
A Language-Independent Program Verification
Framework

Xiaohong Chen1 and Grigore Roşu1,2

1 University of Illinois at Urbana-Champaign
2 Runtime Verification Inc.

Abstract. This invited paper describes an approach to language-independent
deductive verification using the K semantics framework, in which an
operational semantics of a language is defined and a program verifier
together with other language tools are generated automatically, correct-
by-construction.

1 Introduction and Motivation

Given a program and a specification of the program, the deductive verification
problem asks if the program satisfies the specification. If the answer is positive,
a collection of proof obligations is expected to be generated as evidence, while
counterexamples, often of the form of concrete program execution traces, witness
the negative answer. Many program verification approaches are associated with
a program logic and a proof system of that logic that allows to derive new facts
about programs from axioms and established facts. The proof rules of the proof
system define the semantics of the target language. Hoare logic [12], for example,
is a program logic proposed in 1969 for a simple imperative language which we
refer to as IMP. The syntax of IMP is defined in Fig. 1, where Id is the category
for program variables and Exp is the category for arithmetic expressions. If-
statements and while-statements use Exp as conditions, where zero means false
and nonzero values mean true. The specification of an IMP program is written as
a Hoare triple, consisting of the program and its precondition and postcondition
(e.g., Fig. 2). A set of Hoare logic proof rules can then be used to rigorously
reason about the correctness of IMP programs (Fig. 3). Notice how every IMP
language construct has a corresponding Hoare logic proof rule.

Hoare logic remains one of the most popular program logics since the day
it was born, and researchers have proposed many variants of Hoare logic for
more complicated languages and programs [18,14,22,17,3,21]. In the following,
we will use the term “Hoare logic” to refer to all Hoare-style program logics,

Exp ::= Id | Int | Exp + Exp | Exp - Exp
Stmt ::= Id = Exp; | Stmt Stmt | { Stmt } | {}

| if (Exp) Stmt Stmt | while (Exp) Stmt

Fig. 1: The syntax of the language IMP.

{n = n ∧ n ≥ 0}
s = 0; while(n){s = s + n; n = n - 1;}

{s = n(n + 1)/2}

Fig. 2: An IMP program sum that calculates the sum from 1 to n, together
with its formal specification given as a pair of precondition (the first line) and
postcondition (the last line). We use teletype font to write program variables
(e.g. n and s) and italic font to write mathematical variables (e.g. n).

Fig. 3: The Hoare logic proof system of the language IMP.

where the semantics of the target language is defined/axiomatized by the proof
rules of that logic. Obviously, this makes Hoare logic language-dependent, as ev-
ery language construct is associated with one or even more proof rules. When
the language changes, the Hoare logic proof system for that language has to
change accordingly, and thus all verification tools based on Hoare logic and its
variants are language-dependent: a Java verifier cannot be used to verify C pro-
grams. Another notable characteristic of Hoare logic is that it is not directly
executable. Therefore, in practice, language semanticists may need to define a
separate trusted operational semantics that is executable, and carry out com-
plex proofs of equivalence between the two semantics, which can take years to
complete. All these facts make language design a highly expensive task, and
changing the language rather inconvenient and demotivating, as it requires a
thorough change of the Hoare logic proof system for that language and thus of
all the related verification tools. If a trusted operational semantics is given, it
needs to change, too, and a new proof of equivalence between the new Hoare
logic and the new operational semantics should be carried out. This high cost
brings us poor reusability of verification tools. Considering the fact that these
tools often need several man-years to develop, the lack of reusability leads to a
remarkable waste of resources and talent, as well as to duplicate work.

A common practice is then to develop verification tools for intermediate veri-
fication languages (IVL) such as Boogie [2] and Why [9], and translate the target

Fig. 4: The K framework approach
to language design and verification.

Fig. 5: A language-independent pro-
gram verifier takes a program and
its specification, and verifies it with
respect to its formal semantics.

languages to IVL. This brings some reusability, as verification tools are designed
and implemented for IVL, in isolation from the target languages. However, cor-
rect program translation can be hard to develop. The proof of its correctness
(called soundness proof) often involves the usage of higher-order theorem provers
such as Coq [16] and Isabelle [20], not to mention that many real languages such
as Java do not even have an official formal specification of the semantics. Thus,
research about language-specific program logics and IVL tools sometimes have
to compromise and claim “no intention of formally proving the soundness re-
sult” [1].

