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Abstract. We give an overview on the applications and foundations of
the K language framework, a semantic framework for programming lan-
guages and formal analysis tools. K represents a 20-year effort in pursuing
the ideal language framework vision, where programming languages must
have formal definitions, and tools for a given language, such as parsers,
interpreters, compilers, semantic-based debuggers, state-space explorers,
model checkers, deductive program verifiers, etc., can be derived from
just one reference formal definition of the language, which is executable,
and no other semantics for the same language should be needed. The
correctness of the language tools is guaranteed on a case-by-case basis
by proof objects, which encode rigorous mathematical proofs as certifi-
cates for every individual tasks that the tools do and can be mechanically
checked by third-party proof checkers.
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1 What is K?

K is a language semantic framework and a suite of tools that allow and encourage
the language designers to formally define their languages once and for all, using
an intuitive and attractive notation, and then obtain language implementations
as well as analysis tools for free. This represents a long-standing ideal vision
held by the programming languages community. K is aimed at developing the
foundations, techniques, and tools to realize this vision.

1.1 The State-of-the-Art of Programming Languages Design

The state-of-the-art of programming language design is still far from the above
ideal vision. The programming languages and formal methods communities still
develop language analysis tools for each individual programming language. For
example, the C programming language has well-known compilers such as gcc [2]
and clang [1], but there are also C interpreters such as TrustInSoft [3] that
target detecting undefined behaviors of C programs, model checkers for C such

? This paper follows the lecture notes presented by the second author at the School
on Engineering Trustworthy Software Systems (SETSS) in year 2019.
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as CBMC [25] that aim at exploring exhaustively the state space of C programs
up to a bounded depth, and symbolic execution and deductive verification tools
for C such as VCC [15] that formally verify functional properties of C programs.
However, the development of these language tools not only for C but also for
other languages suffer from the following problems:

– They are built in an ad-hoc fashion, in the sense that language or program
analysis experts must rely on their informal understanding of the language
to develop the language tools. This informal understanding may not be con-
sistent with the formal definitions of the language, not to mention that most
languages do not even have an official formal semantic definition.

– They are time-consuming to develop and may not be thoroughly tested and
validated with respect to the formal definition, due to a lack of a mechanized
connection between the formal definition and the actual implementation;
again, the formal definition might not even exist in the first place;

– Many tools are developed from scratch, sharing very little code or function-
ality with each other; as a result, not only are there waste of resource and
duplicates of work in “re-inventing the wheels”, but also we can hardly claim
that these tools are implemented for the same language;

– They need be updated when the language evolves (e.g., from C11 to C18);
in other words, they are inclined to become deprecated;

In conclusion, these language tools that we use to ensure the correctness, relia-
bility, and security of other programs and software systems may themselves be
unreliable.

The above story unfolded for various languages over and over again, for more
than 50 years, and it is still going on. This is at best uneconomical. Figure 1
shows the state-of-the-art of programming languages design. Suppose we have L
programming languages and T tools. Then we need to develop and maintain at
least L × T systems, which share little code or functionality. The cost is waste
of talent and resources in doing essentially the same thing, the same tools, but
for different languages.

Challenges reinforced by blockchains. The above situation of programming
language design is facing more challenges when it comes to the recent burgeoning
blockchain industry. Blockchain technology has led to a variety of new program-
ming languages and virtual machines designed specifically for the blockchains,
including high-level languages such as Solidity [18] and Vyper [19] to low-level
virtual machine bytecode languages such as EVM [23] and IELE [24].

Smart contracts are computer programs running on blockchains that im-
plement communication protocols, often of a kind of digital assets called cryp-
tocurrencies that handle economic or financial transactions, withholding a total
market capitalization of more than 80 billion US dollars at the time of writ-
ing. Therefore, there is enormous demand for formally designing and verifying
these highly valuable smart contracts. On the other hand, blockchains and their
virtual machine languages have a rapid development cycle with new versions
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Fig. 1: The state-of-the-art of programming language design

being released on a weekly basis. The state-of-the-art approaches fail to have a
canonical reference formal definition of the languages from which language tools
are derived. Instead, language designers and tool developers need to implement
the language tools and update them whenever a newer version of the languages
is released. This has caused a lot of challenges in applying the state-of-the-art
approaches to blockchain languages and smart contract formal analysis and ver-
ification. As we will see in Section 1.2, these challenges would not exist if one
had an ideal language semantic framework.

1.2 The Ideal Language Semantic Framework

Our main motivation is to make programming language design a more organized
and scientifically principled process, to reduce duplicated work and waste of
resource in programming languages implementation, to increase the reusability
and reliability of formal analysis tools, and to increase the reliability and security
of the execution, verification, and testing environment of programs and software
systems.

We look for an ideal language semantic framework, where all programming
languages must be rigorously designed using formal methods and implementa-
tions of language tools must be provably correct. We depict this vision of an
ideal language framework in Figure 2, where the central yellow bubble denotes
the canonical reference formal definition of a given (but arbitrary) program-
ming language, and the surrounding blue bubbles denote language tools for that
language, such as interpreters, compilers, state-space explorers, model check-
ers, deductive program verifiers, etc., which are all derived from the reference
formal definition of that language by the framework. We identify the following
characteristics of an ideal language framework:
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Fig. 2: The vision of an ideal language framework, pursued by K

– The framework should be language-independent, in the sense that it uses the
same generic method to generate language tools from the formal definitions
for all programming languages.

– The framework should be expressive, to define the formal syntax and se-
mantics of any programming language, with an intuitive and user-friendly
frontend interface, so the formal definitions can be understood not only by
experts but also by non-semanticists. In particular, the framework should
provide easy-to-use facilities that help the language designers handle sophis-
ticated features, such as non-deterministic computations, interaction, con-
currency, and more, which are not uncommon in the real-world programming
languages (see Section 2).

– The framework should support modular development, where formal defini-
tions of large languages can be divided into smaller and more primitive mod-
ules. Language features should be loosely coupled, and language designers
can easily add new features without revisiting existing definitions.

– The framework should support testing-driven development, where basic lan-
guage tools such as the parser and the interpreter and/or compiler are au-
tomatically generated from language definitions for language designers to
execute and test the semantics while they are defining it, by running lots of
test programs and see if they get the intended results.

– The framework should have a mathematically solid logical foundation, in the
sense that every semantic definition yields a logical theory of a foundational
logic (see Section 4) and all language tools are best-effort implementations
of logical reasoning of the foundational logic within the given logical theory.
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– The framework should have a minimal trustbase that is fully comprehensible
and accessible to users. The framework should provide proof objects as cor-
rectness certificates for all tasks it does. Proof objects can be mechanically
and quickly checked by third-party proof checkers, so their correctness can
not be compromised.

The K framework [35,36] (www.kframework.org) represents a 20-year effort
in pursuing and realizing the ideal language framework shown in Figure 2. There
is enough evidence that the ideal vision is within our reach in the short term
with K.

On the theory side, K has a solid logical foundation based on matching
logic [31,12], which we will discuss in detail in Section 4. Matching logic is an
expressive logic that subsumes many important logics, calculi, and models that
are used in both mathematics and computer science, in particular in program
specification and verification; these include:

– First-order logic (FOL) and its extension with least/greatest fixpoints;
– Separation logic, which is designed specifically to define and reason about

mutable data structures on heaps;
– Modal logic and modal µ-logic, as well as the various temporal logic and

dynamic logic variants;
– Reachability logic, which supports K’s program verification tools in a language-

independent fashion; reachability logic captures the classic Hoare logic as a
special instance.

Therefore, matching logic allows us to use K to specify and reason about prop-
erties written in all the above logics in a systematic and uniform way.

On the practical side, the current K implementations take the respective
operational semantics of programming languages such as C [22], Java [8], and
JavaScript [28] as well as emerging blockchain languages such as EVM [23] as pa-
rameters, and automatically generates language tools such as parsers, program
interpreters, and program verifiers, for these languages. The auto-generated in-
terpreters have competitive performance against hand-crafted interpreters and
the automatic verifiers are capable of verifying challenging heap-manipulating
programs at performance comparable to that of state-of-the-art verifiers specif-
ically crafted for those languages. A precursor verifier specialized to the C pro-
gramming language, MatchC [32] (http://matching-logic.org), has a user-
friendly online interface for one to verify dozens of predefined or new programs.

The rest of the paper is organized as follows. In Section 2, we discuss some
real-world languages whose formal semantics have been completely defined in
K, in order to demonstrate that K scales to complex, real languages. In Sec-
tion 3, we present the complete K definitions of two example languages, in order
to illustrate the basic K features and functionalities, including its parsing and
program execution tools. In Section 4, we introduce matching logic, which is
the logical foundation of K. In Section 5, we discuss the language-independent
program verification tools of K. We conclude the paper in Section 6.

www.kframework.org
http://matching-logic.org
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This paper is not peer reviewed and, indeed, aims at making no novel con-
tributions. It is meant to simply give the students attending the SETSS’19
summer school an overview of the K framework and its applications. Specif-
ically, this paper extends the lecture notes of the Marktoberdorf’16 summer
school [34], sometimes ad litteram, with material presented in the following
papers: [31,13,12,11].

2 K Scales

Many real programming languages have a formal semantics defined in K, with
their language tools being automatically generated in a correct-by-construction
manner. Here we list some representative milestone examples.

C [22]. A complete formal semantics of C11 has been defined, aiming at cap-
turing all the undefined behaviors of C. This semantics powers the commercial
RV-Match tool, developed and maintained by Runtime Verification Inc. (RV)
founded by the second author, aiming at mathematically rigorous dynamic check-
ing of C programs in compliance with the ISO C11 Standard.

Java [9]. A complete formal semantics of Java 1.4 has been defined, which
captures all language features and has been extensively tested using a test suite
developed in parallel with the semantics, in a test-driven development method-
ology. The test suite itself was itself an important outcome of the semantics,
because at that time Java did not appear to have any publicly available confor-
mance testsuite.

