Technical Report:
Applicative Matching Logic: Semantics of \(\mathcal{K} \)

Xiaohong Chen and Grigore Roşu
{xc3,grosu}@illinois.edu
March 18, 2020

Abstract

\(\mathcal{K} \) is a formal language semantics framework where programming languages are defined using configurations and rewrite rules. Language tools such as interpreters and program verifiers are automatically generated from language definitions. The wide applications of \(\mathcal{K} \) to real-world languages raise interest in its logical foundation and formal semantics. Existing work only considers fragments of \(\mathcal{K} \) and formalizes a subset of its features. This paper proposes a simple logic called *applicative matching logic* (AML) as a new logical foundation for \(\mathcal{K} \). We show that AML captures all the logical frameworks that have been implemented fully or partially in \(\mathcal{K} \), including: many-sorted first-order logic (MSFOL); constructors and term algebras, with the inductive principle; MSFOL variants such as algebraic specifications, FOL with partial functions, and FOL with least fixpoints; order-sorted algebras; and parametric sorts/types. We then put everything together and formalize the semantics of \(\mathcal{K} \), by showing how program execution and verification are heuristics for AML proof search. Finally, we propose two new features for \(\mathcal{K} \), function and dependent sorts/types, based on the solid mathematical foundation provided by AML.

1 Introduction

The \(\mathcal{K} \) framework (www.kframework.org) [55] is an effort in pursuing the ideal language framework (Fig. 1), where all programming languages must have formal semantic definitions and all language tools are automatically derived in a correct-by-construction manner at no additional cost. \(\mathcal{K} \) has been used to develop the complete formal definitions of many real-world languages such as C [30], Java [5], JavaScript [49], x86 [16] as well as emerging blockchain languages such as EVM [32] and IELE [35]. All language tools such as parsers, interpreters, and deductive program verifiers are automatically derived from the formal language definitions.

The wide practical applications of \(\mathcal{K} \) have raised research interest in and questions about its own logical foundations. That is: *What is the semantics of \(\mathcal{K} \)?* To answer that, we look for a foundational logic where every \(\mathcal{K} \) definition of a language \(L \) defines a *logical theory* \(\Gamma^L \), and different language tools represent different best-effort implementations of logic reasoning within \(\Gamma^L \). For example, the program verifier is a best effort implementation of the logic reasoning \(\Gamma^L \vdash \varphi_{\text{pre}} \Rightarrow \varphi_{\text{post}} \), which intuitively means that all program configurations that satisfy \(\varphi_{\text{pre}} \) must reach configurations that satisfy \(\varphi_{\text{post}} \), on termination.
There is a series of research work [56, 54, 53, 39, 45, 9] that aims at giving a formal semantics to K. The implementation of K has more than 130,000 lines of code. However, the existing work only considers fragments of K, each formalizing only a subset of its features; see also Section 10. In this paper, we propose a simple logic that can formalize all K’s features.

1.1 A Running Example and Main K Features

We discuss the main features of K using the simple, prototypical imperative language IMP as a running example. We show the complete formal K definition of IMP in Fig. 2. Readers need not understand all details (which can be found in [11]); we explain the relevant parts below.

There are two modules: IMP-SYNTAX defines the concrete syntax of IMP, and IMP defines program configurations, and formal semantics by rewrite rules. In IMP-SYNTAX, K uses the conventional BNF notation, where nonterminals begin with capital letters and terminals are quoted strings. We call nonterminals sorts; e.g., Exp is the sort of expressions; $Stmt$ is the sort of program statements, etc. Sorts can be ordered; e.g., Exp takes Int and Id as its subsorts (Fig. 2, line 2), meaning that integers and identifiers (i.e., program variables) are well-formed expressions.

K has builtin support for parametric sorts; e.g., Ids is the sort of identifier lists (Fig. 2, line 13) that is defined from Id using the generic parametric sort $List$. Intuitively, $List$ is a sort constructor that takes a base sort (e.g., Id) and a delimiter (e.g., ",", ""), and produces the lists of that base sort. The delimiter is a frontend detail, only relevant for parsing purpose, so it is not of our interest here. Here we are interested in the K feature of defining parametric sorts such as $List$.

K uses configurations to structure semantic data needed for program execution. Configurations are built from cells, possibly nested, written in XML format. The configurations of IMP (lines 18-19)
have two cells: a "<k/>" cell that contains program code to be executed and a "<state/>" cell that contains program states mapping program variables to values.

K uses rewrite rules, or just rules, to define the formal semantics of IMP. Rules have the form \(\varphi_{\text{lhs}} \Rightarrow \varphi_{\text{rhs}} \), where \(\varphi_{\text{lhs}} \) and \(\varphi_{\text{rhs}} \) are symbolic configuration patterns that can be matched by concrete IMP configurations; e.g., if(\(\emptyset \)) S1 S2 \(\Rightarrow \) S2 is a rule that rewrites the program code if(\(\emptyset \)) S1 S2 in one step to S2, as expected. Rules can be conditional; e.g., if(1) S1 S2 \(\Rightarrow \) S1 requires I \(\neq \) Int 0 rewrites the program code if(1) S1 S2 in one step to S1, if I is nonzero. In this way, the rewrite rules in the module IMP define a transition system \(S^{\text{IMP}} \) over IMP configurations. Then, executing an IMP program \(\varphi_{\text{PGM}} \) is equivalent to generating a trace of \(S^{\text{IMP}} \) from the initial configuration <k> $PGM </k> <state> . </state>, where $PGM (line 19) is a special variable that tells K to put the program in the "<k/>" cell, and "." denotes "nothing", i.e., the empty program state. Similarly, various formal program analyses are equivalent to reasoning about all traces from initial configuration patterns, which sometimes can be symbolic.

Certain frontend syntactic sugar is introduced to make K rules more compact and modular, and to avoid duplication. For example, the variable lookup rule (line 20)

\[
\text{rule } \langle k \rangle X:Id \Rightarrow I \ldots /k/ </state> \ldots X \Rightarrow I \ldots</state>
\]

puts the rewrite symbol \(\Rightarrow \) not at the top, but locally at where the rewrite happens, so we need not duplicate or even mention (thanks to the "\ldots" notation) irrelevant parts of the configuration, called structural frame. Frontend sugar is important for K to be scalable and applicable to defining formal semantics of large languages, but it is eliminated when parsing the definitions. Our interest here is the after-parsing K features, that is, its logical foundation for defining transition systems as logical theories and capturing program execution and verification as rigorous logic reasoning.

1.2 Our Contribution: Applicative Matching Logic

The main technical contribution of this paper is the proposal of applicative matching logic (AML) as a new logic foundation of K. We show existing K features (discussed in Section 1.1) can be defined as logical theories in AML. Specifically, we use AML to capture all the following logical frameworks.
and systems that have been fully or partially supported by the current K implementations (also shown in Fig. 3):

- many-sorted first-order logic (MSFOL), constructors, term algebras, and the inductive principle (Section 4);
- MSFOL variants: algebraic specifications, FOL with partial functions, and FOL with fixpoints (Section 5);
- order-sorted algebras (OSA) (Section 6);
- parametric sorts and operations (Section 7).

Then we put everything together in Section 8 and show that program execution and verification in K can be regarded as best effort implementations of AML formal reasoning.

The development of K seems to be mostly driven by user requests. Many K features were engineered and optimized to ease the development of formal semantics of large languages (e.g., C, Java, JavaScript), rather than implemented following a well-established foundational theory. Even today, more than 15 years after its inception, K seems to be a moving target that is continuously evolving, according to the Github issues and feature requests [33, 34]. These make it difficult to find a mathematically solid foundation for K. We hope this paper gives substantial evidence that AML can be taken as the foundation of K, and due to its simplicity and flexibility, the K development team will benefit from doing so, because AML not only gives a rigorous mathematical explanation of all existing K features, but also establishes a solid foundation for developing new features.

As an example, we propose two new features in Section 9, function sorts/types and dependent sorts/types, based on the foundation provided by AML.

The rest of the paper is organized as follows. We define the syntax and semantics of AML in Section 2 and its proof system in Section 3. Then we follow the above agenda: defining all logical systems in Fig. 3 in Sections 4-7, putting them together and formalizing K in Section 8, and proposing new features in Section 9. Finally, we discuss related work in Section 10 and conclude in Section 11.

Proofs for all the results are in the appendix

2 Applicative Matching Logic

Here we define the syntax and semantics of the novel AML.

2.1 Applicative Matching Logic Syntax

Definition 1. An AML signature \(\langle \text{EVar}, \text{SVar}, \Sigma \rangle \) has a set \(\text{EVar} \) of element variables \(x, y, \ldots, \) a set \(\text{SVar} \) of set variables \(X, Y, \ldots, \) and a set \(\Sigma \) of (constant) symbols \(\sigma, f, g, \ldots. \) We often omit \(\text{EVar} \) and \(\text{SVar} \) and use \(\Sigma \) to denote the signature. The set of AML patterns, denoted \(\text{Pattern} \), is defined as:

\[
\varphi ::= x \mid X \mid \sigma \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x.\varphi \mid \mu X.\varphi
\]

where in \(\mu X.\varphi \) we require that \(\varphi \) is positive in \(X \), i.e., \(X \) is not nested in an odd number of times on the left of an implication \(\varphi_1 \rightarrow \varphi_2 \). Pattern \(\varphi_1 \varphi_2 \) is called application and assumed associative to the
\(K \) implements, fully or partially, many logical frameworks that can be subsumed in AML as logical theories.

left. The scope of binders \(\exists \) and \(\mu \) goes farthest to the right. The notions of free variables \(\text{FV}(\varphi) \), \(\alpha \)-renaming, and capture-avoiding substitution \((\varphi[\psi/x] \text{ and } \varphi[\psi/X]) \) are defined in the usual way.

We argue that the above syntax is minimal while still being useful and expressive to formalize language semantics and program properties. Element variables are FOL-style variables that are necessary for ranging over individual elements, which can then be quantified (i.e., “abstracted”) by the \(\exists \) binder. Set variables are like propositional variables in modal logic that are necessary for ranging over sets (i.e., predicates), which can then be quantified by \(\mu \) to create least fixpoints. Symbols are used to represent functions, predicates, constructors, and modal operators, in a uniform way. Together with application, symbols build complex patterns from simpler ones (i.e., \(\sigma \varphi_1 \ldots \varphi_n \)), which can represent terms (e.g., \(\sigma \equiv f \) for function \(f \)), FOL-style formulas (e.g., \(\sigma \equiv p \) for predicate \(p \)), program configurations (e.g., \(\sigma \) being the \(<k/>\) cell), and modal formulas such as temporal and reachability properties (e.g., \(\sigma \) being the “next” operator \(\bigcirc \) in LTL [51]). Note that application in AML is generic and can be instantiated with arbitrary patterns. This gives us maximal flexibility and expressiveness, and at the same time minimal syntax complexity, because we need not define multiary functions, predicates, constructors, or polyadic modal operators. Instead, all of them are uniformly treated using symbols and the generic application. Finally, we have the usual \(\bot \) and \(\varphi_1 \rightarrow \varphi_2 \) to build arbitrary logical constraints.

We define the following derived constructs in the usual way. We assume the standard precedence among logical connectives, where application binds the tightest.

\[
\neg \varphi \equiv \neg \varphi \\
\top \equiv \bot \\
\varphi \lor \varphi_2 \equiv \neg \neg \varphi_1 \rightarrow \varphi_2 \\
\varphi_1 \land \varphi_2 \equiv \neg (\neg \varphi_1 \lor \neg \varphi_2) \\
\forall X. \varphi \equiv \neg \exists X. \neg \varphi \\
\nu X. \varphi \equiv \neg \mu X. \neg \varphi[\neg X/X] \quad \text{if } \varphi \text{ is positive in } X
\]

2.2 Applicative Matching Logic Semantics

AML has a pattern matching semantics. Patterns are interpreted to the sets of elements that match them.
Let us first look at some examples. Pattern \(q_1 \land q_2 \) is matched by the elements that match both \(q_1 \) and \(q_2 \). Pattern \(\neg q \) is matched by the elements that do not match \(q \). Patterns \(\top \) and \(\bot \) are matched by all elements and no elements. Element variable \(x \) is matched by the unique element to which \(x \) evaluates (valuations are defined later). Set variable \(X \) is matched by the elements in the set to which \(X \) evaluates. Symbols also evaluate to sets, but their interpretations are given directly by AML structures, not valuations (structures are defined later).

The meaning of \(q_1 q_2 \) depends on how we interpret \(q_1 \) and \(q_2 \). If \(q_1 \) represents a constructor \(c \) and \(q_2 \) represents its argument \(a \), then \(q_1 q_2 \) is matched by term \(c(a) \). If \(q_1 \) represents a function \(f \) and \(q_2 \) represents its argument \(a \), then \(q_1 q_2 \) is matched by value \(f(a) \). If \(q_1 \) represents a predicate \(p \) and \(q_2 \) represents its argument \(a \), then \(q_1 q_2 \) denotes truth value \(p(a) \). If \(q_1 \) represents a dynamic relation, e.g., the “next operator \(\bigcirc \)” in LTL [51], and \(q_2 \) represents a state \(s \), then \(q_1 q_2 \) is matched by all states whose next states match \(q_2 \). In practice, \(K \) uses constructors and terms to represent language concrete syntax and program configurations, uses functions to represent functions on mathematical domains, uses predicates to specify mathematical assertions, and uses dynamic relations to support program execution and verification. Thus, AML unifies constructors, functions, predicates, and dynamic operations used in \(K \), by application patterns.

The above interpretation can be generalized to the pattern matching semantics of AML. E.g., if \(q_1 \) is matched by a set of constructors \(C \) and \(q_2 \) is matched by a set of arguments \(A \), then \(q_1 q_2 \) is matched by all terms \(c(a) \) with \(c \in C \) and \(a \in A \). Multiary constructors, functions, predicates, and modalities, can be uniformly defined by currying the application.

Binder \(\exists \) builds abstractions. Pattern \(\exists x. \varphi \) is matched by the elements matching \(\varphi \) for some valuations of \(x \), i.e., it “abstracts away” the irrelevant part \(x \) from the matched part \(\varphi \). Binder \(\mu \) builds least fixpoints. Intuitively, a pattern \(\varphi(X) \) defines a function \(F_{\varphi,X} \) over sets that maps \(X \) to \(\varphi(X) \). The requirement that \(\varphi(X) \) is positive in \(X \) implies that \(F_{\varphi,X} \) is monotone and has a unique least fixpoint \(\mu F_{\varphi,X} \), by the Knaster-Tarski fixpoint theorem (Theorem 19). Pattern \(\mu X. \varphi \) is then matched by the elements in \(\mu F_{\varphi,X} \).

Definition 2. An AML structure \((M, \cdot, \sigma_M, \odot)\) has:

- a nonempty set \(M \), called domain;
- a binary application function \(\cdot : M \times M \to \mathcal{P}(M) \);
- a subset \(\sigma_M \subseteq M \) called interpretation of \(a \in \Sigma \).

We use \(M \) to denote the above structure and also call it a model. We extend pointwisely the application function \(\cdot \) from over elements to over sets, as follows (where \(A, B \subseteq M \))

\[
\cdot : \mathcal{P}(M) \times \mathcal{P}(M) \to \mathcal{P}(M) \quad A \cdot B = \bigcup_{a \in A, b \in B} a \cdot b
\]

Note that \(A \cdot B = \emptyset \) whenever \(A = \emptyset \) or \(B = \emptyset \). We abbreviate \(a \cdot b \) as \(ab \) and write \(ab_1 \cdots b_n \equiv (\cdots ((ab_1)b_2)\cdots b_n) \).

Definition 3. Given \((E_{\text{VAR}}, S_{\text{VAR}}, \Sigma)\) and a structure \(M \), a valuation is a function \(\rho : (E_{\text{VAR}} \cup S_{\text{VAR}}) \to (M \cup \mathcal{P}(M)) \) with \(\rho(x) \in M \) for all \(x \in E_{\text{VAR}} \) and \(\rho(X) \subseteq M \) for all \(X \in S_{\text{VAR}} \). Its extension, \(\bar{\rho} : \text{PATTERN} \to \mathcal{P}(M) \), is defined as:
\[\rho(x) = \{\rho(x)\} \text{ for } x \in \text{EVAR} \]
\[\rho(X) = \rho(X) \text{ for } X \in \text{SVAR} \]
\[\rho(\perp) = \emptyset \]
\[\rho(\sigma) = \sigma_M \text{ for } \sigma \in \Sigma \]
\[\rho(\phi_1 \lor \phi_2) = \rho(\phi_1) \lor \rho(\phi_2) \]
\[\rho(\top) = M \]
\[\rho(\phi_1 \land \phi_2) = \rho(\phi_1) \land \rho(\phi_2) \]
\[\rho(\forall x. \phi) = \bigcap_{a \in M} \rho[\overline{a/x}]\]
\[\rho(\phi_1 \leftrightarrow \phi_2) = M \setminus (\rho(\phi_1) \triangle \rho(\phi_2)) \]
\[\rho(\mu X. \phi) = \mu F^\rho \]

Here, “\(\setminus \)” is set difference; \(\rho[\overline{a/x}] \) (resp. \(\rho[\overline{A/X}] \)) denotes the valuation \(\rho' \) such that \(\rho'(x) = a \) (resp. \(\rho'(X) = A \)) and agrees with \(\rho \) on all other variables. The existence of \(\mu F^\rho \) is by the Knaster-Tarski fixpoint theorem (Theorem 19).

AML patterns are not two-valued. They can evaluate to \(\emptyset \), or \(M \) (i.e., the entire domain), or any subsets in between. However, we can easily restore the classic two-valued semantics by letting \(\emptyset \) denote “logical false” and \(M \) denote “logical true”. Since \(M \) is nonempty, no confusion is possible. We call \(\phi \) a predicate, if \(\rho(\phi) \in \{\emptyset, M\} \) for all \(\rho \).