This motivated us to look for a verification methodology that is language-
independent, which allows us to build verification tools that can verify any prop-
erty of any program written in any programming language. The K framework
(www.kframework.org) is our attempt towards such a verification methodology,
based on the firm belief that every language should have a formal semantics, and
all related language tools should be automatically generated from the semantics
in a correct-by-construction manner (Fig. 4). K provides a meta-programming
language to design programming languages. The formal semantics of a language,
written as a K definition, serves as the only canonical reference to all language
tools, and no other formal or informal semantics is needed. Case studies with a
variety of real languages demonstrates that this ideal scenario is indeed feasible
and practical.

The rest of the paper is organized as follows. Section 2 briefly introduces the
K framework, and Section 3 shows how program verification is carried out with
K. We conclude in Section 5.

2 K Framework

K is a rewrite-based executable semantics framework for programming language
design. We use the language IMP in Fig. 1 as our running example (with minor
modification on its syntax) to illustrate how to define programming languages
and verify programs in K.

www.kframework.org

module IMP-SYNTAX

imports DOMAINS-SYNTAX

syntax Exp ::= Int | Id

| Exp "+" Exp [left, strict]

| Exp "-" Exp [left, strict]

| "(" Exp ")" [bracket]

syntax Stmt ::= Id "=" Exp ";" [strict(2)]

| "if" "(" Exp ")" Stmt Stmt [strict(1)]

| "while" "(" Exp ")" Stmt

| "{" Stmt "}" [bracket]

| "{" "}"

> Stmt Stmt [left]

syntax Pgm ::= "int" Ids ";" Stmt

syntax Ids ::= List{Id, ","}

endmodule

module IMP

imports IMP-SYNTAX

imports DOMAINS

syntax KResult ::= Int

configuration <T> <k> $PGM:Pgm </k> <state> .Map </state> </T>

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

rule I1 + I2 => I1 +Int I2

rule I1 - I2 => I1 -Int I2

rule <k> X = I:Int; =></k> <state>... X |-> (_ => I) ...</state>

rule S1:Stmt S2:Stmt => S1 ~> S2 [structural]

rule if (I) S _ => S requires I =/=Int 0

rule if (0) _ S => S

rule while(B) S => if(B) {S while(B) S} {} [structural]

rule {} => . [structural]

rule <k> int (X, Xs => Xs); S </k> <state>... (. => X |-> 0) </state> [structural]

rule int .Ids; S => S [structural]

endmodule

Fig. 6: The complete K definition for the language IMP.

The complete K definition for IMP is shown in Fig. 6, consisting of two
K modules IMP-SYNTAX and IMP. The module IMP-SYNTAX defines the syntax
of the language using the conventional BNF grammar, where terminals are in
quotes. Syntax productions are separated by the “|” and “>”, where “|” means
the two productions have the same precedence while “>” means the previous
production has higher precedence (binds tighter) than the one that follows. In
other words, in the language IMP, all language constructs bind tighter than
the sequential operator. Int and Id are two built-in categories of integers and
identifiers (program variables), respectively. Exp is the category of expressions,
which subsumes Int and Id, and contains two other productions for plus and
minus. Pgm is the category of IMP programs. A wellformed IMP program declares
a list of program variables in the beginning, followed by a statement. Ids is
the category for lists of program variables, and it is defined using K’s built-in
template List. The first argument is the base category Id, and second argument
is the separating character ",".