JavaScript [29]. A complete formal semantics of JavaScript has been defined
and thoroughly tested against the ECMAScript 5.1 conformance test suite, pass-
ing all 2,782 core language tests. The semantics also yields a simple coverage met-
ric for the existing test suites, which is the set of K semantic rules they exercise;
see Section 3. It turned out that the ECMAScript 5.1 conformance test suite was
incomplete and failed to cover several semantic rules. The authors of [29] wrote
additional tests to exercise those rules and found bugs in commercial JavaScript
engines.

Python [21]. Defining the complete formal semantics of Python is one of the
first efforts that demonstrated the ability of K to formalize complex programming
languages. The semantics of Python 3.3 provided an interpreter and several
analysis tools for exploring program state space and performing static reasoning
and formal verification. The semantics was thoroughly tested against a number
of unit tests and was shown to perform as efficiently as CPython, the reference
implementation of Python, on those tests.



K: A Semantic Framework 7

x86-64 [16] Not being a high-level programming language, x86-64 can also be
given a formal semantics in K similar to the other high-level languages. The for-
mal semantics of x86-64 faithfully formalizes all the non-deprecated, sequential
user-level instructions of the x86-64 Haswell instruction set architecture, includ-
ing 3,155 instruction variants that correspond to 774 mnemonics. The semantics
is fully executable and has been tested against over 7,000 instruction-level test
cases and the GCC torture test suite. This extensive testing paid off, revealing
bugs in both the x86-64 reference manual and other existing semantics. The
formal semantics can be used for formal analyses such as processor verification.

EVM [23]. Ethereum virtual machine (EVM) is a bytecode stack-based lan-
guage that all smart contracts on the Ethereum blockchain are compiled to and
then executed by EVM interpreters. A complete formal semantics of EVM, called
KEVM, has been defined in K. The correctness and performance of KEVM have
been experimentally evaluated using the official Ethereum test suite, consisting
of over 40,000 EVM programs. As a pleasant surprise, the EVM interpreter that
is automatically generated by K from KEVM is as efficient as the reference
JavaScript implementation, suggesting that virtual machines for blockchains
(and not only) can realistically be automatically generated from their formal
semantics and performance is no longer a main obstacle issue.

IELE [24]. Like EVM, IELE [24] is another virtual machine bytecode language.
Unlike EVM, IELE was designed in the spirit of easy formal verification, making
it significantly different from EVM in various aspects. For example, IELE is a
register-based machine instead of a stack-based one; IELE supports unbounded
integers, whose reasoning is often easier than bounded integers. IELE was de-
signed in a semantic-driven methodology using K, and a virtual machine was
automatically generated from the formal semantics, making it the first virtual
machine whose development and implementation were completely powered by
formal methods.

3 Example Language Definitions in K

In this section, we illustrate the basic features and functionalities of K in terms of
two example programming languages: one is functional and the other imperative.
For more example languages defined in K, we refer to the online K tutorial
(www.kframework.org).

3.1 LAMBDA: A Functional Language

Here we show the complete K definition of a simple functional language defini-
tion called LAMBDA. LAMBDA is named after λ-calculus [14], one of the earliest
mathematical models of computation, proposed by Alonzo Church in the 1930s,
even earlier than when Alan Turing proposed Turing machines. The simplest

www.kframework.org
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form of the λ-calculus is untyped λ-calculus, which consists of only untyped
variables, function application, and function abstraction. Function abstraction
is also called λ-abstraction, written λx.e, which defines a function object as a
process from argument x to return value e, which is a λ-calculus expression that
mostly likely contains x. There are many extensions of λ-calculus with types.
In there, functions can only be applied to arguments of matched types. Typical
examples of typed extensions of λ-calculus include the simply-typed and poly-
morphic typed λ-calculus, as well as type systems, which form the foundations
of proof assistants such as Coq [7], Agda [27], and Idris [10].

In the following, we assume readers are familiar with the basic concepts
of λ-calculus, such as λ-binder and its binding behavior, α-renaming and α-
equivalence, capture-avoiding substitution, and β-reduction. Background knowl-
edge about λ-calculus can be found in [5].

The functional language LAMBDA is a direct incarnation of the untyped
λ-calculus in K.

Importing substitution module. We need the predefined substitution module1

to define β-reduction in λ-calculus (discussed later). We require the substitution
definition with the command below and then import the SUBSTITUTION module
in our LAMBDA module below.

require "substitution.k"

module LAMBDA

imports SUBSTITUTION

Basic syntax: Call-by-value. We define the conventional call-by-value syntax of
λ-calculus, making sure that the λ-abstraction construct lambda is declared to
be a binder, the function application to be strict, and the parentheses used for
grouping as a bracket (explained shortly after).

syntax Val ::= Id

| "lambda" Id "." Exp [binder]

syntax Exp ::= Val

| Exp Exp [left, strict]

| "(" Exp ")" [bracket]

syntax KVariable ::= Id

syntax KResult ::= Val

Syntax is defined using the keyword syntax and may contain one or more pro-
duction rules, separated with the vertical bar |. Every production rule is defined
using the conventional BNF notation, with terminals enclosed in quotes and
nonterminals starting with capital letters. Nonterminals are sometimes called
sorts or syntactic categories.

1 Substitution can be defined fully generically in K (not shown here) and then used to
give semantics to various constructs in various languages.
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In the above, Val is the syntactic category of the values in λ-calculus, which
are irreducible λ-calculus expressions. Exp is the syntactic category of all λ-
calculus expressions. Parentheses are used only for grouping. The [bracket]

tells K to not construct internal nodes for parentheses when it generates the
parse trees of λ-calculus expressions, so we do not need to bother giving explicit
idle semantics for parentheses. Id, KVariable, and KResult are three builtin
nonterminals that are predefined in K. Id contains all identifiers (in a syntax
that is similar to the identifiers in C), which are used to represent λ-calculus
variables. KVariable is used to define the binding behavior of lambda. KResult
is used to specify the evaluation strategies of K, which are explained below.

Attributes. K associates the BNF syntax definitions with attributes. Attributes
are put in square braces [...]. Some attributes contain only syntactic meanings
and only affect parsing. The other attributes may contain semantic information
and can affect program execution. The bracket attribute is used for grouping
and has been discussed before. The left attribute specifies that function appli-
cation e1 e2 is associative to the left, so K parses e1 e2 e3 as (e1 e2) e3. The strict
attribute defines evaluation context that determines K’s strategy to evaluate ex-
pressions and execute programs. Language constructs with a strict attribute
can evaluate their arguments in any (fully nondeterministic) order. Therefore, K
evaluates the expression e1 e2 by first evaluating e1 to value v1 and e2 to value
v2, fully nondeterministically, and finally evaluates v1 v2.

KResult is a builtin nonterminal predefined in K. It contains all syntactic
categories and domain values that should be regarded as results of computation.
K uses this information to decide when to continue and stop evaluation. Note
that K does not infer results of computation automatically. The language designer
should explicitly specify the results of computation by defining KResult properly.

KVariable includes all identifiers in Id and it tells K to “hook” λ-calculus
variables to K’s internal identifiers. This triggers the capture-avoiding substitu-
tion in K, which we will discuss in the next paragraph.

Substitution and β-reduction. Here we define β-reduction in λ-calculus using K’s
rewrite rules. Recall that β-reduction refers to the following axiom schema:

(λx.e) e′ = e[e′/x] for variable x and expressions e, e′

where e[e′/x] denotes capture-avoiding substitution, where bound variables are
implicitly renamed (called α-renaming) to avoid unintended variable capture
during the substitution. For example, consider this instance of the β-reduction
schema: (λx.λy.xy) y = (λy.xy)[y/x]. If we simply replace all occurrences of x for
y in λy.xy, we would get λy.yy, which is not the right result of capture-avoiding
substitution because the former y is accidentally captured by λy after substi-
tution. To avoid that, capture-avoiding substitution first renames the bound
variable y in λy.xy to a fresh variable, say z, and gets λz.xz. Then, the substi-
tution (λz.xz)[y/x] will not cause variable capture, and we can get the correct
result λz.yz.
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The above axiom is often called the β-reduction rule when it is oriented and
applied from left to right. In K, we use rewrite rules to implement β-reduction.
K uses the keyword rule to define a rewrite rule, or simply a rule. In addition,
K has builtin support for capture-avoiding substitution, which is predefined in
the module SUBSTITUTION that we imported in the beginning. To use K’s builtin
capture-avoiding substitution, we must explicitly tell K what syntactic category
is the one for variables, so K knows how to generate fresh variables during sub-
stitution. This is done by defining the KVariable and let it include Id, which is
used to represent all λ-calculus variables.

The following is the K rule that implements β-reduction.

rule (lambda X:Id . E:Exp) V:Val => E[V / X]

Here, X:Id is a K variable, decorated with its syntactic category Id, or called
sort of X. Note that we use V:Val with sort Val instead of Exp, because function
application is strict, so K will always first evaluate both its arguments to
values. In other words, if V is not yet a value (i.e., KResult), K does not apply
the β-reduction rule. Instead, K will evaluate V further, until it becomes a value.

Nontermination The strict attribute drives K’s evaluation strategy. Together
with KResult, the strict attributes offer hints to K to help it execute programs
(i.e., to apply rewrite rules) more efficiently. The strict attributes do not mean
to guarantee the termination of program execution. For example, the following
expression (lambda x . (x x)) (lambda x . (x x)) does not terminate. In
fact, it represents the famous λ-calculus Ω combinator, which is the simplest
λ-expression whose β-reduction process does not terminate.

Integer and Boolean builtins. We can define arithmetic and Boolean expression
constructs, which are simply rewritten to their builtin counterparts once their
arguments are evaluated.

syntax Val ::= Int | Bool

syntax Exp ::= Exp "*" Exp [strict, left]

| Exp "/" Exp [strict]

> Exp "+" Exp [strict, left]

> Exp "<=" Exp [strict]

rule I1 * I2 => I1 *Int I2

rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0

rule I1 + I2 => I1 +Int I2

rule I1 <= I2 => I1 <=Int I2

The operations with sort suffixes (such as *Int and /Int) are K’s builtin
arithmetic operations and come with the corresponding builtin sort. Note that
the variables appearing in these rules have Int sort. That means that these
rules will only be applied after the arguments of the arithmetic constructs are
fully evaluated to K results. This happens thanks to their strictness attributes
declared as annotations to their syntax declarations.
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The keyword requires specifies the condition when a rewrite rule can be
matched and applied. Therefore, I1 / I2 is only defined when I2 is not zero.
When I2 is zero, I1 / I2 can not be matched by any rewrite rules and thus the
execution gets stuck.

