
161

Towards a Unified Proof Framework for Automated Fixpoint
Reasoning using Matching Logic

XIAOHONG CHEN, University of Illinois at Urbana-Champaign, USA
MINH-THAI TRINH, Advanced Digital Sciences Center, Illinois at Singapore, Singapore
NISHANT RODRIGUES, University of Illinois at Urbana-Champaign, USA
LUCAS PEÑA, University of Illinois at Urbana-Champaign, USA
GRIGORE ROŞU, University of Illinois at Urbana-Champaign, USA

Automation of fixpoint reasoning has been extensively studied for various mathematical structures, logical
formalisms, and computational domains, resulting in specialized fixpoint provers for heaps, for streams, for
term algebras, for temporal properties, for program correctness, and for many other formal systems and
inductive and coinductive properties. However, in spite of great theoretical and practical interest, there is no
unified framework for automated fixpoint reasoning. Although several attempts have been made, there is no
evidence that such a unified framework is possible, or practical. In this paper, we propose a candidate based
on matching logic, a formalism recently shown to theoretically unify the above mentioned formal systems.
Unfortunately, the (knaster-tarski) proof rule of matching logic, which enables inductive reasoning, is not
syntax-driven. Worse, it can be applied at any step during a proof, making automation seem hopeless. Inspired
by recent advances in automation of inductive proofs in separation logic, we propose an alternative proof
system for matching logic, which is amenable for automation. We then discuss our implementation of it,
which although not superior to specialized state-of-the-art automated provers for specific domains, we believe
brings some evidence and hope that a unified framework for automated reasoning is not out of reach.
CCS Concepts: • Theory of computation→ Automated reasoning; Proof theory.

Additional Key Words and Phrases: matching logic, automated reasoning, fixpoints, induction
ACM Reference Format:
Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu. 2020. Towards a Unified
Proof Framework for Automated Fixpoint Reasoning using Matching Logic. Proc. ACM Program. Lang. 4,
OOPSLA, Article 161 (November 2020), 29 pages. https://doi.org/10.1145/3428229

1 INTRODUCTION
Automation of fixpoint reasoning has been extensively studied for various mathematical structures,
logical formalisms, and computational domains, resulting in specialized fixpoint provers and proof
techniques for heaps [Berdine et al. 2004, 2005; Brotherston et al. 2014; Chin et al. 2012; Iosif et al.
2013; Katelaan et al. 2019], for streams [Lucanu and Roşu 2007], for term algebras [Kovács et al.
Authors’ addresses: Xiaohong Chen, Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N.
Goodwin Ave., Urbana, Illinois, 61801, USA, xc3@illinois.edu; Minh-Thai Trinh, Advanced Digital Sciences Center, Illinois at
Singapore, 1 Create Way, Create Tower, Singapore, 138602, Singapore, minhthai.t@adsc-create.edu.sg, trinhmt@illinois.edu;
Nishant Rodrigues, Department of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave.,
Urbana, Illinois, 61801, USA, nishant2@illinois.edu; Lucas Peña, Department of Computer Science, University of Illinois at
Urbana-Champaign, 201 N. Goodwin Ave., Urbana, Illinois, 61801, USA, lpena7@illinois.edu; Grigore Roşu, Department
of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave., Urbana, Illinois, 61801, USA,
grosu@illinois.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART161
https://doi.org/10.1145/3428229

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

https://doi.org/10.1145/3428229
https://doi.org/10.1145/3428229

161:2 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Fig. 1. The Vision of An Ideal Unified Proof Framework for Automated Reasoning

2017], for temporal properties [Holzmann 1997], for program reachability correctness [Roşu et al.
2013], and for many other systems and inductive/coinductive properties. However, in spite of great
theoretical and practical interest, there is no unified framework for automated fixpoint reasoning.

Fig. 1 illustrates our vision of an ideal unified automated proof framework for fixpoint reasoning.
A unified proof framework must be based on a powerful base logic, in which all logical systems
and programming languages can be defined as logical theories. Proofs are done using a fixed set
of proof rules that accomplish fixpoint reasoning, in addition to standard FOL reasoning, domain
reasoning, frame reasoning, context reasoning, etc, for the base logic, independently of the specific
logical theory. Automated reasoning becomes proof search over the fixed set of proof rules, taking
as input a logical theory Γ𝐿 that defines/encodes a certain logical system or language 𝐿 in the base
logic. For efficiency, the framework implements various proof strategies as heuristics that guide
the proof search, each strategy optimizing formal reasoning within a subset of logical theories.