Attributes are wrapped with braces “[” and “]”. Some attributes are only
for parsing purpose while others may carry additional semantic meaning and
affect how K executes programs. The attribute left means that “+” and “-” are
left-associative, so 1 - 2 + 3 should be parsed as (1 - 2) + 3. The attribute
strict defines evaluation contexts. When K sees the expression e1 + e2 (and
similarly e1 - e2), it first evaluates e1 to an integer i1 and e2 to an integer i2

in a fully nondeterministic way, and then evaluates i1 + i2. For example, there
are in total 3! = 6 different orders to evaluate the expression ((1 + 2) + (3

+ 4)) + (5 + 6), because the most inner three parentheses must be evaluated
first, and they can be evaluated in any order. The attribute strict(1) defines
evaluation contexts only for the first argument. Therefore, when K sees an if-
statement if(b) P Q, it only evaluates the condition b and keeps the branches
P and Q untouched. In other words, the two branches of if-statements are frozen
and will not be evaluated until the condition becomes a value. The attribute
bracket tells K that certain productions are only used for grouping, and K will
not generate nodes in its internal abstract syntax trees for those productions.
Here, parentheses “()” are used to group arithmetics expressions while curly
brackets “{ }” are used to group program statements. The empty curly bracket
“{}” represents the empty statement.

The module IMP defines the operational semantics of IMP in terms of a set
of human-readable rewrite rules (followed by the keyword rule). The category
KResult tells K which categories contain non-reducible values. It helps K perform
efficiently with evaluation contexts. The only category of values here is Int.
Configuration is a core concept in the K framework. A configuration represents
a program execution state, holding all information that is needed for program
execution. Configurations are organized into cells, which are labeled and can be
nested. Simple languages such as IMP have only a few cells, while complex real
languages such as C may have a lot more. Configurations are written in XML
format.

The configurations of IMP have two cells: a k cell and a state cell. For clarity,
we gather both cells and put them in a top-level cell called the T cell, but it is
not mandatory. The k cell holds the rest computation (program fragments) that
needs to execute and the state cell holds a map from program variables to their
values in the memory. Initially, the state cell holds the empty map, denoted as
.Map. In K, we write “.” for “nothing”, and .Map means that nothing has type
Map.

Initially, the k cell contains an IMP program $PGM:Pgm, where $PGM is a
special K variable name that tells K the program is saved in a source file, and
the name of the file is passed as argument in the command line when K is
invoked. K will then read the source file and parse it as a Pgm, and put the result
in the k cell.

K defines the language semantics in terms of a set of rewrite rules. A rewrite
rule has the form lhs => rhs, saying that any configuration γ that matches lhs
rewrites to rhs, but as we will see later, K offers a more flexible and succinct way
to define rewrite rules. All rewrite rules in a language definition specify a transi-
tion system on configurations, giving an operational semantics of the language.
Notice that rewrites rules are inherently nondeterministic and concurrent, which
makes it easy and naturally to define semantics for nondeterministic/concurrent
languages in K.

We emphasize two important characteristics of rewrites rules in K. The first
is local rewrites, i.e., the rewrite symbol “=>” does not need to appear in the top

level, but can appear locally in which the rewrite happens. Take as an example
the rule that looks up the value of a program variable in the state. Instead of
writing

rule <k> X:Id ...</k> <state>... X |-> I ...</state>

=> <k> I ...</k> <state>... X |-> I ...</state>

one writes

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

to not only reduce space but also avoid duplicates. The “...” has a special
meaning in K. It stands for things “that exist but do not change in the rewrite”.
The rule, therefore, says that if a program variable X:Id is in the top of the
computation in the k cell, and X binds to the integer I somewhere in the state
cell, then rewrite X:Id to its value I, and do not change anything else.

The second characteristic of rewrite rules in K is configuration inference and
completion. The rewrite rules may not explicitly mention all cells in the configu-
ration, but only mention related ones. K will infer the implicit cells and compete
the configuration automatically. For example, instead of writing

rule <T> <k> I1 + I2 => I1 +Int I2 ... </k> <state> M </state> </T>

one writes

rule I1 + I2 => I1 +Int I2

which is simpler. It is also more modular: if in the future we need to add a
new cell to the configuration, then we do not need to modify the rules above,
as the new cells can be inferred and completed by K automatically. In fact,
configuration inference and completion is one of the most important features
that make K definitions extensible and easy to adapt to language changes.

The rest of the semantics are self-explained. The rule for assignment X =

I:Int;. updates the value that is bound to X in the state cell, as specified in
the local rewrite X |-> (_ => I). Here the underscore “_” is an anonymous
K variable. After the update, the assignment statement X = I:Int; is removed
from the k cell, as specified by the local rewrite X = I:Int; => .. Recall that
the dot “.” means nothing, and rewriting something to a dot means removing
it. Attribute structural means the associated rewrite rule is not counted as
an explicit step by K, but an implicit one. It should not affect how K executes
the programs. The empty statement {} simply reduces to nothing. The last two
rules process the declaration list of program variables and initialize their values
to zero.