Conditional expressions. We can define conditional expressions as follows. Note
that the if construct is strict only in its first argument. Therefore, K will only
evaluate its first argument (the condition) to a result and will not touch its
second and third argument.

syntax Exp ::= "if" Exp "then" Exp "else" Exp [strict(1)]

rule if true then E else _ => E

rule if false then _ else E => E

Let binder. The let binder is a derived construct, because it can be defined
using the λ-binder. The macro attribute means that the rule that desugars let

is applied statically during compilation on all expressions that it is matched, and
statically before evaluating the given λ-expressions.

syntax Exp ::= "let" Id "=" Exp "in" Exp

rule let X = E in E’:Exp => (lambda X . E’) E [macro]

Letrec binder. Similarly, letrec can also be defined in K. Here, we prefer a
definition based on the µ-binder that constructs the fixpoints in λ-calculus.

syntax Exp ::= "letrec" Id Id "=" Exp "in" Exp

| "mu" Id "." Exp [binder]

rule letrec F:Id X:Id = E in E’ => let F = mu F . lambda X . E in E’ [macro]

rule mu X . E => E[(mu X . E) / X]

endmodule

Finally, we finish the definition of module LAMBDA with the keyword endmodule.

Compiling K definitions and executing programs. The K definition of LAMBDA
is now complete. We can compile it using the command

$ kompile lambda.k

Then we can execute programs, i.e., evaluating λ-expressions using the krun

command. For example, if the file factorial.lambda contains the LAMBDA
program

letrec f x = if x <= 1 then 1 else (x * (f (x + -1)))

in (f 10)

then the command

$ krun factorial.k

yields the expected result 3628800.
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3.2 IMP: An Imperative Language

In this section, we discuss the K definition of the prototypical IMP language.
IMP is a simple imperative language. It is considered as a folklore language,
without an official inventor, and has been used in many textbooks and papers,
often with slight syntactic variations and often without being called IMP. It
includes the most basic imperative language constructs, namely basic constructs
for arithmetic and Boolean expressions, and variable assignment, conditional,
while loop and sequential composition constructs for statements.

The K definition of IMP has two modules: IMP-SYNTAX that defines the syn-
tax of IMP and IMP that imports IMP-SYNTAX and defines the formal semantics
in terms of K’s rewrite rules.

Syntax of IMP.

module IMP-SYNTAX

This module defines the syntax of IMP as shown below.

syntax AExp ::= Int | Id

| AExp "/" AExp [left, strict]

> AExp "+" AExp [left, strict]

| "(" AExp ")" [bracket]

syntax BExp ::= Bool

| AExp "<=" AExp [seqstrict, latex({#1}\leq{#2})]

| "!" BExp [strict]

> BExp "&&" BExp [left, strict(1)]

| "(" BExp ")" [bracket]

syntax Block ::= "{" "}"

| "{" Stmt "}"

syntax Stmt ::= Block

| Id "=" AExp ";" [strict(2)]

| "if" "(" BExp ")"

Block "else" Block [strict(1)]

| "while" "(" BExp ")" Block

> Stmt Stmt [left]

syntax Pgm ::= "int" Ids ";" Stmt

syntax Ids ::= List{Id,","}

endmodule

As in LAMBDA, the syntax of the language is defined using the conventional
BNF grammar. Syntax productions are separated by “|” and “>”, where “|”
means the two productions have the same precedence while “>” means the pre-
vious production has higher precedence (binds tighter) than the one that follows.
In our example, all language constructs bind tighter than the sequential operator
in IMP. Int and Id are two built-in categories of integers and identifiers (pro-
gram variables), respectively. Exp is the category of expressions, which subsumes
Int and Id, and contains two other productions for plus and minus. Pgm is the
category of IMP programs.
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A wellformed IMP program declares a list of program variables in the begin-
ning and then executes a statement in the state obtained after initializing all
those variables to 0. Ids is the category for lists of program variables, and it is
defined using K’s built-in template List. The first argument is the base category
Id, and second argument is the separating character ",".

The seqstrict attribute specifies that <= is sequentially strict, so its argu-
ments will be evaluated in order from left to right. <= also has a LATEX attribute
making it display as ≤, and that && is strict only in its first argument, because
we want to give it a short-circuit semantics.

We are done with the definition of IMP’s syntax.

Semantics of IMP.

module IMP

imports IMP-SYNTAX

The module IMP defines the semantics of IMP as a set of K rewrite rules.

Values and results. IMP only has two types of results of computations: integers
and Booleans, as defined below:

syntax KResult ::= Int | Bool

Configurations. Unlike LAMBDA, the execution of IMP programs requires an
execution environment. Specifically, we need to define program states that map
variables to their values.

In general, K uses configurations to organize the execution environment. A
configuration represents a program execution state, holding all information that
is needed for program execution. Configurations are organized into cells, which
are labeled and can be nested. Simple languages such as IMP have only a few
cells, while complex real languages such as C have a lot more. Configurations
are defined in XML format as below:

configuration <T color="yellow">

<k color="green"> $PGM:Pgm </k>

<state color="red"> .Map </state>

</T>

An IMP configuration has two cells: a <k/> cell and a <state/> cell. For
clarity, we gather both cells and put them in a top-level cell <T/> cell. For
better readability, we color the <k/> in green, color the <state/> in red, and
color the <T/> cell in yellow. The <k/> cell holds the rest computation (i.e.,
program fragments) that needs to execute and the <state/> cell holds a map
from program variables to their values in the memory. Initially, the <state/>

cell holds the empty map, denoted as .Map. In K, we write “.” for “nothing”,
and .Map means the type of the “nothing” is Map.

The special configuration variable $PGM tells the K tool where to place the
program. More precisely, the command “krun file.imp” parses the IMP pro-
gram in file file.imp and places the resulting K abstract syntax tree in the <k/>
cell before invoking the semantic rules described in the sequel.
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Arithmetic and Boolean Expressions. The K semantics of each arithmetic
construct is defined below.

Variable lookup. A program variable X is looked up in the state by matching a
binding of the form X 7→ I in the state cell. If such a binding does not exist, then
the rewriting process gets stuck. In other words, we disallow uses of uninitialized
variables in IMP. Note that variable lookup is the first task performed while
evaluating the statement in the <k/> cell (the cell is closed to the left and open
to the right, as marked by the “...” on the right), while the binding can be
anywhere in the <state/> cell (the cell is open at both sides, as marked by
the “...” on both sides). Specifically, “...” means something “that exists but
does not change in the rewrite”. The rule, therefore, says that if a program
variable X:Id is the current computation fragment in the <k/> cell, and X binds
to the integer I somewhere in the <state/> cell, then X:Id is rewritten to I and
nothing else should change.

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

In the above, we color the two cells in blue and red, respectively, for readability.
The above shows an important characteristic of K’s rewrite rules: K supports
local rewrites, which are rewrite rules whose rewrite symbols “=>” occur not
necessarily at the top but locally at where the rewrites happen. Without local
rewrites, the above variables looking up rule has to be written as below:

rule <k> X:Id ...</k> <state>... X |-> I ...</state>

=> <k> I ...</k> <state>... X |-> I ...</state>

As we can see, local rewrites avoid writing duplicate expressions on both the
LHS and RHS of the rewrites.

Arithmetic operators. We can define the semantics of arithmetic operators in
the usual way.

rule I1 / I2 => I1 /Int I2 requires I2 =/=Int 0

rule I1 + I2 => I1 +Int I2

Note that K’s configuration abstraction mechanism is at work here. In other
words, rewrite rules do not need to explicitly mention all configuration cells
but only those related. K will infer the implicit cells, compete the configuration
automatically, and apply the rewrite rule. Without configuration abstraction,
the above rule for arithmetic operators has to be written as:

rule <k> I1 + I2 => I1 +Int I2 ... </k> <state> ... </state>

Not only is the rule using configuration abstraction more succinct, but it is
also more modular. Suppose we need to modify the semantics and add a new
configuration cell, we do not need to modify the rules with configuration abstrac-
tion because the new added cells can be automatically inferred and completed by
K. Configuration abstraction is one of the most important features that makes
K definitions extensible and easy to adapt to language changes.
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Boolean expressions. The following rules for Boolean expressions are straight-
forward.

rule I1 <= I2 => I1 <=Int I2

rule ! T => notBool T

rule true && B => B

rule false && _ => false

Program Statements.

Blocks. The empty block {} is simply dissolved. The dot symbol “.” represents
the unit of the computation list structure, i.e., the empty task. Similarly, the
nonempty blocks are dissolved and replaced by their statement contents, thus
effectively giving them a bracket semantics; we can afford to do this only because
we have no block-local variable declarations yet in IMP. Since we tagged the rules
below with attribute structural, K structurally erases the block constructs from
the computation structure, without considering their erasure as computational
steps in the resulting transition systems. In other words, these rules are not
regarded as computational steps.

rule {} => . [structural]

rule {S} => S [structural]

Assignments. The variable X is assigned a new integer value I and then the
program state is updated accordingly.

rule <k> X = I:Int; => . ...</k> <state>... X |-> (_ => I) ...</state>

Sequential composition. Sequential composition is simply structurally translated
to K’s builtin task sequentialization operation “~>”. In other words, the effect of
executing the sequential composition statement S1 S2 is equivalent to the effect
of first executing S1 and then executing S2.

rule S1:Stmt S2:Stmt => S1 ~> S2 [structural]

Conditional statements. The conditional statement has two semantic cases. We
have seen them in defining LAMBDA.

rule if (true) S else _ => S

rule if (false) _ else S => S

While loops. The semantics of a while loop is defined simply by unfolding the
loop once.

rule while (B) S => if (B) {S while (B) S} else {} [structural]

Note that the above rule works because conditional statement (on the right-
hand side) has the attribute strict(1), so the inner while loop in the then-
branch of the it-statement will not be unfolded.
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Programs. An IMP program is a list of program variables declarations followed
by a statement. The semantics is that the statement is executed in the initial
state where all declared variables have value 0. K’s syntactic lists are internally
interpreted as cons-lists (i.e., lists constructed with a head element followed by
a tail list), we have two cases. One is when the list has at least one element.
The other is when the list is empty. In the first case, we initialize the variable
to 0 in the state, but only when it is not already declared (we use juxtaposition
to denote list concatenation in the following K rules). In the second case, we
dissolve the residual empty int; declaration as a structural cleanup.

rule <k> int (X,Xs => Xs);_ </k>

<state> Rho:Map (.Map => X|->0) </state>

requires notBool (X in keys(Rho))

rule int .Ids; S => S [structural]

endmodule

We have finished the definition of module IMP.