Proposition 4. The derived constructs defined in Section 2.1 have the expected semantics:

- \(\rho(\neg \phi) = M \setminus \rho(\phi) \)
- \(\rho(\phi_1 \lor \phi_2) = \rho(\phi_1) \lor \rho(\phi_2) \)
- \(\rho(\top) = M \)
- \(\rho(\phi_1 \land \phi_2) = \rho(\phi_1) \land \rho(\phi_2) \)
- \(\rho(\forall x. \phi) = \bigcap_{a \in M} \rho[a/x] \)
- \(\rho(\phi_1 \leftrightarrow \phi_2) = M \setminus (\rho(\phi_1) \triangle \rho(\phi_2)) \)

where set symmetric difference \(A \triangle B = (A \setminus B) \cup (B \setminus A) \).

The “predicate-ness” of patterns is preserved by all the above constructs. E.g., \(\phi_1 \lor \phi_2 \) and \(\phi_1 \land \phi_2 \) are predicates whenever \(\phi_1 \) and \(\phi_2 \) are, \(\mu X. \phi \) is a predicate whenever \(\phi \) is; etc.

What does it mean for a model \(M \) to satisfy \(\phi \)? In classic two-valued logics such as FOL, \(M \) satisfies \(\phi \), iff \(\phi \) evaluates to “true” in \(M \), under all valuations. In AML, the logical true is represented by evaluating to the entire domain \(M \), so naturally we have the following definition of satisfaction.

Definition 5. We say \(M \) satisfies \(\phi \), written as \(M \models \phi \), if \(\rho(\phi) = M \) for all \(\rho \). Let \(\Gamma \) be a set of patterns. We write \(M \models \Gamma \) iff \(M \models \psi \) for all \(\psi \in \Gamma \), and \(\Gamma \models \phi \) iff \(M \models \phi \) for all \(\Gamma \). Using conventional terminology, we call \(\Gamma \) a theory, its elements axioms, and \(M \) a model of \(\Gamma \) whenever \(M \models \Gamma \).

Axioms and theories are used to restrict the models, so instead of considering all AML structures, we only consider those satisfy the axioms. In the following, when we say that we define/assume/introduce a symbol \(\sigma \) and/or an axiom \(\phi \), we mean to add \(\sigma \) to \(\Sigma \) and/or add \(\phi \) to \(\Gamma \), and consider models of the thus extended \(\Gamma \). In Section 3, we will introduce the proof system and proof theory of AML. In there, axioms and theories are also used for formal reasoning.

2.3 Important Mathematical Instruments

Here we show how to define several important mathematical instruments, such as equality, membership, functions, and tuples, as notations and theories in AML.
Definition 6. Let $[_]$ be a symbol, which we call the definedness symbol. We write $[\varphi]$ instead of $[_]\varphi$. Also, let (Definedness) be the axiom $\forall x.[x]$, or just $[x]$. We introduce the following important notations:

- totality $[\varphi] \equiv \neg[\neg\varphi]$
- equality $\varphi_1 = \varphi_2 \equiv [\varphi_1 \leftrightarrow \varphi_2]$
- membership $x \in \varphi \equiv [x \land \varphi]$
- inclusion $\varphi_1 \subseteq \varphi_2 \equiv [\varphi_1 \rightarrow \varphi_2]$
- $\varphi_1 \neq \varphi_2 \equiv \neg(\varphi_1 = \varphi_2)$
- $x \notin \varphi \equiv \neg(x \in \varphi)$
- $\varphi_1 \notin \varphi_2 \equiv \neg(\varphi_1 \subseteq \varphi_2)$

For convenience, we tacitly assume the definedness symbol and the (Definedness) axiom, as well as all above notations. Note that we are not extending AML, but simply adding one symbol and one axiom to all subsequent AML theories defined in this paper. In other words, we only consider models that satisfy (Definedness), for example, a model M with a special element $\$ such that $\$ \cdot a = M$ for all $a \in M$. By pointwise extension, $\$ \cdot A = M$ iff $A \neq \emptyset$, so we can use $\$ and application to check if A is nonempty. In other words, $[\varphi]$ is a predicate stating that φ is defined, i.e., φ is matched by some elements.

It is straightforward to show all notations in Definition 6 are predicates with the expected semantics (see Proposition 20). E.g., $\bar{\rho}([\varphi]) = M$ iff $\bar{\rho}([\neg\varphi]) = M$, iff $\bar{\rho}(\neg\varphi) = \emptyset$, iff $\bar{\rho}(\varphi) = M$, i.e., φ is total. Another example: $\bar{\rho}(\varphi_1 = \varphi_2) = M$ iff $\bar{\rho}([\varphi_1 \leftrightarrow \varphi_2]) = M$, iff $\bar{\rho}(\varphi_1 \leftrightarrow \varphi_2) = M$, iff $\bar{\rho}(\varphi_1) \triangleq \bar{\rho}(\varphi_2) = \emptyset$, iff $\bar{\rho}(\varphi_1) = \bar{\rho}(\varphi_2)$, i.e., φ_1 equals φ_2; etc.

Definedness and the related notations are important in writing axioms and defining theories. For example, the following axiom defines functional constant symbols, which are symbols $\sigma \in \Sigma$ that are forced to be interpreted to singleton sets (instead of any subsets) in all models satisfying it

(Functional Constant) $\exists z. \sigma = z$

This is because, intuitively, that z is an element variable whose semantics is always a singleton set. By $\sigma = z$, we let σ equal the singleton set denoted by z, and then abstract away z by $\exists z$, so σ is any singleton set (but not any subset).

3 AML Proof System

We present the AML proof system, inspired by [9]. We first define application contexts, written C, as patterns with a distinguished placeholder variable \square such that the rooted path to \square has only applications. We abbreviate $C[\varphi/\square]$ as $C[\varphi]$, to denote the result of plugging φ into C.

The Hilbert-style proof system of AML is shown in Fig. 4. It consists of four categories of proof rules. The first contains four rules that provide complete FOL reasoning [58], which justifies the use of SAT/SMT solvers [17, 2] in \mathcal{K}. The second contains four rules that provide frame reasoning over application contexts. Since \mathcal{K}’s configurations and cells are built with symbols and the generic application, this set of proof rules supports compositional reasoning in \mathcal{K}. The third contains three rules for fixpoint reasoning [36], where (Knaster-Tarski), also known as Park induction [19], is a logical incarnation of the Knaster-Tarski fixpoint theorem (Theorem 19) into AML and is the key to reasoning about inductively-defined data structures and dynamic properties such as program reachability. Finally, we need two technical rules for certain completeness results [9]. The provability relation is denoted $\Gamma \vdash \varphi$, which means that φ can be proved by the proof system with patterns in Γ as additional axioms.

Equational reasoning is sound in AML for theories with definedness, from which equality is derived (see Definition 6).
Figure 4: The Hilbert-style proof system of applicative matching logic (where C, C_1 and C_2 are application contexts as defined at the beginning of this section.

Proposition 7. For theories Γ with definedness, we have

- $\Gamma \vdash \varphi = \psi$
- $\Gamma \vdash \varphi_1 = \varphi_2$ and $\Gamma \vdash \varphi_2 = \varphi_3$ implies $\Gamma \vdash \varphi_1 = \varphi_3$
- $\Gamma \vdash \varphi_1 = \varphi_2$ implies $\Gamma \vdash \varphi_2 = \varphi_1$
- $\Gamma \vdash \varphi_1 = \varphi_2$ implies $\Gamma \vdash \psi[\varphi_1/x] = \psi[\varphi_2/x]$

Here ψ can be any pattern, not only application context. In other words, the indiscernibility of identicals holds in AML.

Hence, AML supports FOL reasoning, frame reasoning, fixpoint reasoning, and equational reasoning. This forms the foundation of formal reasoning and analysis in K.

Theorem 8 (Soundness Theorem). $\Gamma \vdash \varphi$ implies $\Gamma \vDash \varphi$.

However, AML does not have any complete proof system. In Section 4.5, we define a finite AML theory that captures $(\mathbb{N}, +, \times)$, the standard model of natural numbers with addition and multiplication, up to isomorphism. By Gödel's first incompleteness theorem [22], any effective and
sound proof system of AML cannot be complete for all theories. In practice, the proof system in Fig. 4 is sufficient to do formal proofs supported by the logical systems in Fig. 3 and to formalize program execution and verification in K (see Section 8).

★ Agenda for the Rest of the Paper

We remind the readers that our main objective, as stated in Section 1.2, is to define all the existing features of K and the logical systems implemented by K, as theories and notations in AML. The challenge is essentially to show how an inherently unsorted logic like AML can deal with sorts in their full generality, including constructors and inductively defined data-types, partiality and subsorting, and parametric sorts and operations. We discuss these in Sections 4-7. In Section 8, we put all these together in the context of the semantics of the existing K, and in Section 9, backed by AML semantics, we propose two new features of K requested by users.

4 Instance: Many-Sorted First-Order Logic

We use many-sorted first-order logic (abbreviated MSFOL) as an example to discuss in detail how to deal with sorts in the unsorted AML. We consider both model-theoretic and proof-theoretic aspects. Model-theoretically, we capture MSFOL structures, which are many-sorted algebras (abbreviated MSA) accompanied by multiary relations as interpretations of MSFOL predicates. Proof-theoretically, we show how to re-produce MSFOL formal proofs within the AML proof system. The main technical contribution is the conservative extension theorem, which states that the semantics and provability of MSFOL and the corresponding AML theory, are all equivalent (see Theorem 16).

This is a core section. The techniques used here will be repeatedly used later. Our major objective is to demonstrate that AML, in spite of its simplicity, can recover, as notations and theories, other important, familiar, but notationally heavier concepts. MSFOL has built-in systematic mechanisms and mathematical instruments for sorts and many-sorted structures. These make MSFOL complex, and also too rigid to adapt to other variants or extension, e.g., order-sorted functions, parametric operations, and partial functions. In contrast, AML takes a lighter approach by requiring only the minimal, yet powerful logical infrastructure, this way giving maximal flexibility in defining the necessary mathematical instruments, e.g., those for sorts and many-sorted functions, as theories and notations with patterns as axioms, which are intuitive, simple, highly adaptive, and easily extensible.

4.1 MSFOL Preliminaries

Definition 9 ([42, 14]). An MSFOL signature \((S, F, \Pi)\) has a sort set \(S\), an \((S \times S)\)-indexed set \(F = \{F_{s_1, \ldots, s_n}\}_{s_1, \ldots, s_n \in S}\) of functions, and an \(S^\ast\)-indexed set \(\Pi = \{\Pi_{s_1, \ldots, s_n}\}_{s_1, \ldots, s_n \in S}\) of predicates. We use \(x : s\) to denote sorted variables. Sorted terms and formulas are inductively defined as follows:

\[t_s := x : s \mid f(t_{s_1}, \ldots, t_{s_n}) \text{ for } f \in F_{s_1, \ldots, s_n} \]

\[\varphi := p(t_{s_1}, \ldots, t_{s_n}) \text{ for } p \in \Pi_{s_1, \ldots, s_n} \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x : s . \varphi \]

An MSFOL structure \(A = (\{A_s\}_{s \in S}, \{f_A\}_{f \in S}, \{p_A\}_{p \in \Pi})\) has a nonempty domain \(A_s\) for each \(s \in S\), an interpretation \(f_A : A_{s_1} \times \cdots \times A_{s_n} \rightarrow A_{s}\) for each \(f \in F_{s_1, \ldots, s_n}\), and an interpretation \(p_A \subseteq A_{s_1} \times \cdots \times A_{s_n}\) for each \(p \in \Pi_{s_1, \ldots, s_n}\). Valuations of variables (denoted \(v\)) and interpretations of terms and formulas
We define a symbol \(\text{match} \) in AML, our definition is more succinct.

\[
\begin{align*}
\text{Sort-as-predicate} & \quad \forall x: s \quad \text{corresponding functional constant} \\
\Gamma & \quad \text{an AML theory} \
\end{align*}
\]

Fix an MSFOL signature (\(\Sigma \)) that precisely captures \(\Omega \), both proof-theoretically and model-theoretically. We follow the classic sort-as-predicate paradigm (see, e.g., [13, Section 5]), but thanks to the pattern matching semantics of AML, our definition is more succinct.

Sorts. We define a symbol \(\text{Sort} \in \Sigma^{\text{MSFOL}} \) to represent the sort set. For each \(s \in S \), we define a corresponding functional constant \(s \in \Sigma^{\text{MSFOL}} \) (see Section 2.3), called a sort constant or a sort, and add the following axiom to \(\Gamma^{\text{MSFOL}} \) (for \(s \in S \)):

\[
(\text{Sort}) \quad s \in \text{Sort} \quad \text{if \ membership } \in \text{ defined in Section 2.3}
\]

We define a symbol \(\llbracket . \rrbracket \in \Sigma^{\text{MSFOL}} \) called the domain symbol and use \(\llbracket . \rrbracket s \), written \(\llbracket s \rrbracket \), to represent the domain of \(s \). Intuitively, \(\llbracket s \rrbracket \) is matched by all elements of sort \(s \). Properties about sorts can be expressed by AML patterns. For example, \(x \in \llbracket s \rrbracket \) states that \(x \) has sort \(s \); \(\varphi \subseteq \llbracket s \rrbracket \) states that all elements matching \(\varphi \) have sort \(s \). The nonemptiness of the domain of \(s \) is axiomatized by (\(_ \neq _ \) defined in Section 2.3):

\[
(\text{Nonempty Domain}) \quad \llbracket s \rrbracket \neq \bot \text{ for } s \in S
\]

Sorted quantification. AML is unsorted. Its quantification \(\exists x \varphi \) ranges over all elements. MSFOL has sorted quantification \(\exists x: s . \varphi \), which only ranges over elements of \(s \). Therefore, we define sorted quantification as syntactic sugar in AML:

\[
\exists x: s . \varphi \equiv \exists x . (x \in \llbracket s \rrbracket) \land \varphi \\
\forall x: s . \varphi \equiv \forall x . (x \in \llbracket s \rrbracket) \rightarrow \varphi
\]

Intuitively, \(\exists x: s . \varphi \) is matched by \(\varphi \) for some \(x \) of sort \(s \). The following shows the duality between \(\exists x: s \) and \(\forall x: s \) in AML.

Proposition 10. \(\forall x: s . \varphi \equiv \neg \exists x: s . \neg \varphi \)

Many-sorted functions and terms. We translate MSFOL terms to AML patterns. For MSFOL variables \(x: s \), we assume a corresponding AML variable denoted \(x \) and use the “well-sorted” predicate to specify its sort; see Definition 11. For MSFOL functions \(f \in F_{s_1 \ldots s_n, s} \), we define a corresponding symbol \(f \in \Sigma^{\text{MSFOL}} \) and the next axiom to specify its arity:

\[
(\text{Function}) \quad \forall x_1: s_1 . \ldots . \forall x_n: s_n . \exists y: s . f \ x_1 \ldots x_n = y
\]

We use the functional notation \(f : s_1 \times \cdots \times s_n \rightarrow s \) as a shortcut for (Function) axiom. MSFOL sorted terms \(f(t_{s_1}, \ldots, t_{s_n}) \) are then defined in a “curried” way, as patterns \(f t_{s_1} \ldots t_{s_n} \).
Many-sorted predicates and formulas. We translate MSFOL formulas to AML patterns. Logical connectives \bot and \rightarrow are translated to themselves. Quantification $\exists x : s. \varphi$ is translated to the sorted quantification in AML. For many-sorted predicates $p \in \Pi_{s_1, ..., s_n}$, we define a symbol p and the next axiom to specify that p is a predicate (see after Definition 3):

(Predicate)

$\forall x_1 : s_1 \cdots \forall x_n : s_n. \left(p \left(x_1 \cdots x_n \right) = \top \right) \lor \left(p \left(x_1 \cdots x_n \right) = \bot \right)$

Note the disjunction above cannot be replaced with $p \left(x_1 \cdots x_n \right) \lor \neg \left(p \left(x_1 \cdots x_n \right) \right)$, because the latter is vacuously \top in AML. We use $p \left(t_{s_1} \cdots t_{s_n} \right)$ in AML to define MSFOL's $p \left(t_{s_1}, ..., t_{s_n} \right)$.

Let Γ_{MSFOL} contain all axioms so far. We need to show that it correctly captures the syntax of MSFOL terms and formulas. The arities of functions and predicates are axiomatized in Γ_{MSFOL} as shown above. The sorts of variables, however, were all dropped during the translation. We need to restore them, so we define the following “well-sorted” predicates.

Definition 11. For MSFOL terms t and formulas φ, let

$$ws(t), ws(\varphi) \equiv x_1 \in [s_1] \land \cdots \land x_n \in [s_n]$$

be the well-sorted predicates, where $x_1 : s_1, ..., x_n : s_n$ are all free variables appearing in t or φ, respectively.

The following shows that MSFOL terms/formulas are wellformed patterns/predicates, if variables have intended sorts.

Proposition 12. For MSFOL terms t_s and formulas φ,

$$\Gamma_{\text{MSFOL}} \vdash ws(t_s) \Rightarrow \exists y : s.t_s = y$$

$$\Gamma_{\text{MSFOL}} \vdash ws(\varphi) \Rightarrow (\varphi = \top) \lor (\varphi = \bot).$$

MSFOL theories. Finally, we translate MSFOL theories to AML theories, using Proposition 12. Given an MSFOL axiom φ, we define its AML translation $\varphi_{\text{MSFOL}} \equiv ws(\varphi) \Rightarrow (\varphi = \top)$. Given MSFOL theory Ω, we define its AML translation $\Omega_{\text{MSFOL}} = \{ \psi_{\text{MSFOL}} \mid \psi \in \Omega \}$. Let Γ_{MSFOL} include all the translated axioms Ω_{MSFOL} as well. The following shows that Γ_{MSFOL} preserves MSFOL reasoning within Ω.

