, s + n(n + 1)/2)

By FOL reasoning, we can do a case analysis on Ψ(LOOP,n, s)∧n ≥ 0 and get two cases: (a) Ψ(LOOP,n, s)∧
n = 0, i.e., Ψ(LOOP, 0, s); and (b) Ψ(LOOP,n, s) ∧ n ≥ 1. For case (a), the loop condition fails and we can
execute the program/configuration Ψ(LOOP, 0, s) symbolically till its terminating configuration. For
case (b), the loop condition is satisfied, and we execute its loop body symbolically until we reach
the loop again, in the new configuration Ψ(LOOP,n − 1, s + n). Recall that program execution = AML
reasoning, so the above execution process yields a proof of the following AML theorem (recall that it
takes 12 steps to consume the body of the loop; see Section 8):

ΓIMP
` Ψ(LOOP,n, s) ∧ n ≥ 1→ �12 (Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1)

By FOL reasoning, we only need to prove that

ΓIMP
` ��Φinv → �12 (Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1)→ ♦wΨ(. , 0, s + n(n + 1)/2)

Now by the “progressive-ness axiom” [10, Proposition 117(18)] and some standard reasoning about
the modalities, we have that

ΓIMP
` ��Φinv ∧ �

12 (Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1)

→ ♦
(
Φ′inv ∧Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1

)
Then by (Framing), we need to prove that

ΓIMP
` (Φinv ∧Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1)→ Ψ(. , 0, s + n(n + 1)/2)

which can be proved by applying the invariant Φinv on Ψ(LOOP,n − 1, s + n) ∧ n ≥ 1.
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