Compiling the Definition and Executing IMP Programs. After compi-
lation with the command kompile imp.k, we can execute programs. Suppose
sum.imp contains the following program:

int n, sum;

n = 100;

sum = 0;

while (!(n <= 0)) {

sum = sum + n;

n = n + -1;

}

then krun sum.imp yields the following final configuration

<T>

<k> . </k>

<state>

n |-> 0

sum |-> 5050

</state>

</T>

Notice that in the final configuration, the <k/> cell is empty, meaning that
the program was completely executed, or consumed. In the end of the execution,
the program variable n has value 0 and s has value 5050, which is the total of
numbers up to 100, as expected.

K is able to automatically generate a parser and an interpreter of any language
from its formal definition, as we have seen in LAMBDA and IMP. This capability
of K is crucial for testing language semantics and thus for increasing confidence
in its adequacy. The above also illustrates another useful K tool: the K unparser,
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which is used by almost any other tool. Indeed, the above configuration result
uses concrete language syntax (i.e. the syntax of IMP) to display the cells and
their contents, although internally these are all represented as abstract data
types.

We point out that the interpreters automatically generated by K can be
reasonably efficient. For example, the formal definition of the Ethereum virtual
machine (EVM) bytecode language, one of the most popular virtual machine
languages for the blockchain, yields an EVM interpreter that is as efficient as
the hand-written reference JavaScript implementation of EVM [23].

4 Matching Logic: The Logical Foundations of K

In this section, we introduce matching logic [12,31,11], the foundational logic
underlying K. In Section 4.1, we discuss the motivation behind the design of
matching logic. In Section 4.2, we formally define the syntax and semantics of
matching logic. In Section 4.4, we introduce the Hilbert-style proof system of
matching logic, using which we can carry out all logical reasoning in the logics
and calculi mentioned in Section 1.2, all of which have been defined as theories
and/or notations in matching logic, as shown in Section 4.3.

4.1 Matching Logic: Motivations

One main motivation for the design of matching logic is to give language semantic
frameworks, such as K, a mathematically sound and rigorous logical foundation.
Specifically, we want a foundational logic that is able to:

1. specify and reason about static program structures and configurations;
2. specify and reason about dynamic program behaviors and properties;
3. specify and reason about (least/greatest) fixpoints, which occur in both

static structures (such as inductive/co-inductive data types) and dynamic
properties (such as temporal and reachability properties).

We discuss the three motivations respectively in the following.

Motivation 1: Specifying and reasoning about static program struc-
tures and configurations. Traditionally, static structures are specified using
first-order logic (FOL) terms, which are built from variables, constants, and
function symbols and can be used to define data constructors and language con-
structs. On the other hand, the properties about static structures are specified
using FOL formulas as logical constraints, which are built from the primitive
predicate symbols and composed using logical connectives.

However, such a clear distinction between terms (that represent data) and
formulas (that represent the properties of data) can be inconvenient when it
comes to specifying and reasoning about program configurations.

Consider as an example the program shown in Figure 3, which reads n ele-
ments and outputs them in reversed order. The reader need not to understand
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struct listNode { int val; struct listNode *next; };

void list_read_write(int n) {

rule 〈$Pgm⇒ return; ···〉code 〈A⇒ · ···〉in 〈··· · ⇒ rev(A)〉out ∧ n = len(A)

int i=0;

struct listNode *x=0;

inv 〈β ∧ len(β) = n− i ∧ i ≤ n ···〉in 〈list(x, α) ···〉heap ∧ A = rev(α)@β
while (i < n) {

struct listNode *y = x;

x = (struct listNode*) malloc(sizeof(struct listNode));

scanf("%d", &(x->val));

x->next = y;

i += 1; }

inv 〈··· α〉out 〈list(x, β) ···〉heap ∧ rev(A) = α@β
while (x) {

struct listNode *y;

y = x->next;

printf("%d ",x->val);

free(x);

x = y; }

}

Fig. 3: Reading, storing, and reverse writing a sequence of integers

all details; we will explain what are necessary below. The formal specifications
of the program are given in gray. Note that in the specifications, we need to
match an abstract sequence of n elements in the input buffer, and then to match
its reverse at the end of the output buffer when the function terminates. Fur-
thermore, in order to state the invariants of the two loops, we need to identify a
singly linked list pattern in the heap, which is a finitely-supported partial map.
Many such sequence or map patterns, as well as functions and operations on
them, can be defined using conventional algebraic data types (ADTs) and/or
FOL terms.

However, there are limitations. A major limitation is that function symbols
must be interpreted as functions in models, which sometimes is insufficient. For
example, a two-element linked list in the heap starting with location 7 and hold-
ing values 9 and 5, written as list(7, 9@5), can allow infinitely many heap values,
one for each location where the value 5 may be stored. So we cannot define list as
an operation symbol Int×Seq → Map. The FOL alternative is to define list as a
predicate Int ×Seq ×Map, taking an additional heap argument. but mentioning
the map all the time as an argument makes specifications verbose and hard to
read, use and reason about. An alternative, proposed by separation logic [30],
is to fix and move the map domain from explicit in models to implicit in the
logic, so that list(7, 9@5) is interpreted as a predicate but the non-deterministic
map choices are implicit in the logic. The drawback of that, is that we may need
customized separation logics for different languages that require different varia-
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tions of map models or different configurations making use of different kinds of
resources. This may also require specialized separation logic tools and provers,
or otherwise encodings that need to be proved correct. Finally, since the map
domain is not available as data, one cannot use FOL variables to range over
maps and thus proof rules like “heap framing” need to be added to the logic
explicitly.

Matching logic avoids the limitations of the approaches above, by interpreting
its terms/formulae uniformly as sets of values. Matching logic’s formulas, called
patterns, are built using variables, symbols from a signature, and FOL connec-
tives and quantifiers, and their semantics are the sets of values that match them;
see Section 4.2.

Motivation 2: Specifying and reasoning about dynamic program be-
haviors and properties. Traditionally, dynamic behaviors and properties can
be specified in modal logic and/or modal µ-logic, as well as their temporal logics
and dynamic logics fragments. Modal logic uses modal operators to specify vari-
ous dynamic properties of transition systems. For example, the “next” operator
◦ϕ holds on a state if the next state satisfies ϕ; �ϕ holds if ϕ always holds; the
“eventually” operator �ϕ holds if ϕ eventually holds; etc.

A major limitation of modal logic is that it has no direct support for spec-
ifying the static structures of states. Indeed, in modal logic models, which are
transition systems, states are structureless “points”. Therefore, it is insufficient
to specify and reason about program configurations, especially K configurations,
which are nested structures built from basic mathematical domain values, data
constructors, language constructs, and configuration cells.

Matching logic overcomes this limitation by defining modal logic operators
uniformly using symbols. Recall that symbols and matching logic patterns are
interpreted as the sets of elements that match them, so matching logic sym-
bols are naturally interpreted as relations and can thus be used to capture the
transition relations in transition systems. In addition, matching logic can use
symbols and its FOL connectives and quantifiers to re-construct FOL formulas
and structures, which are ideal in defining program configurations.

Motivation 3: Specifying and reasoning about least/greatest fixpoints
Fixpoints, especially least and greatest fixpoints, play an important role in pro-
gramming languages semantics. Many real-world programming languages sup-
port inductive data types, which are mathematical domains that are defined
as the smallest sets closed under user-defined constructors. Some programming
languages, such as Haskell, support co-inductive data types (also called infinite
data types). Both inductive and co-inductive data types are special instances of
least/greatest fixpoints about static structures.

Fixpoints also play an important role in defining dynamic program behaviors
and properties. For example, modal operators �ϕ (always ϕ), �ϕ (eventually ϕ),
ϕ1 U ϕ2 (ϕ1 until ϕ2, meaning that ϕ1 holds from now until the first time ϕ2

holds), can all be defined using least/greatest fixpoints from the basic transition
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relations, i.e., the “next” operator ◦ϕ. For program verification, we define reach-
ability properties ϕ1 ⇒ ϕ2, read “ϕ1 reaches ϕ2”, to mean that ϕ1 can reach
ϕ2 on some finite execution paths, which corresponds to the partial correctness
semantics in the traditional Hoare-style verification; see Section 5.3.

Matching logic provides built-in support for fixpoint reasoning that occurs in
both static structures and configurations and dynamic behaviors and properties,
and in particular program verification.

4.2 Matching Logic: Syntax and Semantics

Matching logic formulas, called patterns, are built using variables, symbols,
propositional connectives, FOL quantifiers, and fixpoints. Matching logic has
a powerset semantics, where patterns are interpreted as the sets of elements
that match them.

We assume readers are familiar with the basic notions and concepts about
FOL and modal µ-logic.

Definition 1. A matching logic signature or simply a signature is a triple
(S, V,Σ), where

– S is a nonempty set of sorts written s1, s2, . . . ;
– V = EV ∪ SV with EV ∩ SV = ∅ is a disjoint union of two sets of

variables, where EV = {EV s}s∈S contains sorted element variables writ-
ten x :s, y :s, . . . and SV = {SV s}s∈S contains sorted set variables written
X :s, Y :s, . . . ;

– Σ = {Σs1...sn,s}s1,...,sn,s∈S is a set of many-sorted symbols written σ ∈
Σs1...sn,s, where s1, . . . , sn are called the argument sorts and s is called the
return sort.