Theorem 13. $\Omega \models_{\text{MSFOL}} \varphi$ implies $\Gamma_{\text{MSFOL}} \vdash \varphi_{\text{MSFOL}}$.

4.3 Subsuming MSFOL Models in AML

So far we have shown that the AML axiomatization Γ_{MSFOL} captures the MSFOL theory Ω in the sense that it preserves its provability. Next, we show that the MSFOL models of Ω are subsumed by the AML models of Γ_{MSFOL}, which leads us to the conservative extension theorem (Theorem 16).

Since AML models make no distinction among elements, sorts, functions, or predicates, they contain both the elements in MSFOL models and their sorts, functions, and predicates. To compare with MSFOL models, we need to restrict the AML models, as formalized below.

Definition 14. Let (S, F, Π) be an MSFOL signature and $(M, \sigma, \Omega_{\text{MSFOL}})$ be an AML model of Γ_{MSFOL}. Its MSFOL-restricted model $A = (\{A_s\}_{s \in S}, \{f_f\}_{f \in F}, \{p_p\}_{p \in \Pi})$ is an MSFOL structure with
• a domain \(A_s = \llbracket s_M \rrbracket_M \) for \(s \in S \), where \(s_M \) is the interpretation of \(s \in \Sigma_{MSFOL} \) in \(M \) and \(\llbracket s_M \rrbracket_M \equiv \llbracket s \rrbracket_M \cdot s_M \);

• an interpretation \(f_A: A_{s_1} \times \cdots \times A_{s_n} \to A_s \) for \(f \in F_{s_1, \ldots, s_n} \), defined by \(\{ f_A(a_1, \ldots, a_n) \} = f_M a_1 \cdot \cdots \cdot a_n \) for \(a_1 \in A_{s_1}, \ldots, a_n \in A_{s_n} \), where \(f_M \) is the interpretation of \(f \in \Sigma_{MSFOL} \) in \(M \);

• an interpretation \(p_A = \{ (a_1, \ldots, a_n) \mid p_M a_1 \cdot \cdots \cdot a_n = M, a_1 \in A_{s_1}, \ldots, a_n \in A_{s_n} \} \) for \(p \in \Pi_{s_1, \ldots, s_n} \).

The MSFOL structure \(A \) is well-defined. Its domain \(A_s \) is nonempty, due to axiom (Nonempty Domain). Its interpretations \(f_A \) are total functions, due to axiom (Function) that forces \(f_M \) to return singletons on all elements of the appropriate sorts. The following theorem shows that \(\Gamma_{MSFOL} \) captures precisely the MSFOL models of \(\Omega \) when considering its MSFOL-restricted models.

Theorem 15. For MSFOL theory \(\Omega \) and model \(A \vDash_{MSFOL} \Omega \), there is an AML model \(M \vDash \Gamma_{MSFOL} \) whose MSFOL-restricted model is exactly \(A \). In addition, \(\Gamma_{MSFOL} \vDash \phi_{MSFOL} \iff \Omega \vDash \phi_{MSFOL} \).

Theorems 13 and 15 together yield the following conservative extension theorem for MSFOL.

Theorem 16. For any MSFOL theory \(\Omega \) and formula \(\phi \), the next diagram holds (where “\(X \implies Y \)” means “\(X \) implies \(Y \)”):

\[
\begin{array}{c}
\Omega \vDash_{MSFOL} \phi \Downarrow 1 \Gamma_{MSFOL} \vDash \phi \\
\Updownarrow 4 \\
\Omega \vDash_{MSFOL} \phi \Downarrow 2 \Gamma_{MSFOL} \vDash \phi
\end{array}
\]

Proof. (\(\implies_1 \)) is by Theorem 13. (\(\implies_2 \)) is by Theorem 8 (i.e., the soundness of AML). (\(\implies_3 \)) is by Theorem 15, where we only need the direction from AML to MSFOL. (\(\implies_4 \)) is by the completeness of MSFOL (see, e.g., [42, 14]).

4.4 Example: Natural Numbers (without Induction)

To emphasize that in spite of its generality AML recovers the familiar MSFOL-specific notions and notations, here we show an example of defining an AML theory \(\Gamma_{NAT0} \) that defines \((\mathbb{N}, +, \times)\), i.e., natural numbers with addition and multiplication. We do not yet consider the inductive principle.

Let \(\text{Sort} \) be a symbol that represents the sort set and \(\text{Nat} \) be a sort symbol, axiomatized by \(\text{Nat} \in \text{Sort} \), like in Section 4.2. We define the following self-explanatory functions about natural numbers (function notations are defined in Section 4.2):

\[
0: \to \text{Nat} \\
\text{plus}: \text{Nat} \times \text{Nat} \to \text{Nat} \\
\text{succ}: \text{Nat} \to \text{Nat} \\
\text{mult}: \text{Nat} \times \text{Nat} \to \text{Nat}
\]

where \(0: \to \text{Nat} \) means 0 is a nullary function, i.e., a functional constant of \(\text{Nat} \). The above functions are axiomatized by the expected patterns/axioms, e.g.:

\[
\forall x:\text{Nat}. \text{plus } x \ 0 = x.
\]

For brevity, we omit the remaining axioms and call the resulting theory \(\Gamma_{NAT0} \). Of course, \(\Gamma_{NAT0} \) is not a complete axiomatization, because it does not support inductive reasoning.
4.5 Example: Natural Numbers (with Induction)

Here we show that by adding three intuitive axioms to Γ^{NAT0} we obtain a (finite) AML axiomatization of natural numbers that allows us to derive the (infinite) Peano inductive theory as theorems. We extend Γ^{NAT0} by the “no confusion” axioms for 0 and succ, and most importantly, the inductive principle:

\begin{align*}
(\text{No Confusion I}) & \quad \forall x : \text{Nat}. \text{succ} x \neq 0 \\
(\text{No Confusion II}) & \quad \forall x : \text{Nat}. \forall y : \text{Nat}. \text{succ} x = \text{succ} y \to x = y \\
(\text{Inductive Domain}) & \quad \llbracket \text{Nat} \rrbracket = \mu D. \exists x : D(0 \lor \text{succ } D)
\end{align*}

We call the resulting theory Γ^{NAT}. Intuitively, (No Confusion I) says that 0 and succ build different terms; (No Confusion II) says that succ is an injective function; (Inductive Domain) forces $\llbracket \text{Nat} \rrbracket$ to be the smallest set closed under 0 and succ, yielding exactly the standard natural numbers \mathbb{N}.

Peano induction [43, 50] in Peano arithmetic, shown below, can be proved from (Inductive Domain) as AML theorems.

\begin{equation}
(\text{Peano Induction}) \quad \phi(0) \land (\forall y. \phi(y) \to \phi(\text{succ}(y))) \to \forall x. \phi(x)
\end{equation}

Recall that Peano arithmetic is a FOL theory of $(\mathbb{N}, +, \times)$, whose formulas are built from equations and FOL connectives. Since both are already defined in AML notationally, Peano arithmetic formulas are well-formed AML patterns. Peano induction is an axiom schema defined for each FOL formula $\phi(x)$, while in AML, we can achieve its effect with only one pattern theorem (not a schema):

Proposition 17. $\Gamma^{\text{NAT}} \vdash 0 \in X \land (\forall y : \text{Nat}. y \in X \to (\text{succ } y) \in X) \to \forall x : \text{Nat}. x \in X$.

Intuitively, it says if X is closed under 0 and succ, then it contains all natural numbers. All instances of (Peano Induction) can then be proved from this pattern theorem. The proof idea is to let $\Psi \equiv \exists z : \text{Nat}. z \land \phi(z)$ be the pattern of all z such that $\phi(z)$ holds. Then by standard AML reasoning, $\Gamma^{\text{NAT}} \vdash (x \in \Psi) = \phi(x)$, which reduces (Peano Induction) to Proposition 17, using rule (Set Variable Substitution) in Fig. 4, where ψ is substituted for X.

Finally, we show that Γ^{NAT} captures precisely $(\mathbb{N}, +, \times)$.

Proposition 18. The MSFOL-restricted model M of Γ^{NAT} is exactly $(\mathbb{N}, +, \times)$, up to isomorphism.

The main purpose of this section was to show that it is easy to define sorts and the related concepts such as many-sorted functions and predicates, in the unsorted AML. Not only can we capture precisely MSFOL (Theorem 16), both proof- and model-theoretically, but we can also define inductively-defined structures such as $(\mathbb{N}, +, \times)$. The latter is an example of term algebras, which are many-sorted structures whose domains are the smallest set that is inductively generated from a set of functions, or constructors. Term algebras represent an important instance of initial algebra semantics [24, 27], which has important applications in the foundations of programming language semantics and leads to various practical tools [27, 28, 12]). The technique that we used above to define $(\mathbb{N}, +, \times)$ can be easily generalized to term algebras; see Appendix F for details.
5 Instance: MSFOL Variants

Here, we discuss MSFOL variants that play an important role in programming language semantics, and thus K, and not only, to show the flexibility and extensibility of AML. Indeed, we can re-use most of the theory T^{MSFOL} for MSFOL (shown in Section 4), with the minimal, necessary changes.

Algebraic specifications. These are commonly used to formalize abstract data types [40, 24] such as lists, sets, maps, graphs, stacks, queues, etc., and have led to various implementations in algebraic specification languages [12, 46, 18, 8]. An algebraic specification has a MSFOL signature $(S, F, \{=\})$ where equality is the only predicate, plus a set of equations E over MSFOL terms. Both sides of an equation have the same sort, and variables are assumed universally quantified over the entire equation. The models, called F-algebras, are MSFOL models where “$=$” is interpreted as the identity relation. We write $E \models_{\text{Alg}} e$ iff any F-algebra A satisfying all equations in E also satisfies e.

Algebraic specifications are special instances of MSFOL theories, whose only predicate is equality and all axioms are equations. By Theorem 16, algebraic specifications are precisely captured in AML, by letting all functions in F be many-sorted functions with their (FUNCTION) axioms (see Section 4.2), and all equations in E be equational patterns/axioms (see Definition 6). The resulting AML theory, written E^{Alg}, then precisely captures algebraic specifications: $E^{\text{Alg}} \models e$ iff $E \models_{\text{Alg}} e$.

Partial functions. In MSFOL, function symbols are interpreted as total functions, which are common but can cause inconvenience when defining formal semantics; e.g., what is $\text{head}(\text{list})$ interpreted to, when list is empty? Partial MSFOL [20] solves this inconvenience by considering partial functions that can be undefined on some arguments. Partial MSFOL needs a different formalization than MSFOL to properly capture the desired properties of definedness [20].

On the other hand, the pattern matching semantics of AML easily captures definedness as the ability to match at least one element (recall Definition 6). Indeed, we can axiomatize a partial function $f : s_1 \times \cdots \times s_n \rightarrow s$ by adjusting the (FUNCTION) axiom for total functions (Section 4.2), to

\[(\text{Partial Function}) \quad \forall x_1 : s_1. \ldots \forall x_n : s_n. \exists y : s. f x_1 \cdots x_n \subseteq y\]

where the only change is from equality $=$ to inclusion \subseteq. Intuitively, the axiom enforces $f x_1 \cdots x_n$ to return either a singleton (y), or nothing (the empty set), the latter meaning that f is undefined on x_1, \ldots, x_n.

Sorted fixpoints. Many MSFOL variants add support for recursion or fixpoints that are sorted. For example, LFP [29] extends MSFOL with many-sorted recursive predicates

\[p(x_1 : s_1, \ldots, x_n : s_n) \equiv_{\text{LFP}} \Phi(x_1 : s_1, \ldots, x_n : s_n),\]

where p may occur positively, recursively in Φ, and “\equiv_{LFP}” means that p is interpreted as the least predicate\(^1\) satisfying the equation. Sorted recursion and fixpoints play an important role in defining inductive and coinductive data structures as well as program dynamic behaviors.

Matching (μ)-logic [9] (MmL) is an important MSFOL variant that supports sorted fixpoints $\mu X : s. \varphi$. MmL represents one of the latest attempts in formalizing K (see Section 10) and it captures many logical systems with recursion or fixpoints, including LFP. Therefore, we use MmL.

\(^1\)Where p is “less than” q iff q holds whenever p holds.
as an example to show how to define sorted fixpoints \(\mu X : s . \varphi \) in AML. Interestingly, and perhaps unexpectedly, we need not do anything, besides using the “well-sorted” patterns (see Definition 11) to constrain the sorted variables in \(\varphi \). We show that \(\mu X . \varphi \) is neither bigger nor smaller than \(\mu X : s . \varphi \).

Firstly, \(\mu X . \varphi \) denotes the least solution of \(X = \varphi \) among all subsets, while \(\mu X : s . \varphi \) denotes the least solution among subsets of sort \(s \), so \(\mu X . \varphi \) is no bigger than \(\mu X : s . \varphi \). This also tells us that \(\mu X . \varphi \) is of sort \(s \), too, so it is no smaller than \(\mu X : s . \varphi \) either, which is the smallest solution of sort \(s \). Therefore, in the presence of the wellsortedness constraints for \(\varphi \), which are always required, the AML unsorted fixpoint \(\mu X . \varphi \) captures the same semantics as the MmL sorted fixpoint \(\mu X : s . \varphi \).

Due to the importance of MmL, we proved that the entire MmL, including syntax, semantics, and formal proofs, can be captured in AML. As a result, all logical frameworks and systems subsumed by MmL (see Fig. 3) are also subsumed by AML. We include the (difficult) proof details in Appendix G.

6 Instance: Order-Sorted Algebras

\(\mathbb{K} \) has built-in support for subsorting and symbol overloading. Even IMP, which is a trivial language, has three subsorts (Fig.2, lines 2 and 17). Real languages tend to have dozens of subsorts and overloaded symbols, such as various types of expressions and values with lists over them. According to the GitHub issues and discussions [33, 34], dealing with subsorting and symbol overloading correctly and efficiently is one of the most challenging problems that the development of \(\mathbb{K} \) faced. Using coercion functions (described at the end of this section) yields a correct but inefficient implementation, which would make \(\mathbb{K} \) useless with real languages like C, Java or JavaScript. Using specialized order-sorted algebra decision procedures for unification and rewriting, like OBJ [23] and Maude [12], yields an efficient but too hermetic to extend and too complex to trust implementation. Instead, the \(\mathbb{K} \) team has decided to follow an ad hoc solution based on a series of heuristics that work efficiently only with common cases, but whose correctness can be easily explained with the two types of axioms discussed below. New heuristics are added continuously, as users of \(\mathbb{K} \) discover new situations of interest. The incapacity of matching \(\mu \)-logic [9] to deal with subsorting, and thus to serve as a logical foundation of \(\mathbb{K} \), was one of the main triggers for the development of AML. Below we show how naturally AML can handle subsorting by means of showing how it captures order-sorted algebra.

Order-sorted algebras (OSA) extend many-sorted algebras with a partial ordering \(\leq \subseteq S \times S \) on sorts, called subsort relation, which forces a subset relation on the domain sets: \(A_s \subseteq A_{s'} \), if \(s \leq s' \). There are many OSA presentations, e.g., Goguen and Meseguer’s [26, 44], Bidoit and Henricke’s [1, 31], and Axel Poigné’s [52], which yield dozens of different OSA definitions (see, e.g., [25] for a survey) with slightly different requirements on the formalization. For concreteness, we consider the variant in [44] that allows subsort overloading, i.e., \(f^{s_1 \rightarrow s_n,s} \in F_{n_1 \cdots n_s,s} \) and \(f^{s_1 \rightarrow s_n,s'} \in F_{n_1 \cdots n_s,s'} \) with the same \(f \) and \(n \) but different argument and result sorts.

To define OSA as an AML theory, we reuse the theory of MSFOL (Section 4) and extend it to handle subsorting and symbol overloading. For the former, we define:

\[
\text{(Subsort)} \quad \llbracket s \rrbracket \subseteq \llbracket s' \rrbracket \quad \text{for all } s, s' \in S \text{ with } s \leq s'
\]

to specify that the domain of \(s \) is included in that of \(s' \). For the latter, we define symbol set \(\{ f | f^{s_1 \rightarrow s_n,s} \in F \} \) where we use one \(f \) for all its overloaded copies of various arity annotations. Then, we axiomatize that \(f \) is a function of the appropriate arities as in Section 4, but now \(f \) may have
multiple axioms, one for each overloaded copy \(f_{s_1, \ldots, s_n} \in F_s \):

\[
\text{(Function)} \quad \forall x_1 : s_1 \ldots \forall x_n : s_n . \exists y : s . f x_1 \ldots x_n = y
\]

With the above definitions, we proved AML captures precisely OSA (see Theorem 32). We do not consider formal proofs in OSA, because unlike MSFOL, it does not appear to have a broadly-accepted notion of Hilbert-style proof system in literature. However, we point out that our definition of OSA naturally yields a complete proof system for OSA, for free, because one can use the AML proof system and the axioms for OSA, to formally reason about OSA properties.

It is known (see, e.g., [26]) that OSA can be reduced to MSFOL where subsorting is captured by coercion functions \(s \in F_{s'} \) defined for all \(s \leq s' \). Intuitively, \(c_{s}^{s'} \) denotes the injection from \(s \) to \(s' \). However, this approach is not practically useful as noticed in [47, pp. 9]. We explain why by an example. Suppose there are three sorts \(s \leq s' \leq s'' \), a constant \(a \) of sort \(s \), and a function \(f \in F_{s', s''} \). Then, \(f(a) \) has two different parses when translated to MSFOL: \(f(c_{s}^{s'}(a)) \) and \(f(c_{s}^{s''}(a)) \). Therefore, all OSA tools that are based on the reduction to MSFOL, need to reason modulo the triangle property \(c_{s}^{s'}(a) = c_{s}^{s''}(a) \), which causes huge overhead. In contrast, our definition is more succinct and closer to the nature of OSA, because subsorting and overloading are naturally axiomatized, and no coercion functions are needed.