3 Program Execution and Verification in K

Given the semantics of a programming language, K provides a variety of lan-
guage tools, among which the most useful ones include a parser, an interpreter

int s, n; n = 100; while(n) { s = s + n; n = n - 1; }

Fig. 7: The IMP program sum where n is initialized to 100.

<T> <k> . </k> <state> n |-> 0 s |-> 5050 </state> </T>

Fig. 8: The final configuration after executing the IMP program sum in Fig. 7.

and a verifier for that language. In this section, we use the language IMP as
a running example and show how to use these language tools that K offers,
once we feed it the formal semantics (as in Fig. 6). For a more comprehen-
sive introduction about K and K tools, we refer to the K framework website
(https://runtimeverification.com/blog/k-framework-an-overview/).

3.1 Program Execution

The most basic tool that is automatically generated by K is a parser for IMP,
based on the formal syntax definition. For example, the parser can parse IMP
programs like the one in Fig. 7. Suppose that the K definition for IMP (Fig. 6) is
saved in a file imp.k, the command kompile imp.k generates an interpreter for

IMP which is invoked with the krun command. Suppose the IMP program sum

is saved in a file sum.imp, then krun sum.imp executes the program and yields

the final configuration as in Fig. 8. Notice that the k cell is empty, meaning that
the program was completely executed, or consumed. In the end of its execution,
n has the value 0 and s has the value 5050, which is the total of numbers up to
100, as expected. This execution capability of K is crucial for testing language
semantics, and thus for increasing confidence in the adequacy of a language
semantics. The above also illustrates another useful K tool, which like the parser
generator, is used by almost any other tool, the K unparser. Indeed, the above
configuration result uses concrete syntax to display the cells and their contents,
although internally these are all represented as abstract data types. K also has
the capability to display its results using abstract instead of concrete syntax,
which helps users disambiguate in case the concrete syntax is ambiguous.

We should point out that the interpreters automatically generated by K can
be very efficient. For example, the formal semantics of the Ethereum Virtual
Machine (EVM) bytecode language, one of the most popular virtual machine
languages for the blockchain, yields an EVM interpreter that is only one order
of magnitude slower than the reference C++ implementation of the EVM [13,11].

3.2 Program Verification

K aims to naturally support not only execution, but also full program verifi-
cation, in an ideal, mathematically grounded manner. Therefore, we require a
fixed logic with a fixed sound and (relatively) complete proof system, where all
languages become theories in the logic, about which we can reason using the
fixed proof system. In this scenario, program execution is just one particular

https://runtimeverification.com/blog/k-framework-an-overview/

module SUM_SPEC

imports IMP

rule // invariant spec

<k> while(n){ s = s + n; n = n - 1; } => .K ... </k>

<state>

n |-> (N:Int => 0)

s |-> (S:Int => S +Int ((N +Int 1) *Int N /Int 2)

</state>

requires N >=Int 0

rule // main spec

<k> int n, s; n = N:Int; while(n){ s = s + n; n = n - 1; } => .K </k>

<state> .Map =>

n |-> 0

s |-> ((N +Int 1) *Int N /Int 2)

</state>

requires N >=Int 0

endmodule

Fig. 9: A functional specification of sum, consisting of two rules: a main one
capturing the desired property, and an “invariant” one to be used as a lemma.

proof for a certain reachability property (the initial configuration reaches the
final configuration). The logic is fixed, so it does not depend on any particular
programming language, very much unlike Hoare logic and its variants.

The logical foundation of K’s verification infrastructure is reachability logic [6,5]
for dynamic properties, which uses matching logic [19] for static properties. We
refer interested readers to the mentioned references for more technical detalis.
Here, we use the sum program as an example, showing how verification can be
easily done in K. The first step, of course, is to specify what properties about the
program we want to prove. In Hoare logic, such specifications are given in terms
of Hoare triples. In reachability logic and K, specifications are written using the
already existing K rule syntax.