Given a signature (S, V,Σ), matching logic patterns are inductively defined as
follows for all s, s′ ∈ S:

ϕs ::= x :s | X :s | σ(ϕs1 , . . . , ϕsn) where σ ∈ Σs1...sn,s
| ϕs ∧ ϕ′s | ¬ϕs | ∃x :s′ .ϕs | µX :s.ϕs

where µX :s.ϕs requires all free occurrences of X :s are under an even number
of negations in ϕs. The logical connectives ∨,→,↔,∀ are defined in the usual
way.

ML patterns are interpreted on an underlying carrier set of elements, and
each pattern is then interpreted as a set of elements, which are those that match
the pattern. This is called the pattern matching semantics of ML, and is what
inspired the name “matching logic”. For example, pattern zero is matched by the
natural number 0; pattern succ(zero) is matched by the number 1; the (disjunc-
tive) pattern zero ∨ succ(zero) is matched by 0 and 1; to put it another way, an
element a matches zero ∨ succ(zero), if a matches zero or a matches succ(zero).
Intuitively, ϕs ∧ ϕ′s is matched by those matching both ϕs and ϕ′s. Pattern ¬ϕs
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is matched by the elements (of sort s) that do not match ϕs. Element variable
x :s is a pattern that is matched by exactly one element to which x :s evaluates
(evaluation of variables is defined later). Set variable X :s is a pattern that is
matched by exactly the elements in the set to which X :s evaluates to.

The meaning of σ(ϕs1 , . . . , ϕsn), called a symbol application, depends on
how we interpret σ. For example, if σ is interpreted as a constructor, then
σ(ϕs1 , . . . , ϕsn) is matched by the structures built by σ on elements matching
ϕs1 , . . . , ϕsn , respectively. If σ is interpreted as a function, then σ(ϕs1 , . . . , ϕsn)
is matched by the return values obtained by applying σ on elements matching
ϕs1 , . . . , ϕsn . If σ is interpreted as a relation (such as the modal operators in
modal logic). then σ(ϕs1 , . . . , ϕsn) is matched by the elements that have the rela-
tion σ with elements matching ϕs1 , . . . , ϕsn , respectively. In conclusion, matching
logic symbols can be used to uniformly represent constructors, functions, and
relations (predicates).

There are two binders in matching logic. The ∃-binder binds element variables
and builds abstraction ∃x :s′ .ϕs, which is matched by the elements that match
ϕs for some valuations of x :s′. In other words, it “abstracts away” the irrelevant
part (i.e., x :s′) from the matched part (i.e., ϕs). Note that the sort of the binding
variable x :s′ needs not to be the same as the sort of the pattern ϕs.

The µ-binder builds least fixpoints. Intuitively, ϕs with free occurrences of
X :s defines a function Fϕs,X :S that maps (the set of elements matching) X :s
to (the set of elements matching) ϕs. Since X :s occurs positively in ϕs, we can
verify that Fϕs,X :s is a monotone function, so it has a unique least fixpoint
denoted as µFϕs,X :s, guaranteed by the Knaster-Tarski fixpoint theorem (The-
orem 1). The least fixpoint pattern µX :s.ϕs is then matched by the elements
in set µFϕs,X :s.

We define the notions of free variables, capture-avoiding substitution, α-
renaming, etc. in the usual way. We use ϕ[ψ/x :s] (resp. ϕ[ψ/X :s] to denote the
result of substituting ψ for x :s (resp. X :s) in ϕ, where α-renaming happens
implicitly to prevent variable captures.

We review the Knaster-Tarski fixpoint theorem [37].

Theorem 1 (Knaster-Tarski). Let M be a nonempty set and P(M) be the
powerset of M . Let F : P(M) → P(M) be a monotone function, i.e., F(A) ⊆
F(B) for all subsets A ⊆ B of M . Then F has a unique least fixpoint, written
µF , and a unique greatest fixpoint, written νF , given as:

µF =
⋂
{A ∈ P(M) | F(A) ⊆ A},

νF =
⋃
{A ∈ P(M) | A ⊆ F(A)}.

We call A a pre-fixpoint of F whenever F(A) ⊆ A, and a post-fixpoint of F
whenever A ⊆ F(A).

We now define matching logic models and interpretations of patterns.

Definition 2. An (S, V,Σ)-model is a pair M = ({Ms}s∈S , {σM}σ∈Σ), con-
sisting of a nonempty carrier set Ms for every s ∈ S and an interpretation



22 X. Chen and G. Roşu

σM : Ms1 × · · · ×Msn → P(Ms) for every σ ∈ Σs1...sn,s. We extend σM to its
pointwise extension, σM : P(Ms1)× · · · × P(Msn)→ P(Ms), defined as

σM (A1, . . . , An) =
⋃

ai∈Ai,1≤i≤n

σM (a1, . . . , an)

for Ai ⊆ Msi , 1 ≤ i ≤ n. An M -valuation ρ : V → M ∪ P(M) is one such that
ρ(x :s) ∈Ms and ρ(X :s) ⊆Ms for all x :s,X :s ∈ V . Its extension ρ̄ interprets
(S, V,Σ)-patterns to sets as follows:

– ρ̄(x :s) = {ρ(x :s)};
– ρ̄(σ(ϕs1 , . . . , ϕsn)) = σM (ρ̄(ϕs1), . . . , ρ̄(ϕsn)) for all σ ∈ Σs1...sn,s
– ρ̄(X :s) = ρ(X :s)

– ρ̄(ϕs ∧ ϕ′s) = ρ̄(ϕs) ∩ ρ̄(ϕ′s)

– ρ̄(∃x :s′ .ϕs) =
⋃
a∈Ms′

ρ[a/x :s′](ϕs)

– ρ̄(¬ϕs) = M \ ρ̄(ϕs)

– ρ̄(µX :s.ϕs) = µFρϕ,X :s with Fρϕ,X :s(A) = ρ[A/X :s](ϕs) for A ⊆Ms

We say ϕs holds in M , written M � ϕs, iff ρ̄(ϕs) = Ms for all ρ. A theory
is a set Γ of patterns. We write M � Γ , iff M � ϕ for all ϕ ∈ Γ . We write
Γ � ϕs, iff M � ϕs for all models with M � Γ .

Predicate Patterns A difference between FOL formulas and ML patterns is
that FOL formulas can only be interpreted as either true or false, while ML
patterns can be interpreted as any subsets of the carrier set. To represent the
(logical) true and false using patterns, we identify two special sets M and ∅,
and use M to represent the logical truth and ∅ to represent the logical false.
Obviously, not all patterns are interpreted as M or ∅. Given a model M , we call
ϕ an M -predicate, if ρ̄(ϕ) ∈ {∅,M} for all ρ. We call ϕ a predicate (or predicate
pattern), if it is an M -predicate in all M . Predicate patterns can be built from
⊥, >, and ML logical constructs. More interesting patterns can be built from
symbols and application. We will see more predicate patterns in Section 4.3
and throughout the paper. Roughly speaking, predicate patterns are the ML
counterparts of FOL formulas. They make “statements”, and can take only two
possible values: M if the statements are facts, and ∅ if the statements are not
facts.

4.3 Matching Logic Expressiveness

In this section, we discuss the expressiveness of matching logic by showing that
FOL, inductive data types, transition systems, temporal logics, and reachability
logic (for language-independent program verification) can be defined as theories
and/or notations.
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Important Mathematical Instruments. Several mathematical instruments
of practical importance, such as definedness, totality, equality, membership, set
containment, functions and partial functions, and constructors, can all be de-
fined/axiomatized in matching logic.

Definition 3. For any (not necessarily distinct) sorts s, s′, let us consider a
unary symbol d es′s ∈ Σs,s′ , called the definedness symbol, and the pattern/ax-

iom dx :ses′s , called (Definedness). We define totality “b cs′s ”, equality “=s′

s ”,
membership “∈s′s ”, and set containment “⊆s′s ” as derived constructs:

bϕcs
′

s ≡ ¬d¬ϕes
′

s ϕ1 =s′

s ϕ2 ≡ bϕ1 ↔ ϕ2cs
′

s

x ∈s
′

s ϕ ≡ dx ∧ ϕes
′

s ϕ1 ⊆s
′

s ϕ2 ≡ bϕ1 → ϕ2cs
′

s

and feel free to drop the (not necessarily distinct) sorts s, s′.

Intuitively, the axiom (Definedness) states that every individual element x
is defined. This is true, because x is matched by exactly one element to which it
evaluates. Therefore, in any model that validates (Definedness), dxe is inter-
preted as the total set, according to ML validity (Definition 2). Now, consider
any pattern ϕ that is defined, and that ϕ is matched by one element, say x.
By pointwise extension (Definition 2), the interpretation of dϕe must include
the interpretation of dxe, which we know is the total set. Therefore, dϕe is also
interpreted as the total set, which is intended. On the other hand, if ϕ is unde-
fined, its interpretation is the empty set, and by pointwise extension, dϕe is also
interpreted as the empty set. The above intuition is made formal below.

Proposition 1. Let M be a matching logic model satisfying (Definedness).
Let ρ be any valuation. Then the following hold:

– ρ̄(dϕse) = Ms if ρ̄(ϕs) 6= ∅, i.e., ϕs is defined;

– ρ̄(dϕse) = ∅ if ρ̄(ϕs) = ∅, i.e., ϕs is not defined;

– ρ̄(bϕsc) = Ms if ρ̄(ϕs) = Ms, i.e., ϕs is total;

– ρ̄(bϕsc) = ∅ if ρ̄(ϕs) 6= Ms, i.e., ϕs is not total;

– ρ̄(ϕs =s′

s ϕ′s) = Ms′ if ρ̄(ϕs) = ρ̄(ϕ′s);

– ρ̄(ϕs =s′

s ϕ′s) = ∅ if ρ̄(ϕs) 6= ρ̄(ϕ′s);

– ρ̄(x :s ∈s′s ϕs) = Ms′ if ρ(x :s) ∈ ρ̄(ϕs);

– ρ̄(x :s ∈s′s ϕs) = ∅ if ρ(x :s) 6∈ ρ̄(ϕs);

– ρ̄(ϕs ⊆s
′

s ϕ′s) = Ms′ if ρ̄(ϕs) ⊆ ρ̄(ϕ′s);

– ρ̄(ϕs ⊆s
′

s ϕ′s) = ∅ if ρ̄(ϕs) 6⊆ ρ̄(ϕ′s).