7 Instance: Parametric Sorts

Recall from Section 1.1 that \(\mathbb{K} \) has built-in support for parametric sorts, e.g., parametric lists. In general, parametric sorts are difficult to define in a purely many-sorted setting, because they quickly lead to infinite theories with infinitely many sorts (e.g., base sort \(s \), lists of \(s \), lists of lists of \(s \), etc.) and infinitely many, highly-homogeneous axioms for them.

On the other hand, AML gives us the flexibility to treat sorts as normal elements and to define functions over sorts, because there is no built-in distinction among elements, sorts, or functions. Therefore, we can easily extend the theory \(\Gamma_{\text{MSFOL}} \) to that of parametric sorts. As an example, we show how to axiomatize parametric lists as a finite theory \(\Gamma_{\text{LIST}} \) that extends \(\Gamma_{\text{NAT}} \), the theory of natural numbers (Section 4.5). Let \(\mathrm{List} \in \Sigma_{\text{LIST}} \) and axiomatize it as a function over sorts

\[
\text{List} : \text{Sort} \rightarrow \text{Sort} \not\in \text{(Function)} \quad \forall s : \text{Sort} . \exists s' : \text{Sort} . \text{List} s = s'
\]

This may look suspicious, as we quantify on \(s \) and \(s' \), which are sorts, but recall that the distinction between sorts and elements is only conceptual. AML itself makes no such distinction, so it is totally allowed to define \(\text{List} \) as above.

Parametric operations are also defined as functions. For example, \(\text{cons} \) takes \(x \) (of sort \(s \)) and \(l_1 \) (of sort \(\text{List} s \)), producing the list with head \(x \) and tail \(l_1 \). It is axiomatized by

\[
\forall s : \text{Sort} . \forall x : s . \forall l_1 : \text{List} s . \exists l : \text{List} s . \text{cons} x l_1 = l
\]

constraint the range of \(s \) specify that \(\text{cons} \) is a function

The above is similar to the (Function) axiom (see Section 4) but uses \(s \) to range over \(\text{Sort} \). For simplicity, we extend our function notation to also allow such “sort quantifiers”:

\[
\forall s : \text{Sort} . \text{cons} : s \times \text{List} s \rightarrow \text{List} s
\]
Using this notation, we define nil and (parametric) append:

\[\forall s: \text{Sort. } \text{nil} : \rightarrow \text{List} s \]
\[\forall s: \text{Sort. } \text{append} : \text{List} s \times \text{List} s \rightarrow \text{List} s \]

As in Section 4.5 where we precisely define natural numbers as the smallest set built with 0 and succ, we can axiomatize the domain of List\(s \) to be the smallest set built with nil and cons, i.e., the inductive principle for finite lists:

\[\text{(Inductive List)} \quad \forall s: \text{Sort. } \llbracket \text{List} s \rrbracket = \mu L. \text{nil} \lor \text{cons} \llbracket s \rrbracket L \]

The above axiom supports inductive reasoning about lists. For example, assume a super-sort Int of Nat: \(\llbracket \text{Nat} \rrbracket \subseteq \llbracket \text{Int} \rrbracket \). We can prove \(\llbracket \text{List} \text{Nat} \rrbracket \subseteq \llbracket \text{List} \text{Int} \rrbracket \), using the AML proof system and (Inductive List) (see Proposition 33).

With parametric sorts, the sort set Sort also forms a term algebra built from base sorts such as Nat and Int, and the parametric sort List. This is axiomatized below:

\[\text{(Sorts) } \llbracket \text{Sort} \rrbracket = \mu S. \text{Nat} \lor \text{Int} \lor \text{List} S \]

We can also allow only primitive lists and forbid nested lists:

\[\text{(No Nested Lists) } \llbracket \text{Sort} \rrbracket = \text{Nat} \lor \text{Int} \lor \text{List} \text{Nat} \lor \text{List} \text{Int} \]

A more modular way is to introduce a new symbol PrimitiveSort, axiomatize it by PrimitiveSort = Nat \lor Int, and let Sort contain only the primitive sorts and lists over them:

\[\text{Sort} = \text{PrimitiveSort} \lor \text{List} \text{PrimitiveSort} \]

In the above, we overloaded nil over all lists. We can also make it parametric, by replacing nil: \(\rightarrow \text{List} s \) with:

\[\text{(Parametric Nil) } \forall s: \text{Sort. } \exists l: \text{List} s. \text{nil} s = l \]

(Inductive List) is modified accordingly:

\[\forall s: \text{Sort. } \llbracket \text{List} s \rrbracket = \mu L. \text{nil} s \lor \text{cons} \llbracket s \rrbracket L \quad \text{if parametric nil} \]

The main message is that there are no hard axioms or definitions, and AML offers much extensibility and flexibility.

8 Putting Them Together: Semantics of K

Here we complete our agenda of formalizing K’s features as AML axioms and notations. We show that K definitions are AML theories, and that K’s execution and verification tools are best effort implementations (heuristics) of AML proof search. Hence, AML gives a unifying logical foundation for K.

For concreteness, we take IMP and its K definition in Fig. 2 as an example. We consider a simple (symbolic) IMP program, \(\text{SUM} \equiv \text{int} n, s; n=N: \text{Int}; \text{while} (n) \{ s=s+n; n=n-1 \} \), which computes the sum from 1 to the (symbolic) input \(n : \text{Int} \). Let LOOP be the while loop of \(\text{SUM} \).

In the following, we derive from the K definition of IMP (Fig. 2) an AML signature \(\Sigma^{\text{IMP}} \) and a theory \(\Gamma^{\text{IMP}} \) that defines IMP syntax and semantics. Then we use AML reasoning within \(\Gamma^{\text{IMP}} \) to formalize program execution and verification for IMP. For simplicity, we use \(Lm \) to mean line \(m \) in Fig. 2.
IMP syntax and configurations. The sorts (i.e., nonterminals) such as \(\text{Exp}, \text{Int}, \text{Id} \in \text{Sort} \) define corresponding sorts in AML: \(\text{Exp}, \text{Int}, \text{Id} \). A production rule either defines a subsort relation or a many-order-sorted function. For example, production rule for \(\text{Int} \) in L2 defines the subsorting axiom \(\llbracket \text{Int} \rrbracket \subseteq \llbracket \text{Exp} \rrbracket \); production rule for \(\text{Exp} \) in L2 defines a function \(\text{plusExp} : \text{Exp} \times \text{Exp} \rightarrow \text{Exp} \). The parametric sort \(\text{Ids} \) in L13 is defined by the parametric sort \(\text{List Id} \) in Section 7.

Program configurations can be defined similarly to the concrete syntax. Every \(\text{K sort} \), such as \(\text{kCell} \), defines a sort \(\text{kCell} \) and a function \(k : \text{Pgm} \rightarrow \text{kCell}. \) Similarly, \(\text{K cells} \) define the sorts \(\text{stateCell} \) and \(\text{TCell} \) and functions \(\text{state} : \text{Map} \rightarrow \text{stateCell} \) and \(T : \text{kCell} \times \text{stateCell} \rightarrow \text{TCell} \), where \(\text{Map} \) is a predefined sort for finite maps (see, e.g., [53, Section 9.2]). We often write \(\text{TCell} \) as \(\text{Cfg} \), denoting the sort of top-level program configurations.

Rewrite rules. The sorts define language semantics in terms of rewrite rules of the form \(\varphi_{\text{lhs}} \Rightarrow \varphi_{\text{rhs}}, \) where \(\varphi_{\text{lhs}} \) and \(\varphi_{\text{rhs}} \) are configuration patterns of sort \(\text{Cfg} \), i.e., \(\varphi_{\text{lhs}}, \varphi_{\text{rhs}} \subseteq \llbracket \text{Cfg} \rrbracket \). These rewrite rules yield a transition system over configurations as the formal language semantics, so we first capture the transition relation in AML. Inspired by temporal logic, we define a symbol \(\ast \) called one-path next, and its arity axiom \(\ast [\llbracket \text{Cfg} \rrbracket] \subseteq \llbracket \text{Cfg} \rrbracket \). Intuitively, \(\ast \gamma \) contains configurations \(\gamma' \) such that \(\gamma \) is a next state of \(\gamma' \). Then, rule \(\varphi_{\text{lhs}} \Rightarrow \varphi_{\text{rhs}} \) defines an axiom (SEMTENSICS) \(\varphi_{\text{lhs}} \Rightarrow \ast \varphi_{\text{rhs}} \) which states that any configuration matching \(\varphi_{\text{lhs}} \) has at least one next state matching \(\varphi_{\text{rhs}} \).

Program execution. One-path next \(\ast \in \Sigma_{\text{IMP}} \) only defines one-step rewrites; e.g., \(\varphi \rightarrow \ast \psi \) means \(\varphi \) rewrites to \(\psi \) in one step; \(\varphi \rightarrow \ast \ast \psi \) means \(\varphi \) rewrites to \(\psi \) in two steps; etc. However, program execution can take arbitrarily, finitely many steps, so we need a pattern to denote that \(\varphi \) rewrites to \(\psi \) in any finitely many steps. Such finiteness properties are known to be outside of the scope of FOL, because fixpoints are needed. AML has built-in support for fixpoints, so it can define such finiteness properties, such as the eventually operator \(\ast \varphi \equiv \mu X. \varphi \lor X \). Then, we can use \(\varphi \rightarrow \ast \psi \) to mean program executes from \(\varphi \) to \(\psi \). As a concrete example, consider executing the \text{sum} program from the configuration:

\[
\Psi((\text{sum}, n, s) \equiv T(k \text{sum})(\text{state}(\text{merge}(\text{mapsto n n})(\text{mapsto s s}))))
\]

whose computation is code and whose state maps \(n \) to \(n \) and \(s \) to \(s \). Here, \text{merge} and \text{mapsto} are predefined map functions; see, e.g., [53, Section 9.2]. Then, \(\varphi_0 \equiv \Psi(\text{loop}, 100, 0) \) denotes the configuration that reaches the loop with \(n = 100 \). The following AML proof steps formalize the first few execution steps that \(\text{K} \) applies, until we reach the loop again:

\[
\begin{align*}
\Gamma_{\text{IMP}} \vdash \varphi_0 & \rightarrow \ast \varphi_1 & \text{where } \varphi_1 \equiv \Psi(\text{if}(n)\{s=s+n;n=n-1;\text{loop}\}), 100, 0) \\
\Gamma_{\text{IMP}} \vdash \varphi_1 & \rightarrow \ast \varphi_2 & \text{where } \varphi_2 \equiv \Psi(\text{if}(100)\{s=s+n;n=n-1;\text{loop}\}), 100, 0) \\
\Gamma_{\text{IMP}} \vdash \varphi_2 & \rightarrow \ast \varphi_3 & \text{where } \varphi_3 \equiv \Psi(\{s=s+n;n=n-1;\text{loop}, 100, 0) \\
\Gamma_{\text{IMP}} \vdash \cdots \\
\Gamma_{\text{IMP}} \vdash \cdots \rightarrow \varphi_{12} & \text{where } \varphi_{12} \equiv \Psi(\text{loop}, 99, 100)
\end{align*}
\]

By AML proof rule (FRAMING), we have \(\Gamma_{\text{IMP}} \vdash \ast \varphi_1 \rightarrow \ast \ast \varphi_2, \) \(\Gamma_{\text{IMP}} \vdash \ast \ast \varphi_2 \rightarrow \ast \ast \ast \varphi_3, \) etc. We can “chain” them together by FOL reasoning and prove \(\Gamma_{\text{IMP}} \vdash \varphi_0 \rightarrow \ast \ast \ast \ast \cdots \ast \varphi_{12}. \) Finally, by applying fixpoint reasoning and unfolding \(\ast \varphi_{12} \) 12 times, we prove \(\Gamma_{\text{IMP}} \vdash \varphi_0 \rightarrow \ast \varphi_{12}. \) This is
only an execution fragment. For full execution, we continue the process until we reach final configuration \(q_m \equiv \Psi(\ldots, 0, 5050) \) (where \(m \) is the number of execution steps and \(\ldots \) denotes the empty computation, i.e., termination) and prove \(\Gamma^{IMP} \vdash q_0 \rightarrow \Diamond q_M \).

In conclusion, \(K \)'s program execution tool becomes best effort implementation of proof searching for AML theorems \(\Gamma^{IMP} \vdash q_0 \rightarrow \Diamond q_M \). \(K \)'s debugger tool allows users to step through and visualize executions of any programs in any programming languages that have a \(K \) semantics.

More dynamic patterns. Many dynamic properties and modal operators can be defined as AML patterns. Here we define some modal operators necessary for program verification. “All-path next” \(\Box \varphi \equiv \neg Cfg \bullet \neg Cfg \varphi \) is the dual of one-path next; it is matched by states whose next states all match \(\varphi \). Here, \(\neg Cfg \varphi \equiv \neg \varphi \land \mathbf{\| Cfg \|} \) is matched by all configurations not matching \(\varphi \). “Always” \(\square \varphi \equiv \neg Cfg \Diamond \neg Cfg \varphi \) is the dual of “eventually”, matched by all states where \(\varphi \) holds now and hereafter. “Well-founded states” \(WF \equiv \mu X. \lor \Box X \) is matched by all well-founded states, i.e., those which do not have infinite execution traces.

Program verification. Verification is different from execution, in that it considers partial correctness, i.e., the post-condition \(q_{post} \) needs to be satisfied only on termination. Therefore, we weaken the definition of \(\Diamond \varphi \) that is used to formalize execution, to \(\Diamond w \varphi \equiv (\neg Cfg WF) \lor \Diamond \varphi \), called weak-eventually, and use \(q_{pre} \rightarrow q_w q_{post} \) to mean that \(q_{pre} \) either diverges (i.e. has an infinite execution trace) or reaches \(q_{post} \) eventually, capturing precisely partial correctness semantics.

As a concrete example, we use AML to formalize the verification task of the invariant claim of the while loop:

\[
\Phi_{inv} \equiv \forall n: \text{Int}. \forall s: \text{Int}. (\Psi(\text{LOOP}, n, s) \land n \geq 0) \rightarrow \Diamond w \Psi(\ldots, 0, s + n(n + 1)/2)
\]

Intuitively, it says that if LOOP is executed at where \(n \) is \(n \) and \(s \) is \(s \), then on termination \(n \) becomes 0 and \(s \) becomes \(s + n(n + 1)/2 \). \(K \)'s verification tool is based on circular reasoning [54]; that is, \(K \) moves \(\Phi_{inv} \) to a set of circularities and starts executing LOOP symbolically. If \(n = 0 \), the program terminates and verification finishes. For \(n \geq 1 \), \(K \) consumes the loop body and reaches \(\Psi(\text{LOOP}, n-1, s+n) \land n \geq 1 \). Then it uses \(\Phi_{inv} \) as a normal semantic axiom to finish the proof by instantiating \(n \) to \(n-1 \) and \(s \) to \(s + n \).

We formalize the above circular reasoning as AML fixpoint reasoning; see Appendix J for details. The key observation is that, by partial correctness, we only need to prove \(\Phi_{inv} \) for well-founded states; i.e., \(\Gamma^{IMP} \vdash \Phi_{inv} \) iff \(\Gamma^{IMP} \vdash WF \rightarrow \Phi_{inv} \), where \(WF \equiv \mu X. \lor \Box X \) denotes well-founded states as defined earlier. Then by (KNASTER-TARSKI), it suffices to prove \(\Gamma^{IMP} \vdash \Box WF \rightarrow \Phi_{inv} \) with \(\Box WF \Phi_{inv} \) being an additional condition, saying that \(\Phi_{inv} \) holds after any rewrite step, thus yielding circular reasoning. In conclusion, \(K \)'s program verification tool becomes a best effort implementation of proof searching for AML theorems \(\Gamma^{IMP} \vdash q_{pre} \rightarrow \Diamond w q_{post} \).

9 New \(K \) Features Based on AML

We propose two new features for \(K \), frequently requested by users, based on AML. They are nontrivial extensions of existing features but can be uniformly treated in AML and thus can correctly extend existing \(K \) implementations. We use them to demonstrate the benefit of using a logic like AML as the logical foundation and formal semantics of \(K \).
9.1 Feature A: Function Sorts/Types

Our first feature proposal is function sorts/types. We define \(\text{Function}: \text{Sort} \times \text{Sort} \rightarrow \text{Sort} \) to be a sort constructor (like \(\text{List} \) in Section 7) and use \(\text{Function s s}' \) to denote the sort of functions from \(s \) to \(s' \), as axiomatized below:

\[
(\text{Function Sort}) \\
\forall s: \text{Sort}. \forall s': \text{Sort}. \exists f. (f \land \forall x: s. \exists y: s'. f x = y)
\]

Recall that \(\exists \) means set union (see Definition 3). Therefore, \(\exists f \) is matched by all \(f \) such that \(\forall x: s. \exists y: s'. f x = y \), i.e., \(f \) is a function from \(s \) to \(s' \). Multiary functions can be defined as usual making use of currying, as follows (quantification over sorts is defined in Section 7):

\[
\text{Function s_1 \cdots s_n s} \\
\equiv \text{Function s_1 (Function s_2 \cdots (Function s_n s) \cdots)}
\]

Function sorts are useful to formalize functional languages such as OCaml [37] and Haskell [38] in \(K \), where functions are first-class citizens and can take functions as arguments. For example, we extend \(\Gamma_{\text{LIST}} \) with two higher-order functions \(\text{fold} \) and \(\text{map} \) as follows:

\[
\forall s: \text{Sort}. \forall s': \text{Sort}. \\
\text{fold}: \text{Function s' s' } \times s' \times \text{List s} \rightarrow s' \\
\forall f: \text{Function s' s'}. \forall x: s'. \text{fold } f x \text{ nil } = x \\
\forall f: \text{Function s' s'}. \forall x: s'. \forall y: s. \forall l: \text{List s}. \forall x: s'. \text{fold } f x (\text{cons } y l) = \text{fold } f (f x y) l
\]

\[
\forall s: \text{Sort}. \forall s': \text{Sort}. \\
\text{map}: \text{Function s' s' } \times \text{List s} \rightarrow \text{List s'} \\
\forall g: \text{Function s' s'}. \forall x: s'. \forall l: \text{List s}. \forall y: s. \forall l: \text{List s}. \forall x: s'. \text{map } g (\text{cons } y l) = \text{cons } (g x) (\text{map } g l)
\]

We propose the \(K \) team to also incorporate conventional sort/type inference procedures in future versions of \(K \), because with those, all the non-gray parts above can be inferred, in which case users would only write the gray equations, making defining semantics in \(K \) closely resemble functional programming in languages like Haskell or OCaml.