In this paper we present a prototype implementation of a unified proof framework for automating
fixpoint reasoning. As base logic we choose matching logic, which was recently proposed as a
foundation for a variety of logical systems, including FOL with least fixed-points, modal and
temporal logics, separation logics, etc. [Chen and Roşu 2019; Roşu 2017]. Besides expressiveness,
an advantage that matching logic offers is its compact syntax and convenient notation through its
patterns (Section 3), which allow us to encode formulae in other logical systems almost verbatim.
For example, the matching logic encoding of modal logic defines a symbol ♢_ which allows us to
encode modal logic formula ♢𝑝 as matching logic pattern ♢𝑝 , with essentially zero representational
distance; this is in sharp contrast to how modal logic is encoded in FOL [Blackburn et al. 2001], e.g.,
where a binary predicate needs to be added and quantifiers in the resulting FOL formula.

To evaluate our unified proof framework and prototype implementation, we consider four
representative logical systems for fixpoint reasoning: (1) first-order logic extended with least
fixpoints [Gurevich and Shelah 1985], abbreviated LFP; (2) separation logic extended with recursive
definitions [Chin et al. 2012; Reynolds 2002], abbreviated SL; (3) linear temporal logic [Pnueli
1977], abbreviated LTL; and (4) reachability logic [Roşu et al. 2013], abbreviated RL. LFP is the
canonical logic for fixpoint reasoning in the first-order domain. SL is the representative logic for
reasoning about data-manipulating programs with pointers; LTL is the temporal logic of choice for
model checkers of infinite-trace systems, e.g., SPIN [Holzmann 1997]. RL is a language-parametric
generalization of Hoare logic [Ştefănescu et al. 2016, Section 4], where the programming language
semantics is given as an input theory and partial correctness is specified and proved as a reachability
rule 𝜑pre ⇒ 𝜓post. These four logics therefore represent relevant instances of fixpoint reasoning
across different and important domains. We believe that they form a good benchmark for evaluating

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:3

a unified proof framework for fixpoint reasoning, so we set ourselves the long-term goal to support
all of them. We will give special emphases to separation logic (SL) in this paper, however, because
it gathered much attention in recent years that resulted in several automated SL provers and its
own international competition SL-COMP’19 [Sighireanu et al. 2019].

It would be unreasonable to hope at such an incipient stage that a generic automated prover can
be superior to the state-of-the-art domain-specific provers and algorithmic decision procedures for
all four logics, on all existing challenging benachmarks in their respective domains. Therefore, for
each of the domains, we set ourselves a limited objective. For SL, the goal was to prove all the 280
benchmark properties collected by SL-COMP’19 in the problem set qf_shid_entl dedicated to
inductive reasoning. For LTL, the goal was to prove the axioms about the modal operators “always”
□𝜑 and “until” 𝜑1𝑈 𝜑2 (whose semantics are defined as fixpoints) in its complete proof system. For
LFP and RL, our goal was to verify a simple imperative program sum that computes the total of 1 to
input 𝑛 using both the LFP and RL encodings, and show that it returns the correct sum 𝑛(𝑛 + 1)/2
on termination. We report what we have done in pushing towards the above goals, and discuss the
difficulties that we met, and the lessons we learned.

An Overview of Our Unified Proof Framework. Our unified proof framework consists of three main
reasoning modules: fixpoint, frame, and context (also illustrated in Fig. 1). The fixpoint reasoning
module is the main one; the other two are to help fixpoint reasoning work properly. Note that
these three modules are generic, that is, they work with all matching logic theories. Therefore,
they accomplish fixpoint reasoning, frame reasoning, and context reasoning for all logical systems
defined as theories in matching logic.

The main challenge we faced while developing our unified proof framework was that the existing
proof system of matching logic [Chen and Roşu 2019] is too fine-grained to be amenable for
automation. For example, its (modus ponens) proof rule “⊢ 𝜑 → 𝜓 and ⊢ 𝜑 implies ⊢ 𝜓” requires
the prover to guess a premise 𝜑 , which does not bode well with automation. Most importantly, its
(knaster-tarski) proof rule (also called Park induction [Ésik 1997]) for fixpoint reasoning

(knaster-tarski)
𝜑 [𝜓/𝑋] → 𝜓

(𝜇𝑋 . 𝜑) → 𝜓

is limited to handling the cases where the LHS of the proof goal is a standalone least fixpoint. It
cannot be directly applied to proof goals in LFP or SL, such as ll (𝑥,𝑦) ∗ list (𝑦) → list (𝑥) (see
Section 4.1.2), where the LHS 𝐶 [ll (𝑥,𝑦)] contains the fixpoint ll (𝑥,𝑦) within a context 𝐶 [ℎ] ≡
ℎ ∗ list (𝑦). An indirect application is possible in theory, but it involves sophisticated, ad-hoc
reasoning to eliminate the context 𝐶 from the LHS, which cannot be efficiently automated.