As seen in Definition 2, symbols in matching logic are interpreted as re-
lations. Specifically speaking, consider a symbol σ ∈ Σs1...sn,s and its inter-
pretation σM : Ms1 × · · · × Msn → P(Ms). Obviously, functions and partial
functions are special instances of matching logic symbols. Functions are when
|σM (a1, . . . , an)| = 1 for all a1 ∈Ms1 , . . . , an ∈Msn . Partial functions are when
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|σM (a1, . . . , an)| ≤ 1 for all a1 ∈ Ms1 , . . . , an ∈ Msn . In the following, we show
that functions and partial functions can be defined by axioms:

(Function) ∃y . σ(x1, . . . , xn) = y

(Partial Function) ∃y . σ(x1, . . . , xn) ⊆ y

Intuitively, (Function) requires σ(x1, . . . , xn) to contain exactly one element
and (Partial Function) requires it to contain at most one element (recall that
variable y evaluates to a singleton set). For brevity, we use the function notation
σ : s1 × · · · × sn → s to mean we automatically assume the (Function) axiom
of σ. Similarly, partial functions are written as σ : s1 × · · · × sn ⇀ s.

First-Order Logic. We can use the above definitions of functions to capture
first-order logic (FOL) in matching logic. Specifically, given a FOL signature
(S,Σ,Π) with function symbols Σ and predicate symbols Π, the syntax of FOL
is given by:

ts ::= x ∈ Vars | f(ts1 , . . . , tsn) with f ∈ Σs1...sn,s
ϕ ::= π(ts1 , . . . , tsn) with π ∈ Πs1...sn | ϕ→ ϕ | ¬ϕ | ∀x.ϕ

To capture FOL, we define a matching logic signature �FOL = (SFOL, ΣFOL)
where SFOL = S ∪ {Pred} contains all FOL sorts plus a distinguished sort Pred
for FOL formulas and ΣFOL = {f : s1 × · · · × sn → s | f ∈ Σs1...sn,s} ∪ {π ∈
ΣFOL
s1...sn,Pred | π ∈ Πs1...sn} contains FOL function symbols as matching logic

functions and FOL predicate symbols as matching logic symbols that return
Pred . Let Γ FOL be the resulting ML theory of signature �FOL.

Proposition 2. All FOL formulas ϕ are �FOL-patterns of sort Pred, and we
have �FOL ϕ iff Γ FOL � ϕ (see [31]), where �FOL ϕ means that ϕ is valid in FOL.

Inductive Data Structures. Here we show how configurations and inductive
data structures can be precisely axiomatized in matching logic.

Definition 4. Let � = ({Term}, Σ) be a signature with one sort Term and at
least one constant. �-terms are defined as:

t ::= c ∈ Σλ,Term | c(t1, . . . , tn) for c ∈ ΣTerm...Term,Term

The �-term algebra T� = ({T�
Term}, {cT�}c∈Σ) consists of:

– a carrier set T�
Term of all �-terms;

– a function cT� : T�
Term × · · · × T�

Term → T�
Term for all c ∈ ΣTerm...Term,Term

defined as cT�(t1, . . . , tn) = c(t1, . . . , tn).
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Proposition 3. Let � = ({Term}, Σ) be a signature with one sort Term and
at least one constant. Define a �-theory Γ term

� with (Function) axioms for all
constructors, plus the following axioms:

(No Confusion I) for all i 6= j and si = sj:

¬(ci(x
1
i , . . . , x

mi
i ) ∧ cj(x1j , . . . , x

mj

j ))

(No Confusion II) for all 1 ≤ i ≤ n:

(ci(x
1
i , ..., x

mi
i ) ∧ ci(y1i , ..., y

mi
i ))→ ci(x

1
i ∧ y1i , ..., x

mi
i ∧ y

mi
i )

(Inductive Domain)

µD.
∨
c∈Σ

c(D, . . . ,D)

Then for all �-models M � Γ term
� , M is isomorphic to T�.

Intuitively, (Inductive Domain) forces that for all models M , the carrier
set MTerm must be the the smallest set that is closed under all symbols in Σ,
while (Function) and (No Confusion) force all symbols in Σ to be interpreted
as injective functions, and different symbols construct different terms.

Transition Systems. At a high level, every K definition defines a transition
system over program configurations. Here we show how to specify and reason
about transition systems in matching logic. We first recall the definition of tran-
sition systems.

Definition 5. A transition system S = (S,R) consists of a nonempty set S of
states/configurations and a binary relation R ⊆ S × S called transition relation.
For s, t ∈ S such that s R t, we say that s is an R-predecessor of t and t is an
R-successor of s.

To capture transition systems in matching logic, we define a signature �TS =
({State}, {• ∈ ΣTS

State,State}) where State is the sort of states and • ∈ ΣTS
State,State

is a symbol called one-path next.
An important observation is that matching logic models of the signature �TS

are exactly the transition systems, where • ∈ ΣTS
State,State is interpreted as the

transition relation R. Specifically, for any transition system S = (S,R), we can
regard S as a model where S is the carrier set of State and •S(t) = {s ∈ S | sRt}
contains all R-predecessors of t. The intuition is illustrated as follows:

· · · s
R−→ s′

R−→ s′′ · · · // states
••ϕ •ϕ ϕ // patterns

In other words, •ϕ is matched by states that have a next state matching ϕ.
Other dynamic properties about transition systems can be defined as pat-

terns. As an example, let us define all-path next ◦ϕ ≡ ¬•¬ϕ. It is straightforward
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to show that ◦ϕ is matched by states if all their R-successors matching ϕ. In
particular, if s has no R-successor, i.e. it is terminating, then s matches ◦ϕ for
any ϕ. In other words, the pattern ◦⊥ is matched by exactly states that are
terminating.

We define more dynamic properties as patterns. In the following, ϕ, ϕ1, ϕ2,
and X have sort State.

“all-path next” ◦ϕ ≡ ¬•¬ϕ
“eventually” � ϕ ≡ µX . ϕ ∨ •X

“always” �ϕ ≡ νX . ϕ ∧ ◦X
“(strong) until” ϕ1 U ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

“well-founded” WF ≡ µX .◦X // no infinite paths

The following proposition justifies the above definitions.

Proposition 4. Let S = (S,R) be a transition system regarded as a �TS-model,
and let ρ be any valuation and s ∈ S. Then:

– s ∈ ρ̄(•ϕ) if there exists t ∈ S such that s R t, t ∈ ρ̄(ϕ); in particular,
s ∈ ρ̄(•>) if s has an R-successor;

– s ∈ ρ̄(◦ϕ) if for all t ∈ S such that s R t, t ∈ ρ̄(ϕ); in particular, s ∈ ρ̄(◦⊥)
if s has no R-successor;

– s ∈ ρ̄(�ϕ) if there exists t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
– s ∈ ρ̄(�ϕ) if for all t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
– s ∈ ρ̄(ϕ1Uϕ2) if there exists n ≥ 0 and t1, . . . , tn ∈ S such that sRt1R· · ·Rtn,
tn ∈ ρ̄(ϕ2), and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1);

– s ∈ ρ̄(WF) if s is R-well-founded, meaning that there is no infinite sequence
t1, t2, · · · ∈ S with s R t1 R t2 R . . . ;

where R∗ =
⋃
i≥0R

i is the reflexive transitive closure of R.

Modal µ-Logic and Temporal Logics. We have seen that transition systems
can be captured in matching logic by the one-path next symbol • ∈ ΣState,State .
Here, we show that we can define modal µ-logic and various temporal logics such
as linear temporal logic (LTL) and computation tree logic (CTL) as matching
logic theories, whose axioms constrain the underlying transition relations. The
resulting theories are simple, intuitive, and faithfully capture both the syntax
(provability) and the semantics of these temporal logics.

We assume readers are familiar with the basic syntax of modal µ-logic and
the various temporal logic. The following table summarizes the assumptions
that these logics make on the traces of the underlying transition systems, and
the corresponding matching logic axioms that capture the assumptions.

Target logic Assumption on traces Matching logic axioms
Modal µ-logic Any traces, no assumptions No axioms
Infinite-trace LTL Infinite and linear traces (Inf) + (Lin)
Finite-trace LTL Finite and linear traces (Fin) + (Lin)
CTL Infinite traces (Inf)
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(Propositional Tautology) ϕ if ϕ is a propositional tautology
over patterns of the same sort

(Modus Ponens)

ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x.ϕ

(∃-Generalization)

ϕ1 → ϕ2
if x 6∈ FV(ϕ2)

(∃x.ϕ1)→ ϕ2

(Propagation⊥) Cσ[⊥]→ ⊥
(Propagation∨) Cσ[ϕ1 ∨ ϕ2]→ Cσ[ϕ1] ∨ Cσ[ϕ2]
(Propagation∃) Cσ[∃x.ϕ]→ ∃x.Cσ[ϕ] if x 6∈ FV(Cσ[∃x.ϕ])

(Framing)

ϕ1 → ϕ2

Cσ[ϕ1]→ Cσ[ϕ2]

(Existence) ∃x. x
(Singleton Variables) ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where C1 and C2 are nested symbol contexts.

(Set Variable Substitution)

ϕ

ϕ[ψ/X]

(Pre-Fixpoint) ϕ[µX . ϕ/X]→ µX .ϕ

(Knaster-Tarski)

ϕ[ψ/X]→ ψ

µX . ϕ→ ψ

Fig. 4: Matching Logic Proof System

where (Inf) is the pattern/axiom •> stating that all states are non-terminal
states, (Fin) is the pattern/axiom WF ≡ µX .◦X stating that all states are well-
founded, and (Lin) is the pattern/axiom •X → ◦X enforcing the linear paths:
X holds on one next state implies X holds on all next states.