9.2 Feature B: Dependent Sorts/Types

Our second feature proposal is dependent sorts (types), which are like parametric sorts but whose parameters are elements, i.e., arbitrary data, instead of sorts. Since AML makes no distinction between elements and sorts, they are defined uniformly by patterns, and it is straightforward to define dependent sorts, following the definition of parametric lists in Section 7.

As an example, we define a dependent sort \(\text{MInt} \) for machine integers; for \(n \geq 1 \), we let \(\text{MInt n} \) denote the sort of machine integers of size \(n \), i.e., natural numbers less than \(2^n \). For clarity, we define a new sort \(\text{Size} \) for positive naturals and define \(\text{MInt}: \text{Size} \rightarrow \text{Sort} \) as a function as below:
\[\text{Size} = \text{succ} \ \text{Nat} \]
\[\forall n: \text{Size}. \ [\text{MInt } n] = \exists x: \text{Nat}. \ x < \text{pow}_2 n \]
where \(\text{pow}_2: \text{Nat} \to \text{Nat} \) (power of 2) and \(<\), are defined as usual. Then we define functions over machine integers, such as \(mplus \) and \(mmult \), by defining their arities and reusing natural numbers addition \(\text{plus} \) and multiplication \(\text{mult} \):

\[\forall n: \text{Size}. \ mplus: \text{MInt } n \times \text{MInt } n \to \text{MInt } (\text{succ } n) \]
\[\forall n: \text{Size}. \ \forall x: \text{MInt } n. \ \forall y: \text{MInt } n. \ mplus x y = \text{plus } x y \]
\[\forall n: \text{Size}. \ \forall m: \text{Size}. \ mmult: \text{MInt } n \times \text{MInt } m \to \text{MInt } (\text{plus } n m) \]
\[\forall n: \text{Size}. \ mmult x y = \text{mult } x y \]

10 Related Work

Other theoretical attempts to formalizing \(\mathcal{K} \). These include the double-pushout graph transformations [56], an Isabelle definition [39], and a Coq definition based on co-induction [45], all of which require heavy theory transformations with a big representational distance from the original definitions, and are targeted at only a subset of \(\mathcal{K} \) features such as reachability, partial correctness, or coinduction, while with AML we aim at giving full formal semantics to \(\mathcal{K} \).

Reachability logic [54, 15] and matching logic [53, 9] are a series of research aiming at formalizing \(\mathcal{K} \)’s program verification tools and are what inspired AML. Reachability logic has built-in support for reasoning about reachability properties, and matching logic (which is an MSFOL variant; see Section 5) has built-in support for defining many-sorted structures, making them over-complicated and less flexible to be extended to deal with more complex dynamic properties and sort structures (e.g., ordered sorts, parametric sorts) needed by \(\mathcal{K} \). In contrast, AML adopts a minimalist design and defines only the simplest building blocks, with which more complex and notationally heavier concepts can be axiomatized as theories, as we have shown in this paper. We think AML is more suitable to be taken by the \(\mathcal{K} \) community to be the foundation of \(\mathcal{K} \), due to its simplicity, minimality, and high flexibility that make it easier to formalize existing features and develop new features, especially at this stage where \(\mathcal{K} \) still seems to be continuously evolving and changing.

Other language frameworks. There are several other important language frameworks besides \(\mathcal{K} \) for defining formal semantics of programming languages. CENTAUR [6] is one of the earliest systems that take formal language definitions and automatically generate programming environments with language tools such as interpreters and debuggers, equipped with graphic interfaces. Proof assistants such as Coq [3] and Isabelle [48] have been extensively used as language frameworks, where program verification is framed as proving theorems, mostly interactively with remarkable human effort, although (semi-)automation is available in some cases. Lightweight tools such as Ott [57] provide an intuitive frontend language to define formal syntax and semantics, accompanied with automatic tools that sanity-check definitions and translate them to proof assistants where proofs are done.

Our goal with AML is different. We aimed at a direct and minimal logical foundation for \(\mathcal{K} \), without translation to other frameworks or logics, because such a translation often yields heavy notational cost and, more importantly, causes difficulties to translate back (i.e., interpret) failed verification attempts, error messages, etc. As discussed in Section 2.1, the syntax of AML is
minimal, where every logical construct is critical and has a unique semantic meaning. The 13-rule proof system of AML is succinct and compact, and it support all essential logical reasoning (e.g., FOL, frame, fixpoint, and equational reasoning) that is required in program analysis and verification.

There are several language frameworks that are also rewriting-based, like K. Component-based specification [4] predefines a set of fundamental language constructs and uses them to define languages modularly. Spoofax [7] is a platform for designing domain specific languages (DSL), integrated with various language tools such as SDF [61] for formal syntax, Stratego [62] for code generation, FlowSpec [59] for data flow analysis, etc. PLT Redex [21] is a DSL for designing rewrite-based operational semantics, fully integrated within a target programming language such as Scheme or Racket.

Since K is also rewriting-based and supports all the features of the above frameworks, AML can be a proper logical foundation for the above-mentioned frameworks, too, so they can share the same simple yet powerful AML prover and proof checkers to ensure semantic correctness of the claims they make, no matter what heuristics or algorithms they employed.

11 Conclusion

Previously, the development and implementation of K seemed to be mostly driven by practical needs from user requests instead of a clear and solid mathematical foundation. This resulted in some ad hoc engineering hacks in existing K tools and uncertainties about the formal semantics of K.

In this paper, we proposed applicative matching logic (AML) as what we believe is the right logical foundation and formal semantics of K. Specifically, we took the major logical frameworks that are fully or partially supported by K implementations and showed how they can be captured as theories and notations in AML. We put all results together and showed from a theoretical point of view that K’s program execution and verification tools are best effort implementations in realizing AML reasoning and proof searching. Finally, we proposed two nontrivial extensions of K features and showed that AML offers a natural treatment for both, showing additional benefits of adopting a logic like AML as the foundation of K.

References

A Knaster-Tarski Fixpoint Theorem

Theorem 19 (Knaster-Tarski [60]). For any nonempty set M and any monotone function $\mathcal{F} : \mathcal{P}(M) \rightarrow \mathcal{P}(M)$ with $\mathcal{F}(A) \subseteq \mathcal{F}(B)$ for all $A \subseteq B$, where $\mathcal{P}(M)$ denotes the powerset of M, we have that \mathcal{F} has a unique least fixpoint $\mu \mathcal{F}$ and a unique greatest fixpoint $\nu \mathcal{F}$, given as:

$$\mu \mathcal{F} = \bigcap \{A \subseteq M \mid \mathcal{F}(A) \subseteq A\}$$

$$\nu \mathcal{F} = \bigcup \{A \subseteq M \mid A \subseteq \mathcal{F}(A)\}$$

B Proofs of results in Sections 2

Here we prove all results in Section 2.

Proof of Proposition 4. Simple, by applying definitions directly.

(Case $\neg \phi$): $\bar{\rho}(\neg \phi) = \bar{\rho}(\phi \rightarrow \bot) = M \setminus (\bar{\rho}(\phi) \setminus \{\bot\}) = M \setminus (\bar{\rho}(\phi) \setminus \emptyset) = M \setminus \emptyset = M$.

(Case $\phi_1 \lor \phi_2$): $\bar{\rho}(\phi_1 \lor \phi_2) = \bar{\rho}(\neg \phi_1 \rightarrow \phi_2) = M \setminus (\bar{\rho}(\neg \phi_1) \setminus \bar{\rho}(\phi_2)) = M \setminus ((M \setminus \bar{\rho}(\phi_1)) \setminus \bar{\rho}(\phi_2)) = \bar{\rho}(\phi_1) \cup \bar{\rho}(\phi_2)$.

(Case $\phi_1 \land \phi_2$): $\bar{\rho}(\phi_1 \land \phi_2) = \bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \bar{\rho}(\neg \phi_1) \lor \bar{\rho}(\neg \phi_2) = (M \setminus \bar{\rho}(\phi_1)) \lor (M \setminus \bar{\rho}(\phi_2)) = \bar{\rho}(\phi_1) \lor \bar{\rho}(\phi_2)$.

(Case T): $\bar{\rho}(T) = \bar{\rho}(\bot) = M \setminus \{\bot\} = M \setminus \emptyset = M$.

(Case $\phi_1 \leftrightarrow \phi_2$): $\bar{\rho}(\phi_1 \leftrightarrow \phi_2) = \bar{\rho}(\phi_1 \rightarrow \phi_2) \land \bar{\rho}(\phi_2 \rightarrow \phi_1) = (\bar{\rho}(\phi_1 \rightarrow \phi_2) \land \bar{\rho}(\phi_2 \rightarrow \phi_1)) = (\bar{\rho}(\phi_1) \cup \bar{\rho}(\phi_2)) \land (\bar{\rho}(\phi_1) \cup \bar{\rho}(\phi_2)) = \bar{\rho}(\phi_1) \cup \bar{\rho}(\phi_2)$.

(Case $\forall x. \phi$): $\bar{\rho}(\forall x. \phi) = \bar{\rho}(\neg \exists x. \neg \phi) = M \setminus \bar{\rho}(\exists x. \neg \phi) = M \setminus \bigcup_{a \in M} \bar{\rho}[a/x](\neg \phi) = M \setminus \bigcup_{a \in M} \bar{\rho}[a/x](\phi)$.

(Case $\forall x. \phi$): $\bar{\rho}(\forall x. \phi) = \bar{\rho}(\neg \exists x. \neg \phi) = M \setminus \bar{\rho}(\exists x. \neg \phi) = M \setminus \bigcup_{a \in M} \bar{\rho}[a/x](\neg \phi) = M \setminus \bigcup_{a \in M} \bar{\rho}[a/x](\phi)$.

Proposition 20. With the above notation, the following hold:

- $\bar{\rho}(\{\phi_1\}) = M$ iff $\bar{\rho}(\phi_1) \neq \emptyset$; and $\bar{\rho}(\{\phi_1\}) = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$.
- $\bar{\rho}(\{\phi_1\}) = M$ iff $\bar{\rho}(\phi_1) = M$; and $\bar{\rho}(\{\phi_1\}) = \emptyset$ iff $\bar{\rho}(\phi_1) \neq \emptyset$.
- $\bar{\rho}(\phi_1 = \phi_2) = M$ iff $\bar{\rho}(\phi_1) = \bar{\rho}(\phi_2)$; and $\bar{\rho}(\phi_1 = \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \neq \bar{\rho}(\phi_2)$.
- $\bar{\rho}(x \in \phi) = M$ iff $\bar{\rho}(x) \in \bar{\rho}(\phi)$; and $\bar{\rho}(x \in \phi) = \emptyset$ iff $\bar{\rho}(x) \notin \bar{\rho}(\phi)$.
- $\bar{\rho}(\phi_1 \subseteq \phi_2) = M$ iff $\bar{\rho}(\phi_1) \subseteq \bar{\rho}(\phi_2)$; and $\bar{\rho}(\phi_1 \subseteq \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \nsubseteq \bar{\rho}(\phi_2)$.

Proof. These can be proved by simply applying the definitions.

(Case $\{\phi_1\}$): $\bar{\rho}(\{\phi_1\}) = M$ iff there exists $a \in \bar{\rho}(\phi_1)$ iff $\bar{\rho}(\phi_1) \neq \emptyset$. Otherwise, $\bar{\rho}(\{\phi_1\}) = \emptyset$ iff there exists no $a \in \bar{\rho}(\phi_1)$ iff $\bar{\rho}(\phi_1) = \emptyset$.

(Case $\phi_1 \land \phi_2$): $\bar{\rho}(\phi_1 \land \phi_2) = M$ iff $\bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$ iff $\bar{\rho}(\phi_2) = \emptyset$. Otherwise, $\bar{\rho}(\phi_1 \land \phi_2) = \emptyset$ iff $\bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$ iff $\bar{\rho}(\phi_2) = \emptyset$.

(Case $\phi_1 \lor \phi_2$): $\bar{\rho}(\phi_1 \lor \phi_2) = M$ iff $\bar{\rho}(\phi_1) \lor \bar{\rho}(\phi_2) = M$ iff $\bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \emptyset = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$ iff $\bar{\rho}(\phi_2) = \emptyset$. Otherwise, $\bar{\rho}(\phi_1 \lor \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \emptyset = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$ iff $\bar{\rho}(\phi_2) = \emptyset$.

(Case $\phi_1 \rightarrow \phi_2$): $\bar{\rho}(\phi_1 \rightarrow \phi_2) = M$ iff $\bar{\rho}(\phi_1) \subseteq \bar{\rho}(\phi_2)$ = M iff $\bar{\rho}(\neg \phi_1 \lor \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \subseteq \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$. Otherwise, $\bar{\rho}(\phi_1 \rightarrow \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \subseteq \bar{\rho}(\phi_2)$ = M iff $\bar{\rho}(\phi_1) \subseteq \bar{\rho}(\phi_2)$.

(Case $\exists x. \phi$): $\bar{\rho}(\exists x. \phi) = M$ iff $\bar{\rho}(\phi_1 \land \phi_2) = M$ iff $\bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \bar{\rho}(\phi_2) = \emptyset$. Otherwise, $\bar{\rho}(\exists x. \phi) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \emptyset = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$.

(Case $\forall x. \phi$): $\bar{\rho}(\forall x. \phi) = M$ iff $\bar{\rho}(\phi_1 \land \phi_2) = M$ iff $\bar{\rho}(\neg \phi_1 \lor \neg \phi_2) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \bar{\rho}(\phi_2) = \emptyset$. Otherwise, $\bar{\rho}(\forall x. \phi) = \emptyset$ iff $\bar{\rho}(\phi_1) \lor \emptyset = \emptyset$ iff $\bar{\rho}(\phi_1) = \emptyset$.
C Proofs of Results in Section 3

Proposition 7. For theories Γ with definedness, we have

- $\Gamma \vdash \varphi = \varphi$
- $\Gamma \vdash \varphi_1 = \varphi_2$ and $\Gamma \vdash \varphi_2 = \varphi_3$ implies $\Gamma \vdash \varphi_1 = \varphi_3$
- $\Gamma \vdash \varphi_1 = \varphi_2$ implies $\Gamma \vdash \varphi_2 = \varphi_1$
- $\Gamma \vdash \varphi_1 = \varphi_2$ implies $\Gamma \vdash \psi[\varphi_1/x] = \psi[\varphi_2/x]$

Here ψ can be any pattern, not only application context. In other words, the indiscernibility of identicals holds in AML.

Proof. See [10, Lemma 50 and 60]. □

Theorem 8 (Soundness Theorem). $\Gamma \vdash \varphi$ implies $\Gamma \vDash \varphi$.

Proof. See [10, Theorem 13]. □

D Some Discussion about Definedness Symbol

Note the following property about definedness.

Proposition 21. Let M be an AML model satisfying (DEFINEDNESS). Then $M \cdot a = M$ for all $a \in M$, i.e., for all $a, b \in M$ there exists $c \in M$ such that $b \in c \cdot a$.

Proof. Let $[_]_M \subseteq M$ be the interpretation of definedness in M. Since M satisfies (DEFINEDNESS), we have $[_]_M \cdot a = M$ for all $a \in M$. Then by pointwise extension, $M \cdot a = M$. □

For convenience and simplicity, when we construct an AML model, we assume there is a special element, say $\$ \in M$, such that $\$ \cdot a = M$ for all $a \in M$. Then, we use $\$ as the interpretation of definedness in our model.

E Proof of Results in Section 4

Proposition 10. $\vdash \forall x : s. \varphi = \neg \exists x : s. \neg \varphi$

Proof. We prove the first one as follows:

- $\forall x : s. \varphi = \forall x. x \in [s] \rightarrow \varphi$
- $= \neg \exists x. \neg(x \in [s] \rightarrow \varphi)$
- $= \neg \exists x. x \in [s] \land \neg \varphi$
- $= \neg \exists x : s. \varphi$

The second can be proved in the same way. □

Proposition 12. For MSFOL terms t_s and formulas φ,

- $\Gamma_{\text{MSFOL}} \vdash \text{ws}(t_s) \rightarrow \exists y : s. t_s = y$
- $\Gamma_{\text{MSFOL}} \vdash \text{ws}(\varphi) \rightarrow (\varphi = \top) \lor (\varphi = \bot)$.
For MSFOL theory

Theorem 15. Let Γ be an MSFOL-restricted model is exactly A. In addition, there is an AML model M such that Γ is equivalent to a set of axioms (FUNCTION) for f.

Next, we prove $\Gamma \vdash \omega(t) \rightarrow (\varphi = \top) \lor (\varphi = \bot)$. We carry out structural induction on φ. Note that φ is an MSFOL formula, i.e., an AML pattern built from \top, \bot, \land, \lor, and $\exists t : s \varphi$, or $\rho(t_1, \ldots, t_n)$ for predicate $\rho \in \Pi_{s_1, \ldots, s_n}$. Since the predicate-ness of patterns propagate through all AML logic connectives and constructs, we only need to prove the two base cases: when φ is \top and when φ is $\rho(t_1, \ldots, t_n)$. For the former, it is trivial that the conclusion holds. For the latter, it is a direct consequence of axiom (Predicate) for ρ.