Fig. 9 shows a specification of the sum program. The specification consists
of two reachability claims, which follows the keyword rule. The second claim
is the main specification, which says that the sum program (where n is now
initialized to a symbolic value n, written as a K variable N:Int) will terminate
(and thus reaches .K in the k cell), and when it terminates, the value of s equals
n(n+ 1)/2. The condition after the keyword requires has the similar meaning
of a pre-condition in Hoare logic. It asks K to prove the mentioned reachability
claim given that n ≥ 0. The first claim is provided as a lemma, known as the
invariant of the while-loop, in order for K to prove the main claim. The invariant
claim says that when n ≥ 0, the while-loop will terminate, and the value of s

will increased by n(n+ 1)/2.

What is interesting is how K establishes the invariant claim via a circular
proof, based on reachability logic proof system. K starts with the configuration
with a while-loop in the k cell and n mapping to n and s mapping to s, as
required by the left-hand side of the claim. Then, K rewrites the configuration
symbolically, following the semantics rules we defined in Fig. 6, so the while-
loop will be de-sugared to an if-statement, and the two assignments are resolved
accordingly, too. After that, K reaches a configuration which contains exactly the

same while-loop in the k cell, but in the state cell n maps to n−1 and s maps to s+
n. For clarity, let us denote that configuration as γ and let n′ = n−1 and s′ = s+
n. At this point, the (Circularity) proof rule of the reachability logic proof system
(see, e.g, [6]) takes effect, and the invariant claim itself becomes a regular axiom
which can be used in further proofs. Therefore, we can instantiate the variables
n and s in the invariant claim by n′ and s′, yielding exactly the configuration
γ, and the invariant claim immediately tells us that γ will terminate at a state
where n maps to 0 and s maps to s′ + n′(n′ + 1)/s. And this tells us that the
initial configuration, with n mapping to n and s mapping to s, can reach γ and
then terminate at the same state. Finally, K calls SMT solvers (such as Z3 [8])
to prove that s′ + n′(n′ + 1)/2 equals s + n(n + 1)/2, and concludes the proof
successfully.

4 Towards Language-Independent Runtime Verification

Runtime verification is a system analysis technique that extracts execution in-
formation from a running system and uses it to detect and react to observed
behaviors satisfying or violating certain properties [7]. As it avoids complex tra-
ditional formal verification techniques and analyzes only a few system execution
traces, runtime verification tools have good scalability on real-world projects and
practical codebase, and thus has gained significant interest from the research
community.

Typically speaking, runtime verification tools take a target system as input
together with event specifications and desired properties, and yield as output
a modified “monitored” system which checks the desired properties during ex-
ecution and reacts in case of property violation. At present, a suite of runtime
verification tools are available for many real-world languages, including RV-
Match that checks undefined behavior of C programs [10], RV-Predict that
checks data race for Java and C/C++ programs [4], and RV-Monitor that
checks and enforces properties of Java and C programs [15], just to name a few.

Given the existing positive results that we have achieved in language-independent
program execution and verification with the K framework, we propose a new
promising direction towards language-independent runtime verification, where
event specifications and desired properties are formally defined in the seman-
tics and programs, and monitors are automatically generated in a correct-by-
construction manner.

5 Conclusion

The K Framework was born from our firm belief that an ideal language frame-
work is possible, where programming languages must have formal semantics, and
that language tools such as parsers, interpreters, and deductive program verifiers
are derived from just one reference formal definition of the language, at no ad-
ditional cost specific to that language. K provides a user-friendly frontend (the
meta-programming language) with which a variety of programming languages

can be defined, while in its backend, a fixed language-independent logic pow-
ers K’s deductive program verification. K may not be the final answer to this
quest, but it proves that it is possible to have a language-independent program
verification framework.

References

1. Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hahnle, Peter
H. Schmitt, and Mattias Ulbrich. Deductive Software Verification—The KeY Book.
Springer, 2016.

2. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Revised Lectures of the 4th International Symposium on Formal Methods for
Components and Objects (FMCO’05), volume 4111 of Lecture Notes in Computer
Science, pages 364–387. Springer, 2006.