In conclusion, modal µ-logic is the empty theory over one-path next • ∈
ΣState,State that contains no axioms. Adding (Inf) yields precisely CTL. Adding
(Inf) yields precisely infinite-trace LTL and replacing (Inf) with (Fin) yields
finite-trace LTL. Therefore, matching logic over the one-path next symbol • gives
a playground for defining variants of temporal logics.

It also shows that matching logic can serve as a convenient and uniform
framework to define and study temporal logics. For example, finite-trace CTL
(which is not shown in the above) can be trivially obtained as the theory con-
taining only the axiom (Fin); LTL with both finite and infinite traces is the
theory containing only the axiom (Lin), etc.

Reachability logic (Program verification in K). We can define reachability
properties as patterns using one-path next • ∈ ΣState,State . We will discuss it
and K’s program verification tools in Section 5.

4.4 Matching Logic Proof System

We have discussed the syntax and semantics of matching logic and have seen
many important mathematical instruments as well as other important logics
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and models can be defined as theories/notations using patterns. In this section,
we discuss the proof system of matching logic; that is, how to carry out formal
reasoning in matching logic.

We first need the following definition of contexts.

Definition 6. A context C is a pattern with a distinguished placeholder vari-
able �. We write C[ϕ] to mean the result of replacing � with ϕ without any
α-renaming, so free variables in ϕ may become bound in C[ϕ], different from
capture-avoiding substitution. A single symbol context has the form

Cσ ≡ σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn)

where σ ∈ Σs1...sn,s and ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn are patterns of appropriate
sorts. A nested symbol context is inductively defined as follows:

– � is a nested symbol context, called the identity context;
– if Cσ is a single symbol context, and C is a nested symbol context, then
Cσ[C[�]] is a nested symbol context.

Intuitively, a context C is a nested symbol context iff the path to � in C
contains only symbols and no logic connectives.

Figure 4 shows the Hilbert-style proof system of matching logic. It has four
categories of proof rules. The first category (containing the first four rules) con-
sists of all FOL proof rules. This makes the normal FOL reasoning available in
matching logic. The second category (containing the next four rules) that sup-
ports framing reasoning, which allows one to lift the local reasoning in a context
(in particular a symbol) to the top level. Separation logic, for example, has a
specific framing rule for heap reasoning that allows one to lift the reasoning over
a heap fragment to the entire heap. Matching logic, on the other hand, supports
generic frame reasoning for all symbols and structures, where heap reasoning is
just an special instance. The third category contains two technical proof rules
(Existence) and (Singleton Variables) that are needed for certain com-
pleteness result (see [12]). The last category contains three proof rules borrowed
from modal µ-logic that support fixpoint reasoning. The (Knaster-Tarski)
proof rule is a logical incarnation of the Knaster-Tarski fixpoint theorem (The-
orem 1) that is the key proof rule for carrying out inductive and co-inductive
reasoning; it is known as (Park Induction) in some literature.

Definition 7. Let Γ be a theory and ϕ be a pattern. We write Γ ` ϕ if ϕ can
be proved by the proof system shown in Figure 4 with patterns in Γ regarded as
additional axioms.

As we have seen earlier, matching logic can capture precisely inductive data
structures. As a consequence, matching logic can capture precisely natural num-
bers (which are inductive data structures built from two constructors zero and
succ) and define the addition and multiplication of natural numbers using pat-
tern axioms in the usual way. Therefore, the proof system of matching logic
cannot be both sound and complete for all theories. Some completeness results
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have been shown for some theories or fragments of matching logic in [12]. In
the following, we only state the soundness theorem of the matching logic proof
system.

Theorem 2 (Soundness). Γ ` ϕ implies Γ � ϕ.

Since the proof system of matching logic contains the normal proof rules for
FOL reasoning, framing reasoning, and fixpoint reasoning as in modal µ-logic,
all these reasonings are sound and available in matching logic, too.

5 Program Verification in K

Here we discuss the logical foundations and the K tools for program verification.
We first review the classic approaches to program verification in Section 5.1 and
then show the K tools for program verification in Section 5.2. Finally, we discuss
the logical foundations of K’s verification tools, reachability logic, and show that
is can be defined in matching logic in Section 5.3.

5.1 Classic Approaches to Program Verification

Program verification is a decision problem that asks if a given program satisfies a
given specification. If so, a collection of proof objects is expected to be generated
as evidence. If not, counterexamples are given often in the form of concrete
program execution traces that violate the specification.

Hoare-Style Program Verification. Hoare-style program verification refers
to the program verification approaches where the formal semantics of a pro-
gramming language is given as a program logic, which has several proof rules
that are specific to the constructs of that language. The program logic, which
is often called an axiomatic semantics or the Hoare logic of the language, de-
rives sentences called Hoare triples that have the form {ϕ}P{ϕ′} where P is the
program, ϕ is a logic formula called the pre-condition of the triple, and ϕ′ is a
formula called the post-condition. The semantics of the Hoare triple is that if P
is executed on a state satisfying the pre-condition ϕ, and if P terminates on a
final state, then the final state satisfies the post-condition ϕ′. The requirement
that P terminates implies that the Hoare triple unconditionally holds if P does
not terminate. This is known as partial correctness in literature.

Hoare logic remains one of the most popular program logics since the day it
was born. Obviously, Hoare logic is a language-specific logic because different lan-
guages must have their own variants of Hoare logic. This makes the development
of verification tools based on Hoare logic difficult to adapt to language changes.
Such inconvenience is being made worse when it comes to blockchain languages
that have a rapid development cycle with new versions of the languages being
released on a weekly basis.
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Another notable characteristic of Hoare logic is that it is not directly exe-
cutable. This makes it difficult to test Hoare logic semantics. In practice, lan-
guage semanticists may need to define a separate trusted operational semantics
that is executable, and carry out complex proofs of equivalence between the two
semantics, which can take years to complete.

All the above makes language design with Hoare logic a highly expensive
task, and changing the language rather inconvenient and demotivating, as it
requires a thorough change of the Hoare logic proof system for that language
and thus of all the related verification tools. If a trusted operational semantics is
given, it needs to change, too, and a new proof of equivalence between the new
Hoare logic and the new operational semantics should be carried out. This high
cost brings us poor reusability of verification tools. Considering the fact that
these tools often need several man-years to develop, the lack of reusability leads
to a remarkable waste of resources and talent, as well as to duplicate work.

In K, such drawbacks are overcome by using only one language-independent
proof system to verify any programs written in any programming languages,
given that the formal language definitions are given in K. We will explain it in
detail in Section 5.2.

Intermediate Verification Languages. A common alternative practice to
Hoare-style verification is to design intermediate verification languages (IVL)
such as Boogie [6] and Why [20], to develop verification tools for these IVL lan-
guages, and to translate the target languages to IVL. This brings some reusabil-
ity, as verification tools are designed and implemented for IVL, in isolation from
the target languages. However, correct program translation can be hard to de-
velop. The proof of its correctness (called soundness proof ) often involves the
usage of higher-order theorem provers such as Coq [26] and Isabelle [38], not to
mention that many real languages such as Java do not even have an official formal
specification of the semantics. Thus, research about language-specific program
logics and IVL tools sometimes have to compromise and claim “no intention of
formally proving the soundness result” [4].

5.2 Program Verification by Reachability Logic

K’s program verification tools are based on reachability logic [33], which has been
shown to be a fragment of matching logic in [12]. One appealing aspect of reach-
ability logic is that it is language independent, that is, it uses one fixed proof
system to reason about any programs written in any programming languages,
given that their formal semantics have been defined in K. Some selected proof
rules of reachability logic are shown in Fig. 5. The proof system derives judg-
ments of the form A `C ϕ1 ⇒ ϕ2, where ϕ1 ⇒ ϕ2 is a reachability rule that
specifies that any configurations matching ϕ1 will eventually reach a configu-
ration matching ϕ2, on termination. (Readers who are more familiar with the
traditional Hoare-style verification can intuitively regard ϕ1 as the pre-condition
and ϕ2 as the post-condition). A and C are two sets of reachability rules, where
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(Axiom)
ϕ1 ⇒ ϕ2 ∈ A
A `C ϕ1 ⇒ ϕ2

(Transitivity)
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

(Consequence)
M cfg�ϕ1 �ϕ′

1 A `C ϕ′
1 ⇒ ϕ′

2 M cfg�ϕ′
2 �ϕ2

A `C ϕ1 ⇒ ϕ2

(Circularity)
A `C∪{ϕ1⇒ϕ2} ϕ1 ⇒ ϕ2

A `C ϕ1 ⇒ ϕ2

Fig. 5: Some selected proof rules in the proof system of reachability logic

rules in A are considered as axioms and can be directly used to discharge the
proof obligations, rules in C are called circularities and cannot be directly used.
The distinguished proof rule (Circularity) adds the current proof obligation to
the circularity set, which is then flushed to the axiom set by (Transitivity). In
other words, circularities become axioms after making any progress on program
execution.

We use the following sum program as an example to illustrate program veri-
fication in K by reachability logic.

int n, sum;

n = N;

sum = 0;

while (!(n <= 0)) {

sum = sum + n;

n = n + -1;

}

We will use K’s generic program verification tool to prove that the above
sum program correctly computes the total of 1 to N, where N is a symbolic value
denoting any natural number.

The first step to verify sum using reachability logic and K is to formally define
the specifications as K’s rewrite rules.

module SUM_SPEC

imports IMP

rule // invariant spec

<k> while(n){ s = s + n; n = n - 1; } => .K ... </k>

<state>

n |-> (N:Int => 0)

s |-> (S:Int => S +Int ((N +Int 1) *Int N /Int 2)

</state>

requires N >=Int 0

rule // main spec
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<k> int n, s; n = N:Int; while(n){ s = s + n; n = n - 1; }

=> .K

</k>

<state> .Map =>

n |-> 0

s |-> ((N +Int 1) *Int N /Int 2)

</state>

requires N >=Int 0

endmodule

The above specification contains two sub-specifications as reachability claims.
The first is the invariant reachability claim that specifies the behavior of the
while-loop. It is provided as a lemma to prove the main claim. The second claim
is the main verification claim. It specifies that if the sum program (where n is
now initialized to a symbolic value n, written as a K variable N:Int) terminates,
then the final value of s equals n(n + 1)/2. The condition after the keyword
requires has the similar meaning of a pre-condition in Hoare logic. It asks K to
prove the mentioned reachability claim given that n ≥ 0.