Theorem 13. $\Omega \vdash \varphi$ implies $\Gamma^{\text{MSFOL}} \vdash \varphi^{\text{MSFOL}}$.

Proof. We carry out structural induction on the length of Hilbert-style proof $\Omega \vdash \varphi$. Note that MmL and AML have a lot of proof rules in common. We only need to prove that the following two MSFOL proof rules are derivable by the AML proof system:

\[
\begin{align*}
(\text{Sorted } \exists \text{-Quantifier}) & \quad \varphi[t/x : s] \rightarrow \exists x : s \varphi \\
(\text{Sorted } \exists \text{-Generalization}) & \quad (\exists x : s \varphi) \rightarrow \varphi_2 \quad \text{if } x : s \not\in \text{FV}(\varphi_2)
\end{align*}
\]

For (Sorted \exists-Quantifier), we need to prove that $\Gamma^{\text{MSFOL}} \vdash \varphi[t/x : s] \rightarrow \exists x : s \varphi \land \varphi$ To prove that, we first need to prove t is a functional pattern of sort s in AML. This has been proved in Proposition 12.

For (Sorted \exists-Generalization), we only need to apply AML’s unsorted (\exists-Generalization), and the fact that $\Gamma^{\text{MSFOL}} \vdash (\exists x : s \varphi_1) \rightarrow (\exists x \varphi_1)$. The latter holds by standard FOL reasoning.

To sum up, we have proved the conclusion by induction on the length of the Hilbert-style proof $\Omega \vdash \varphi$ that Γ^{MSFOL} preserves all MSFOL reasoning.

The following proposition is useful in reasoning about the semantics of sorted quantification.

Proposition 22. Let M be a model, s be a sort, whose domain is denoted/defined as $M_s = [s]_M$. Then for any valuation ρ, $\bar{\rho}(\exists t : s \varphi) = \bigcup_{a \in M_s} \rho[a/x](\varphi)$ and $\bar{\rho}(\forall t : s \varphi) = \bigcap_{a \in M_s} \rho[a/x](\varphi)$

Proof. We prove for $\exists t : s \varphi$. The proof of the other one is similar. By definition, $\bar{\rho}(\exists t : s \varphi) = \bar{\rho}(\exists x : s \varphi) = \bigcup_{a \in M_s} \rho[a/x](\varphi)$. Note that $\rho[a/x](\varphi) = M$ if $\rho[a/x](\varphi)$ is true for all $a \in M_s$.

Therefore, $\bar{\rho}(\exists t : s \varphi) = \bigcup_{a \in M_s} \rho[a/x](\varphi)$.

Theorem 15. For MSFOL theory Ω and model $A \vDash_{\text{MSFOL}} \Omega$, there is an AML model $M \vDash \Gamma^{\text{MSFOL}}$ whose MSFOL-restricted model is exactly A. In addition, $\Gamma^{\text{MSFOL}} \vDash \varphi^{\text{MSFOL}}$ iff $\Omega \vdash \varphi$.

Proof. Assume an MSFOL model $A = ([A]_{s\in S}, (f_a)_{f \in F}, \{P_A\}_{p \in \Pi})$. We give an explicit construction on M. Firstly, we define its domain, which (by abuse of notation) is also denoted as M. We let M contain/include all the following elements/sets:

1. $\{a \in [s]_M \mid a \in M_s \}$ for sort s.
2. $(f_a)_{f \in F}$
3. $(P_A)_{p \in \Pi}$

For every $a \in [s]_M$, we define a's domain as the set of all elements in M_s that are mapped to a by the function f_a.

For every predicate $P \in \Pi$, we define its interpretation in M as the set of all elements in M_s that satisfy P when interpreted as a predicate in AML.

Finally, we define the interpretation of the MSFOL theory Ω in M as follows:

$\rho(\exists t : s \varphi) = \bigcup_{a \in [s]_M} \rho[a/x](\varphi)$ and $\rho(\forall t : s \varphi) = \bigcap_{a \in [s]_M} \rho[a/x](\varphi)$.
• $\$, which is a distinguished element denoting definedness; see Appendix D;
• #, which is a distinguished element denoting the domain symbol;
• S, the sort set;
• A_s, for all $s \in S$;
• $[A_{s_1} \rightarrow [A_{s_2} \rightarrow \cdots \rightarrow [A_{s_n} \rightarrow A_s] \cdots]]$ for all $F_1, \ldots, F_n \neq \emptyset$ and $1 \leq i \leq n$. Here $[A \rightarrow B]$ denotes the set of all functions from A to B; intuitively, it is used to define the interpretations of functions and their partial applications;
• $A_{s_1} \times \cdots \times A_{s_n}$ for all $\Pi_1, \ldots, \Pi_n \neq \emptyset$ and $1 \leq i \leq n$; intuitively, it is used to define the interpretations of predicates and their partial applications.

Next, we define the following interpretations of constants:
• $[\cdot]_M = \{\}$ and $\mathbb I_M = \{\}$;
• $s_M = \{s\}$ for all $s \in S$;
• $f_M = \{f_A\}$ for all $f \in F_1, \ldots, F_n$; note that $f_A : A_{s_1} \times \cdots \times A_{s_n} \rightarrow A_s$, under the curry-uncurry isomorphism, is an element in $[A_{s_1} \rightarrow [A_{s_2} \rightarrow \cdots \rightarrow [A_{s_n} \rightarrow A_s] \cdots]]$. Therefore, $f_A \in M$ and that f_M is well-defined.
• for $p \in \Pi_s$, i.e., constant predicate (atomic proposition) whose truth value is determined by the structure A, we define $p_M = \emptyset$ whenever p_A is always false and $p_M = M$ whenever p_A is always true;
• for $p \in \Pi_1, \ldots, \Pi_n$ for $n \geq 1$, we define $p_M = p_A$; note that $p_A \subseteq A_{s_1} \times \cdots \times A_{s_n}$ is a subset of M, so p_M is well-defined.

Next, we define the application in M as the following:
• $\$ \cdot a = M$ for all $a \in M$;
• # \cdot s = A_s$ for all $s \in S$; note that $\llbracket s_M \rrbracket_M = # \cdot \{s\} = A_s$;
• $f \cdot a = \{f(a)\}$ for all $f \in [A \rightarrow B]$ and $a \in A$; that is, application is interpreted as the normal function application, if the first argument is a function and the second is an element of the appropriate sort;
• for $p \subseteq A_s$ for some $s \in S$, we define $p \cdot a = M$ iff $a \in p$ and $p \cdot a = \emptyset$ iff $a \notin p$; intuitively, p is the interpretation of a unary symbol, so when it is applied to an argument, the result is either \emptyset (indicating false) or M (indicating true);
• $p \cdot a = \{b \mid (a, b) \in p\}$ for all $p \subseteq A \times B$ and $a \in A$; that is, application is interpreted as projections if the first argument is an n-ary relation for $n \geq 2$ and the second is an element of the appropriate sort.

Next, we verify that M satisfies all axioms in $\Gamma_{MSFOL} \setminus \Omega_{MSFOL}$; for axioms in Ω_{MSFOL}, we will prove that M satisfies them later. (Definedness) is satisfied by definition. (Nonempty Sort) is satisfied because $A_s \neq \emptyset$ for all $s \in S$. (Function) for every $f \in F_1, \ldots, F_n$ is satisfied because f_M is defined by f_A and the application \cdot. is interpreted as the normal function application. (Predicate) for every $p \in \Pi_1, \ldots, \Pi_n$ is satisfied because p_M is defined as a relation and the application \cdot. is interpreted as the projection of relations, until it reaches the last argument (i.e., for unary relations), in which case either \emptyset or M is returned. Therefore, $M \models \Gamma_{MSFOL} \setminus \Omega_{MSFOL}$.

Next, we prove the MSFOL-restricted model of M, denoted B, is exactly A. By definition, $B = (\{B_s\}_{s \in S}, \{f_B\}_{f \in F})$ is an MSFOL structure consisting of:
Therefore, B is exactly A (up to isomorphism).

Finally, we show that for any MSFOL formula ϕ, $A \vDash_{MSFOL} \phi$ iff $M \vDash \phi^{MSFOL}$. This immediately implies that $M \vDash Q^{MSFOL}$ and that $\Omega \vDash_{MSFOL} \phi$ iff $t^{MSFOL} \vDash \phi^{MSFOL}$. For clarity, we move rest of the proof to Lemma 23.

Lemma 23. Under the notations of the proof of Theorem 15, we have that every MSFOL valuation derives a corresponding AML valuation ρ_ω with $\rho_\omega(x) = \nu(x : s)$ for all MSFOL variable x. Then for every MSFOL term t of sort s and MSFOL formula ϕ, we have $\bar{\nu}(t) = \bar{\rho}_\omega(t)$ and that (a) $\bar{\nu}(\phi) = true \iff \bar{\rho}_\omega(\phi^{MSFOL}) = M$, and (b) $\bar{\nu}(\phi) = false \iff \bar{\rho}_\omega(\phi^{MSFOL}) = \emptyset$.

Proof. We fist prove $\bar{\nu}(t) = \bar{\rho}_\omega(t)$ by structural induction on t. When t is $x : s$, the conclusion holds by definition of ρ_ω. When t is $f(t_1, \ldots, t_n)$, the conclusion holds by the induction hypotheses for t_1, \ldots, t_n and the definition of f_M.

Next we prove both (a) and (b) simultaneously by carrying out structural induction on ϕ. When ϕ is \perp, we have $\bar{\nu}(\phi) = false$, always, and $\bar{\rho}_\omega(\phi^{MSFOL}) = \bar{\rho}_\omega(\nu(\perp) \rightarrow \perp = \top) = \emptyset$. When ϕ is $\phi_1 \land \phi_2$, we have $\bar{\nu}(\phi) = \bar{\nu}(\phi_1) \land \bar{\nu}(\phi_2)$. Suppose it is true, then $\bar{\nu}(\phi_1) = \bar{\nu}(\phi_2) = true$ by the semantics of MSFOL. By induction hypothesis on ϕ_1 and ϕ_2, we have $\bar{\rho}_\omega(\phi_1^{MSFOL}) = \bar{\rho}_\omega(\phi_2^{MSFOL}) = M$. Therefore, $\bar{\rho}_\omega(\phi^{MSFOL}) = \bar{\rho}_\omega(\nu(\phi_1) \rightarrow \nu(\phi_1) = \top) \land \bar{\rho}_\omega(\nu(\phi_2) \rightarrow \nu(\phi_2) = \top) = M$. We can prove the case when $\bar{\nu}(\phi_1 \land \phi_2) = false$ similarly and both reasonings are reversible. When ϕ is $\exists x : s. \phi_1$, we have $\bar{\nu}(\phi) = \bar{\nu}(\exists x : s. \phi_1)$. Suppose it is true, then there exists an element $a \in A_s$ such that $\nu(a/x : s)(\phi_1) = true$. By inductive hypothesis, $\bar{\rho}_\omega(a/x)(\phi_1^{MSFOL}) = M$, i.e., $\bar{\rho}_\omega(a/x)(\nu(\phi_1) = \top) = M$. Note that the new valuation $\bar{\rho}_\omega(a/x)$ satisfies $\nu(\phi_1)$, so we have $\bar{\rho}_\omega(a/x)(\phi_1 = \top) = M$, i.e., $\bar{\rho}(\nu(\phi_1) = \top) = M$. Therefore, $\bar{\rho}(\nu(\exists x : s. \phi_1) = false$. Follow a similar reasoning we show that $\bar{\rho}_\omega(a/x)(\phi_1 = \top)$ is \emptyset for all $a \in A_s$, i.e., $\bar{\rho}(\nu(\exists x : s. \phi_1) = \emptyset$, which finishes the proof. Finally, when ϕ is $p(t_1, \ldots, t_n)$, the conclusion follows by that $\bar{\nu}(t) = \bar{\rho}_\omega(t)$ and the definition of p_M.

\[\square \]

F Instance: Constructors and Term Algebras

 Constructors are extensively used in building programs and data, as well as semantic structures to define and reason about languages and programs. They generate term algebras, whose elements are terms and functions are constructors that build terms. In the broader context of defining formal semantics of languages, term algebras, as a special case of initial algebras, play an important role and have led to many applications and tools (see, e.g., [27, 28, 12]). In this section, we show how to define constructors and term algebras using the least fixpoint patterns that support inductive reasoning. The technique shown here can be naturally applied to defining initial algebra semantics [24, 27], which is an important theoretical framework whose applications include context free grammars for formal syntax and denotational semantics for formal semantics.

Let us fix an MSFOL signature $\langle \{Term\}, C, \emptyset \rangle$ with one sort $Term$, a set C of functions, called constructors, where at least one of them is a constant, and no predicates. The same technique applies to multiple sorts. We use c, d, \ldots to denote constructors. The set of C-terms, denoted as T_C, is defined as follows:

\[
\begin{align*}
t &::= c \in C_{c,Term} \\
& \mid c(t_1, \ldots, t_n) \text{ for } c \in C_{Term...Term,Term} \text{ with } n \geq 1
\end{align*}
\]
The C-term algebra is an MSFOL structure $T = (T_C, \{c_T\}_{c \in C}, \emptyset)$ with domain T_C and interpretations $c_T : T_C \times \cdots \times T_C \to T_C$ for $c \in C_{\text{Term}}$ such that $c_T(t_1, \ldots, t_n)$ is $c(t_1, \ldots, t_n)$ when $n \geq 1$ and c when $n = 0$.

Now we define an AML theory Γ^Term that faithfully captures the term algebra T. Since T is an MSFOL structure, we let Γ^Term contain all axioms in Section 4. In addition, we specify (1) all constructors are injective functions; and (2) the domain of Term is precisely T_C, as the following axioms:

- (No Confusion I, for all distinct $c, d \in C$ of arities n and m)
 \[\forall x_1 : \text{Term} \cdots \forall x_n : \text{Term} . \forall y_1 : \text{Term} \cdots \forall y_m : \text{Term} . \]
 \[cx_1 \cdots x_n \neq dy_1 \cdots y_m \]

- (No Confusion II, for all $c \in C$)
 \[\forall x_1 : \text{Term} \cdots \forall x_n : \text{Term} . \forall x'_1 : \text{Term} \cdots \forall x'_n : \text{Term} . \]
 \[cx_1 \cdots x_n = cx'_1 \cdots x'_n \implies x_1 = x'_1 \land \cdots \land x_n = x'_n \]

- (Inductive Domain) $\| \text{Term} \| = \mu D . \bigvee_{c \in C} cD \cdots D$

Intuitively, (No Confusion I) says different constructors build different terms; (No Confusion II) says that constructors are injective functions; (Inductive Domain) forces that $\| \text{Term} \|$ is the smallest set closed under all constructors, yielding exactly T_C, as shown in the following proposition.

Proposition 24. For any AML model $M \models \Gamma^\text{Term}$, its MSFOL-restricted model as defined in Definition 14 is exactly T. In particular, $\| \text{Term} \|_M = T_C$.

The proof follows from the proof of [9, Proposition 22], which there was done for the more general context of MmL, see Section G. Therefore, AML can define term algebras up-to-isomorphism, and not only up-to-elementary-equivalence as with FOL [41].

Proof. By Theorem 30 and [9, Proposition 22].

As a direct corollary of Proposition 24, the AML axiomatization Γ^NAT of $(\mathbb{N}, +, \times)$ as defined in Section 4.5 captures the standard model of natural numbers, which is a term algebra generated from $\{0, \text{succ}\}$, up to isomorphism. This is shown as the following proposition.

Proposition 18. The MSFOL-restricted model M of Γ^NAT is exactly $(\mathbb{N}, +, \times)$, up to isomorphism.

Proof. By applying Proposition 24 on Γ^NAT.

Proposition 17. $\Gamma^\text{NAT} \vdash 0 \in x \land (\forall y : \text{Nat} . y \in X \to (\text{succ } y) \in X) \to \forall x : \text{Nat} . x \in X$.

Proof. To prove $\forall y : \text{Nat} . x \in X$, we just need to show that $\| \text{Nat} \| \subseteq X$. Recall that $\| \text{Nat} \| = \mu D . 0 \lor \text{succ } D$, so we need to show $\mu D . 0 \lor \text{succ } D \to X$. By (Knaaster-Tarski), it suffices to prove $0 \lor \text{succ } X \to X$, which boils down to proving (1) $0 \to X$ and (2) $\text{succ } X \to X$. Firstly, (1) is directly proved by $0 \in X$. Secondly, (2) is proved by proving $z \in \text{succ } X \to z \in X$ for all z, which then boils down to proving $\exists y . y \in X \land z = \text{succ } y \to z \in X$, which is then proved from $\forall y : \text{Nat} . y \in X \to \text{succ } y \in X$.

G Instance: Matching μ-Logic (MmL)

Here we show in full detail how to define matching μ-logic (abbreviated MmL) [9]. MmL is a many-sorted FOL variant for pattern matching, with direct support for inductive reasoning and least fixpoints. We choose MmL because it is so far the best unifying logic as the foundation of the K framework and many important logics such as FOL with least fixpoints, separation logic, modal logic, temporal logics, dynamic logic, and reachability logic have all been defined as theories and
notations in MmL. The fact that we can define MmL in AML immediately shows that AML can also subsume the aforementioned logics.

As we will see, MmL is essentially an extension of AML with many-sorted syntax and structures or that AML is the fragment of MmL with only one sort, one binary symbol (for application), and several constant symbols. The results shown in this section show that we can safely eliminate the many-sorted infrastructure of MmL without losing any generality or power in model specification or logic reasoning.