3. Richard Bornat. Proving pointer programs in Hoare logic. In Proceedings of the
5th International Conference on Mathematics of Program Construction (MPC’00),
volume 1837 of Lecture Notes in Computer Science, pages 102–126. Springer, 2000.

4. Traian Florin Şerbănuţă, Feng Chen, and Grigore Roşu. Maximal causal models
for sequentially consistent systems. In Proceedings of the 3rd International Confer-
ence on Runtime Verification (RV’12), volume 7687 of Lecture Notes in Computer
Science, pages 136–150. Springer, September 2012.

5. Andrei Ştefănescu, Ştefan Ciobâcă, Radu Mereuţă, Brandon M. Moore, Tra-
ian Florin Şerbănuţă, and Grigore Roşu. All-path reachability logic. In Proceedings
of the Joint 25th International Conference on Rewriting Techniques and Applica-
tions and 12th International Conference on Typed Lambda Calculi and Applications
(RTA-TLCA’14), volume 8560 of Lecture Notes in Computer Science, pages 425–
440. Springer, Jul 2014.

6. Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu.
Semantics-based program verifiers for all languages. In Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’16), pages 74–91. ACM, Nov 2016.

7. Philip Daian, Dwight Guth, Chris Hathhorn, Yilong Li, Edgar Pek, Manasvi Sax-
ena, Traian Florin Şerbănuţă, and Grigore Roşu. Runtime verification at work: A
tutorial. In Proceedings of the 16th International Conference on Runtime Verifi-
cation (RV’16), volume 10012 of Lecture Notes in Computer Science, pages 46–67.
Springer, September 2016.

8. Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Pro-
ceedings of the 14th International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’08), volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, Springer, 2008.

9. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus plat-
form for deductive program verification. In Proceedings of the 19th International
Conference on Computer Aided Verification (CAV’07), volume 4590 of Lecture
Notes in Computer Science, pages 173–177. Springer, 2007.

10. Dwight Guth, Chris Hathhorn, Manasvi Saxena, and Grigore Roşu. RV-Match:
Practical semantics-based program analysis. In Proceedings of the 28th Interna-
tional Conference on Computer Aided Verification (CAV’16), volume 9779 of Lec-
ture Notes in Computer Science, pages 447–453. Springer, July 2016.

11. Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip
Daian, Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu,
and Grigore Roşu. KEVM: A complete semantics of the Ethereum virtual ma-
chine. In Proceedings of the 2018 IEEE Computer Security Foundations Symposium
(CSF’18). IEEE, 2018. http://jellopaper.org.

12. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

13. KEVM Team. KEVM: Semantics of EVM in K. https://github.com/

kframework/evm-semantics, 2017.
14. Leslie Lamport. The ‘Hoare logic’ of concurrent programs. Acta Informatica,

14(1):21–37, 1980.
15. Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-

ith, Traian Florin Şerbănuţă, and Grigore Roşu. RV-Monitor: Efficient parametric
runtime verification with simultaneous properties. In Proceedings of the 5th In-
ternational Conference on Runtime Verification (RV’14), pages 285–300. Lecture
Notes in Computer Science, September 2014.

16. The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004.

17. Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value functional
programs. In Proceedings of the 9th International Conference on Mathematics
of Program Construction (MPC’08), volume 5133 of Lecture Notes in Computer
Science, pages 305–335. Springer, 2008.

18. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS’02), pages 55–74. IEEE, 2002.

19. Grigore Roşu. Matching logic. Logical Methods in Computer Science, 13(4), 2017.
20. The Isabelle development team. Isabelle, 2018. https://isabelle.in.tum.de/.
21. David von Oheimb. Hoare logic for Java in Isabelle/HOL. In Concurrency and

Computation: Practice and Experience, pages 1173–1214, 2001.
22. Liang Zhao, Shuling Wang, and Zhiming Liu. Graph-based object-oriented Hoare

logic. In Theories of Programming and Formal Methods: Essays Dedicated to Jifeng
He on the Occasion of His 70th Birthday, pages 374–393. Springer, 2013.

http://jellopaper.org
https://github.com/kframework/evm-semantics
https://github.com/kframework/evm-semantics
https://isabelle.in.tum.de/

	 A Language-Independent Program Verification Framework