Then, K proves the claims via circular proofs, based on reachability logic
proof system (see Figure 5). We take the proof of the invariant claim as an
example. We put the formal proof in Fig. 6 and explain it in the following. K
starts with a configuration with a while-loop in the <k/> cell and a state that
maps n to n and s mapping to s, as required by the left-hand side of the claim.
Then, K rewrites the configuration symbolically using exactly the same rewrite
rules used to execute IMP programs. After the rewrites, the while-loop is de-
sugared to an if-statement and the two assignments are resolved accordingly.
After that, K reaches a configuration with the same while-loop in <k/> cell, but
in the <state/> cell, n maps to n − 1 and s maps to s + n. For clarity, let us
denote that configuration as γ and let n′ = n−1 and s′ = s+n. At this point, the
(Circularity) proof rule of the reachability logic proof system (see, Figure 5)
is applied, and the invariant claim itself becomes a regular axiom which can be
used in further proofs. Therefore, we can instantiate the variables n and s in
the invariant claim by n′ and s′, yielding exactly the configuration γ, and the
invariant claim immediately tells us that γ will terminate at a state where n

maps to 0 and s maps to s′ + n′(n′ + 1)/s. And this tells us that the initial
configuration, with n mapping to n and s mapping to s, can reach γ and then
terminate at the same state. Finally, K calls SMT solvers (such as Z3 [17]) to
prove that s′+n′(n′+1)/2 = s+n(n+1)/2, and concludes the proof successfully.

5.3 Reachability Logic is a Fragment of Matching Logic

We have seen a program verification example using reachability logic. In this sec-
tion, we show that we can faithfully capture reachability logic in matching logic,
and all reachbaility logic reasoning, including the key proof rule (Circularity),
can be derived by the matching logic proof system. In other words, reachability
logic is the fragment of matching logic for program verification.
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·
(S +N) + ((N − 1) + 1)(N − 1)/2 = S + (N + 1)N/2

A ∪ C `∅ 〈WHILE〉k 〈N 7→ N − 1, S 7→ S +N〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state
A ∪ C `∅ 〈n=n-1;WHILE〉k 〈N 7→ N, S 7→ S +N〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state
A ∪ C `∅ 〈s=s+n;n=n-1;WHILE〉k 〈N 7→ N, S 7→ S〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state

A ∪ C `∅ 〈IF〉k 〈N 7→ N, S 7→ S〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state
A `C 〈WHILE〉k 〈N 7→ N, S 7→ S〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state
A `∅ 〈WHILE〉k 〈N 7→ N, S 7→ S〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state

where WHILE ≡ while(n){s=s+n; n=n-1;} and IF ≡ IF(n){s=s+n; n=n-1; WHILE}{}.
We use A to denote the axiom set that contains all semantic rules of IMP and let
C = {〈WHILE〉k 〈N 7→ N, S 7→ S〉state ⇒ 〈.K〉k 〈N 7→ 0, S 7→ S + (N + 1)N/2〉state} contain
the original invariant proof goal, which is added to C by (Circularity) in the first
proof step and moved to A by (Transitivity) in the second proof step. This circularity
pattern is then used in the second to last proof step, where we instantiate N by N − 1
and S by S + N . The last proof step is done by calling external SMT solvers such as
Z3 [17].

Fig. 6: Reachability logic proof of the invariant of sum program.

Reachability Logic Preliminaries. Reachability logic is a “top-most” logic
that builts on top of matching logic (without µ). Reachability logic is parametric
in a model of configurtaions. Specifically, fix a signature (of static program con-
figurations) �cfg which may have various sorts and symbols, among which there
is a distinguished sort Cfg . A model of signature �cfg, denoted M cfg, is called
the configuration model where M cfg

Cfg is the set of all configurations. Reacha-
bility logic formulas are called reachability rules of the form ϕ1 ⇒ ϕ2 where
ϕ1, ϕ2 are matching logic patterns matched by the (static) program configura-
tions. A reachability system S is a finite set of rules, which yields a transition
system S = (M cfg

Cfg , R) where s R t iff there exist a rule ϕ1 ⇒ ϕ2 ∈ S and an

M cfg-valuation ρ such that s ∈ ρ̄(ϕ1) and t ∈ ρ̄(ϕ2). A rule ψ1 ⇒ ψ2 is S-

valid, denoted S �RL ψ1 ⇒ ψ2, iff for all M cfg
Cfg -valuations ρ and configurations

s ∈ ρ̄(ψ1), either there is an infinite trace sR t1R t2R . . . in S or there is a con-
figuration t such that s R∗ r and t ∈ ρ̄(ψ2). Therefore, validity in RL is defined
in the spirit of partial correctness.

The reachability logic proof system (Figure 5) derives reachability logic se-
quents of the form A `C ϕ1 ⇒ ϕ2 where A (called axioms) and C (called
circularities) are finite sets of rules. Initially, we start with A = S and C = ∅.
As the proof proceeds, more rules can be added to C via (Circularity) and
then moved to A via (Transitivity), which can then be used via (Axiom).
We write S `RL ψ1 ⇒ ψ2 to mean that S `∅ ψ1 ⇒ ψ2. Notice (Consequence)
consults the configuration model M cfg for validity, so the completeness result
is relative to M cfg. We recall the following result [33] that shows that program
verification with reachability logic is relative complete to the reason about the
static program configurations.
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Theorem 3. For all reachability systems S satisfying some reasonable technical
assumptions (see [33]) and all rules ψ1 ⇒ ψ2, we have S �RL ψ1 ⇒ ψ2 iff
S `RL ψ1 ⇒ ψ2.

Defining Reachability Logic in Matching Logic. As how we define modal
µ-logic and the various temporal logics, we can faithfully define reachability
logic in matching logic using the one-path next • ∈ ΣCfg,Cfg that captures the
underlying transition relation defined by the rewrite rules. Specifically, we define
the following reachability properties as patterns:

“weak eventually” �w ϕ ≡ νX.ϕ ∨ •X // equal to ¬WF ∨ �ϕ
“reaching star” ϕ1 ⇒∗ ϕ2 ≡ ϕ1 → �wϕ2

“reaching plus” ϕ1 ⇒+ ϕ2 ≡ ϕ1 → • �w ϕ2

Notice that the “weak eventually” �wϕ is defined similarly to the “eventually”
�ϕ ≡ µX . ϕ∨ •X, but instead of using least fixpoint µ-binder, we define it as a
greatest fixpoint. One can prove that �wϕ = ¬WF ∨ �ϕ, that is, a configuration
γ satisfies �wϕ if either it satisfies �ϕ, or it is not well-founded, meaning that
there exists an infinite execution path from γ. Also notice that “reaching plus”
ϕ1 ⇒+ ϕ2 is a stronger version of “reaching star”, requiring that �wϕ2 should
hold after at least one step. This progressive condition is crucial to the soundness
of RL reasoning: as shown in (Transitivity), circularities are flushed into the
axiom set only after one reachability step is established. This leads us to the
following translation from RL sequents to MmL patterns.

Definition 8. Given a rule ϕ1 ⇒ ϕ2, define the MmL pattern �(ϕ1 ⇒ ϕ2) ≡
�(ϕ1 ⇒+ ϕ2) and extend it to a rule set A as follows: �A ≡

∧
ϕ1⇒ϕ2∈A�(ϕ1 ⇒

ϕ2). Define the translation RL2ML from RL sequents to MmL patterns as fol-
lows:

RL2ML(A `C ϕ1 ⇒ ϕ2) = (∀�A) ∧ (∀◦�C)→ (ϕ1 ⇒? ϕ2)

where ? = ∗ if C is empty and ? = + if C is nonempty. We use ∀ϕ as a
shorthand for ∀~x.ϕ where ~x = FV(ϕ). Recall that the “◦” in ∀◦�C is “all-path
next”.

Hence, the translation of A `C ϕ1 ⇒ ϕ2 depends on whether C is empty
or not. When C is nonempty, the RL sequent is stronger in that it requires at
least one step being made in ϕ1 ⇒ ϕ2. Axioms (those in A) are also stronger
than circularities (those in C) in that axioms always hold, while circularities
only hold after at least one step because of the leading all-path next “◦”; and
since the “next” is an “all-path” one, it does not matter which step is actually
made, as circularities hold on all next states.

Theorem 4. Let ΓRL be the set of all matching logic patterns of sort Cfg that
hold in the configuration model M cfg. For all reachability systems S and rules
ϕ1 ⇒ ϕ2 satisfying the same technical assumptions in [33], the following are
equivalent: (1) S `RL ϕ1 ⇒ ϕ2; (2) S �RL ϕ1 ⇒ ϕ2; (3) ΓRL ` RL2ML(S `∅
ϕ1 ⇒ ϕ2); (4) ΓRL � RL2ML(S `∅ ϕ1 ⇒ ϕ2).
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Therefore, given an oracle for validity of matching logic patterns in the con-
figuration model M cfg, the matching logic proof system is capable of deriving
any reachability property that can be derived with the reachability logic proof
system. This result makes matching logic an even more fundamental logic foun-
dation for the K framework and thus for programming language specification
and verification than reachability logic, because it can express significantly more
properties than partial correctness reachability.

6 Conclusion

We have discussed the ideal language framework vision pursued by K, where pro-
gramming languages must have formal definitions and language tools are auto-
matically generated by the framework from the definitions at no additional costs.
Then, we presented two example languages, LAMBDA and IMP, to illustrate the
basic features and functionality of the K tools, such as parsers, interpreters, etc.
Next, we presented in detail the foundational logic of the K framework, match-
ing logic, and showed that many important mathematical instruments as well as
other common logics and/or models can be faithfully captured in matching logic.
Finally, we discussed the language-independent program verification tools of K
and showed that its logical foundation, reachability logic, can also be faithfully
captured by matching logic.
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