G.1 Matching μ-Logic Preliminaries

Definition 25 ([9, Definition 19]). A matching μ-logic signature \((S, V, \Sigma) \) contains a sort set \(S \), a variable set \(V = EV \cup SV \) with element variables \(EV = \{ EV_s \}_{s \in S} \) and set variables \(SV = \{ SV_s \}_{s \in S} \), and a many-sorted symbol set \(\Sigma = \{ \Sigma_{1:s, s} \}_{s \in S} \). MmL formulas, also called patterns, are:

\[
q_s := x:s \in EV_s \mid X:s \in SV_s \mid \sigma(q_{s_1}, \ldots, q_{s_n}) \quad \text{where } \sigma \in \Sigma_{1:s, s}
\]

\[
| q_s \land q'_s \mid \neg q_s \mid \exists x:s'.q_s \mid \mu X:s.q_s \quad \text{where } q_s \text{ positive in } X:s
\]

An MmL structure \(M = (\{M_s\}_{s \in S}, \{\sigma(M_s)\}_{s \in S}) \) contains a nonempty domain \(M_s \) for every \(s \in S \) and an interpretation \(\sigma_M: M_n \times \cdots \times M_s \rightarrow \mathcal{P}(M_s) \) for every \(\sigma \in \Sigma_{1:s, s} \). We extend \(\sigma_M \) to its pointwise extension, \(\sigma_M^*: \mathcal{P}(M_{s_1}) \times \cdots \times \mathcal{P}(M_{s_n}) \rightarrow \mathcal{P}(M_s), \) defined as \(\sigma_M(A_1, \ldots, A_n) = \bigcup_{a_i \in A_i} \sigma(a_1, \ldots, a_n) \) for \(A_i \subseteq M_{s_i}, 1 \leq i \leq n \). An M-valuation \(\rho: V \rightarrow \mathcal{P}(M) \) is one such that \(\rho(x:s) \in M_s \) and \(\rho(X:s) \subseteq M_s \) for all \(x:s, X:s \in V \). Its extension \(\tilde{\rho} \) is defined:

\[
\tilde{\rho}(x:s) = \{\rho(x:s)\} \quad \tilde{\rho}(X:s) = \rho(X:s) \quad \tilde{\rho}(q_s \land q'_s) = \tilde{\rho}(q_s) \cap \tilde{\rho}(q'_s)
\]

\[
\tilde{\rho}(\sigma(q_{s_1}, \ldots, q_{s_n})) = \sigma_M(\tilde{\rho}(q_{s_1}), \ldots, \tilde{\rho}(q_{s_n})) \quad \text{for } \sigma \in \Sigma_{1:s, s}
\]

\[
\tilde{\rho}(\neg q_s) = M \setminus \tilde{\rho}(q_s) \quad \tilde{\rho}(\exists x:s'.q_s) = \bigcup_{\tilde{\rho}(x:s') \subseteq M_s} \tilde{\rho}[a/x:s'](\tilde{\rho}(q_s))
\]

\[
\tilde{\rho}(\mu X:s.q_s) = \mu^{\tilde{\rho}}_{q_s} \text{ with } \mu^{\tilde{\rho}}_{q_s}(A) = \tilde{\rho}(A/X:s)(\tilde{\rho}(q_s)) \quad \text{for } A \subseteq M_s
\]

We write \(M \models_{\text{MmL}} q_s \) if \(\tilde{\rho}(q_s) = M_s \) for all \(\rho \), and if \(\Omega \) is an MmL theory then we write \(\Omega \models_{\text{MmL}} q_s \) if \(M \models_{\text{MmL}} q_s \) for all MmL models \(M \models_{\text{MmL}} \Omega \). Provability relation \(\models_{\text{MmL}} q_s \) is defined in [9, Fig. 1].

G.2 Defining MmL Syntax and Proofs in AML

Given an MmL signature \((S, V, \Sigma) \), we define a corresponding AML signature \(\Sigma_{\text{MmL}} \) and an AML theory \(\Omega_{\text{MmL}} \) that captures \((S, V, \Sigma) \). Also, we show how to translate an MmL theory \(\Omega \) to an AML theory \(\Omega_{\text{MmL}} \) preserving the semantics and provability. We basically follow the definition of MSFOL shown in Section 4, with some special treatments to deal with MmL symbols and connectives.

Let us define \(\text{Sort} \in \Sigma_{\text{MmL}} \) to represent the sort set and \(s \in \Sigma_{\text{MmL}} \) to represent each sort \(s \in S \), as in MSFOL, with axiom \([s] \neq \bot \) that specifies the nonemptiness of domains. For every \(\sigma \in \Sigma_{1:s, s} \), we define a corresponding constant \(\sigma \in \Sigma_{\text{MmL}} \) and use the following axiom to specify its arity:

\[
(\text{Arity}) \quad \sigma [s_1] \cdots [s_n] \subseteq [s]
\]

Intuitively, \(\text{(Arity)} \) says the result of applying \(\sigma \) to arguments of appropriate sorts is contained in the domain of \(s \). Note that \(\text{(Arity)} \) is weaker than \(\text{(Function)} \) in Section 4, as the latter requires additionally that \(\sigma \) produces singletons.

Let \(\Gamma_{\text{MmL}} \) denotes the set of axioms we have defined so far. We translate an MmL pattern \(q_s \) to an AML pattern \(q_s^{\text{MmL}}_{\text{AML}} \) as follows:

\[
(x:s)_{\text{MmL}}^{\text{AML}} \equiv x \quad \text{(X:s)}_{\text{MmL}}^{\text{AML}} \equiv X \quad \exists x:s'.q_s \equiv \exists x:s'.q_s^{\text{MmL}}\text{AML}
\]

\[
(q_s \land q'_s)_{\text{MmL}}^{\text{AML}} \equiv q_s^{\text{MmL}}\text{AML} \land q'_s^{\text{MmL}}\text{AML} \quad \mu X:s.q_s \equiv \mu X:s.q_s^{\text{MmL}}\text{AML}
\]

\[
(\sigma(q_{s_1}, \ldots, q_{s_n}))_{\text{MmL}}^{\text{AML}} \equiv \sigma q_{s_1}^{\text{MmL}}\text{AML} \cdots q_{s_n}^{\text{MmL}}\text{AML}
\]

\[
(\neg q_s)_{\text{MmL}}^{\text{AML}} \equiv \neg q_s^{\text{MmL}}\text{AML} \quad \neg q_s^{\text{AML}} \equiv \neg q_s^{\text{AML}} \land [s] \text{ called sorted negation}
\]
In short, the MmL2AML translation is almost an identity function. The arities of MmL symbols have been specified in Γ_{MmL}. The sorts of MmL variables are dropped and will be recovered in Proposition 26 by the “well-sorted” patterns $\text{ws}(\varphi)$ defined as in Definition 11. One special treatment has been made to faithfully capture MmL negation $\neg\varphi_s$, which is matched by all elements of sort s that do not match φ_s. Therefore, we define AML sorted negation $\neg\varphi \equiv (\neg\varphi) \land [s]$ to match the semantics of MmL negation.

The following proposition shows that MmL patterns are wellformed AML patterns if sort constraints on variables are met. Note that we need to extend the definition of “well-sorted” patterns $\text{ws}(\varphi)$ defined in Definition 11. There, it was defined for only MSFOL variables, which are like AML element variables. For AML set variables, we define the well-sorted pattern/predicate for x as $X \subseteq [s]$, that is, we change \in to \subseteq, because X can be assigned to any set, rather than only a singleton.

Proposition 26. For MmL pattern φ_s of sort s, $\Gamma_{\text{MmL}} \vdash \text{ws}(\varphi_s) \rightarrow \varphi_s^{\text{AML}} \subseteq [s]$.

Proof. We carry out structural induction on φ_s. When φ_s is $x:s$, we need to prove $\Gamma_{\text{MmL}} \vdash \text{ws}(x:s) \rightarrow x \subseteq [s]$, which holds trivially. When φ_s is $X:s$, we need to prove $\Gamma_{\text{MmL}} \vdash \text{ws}(X:s) \rightarrow X \subseteq [s]$, which holds trivially. When $\varphi_s = \neg\varphi_1$, we need to prove, by induction hypothesis, that $\Gamma_{\text{MmL}} \vdash \text{ws}(\neg\varphi_1) \rightarrow \neg\varphi_1^{\text{AML}} \subseteq [s]$, which holds trivially. When $\varphi_s = \varphi_1 \land \varphi_2$, we need to prove, by induction hypothesis, that $\Gamma_{\text{MmL}} \vdash \text{ws}(\varphi_1 \land \varphi_2) \rightarrow \varphi_1^{\text{AML}} \land \varphi_2^{\text{AML}} \subseteq [s]$, which holds by simple FOL reasoning.

By (Knaster-Tarski), we need to prove $\Gamma_{\text{MmL}} \vdash X \subseteq [s] \land \varphi_1^{\text{AML}} \subseteq [s] \rightarrow \mu X. \varphi_1^{\text{AML}} \subseteq [s]$. By Deduction Theorem [10, Theorem 92], we need to prove that $\Gamma_{\text{MmL}} \vdash X \subseteq [s] \land \varphi_1^{\text{AML}} \subseteq [s] \rightarrow \mu X. \varphi_1^{\text{AML}} \subseteq [s]$. By simple AML reasoning, we can change \subseteq to \rightarrow and the proof obligation becomes $\mu X. \varphi_1^{\text{AML}} \subseteq [s]$. By (Knaster-Tarski), we need to prove $\varphi_1^{\text{AML}} [s]/X \rightarrow [s]$, which holds by the induction hypothesis on $\varphi_1^{\text{AML}} [s]/X$, whose size (by certain reasonable measurement) is less than that of $\mu X. \varphi_1^{\text{AML}}$. To sum up, we prove by structural induction on φ the conclusion.

MmL axioms and theories can be handled directly. For an MmL axiom ψ_s, we define its AML translation $\psi_s^{\text{VALID}} \equiv \text{ws}(\psi) \rightarrow \psi_s^{\text{AML}} = [s]$, which specifies that ψ_s^{AML} matches all elements of sort s if its variables have appropriate sorts. We define $\Omega^{\text{VALID}} = \{ \varphi^{\text{VALID}} \mid \varphi \in \Omega \}$ for a set of MmL axioms Ω. Finally, let Γ_{MmL} include all translated axioms, i.e., $\Omega^{\text{VALID}} \subseteq \Gamma_{\text{MmL}}$.

Theorem 27. $\Omega \vdash_{\text{MmL}} \varphi$ implies $\Gamma_{\text{MmL}} \vdash \varphi^{\text{VALID}}$.

Proof. We refer readers to [9, Fig. 1] for the proof system of MmL. At a high level, MmL proof system is a many-sorted version of the AML proof system (Fig. 4) where AML’s constant symbols are extended to MmL’s many-sorted symbols and AML’s application contexts are extended to MmL’s symbol contexts [9, Definition 10].

The proof rules of MmL are also divided into four categories: (many-sorted) FOL reasoning, (many-sorted) frame reasoning, (many-sorted) fixpoint reasoning, and two technical rules. In the following, we carry out mathematical induction on the length of the MmL proof $\Omega \vdash_{\text{MmL}} \varphi$ and show that all MmL proof rules can be derived in AML.

For MmL proof rules that handle many-sorted FOL reasoning, the reasoning is similar to that of MSFOL (Theorem 13). For MmL proof rules that handle many-sorted symbol frame reasoning, we note that every MmL symbol context becomes AML application context after MmL2AML translation. Indeed, for MmL many-sorted symbol $\sigma \in \Sigma_{s_1, \ldots, s_n}$ and MmL symbol context $\sigma(\varphi_1, \ldots, \varphi_{i-1}, \Box, \varphi_{i+1}, \ldots, \varphi_n)$, its AML translation

$$\sigma \varphi'_1 \cdots \varphi'_{i-1} \Box \varphi'_{i+1} \cdots \varphi'_n,$$

is an application context, where \Box appears under i nested (AML’s binary) applications. Therefore, MmL frame reasoning proof rules are automatically subsumed in AML. The same reasoning holds for the two technical proof rules of MmL (the last two rules of [9, Fig. 1]). For MmL’s (many-sorted)
As in Section 4.3, we show that MmL structures are subclass of AML structures.

G.3 Subsuming MmL Models in AML

As in Section 4.3, we show that MmL structures are subclass of AML structures.

Definition 28. Let \((S, V, \Sigma)\) be an MmL signature and \((M, \Sigma, \{\sigma_M\}_{\sigma \in \Sigma^\mL})\) be an AML model with \(M \models \Gamma^\mL\). Its MmL-restricted structure is an MmL structure, denoted \(M' = ([M_s^0]_{s \in S}, \{\sigma_{M'}\}_{\sigma \in \Sigma})\), consisting of

- a domain \(M'_s = \llbracket s \rrbracket_M\) for \(s \in S\);
- an interpretation \(\sigma_{M'}(a_1, \ldots, a_n) = \sigma_M a_1 \cdots a_n\) for \(\sigma \in \Sigma_{s_1 \cdots s_n, s}, a_1 \in M_{s_1}', \ldots, a_n \in M_{s_n}'\).

Theorem 29. Let \(\Omega\) be any MmL theory and \(M^0\) be any MmL model of \(\Omega\). There exists an AML model \(M\) with \(M \models \Gamma^\mL\) whose MmL-restricted structure \(M'\) is exactly \(M^0\). In addition, \(\Gamma^\mL \models \phi^\mL \iff \Omega \models M^0\).

Proof. Assume an MmL model \(M^0 = ([M_s^0]_{s \in S}, \{\sigma_{M^0}\}_{\sigma \in \Sigma})\). We give an explicit construction of the AML model \(M\). We first define its domain, also denoted \(M\), by letting it contain/include all the following elements/sets:

- \(\$\) for definedness and \# for domain symbol, as in the proof of Theorem 15;
- \(S\), the sort set;
- \(M^0_s\) for all \(s \in S\);
- \([M^0_{s_1} \to [M^0_{s_n} \to \cdots \to M^0_s \to \mathcal{P}(M^0_s)] \cdots]]\) for all \(\Sigma_{s_1 \cdots s_n} \neq \emptyset\) and \(1 \leq i \leq n\); this is for interpreting symbols and their partial applications; note that powerset semantics of MmL is captured by the co-domain \(\mathcal{P}(M^0_s)\).

Next, we define the following interpretations of constants:

- \([-]_M = \$\) and \([-]_M = \#\);
- \(s_M = s\) for all \(s \in S\);
- \(\sigma_M = \{\sigma_{M^0}\} for all \(\sigma \in \Sigma_{s_1 \cdots s_n, s}\); note that \(\sigma_{M^0} : M^0_{s_1} \times \cdots \times M^0_s \to \mathcal{P}(M^0_s)\) is an element in \([M^0_{s_1} \to [M^0_{s_n} \to \mathcal{P}(M^0_s)] \cdots]]\) under the curry-uncurry isomorphism.

Next, we define the application in \(M\) as follows:

- \(\$ \cdot a = M\) for all \(a \in M\);
- \(# \cdot s = M_s\) for all \(s \in S\); note that \(\llbracket s \rrbracket_M = # \cdot s = M_s\);
- \(\sigma \cdot a = \{\sigma(a)\}\) for all \(\sigma \in [A \to B]\) if \(B\) is a function space; and \(\sigma \cdot a = \sigma(a)\) for all \(B\) of the form \(\mathcal{P}(M^0_s)\) for some \(s \in S\).

We split the last case into two cases, depending on if \(B\) is a function space. If not, then \(\sigma \cdot a = \sigma(a)\) is already a set in \(\mathcal{P}(M^0_s)\).

We first verify that \(M \models \Gamma^\mL \setminus \Omega^\mL\) and prove \(M \models \Omega^\mL\) later. For the former, (Definedness) and (Nonempty Sort) are satisfied as in Theorem 16. (Arity) for \(\sigma \in \Sigma_{s_1 \cdots s_n, s}\) is satisfied, because \(\sigma_M\) is defined as \(\sigma_{M^0}\) and application is interpreted as the normal function application.

Next, we prove that the restricted model \(M'\) is exactly \(M\). By definition, \(M' = ([M_s']_{s \in S}, \{\sigma_{M'}\}_{\sigma \in \Sigma})\) is an MmL model defined as follows:

36
Therefore, M' is exactly M^0 up to isomorphism.

Finally, we prove that $\Gamma^{mnl} \not\vdash \varphi^{VALID}$ if $\Omega \models_{mml} \varphi$, which immediately implies that $M \not\models \Omega^{VALID}$. For clarity, we move the proof to Theorem 30.

Theorem 30. Under the notations in the proof of Theorem 29 and the MmL2AML translation, any M'-valuation ρ of MmL derives an M-valuation ρ^{AML} of AML, with $\rho^{AML}(X^x) = \rho(x)$ and $\rho^{AML}(X^v) = \rho(X)$. Furthermore, $\rho^{AML}(\varphi^{AML}) = \bar{\rho}(\varphi_s)$ for all ρ; and $\Omega^{VALID} \models \varphi^{VALID}$ iff $\Omega \models_{mml} \varphi_s$ for all Ω.

Proof. For simplicity, we drop the sort s and write φ_s as φ and φ_s^{AML} as φ^{AML}.

We first prove $\rho^{AML}(\varphi^{AML}) = \bar{\rho}(\varphi)$ by structural induction on φ.

Suppose $\varphi \equiv x: s$. Then $\rho^{AML}(\varphi^{AML}) = \rho^{AML}(x) = \{\rho(x)\} = \bar{\rho}(x) = \bar{\rho}(x:s).

Suppose $\varphi \equiv x:S$. Then $\rho^{AML}(\varphi^{AML}) = \rho^{AML}(x) = \rho(x) = \bar{\rho}(x:S).

Let $\bar{\rho}(\varphi_1), \ldots, \bar{\rho}(\varphi_n)$ be $\bar{\rho}(\varphi_1), \ldots, \bar{\rho}(\varphi_n)$.

Suppose $\varphi \equiv \varphi_1 \land \varphi_2$. Then $\rho^{AML}(\varphi^{AML}) = \rho^{AML}(\varphi_1^{AML} \land \varphi_2^{AML}) = \rho^{AML}(\varphi_1^{AML}) \land \rho^{AML}(\varphi_2^{AML}) = \bar{\rho}(\varphi_1) \land \bar{\rho}(\varphi_2).

Suppose $\varphi \equiv \neg \varphi_1$. Then $\rho^{AML}(\neg \varphi_1^{AML}) = \neg \rho^{AML}(\varphi_1^{AML}) = \neg \bar{\rho}(\varphi_1) = \bar{\rho}(\neg \varphi_1).

Suppose $\varphi \equiv \exists x: s, \varphi_1$. Then $\rho^{AML}(\exists x: s, \varphi_1^{AML}) = \rho^{AML}(\exists x: s: \varphi_1^{AML}) = \rho(\exists x: s: \varphi_1).

Suppose $\varphi \equiv \mu x: s, \varphi_1$. Then $\rho^{AML}(\mu x: s, \varphi_1^{AML}) = \rho^{AML}(\mu x: s, \varphi_1^{AML}) = \mu \rho^{AML}(\varphi_1^{AML}),$ where $\rho^{AML}(A) = \rho^{AML}(A[X/x])$ for all $A \subseteq M$. Note that for all $A \subseteq M^0$, $\rho^{AML}(A) = \rho(\varphi_s)$.

In conclusion, $\rho^{AML}(\varphi^{AML}) = \bar{\rho}(\varphi)$ for all M'-valuations ρ.

Next, we show that $M' \models_{mml} \varphi_s$ iff $M \models \varphi_s^{VALID}$. Recall that $\varphi_s^{VALID} \equiv \psi \to (\varphi^{AML} = [s])$ where $\psi \equiv \exists x: \varphi^{AML}(x) \land \{[s] \land \varphi^{AML}(\bar{x})\} \subseteq [s']$.

Case “if”: Suppose $M \models \varphi_s^{VALID}$ and we want to show that $M' \models_{mml} \varphi_s$. Let ρ be any M'-valuation. Then we know $\rho^{AML}(\psi) = M$, as ρ^{AML} is derived from ρ and thus it evaluates variables into their corresponding domains. Since $M \models \varphi_s^{VALID}$, we have $\rho^{AML}(\varphi^{AML} = [s]) = M$, which implies that $\rho^{AML}(\varphi_s^{AML}) = \rho^{AML}(s) = [s]$, i.e., $\rho(\varphi_s) = M_s$. Since ρ is arbitrary, we have $M' \models_{mml} \varphi_s$.

Case “only if”: Suppose $M' \models_{mml} \varphi_s$ and we want to show that $M \models \varphi_s^{VALID}$. Let ρ' be any M-valuation. There are two cases. If there exists a variable x' (or X') such that $\rho'(x') \not\in M'$ (or $\rho'(X') \not\in M'$), then $\rho'(\psi) = \emptyset$, and thus $\rho'(\varphi_s^{VALID}) = M$. If otherwise, then all variables evaluate to their corresponding domain sets, and thus there exists an M'-valuation ρ such that $\rho' = \rho^{AML}$.

Then $\rho'(\varphi_s^{AML}) = [s]$ iff $\rho'(\varphi_s^{ML}) = \rho'(\{s\})$ and $\rho'(\varphi_s^{AML}) = M_s$ iff $\rho(\varphi_s) = M_s$, which holds by assumption.

In conclusion, $M \models \varphi_s^{VALID}$ if $M' \models_{mml} \varphi_s$.

37
Finally, we show that $\Omega^{VALID} = \psi_{A}^{VALID}$ iff $\Omega \models_{MmL} \psi_{A}$. Recall that $\Omega^{VALID} = \Gamma^{MmL} \cup \{\psi_{A}^{VALID} | \psi_{A} \in \Omega\}$.

(Case “if”: Suppose $\Omega \models_{MmL} \psi_{A}$ and we want to show that $\Omega^{VALID} \models \psi_{A}^{AML}$. Consider any AML model M such that $M \models \Omega^{VALID}$. Note that $\Omega^{VALID} \supseteq \Gamma^{MmL}$. By Theorem 29, its restricted model M' is an MmL model. We just proved in the above that $M \models \psi_{A}^{VALID}$ iff $M' \models_{MmL} \psi_{A}$ for any ψ_{A}. Since $M \models \Omega^{VALID}$, we have $M' \models_{MmL} \Omega$, which implies $M \models \psi_{A}^{AML}$. Since M is arbitrary, we have $\Omega^{VALID} \models \psi_{A}^{AML}$.

(Case “only if”). Suppose $\Omega^{VALID} \models \psi_{A}^{VALID}$ and we want to show that $\Omega \models_{MmL} \psi_{A}$. Consider any MmL model M' such that $M' \models_{MmL} \Omega$. By Theorem 29, there exists an AML model, say M, whose restricted model is exactly M'; in other words, $M' = M$. Therefore, we have $M' \models_{MmL} \Omega$, which is equivalent to $M \models \Omega^{VALID}$ as we just proved. By assumption, $M \models \psi_{A}^{VALID}$, which then implies that $M' \models_{MmL} \psi_{A}$. Since M' is an arbitrary MmL model, we have $\Omega \models_{MmL} \psi_{A}$.

\square

H Proof of Results about Order-Sorted Algebras (OSA)

Our main theorem for OSA is Theorem 32. We first define the OSA-restricted models, similar to Definition 28.

Definition 31. Let $(\{A_{s}\}_{s \in S^{OSA}})$ be an AML model of Γ^{OSA}. Its OSA-restricted model is an OSA, denoted $A = (\{A_{s}\}_{s \in S^{OSA}}, \{f_{A_{s}}^{-}_{1...n}\}_{f_{s}^{-}_{1...n} \in GF})$, with

- a carrier set $A_{s} = \llbracket M \rrbracket_{M}$ for every $s \in S$;
- an interpretation $f_{A_{s}}^{-}_{1...n}: A_{s_{1}} \times \cdots \times A_{s_{n}} \rightarrow A_{s_{n}}$, defined such that $f_{A_{s}}^{-}_{1...n}(a_{1}, \ldots, a_{n}) = f_{M} \cdot a_{1} \cdots \cdot a_{n}$ for all $a_{1} \in A_{s_{1}}, \ldots, a_{n} \in A_{s_{n}}$.

The above construction of A is well-defined, because its subset relation is enforced by axiom (Subsort) and its sort-overloaded functions $f_{A_{s}}^{-}_{1...n}$ and $f_{A_{s'}}^{-}_{1...n'}$ coincide on their overlapped part as they are both defined by f_{M}.

Theorem 32. (S, \leq, F)-OSA are exactly the OSA-restricted Γ^{OSA}-models.

Proof. All restricted Γ^{OSA}-models w.r.t. (S, \leq, F) are (S, \leq, F)-OSA, by definition. We just need to show the other direction. For any (S, \leq, F)-OSA, say $A = (\{A_{s}\}_{s \in S^{OSA}}, \{f_{A_{s}}^{-}_{1...n}\}_{f_{s}^{-}_{1...n} \in GF})$, we need find an AML model $M \models \Gamma^{OSA}$, whose restricted model is exactly A. We first define its domain, also denoted M, by letting it contain include the following elements/sets:

- $\llbracket \$ \rrbracket_{M}$ for definedness and $\#$ for domain;
- S, the sort set;
- A_{s}, for all $s \in S$;
- $[A_{s_{1}} \rightarrow [A_{s_{1}} \rightarrow \cdots \rightarrow [A_{s_{n}} \rightarrow A_{s}] \cdots]]$ for all $F_{s_{1}...s_{n}} \neq \emptyset$ and $1 \leq i \leq n$;

Next, we define following interpretations of constants:

- $\llbracket \$ \rrbracket_{M} = \llbracket \$ \rrbracket$ and $\llbracket \# \rrbracket_{M} = \llbracket \# \rrbracket$;
- $s_{M} = \{s\}$ for all $s \in S$;
- $f_{M} = \{f_{A_{s'}}^{-}_{1...n'} \}$ for all $f \in F_{s_{1}...s_{n'}}$, where $f_{A_{s'}}^{-}_{1...n'}$ denotes the overloaded copy of f with the largest arity (w.r.t. subsorting).

Next, we define the application function in M as the following:
\[\begin{align*}
\bullet \ & \mathbb{S} \cdot a = M \text{ for all } a \in M; \\
\bullet \ & \mathbb{\#} \cdot s = A_s \text{ for all } s \in S; \text{ note that } \llbracket \mathbb{S}M \rrbracket_M = \mathbb{\#} \cdot [s] = A_s; \\
\bullet \ & f \cdot a = [f(a)] \text{ for all } f \in [A \to B] \text{ and } a \in A.
\end{align*}\]

The unmentioned cases are irrelevant.

Now we verify that \(M \) satisfies all axioms in \(\Gamma^{\text{OSA}} \). Indeed, we only need to consider (\text{Subsort}), which is satisfied, because \(\llbracket s \rrbracket_M = A_s \subseteq A_{s'} = \llbracket s' \rrbracket_M \) for all \(s \leq s' \). Therefore, \(M \in \Gamma^{\text{OSA}} \).

Finally, we prove that the restricted model \(M' \) is exactly \(A \). By definition, \(M' = ([M']_{\mathbb{S}S}, \{f_{M'}\}_{\mathbb{\#}F}) \) is an \((S, \leq, F)\)-OSA defined as follows:

\[\begin{align*}
\bullet \ & \text{the domain } M'_s = \llbracket \mathbb{S}M \rrbracket_M, \text{ which equals } A_s \text{ as we showed above, for all } s \in S; \\
\bullet \ & \text{the interpretation } f^{\mathbb{A}_{\mathbb{S}S}}_{M'}(a_1, \ldots, a_n) \text{ is defined such that } \{f^{\mathbb{A}_{\mathbb{S}S}}_{M'}(a_1, \ldots, a_n)\} = f_M a_1 \cdots a_n \text{ for all } a_1 \in A_1, \ldots, a_n \in A_n; \text{ note that } f_M a_1 \cdots a_n = \{f^{\mathbb{A}_{\mathbb{S}S}}_{M'}(a_1, \ldots, a_n)\} = f^{\mathbb{A}_{\mathbb{S}S}}_{M'}(a_1, \ldots, a_n), \text{ because } f^{\mathbb{A}_{\mathbb{S}S}}_{M'} \text{ and } f^{\mathbb{A}_{\mathbb{S}S}} \text{ are subsort overloaded. Thus, we have } f_M(a_1, \ldots, a_n) = f'_{M'}(a_1, \ldots, a_n) \text{ for all } a_1 \in A_1, \ldots, a_n \in A_n.
\end{align*}\]

Therefore, \(M' \) is exactly \(A \) up to isomorphism. \(\square \)

I Proof of Results in Section 7

Proposition 33. Under the above axioms, \(\vdash \llbracket \text{List Nat} \rrbracket \subseteq \llbracket \text{List Int} \rrbracket \).

Proof. By (Inductive List), we need to prove \(\vdash (\mu \phi. \text{nil} \lor \text{cons} \llbracket \text{Nat} \rrbracket L) \subseteq \llbracket \text{List Int} \rrbracket \). By \([10]\), we replace “\(\leq \)” with “\(\to \)” in \(\vdash (\mu \phi. \text{nil} \lor \text{cons} \llbracket \text{Nat} \rrbracket L) \to \llbracket \text{List Int} \rrbracket \). By (Knaster-Tarski), we need to prove

\[\vdash \text{nil} \lor \text{cons} \llbracket \text{Nat} \rrbracket \llbracket \text{List Int} \rrbracket \to \llbracket \text{List Int} \rrbracket \]

\(\to \llbracket \text{List Int} \rrbracket \). Since \(\vdash \llbracket \text{Nat} \rrbracket \subseteq \llbracket \text{Int} \rrbracket \), by (Framing), we have \(\vdash \text{cons} \llbracket \text{Nat} \rrbracket \llbracket \text{List Int} \rrbracket \to \text{cons} \llbracket \text{Int} \rrbracket \llbracket \text{List Int} \rrbracket \). Then by FOL reasoning, we need to prove that \(\vdash \text{nil} \lor \text{cons} \llbracket \text{Int} \rrbracket \llbracket \text{List Int} \rrbracket \to \llbracket \text{List Int} \rrbracket \rrbracket \), which is done by (Pre-Fixpoint).

J Using AML to Reason about Transition Systems

Here we show more details about the dynamic properties/modalities that can be defined in AML as patterns; see also \([9, 10]\).

\[\begin{align*}
\bullet \ & \text{Cfg is the configuration sort, and } \llbracket \text{Cfg} \rrbracket \text{ is matched by all program configurations; In the following, we use } \phi, \psi \text{ to denote configuration patterns, i.e., } \phi, \psi \subseteq \llbracket \text{Cfg} \rrbracket; \\
\bullet \ & \neg \text{Cfg} \phi \equiv (\neg \phi) \land \llbracket \text{Cfg} \rrbracket \text{ is matched by all configurations that do not match } \phi; \\
\bullet \ & \bullet \phi, \text{ called one-path next, is matched by all states which have a next state matching } \phi; \text{ specifically, } \llbracket \text{Cfg} \rrbracket \text{ is matched by all non-terminating states}; \\
\bullet \ & \phi \equiv \neg \text{Cfg} \bullet \neg \text{Cfg} \phi, \text{ called all-path next, is matched by all state whose all next states match } \phi; \text{ specifically, } \phi \text{ is matched by all terminating states}; \\
\bullet \ & \phi \equiv \mu X. \phi \lor \bullet X, \text{ called (one-path) eventually, is matched by all states who can reach to a state matching } \phi \text{ in finitely many rewrite steps; by unfolding the fixpoint we can prove } \phi = \phi \lor \bullet \phi = \phi \lor \bullet \phi \lor \bullet \phi = \ldots. \\
\bullet \ & \square \phi \equiv \neg \text{Cfg} \phi, \text{ called (all-path) always, is matched by states where } \phi \text{ holds now and hereafter on all possible future states;}
\end{align*}\]
By FOL reasoning, we can do a case analysis on execute the program = \(n \). If case (b), the loop condition is satisfied, and we execute its loop body symbolically until we reach reasoning, so the above execution process yields a proof of the following AML theorem (recall that it can be proved by applying the invariant \(\Phi \) on \(\Psi \)).

Let us review the invariant claim that we are about to prove:

\[
\Phi_{inv} \equiv \forall n : \text{Int}. \forall s : \text{Int}. (\Psi(\text{loop}, n, s) \land n \geq 0) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

By definition of \(\Diamond_w \phi \), we only need to prove the above invariant for well-founded states, leading us to prove the following (weakened) claim:

\[
\Phi'_{inv} \equiv \mu X. \Box X \rightarrow \forall n : \text{Int}. \forall s : \text{Int}. (\Psi(\text{loop}, n, s) \land n \geq 0) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

By (Knaster-Tarski), we need to prove that

\[
\Gamma^{\text{IMP}} \vdash \Box \Box \Phi_{inv} \rightarrow \forall n : \text{Int}. \forall s : \text{Int}. (\Psi(\text{loop}, n, s) \land n \geq 0) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

By FOL reasoning, we can remove the quantifiers \(\forall n : \text{Int}. \forall s : \text{Int} \):

\[
\Gamma^{\text{IMP}} \vdash \Box \Box \Phi_{inv} \rightarrow (\Psi(\text{loop}, n, s) \land n \geq 0) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

By FOL reasoning, we can do a case analysis on \(\Psi(\text{loop}, n, s) \land n \geq 0 \) and get two cases: (a) \(\Psi(\text{loop}, n, s) \land n = 0 \), i.e., \(\Psi(\text{loop}, 0, s) \); and (b) \(\Psi(\text{loop}, n, s) \land n \geq 1 \). For case (a), the loop condition fails and we can execute the program/configuration \(\Psi(\text{loop}, 0, s) \) symbolically till its terminating configuration. For case (b), the loop condition is satisfied, and we execute its loop body symbolically until we reach the loop again, in the new configuration \(\Psi(\text{loop}, n - 1, s + n) \). Recall that program execution = AML reasoning, so the above execution process yields a proof of the following AML theorem (recall that it takes 12 steps to consume the body of the loop; see Section 8):

\[
\Gamma^{\text{IMP}} \vdash \Psi(\text{loop}, n, s) \land n \geq 1 \rightarrow \Box^{12} (\Psi(\text{loop}, n - 1, s + n) \land n \geq 1)
\]

By FOL reasoning, we only need to prove that

\[
\Gamma^{\text{IMP}} \vdash \Box \Box \Phi_{inv} \rightarrow \Box^{12} (\Psi(\text{loop}, n - 1, s + n) \land n \geq 1) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

Now by the “progressive-ness axiom” [10, Proposition 117(18)] and some standard reasoning about the modalities, we have that

\[
\Gamma^{\text{IMP}} \vdash \Box \Box \Phi_{inv} \land \Box^{12} (\Psi(\text{loop}, n - 1, s + n) \land n \geq 1) \rightarrow \Diamond_w \Psi(., 0, s + n(n + 1)/2)
\]

Then by (Framing), we need to prove that

\[
\Gamma^{\text{IMP}} \vdash (\Phi_{inv} \land \Psi(\text{loop}, n - 1, s + n) \land n \geq 1) \rightarrow \Psi(., 0, s + n(n + 1)/2)
\]

which can be proved by applying the invariant \(\Phi_{inv} \) on \(\Psi(\text{loop}, n - 1, s + n) \land n \geq 1 \).