Our fixpoint module addresses the above challenge by proposing a context-driven fixpoint proof
rule, (kt), shown in Fig. 2b, which is a sequential composition of several proof rules that first (wrap)
context 𝐶 within the RHS𝜓 , written 𝐶 ⊸ 𝜓 , and eliminate it from the LHS, then apply inductive
reasoning, and finally (unwrap) context 𝐶 and restore it on the LHS. The pattern 𝐶 ⊸ 𝜓 , called
contextual implication, is expressible in matching logic and intuitively defines all the elements
which in context 𝐶 satisfy 𝜓 . The fixpoint module therefore makes contexts explicitly occur as
conditions in proof goals. Sometimes the context conditions are needed to discharge a proof goal,
other times not. The frame and context reasoning modules help to eliminate contexts from proof
goals. Specifically, frame reasoning is used when the context is unnecessary: it reduces proof goal
⊢ 𝐶 [𝜑] → 𝐶 [𝜓] to ⊢ 𝜑 → 𝜓 . On the other hand, context reasoning is used when the context is
needed in order to discharge the proof goal, by allowing us to derive ⊢ 𝐶 [𝐶 ⊸ 𝜓] → 𝜓 . We shall
discuss and analyze the frame and context reasoning in detail in Section 4.

We have not implemented any smart proof strategies or proof search heuristics, but only a naive
bounded depth-first search (DFS) algorithm. Our evaluation on the SL-COMP’19 benchmark shows

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:4 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

that the naive bounded-DFS strategy can prove 90% of the properties without frame reasoning,
and 95% with frame reasoning (Section 6). This was surprising, because it would place our generic
proof framework in the third place in the SL-COMP’19 competition, among dozens of specialized
provers developed specifically for SL and heap reasoning. However, the remaining 5% properties
appear to require complex, SL-specific reasoning, which is clearly beyond the ability of our generic
framework. We have also considered only a small number of LFP and LTL proofs, which could
all be done using the same simplistic bounded-DFS strategy; more powerful proof strategies will
certainly be needed for more complex proofs and will be developed as part of future work.

Organization of the Rest of the Paper. We discuss related work on automated fixpoint reasoning
in Section 2. We introduce matching logic and its encodings of SL, LTL, and RL in Section 3. We
introduce our unified proof framework in Section 4 and discuss our implementation in Section 5.
We show the experimental results in Section 6 and conclude the paper in Section 7.

All proof details can be found in the companion technical report [Chen et al. 2020b].

2 RELATEDWORK
Here we discuss other approaches to automated fixpoint reasoning and compare them with our
unified proof framework from a methodology point of view.
We were inspired and challenged by work on automation of inductive proofs for separation

logic [Reynolds 2002], which resulted in several automatic separation logic provers; see [Sighireanu
et al. 2019] for those that participated in the recent SL-COMP’19 competition. Since separation
logic is undecidable [Brotherston and Kanovich 2014], many provers implement only decision
procedures to decidable fragments [Berdine et al. 2004; Brotherston et al. 2014; Enea et al. 2017;
Katelaan et al. 2019] or incomplete algorithms [Berdine et al. 2005; Chin et al. 2012; Iosif et al.
2013]. There is also work on decision procedures for other heap logics [Bjørner and Hendrix 2009;
Bouajjani et al. 2009; Lahiri and Qadeer 2008; Rakamarić et al. 2007a,b; Ranise and Zarba 2006],
which achieve full automation but suffer from lack of expressiveness and generality. It is worth
noting that significant performance improvements can be obtained by incorporating first-order
theorem proving and SMT solvers [Barrett et al. 2011; De Moura and Bjørner 2008] into separation
logic provers [Pérez and Rybalchenko 2011; Piskac et al. 2013].
Compared with our unified proof framework, the above provers are specialized to separation

logic reasoning. Some are based on reductions from separation logic formulas to certain decidable
computational domains, such as the satisfiability problem for monadic second-order logic on graphs
with bounded tree width [Iosif et al. 2013]. Others are based on separation logic proof trees, where
the syntax of separation logic has been hardwired in the prover. For example, most separation logic
provers require the following canonical form of separation logic formulas: 𝜑1 ∗ · · · ∗ 𝜑𝑛 ∧𝜓 where
𝜑1, . . . , 𝜑𝑛 are basic spacial formulas built from singleton heaps 𝑥 ↦→ 𝑦 or user-defined recursive
structures such as list (𝑥), and𝜓 is a FOL logical constraint. This built-in separation logic syntax
limits the use of these provers to separation logic, even though the inductive proof rules proposed
by the above provers might be more general. The major advantage of our unified proof framework,
which was the motivation fueling our effort, is that the inductive principle can be applied to any
structures, not only those representing heap structures. In Section 4.1, we show the key elements
of our proof framework that supports the fixpoint reasoning for arbitrary structures.

Hoare-style formal verification represents another important but specialized approach to fixpoint
reasoning, where the objects of study are program executions and the properties to prove are pro-
gram correctness claims. There is a vast literature on verification tools based on classical logics and
SMT solvers such as Dafny [Leino and Moskal 2014], VCC [Cohen et al. 2009] and Verifast [Jacobs
et al. 2010]. To use these tools, the users often need to provide annotations that explicitly express

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:5

and manipulate frames, whose proofs are based on user-provided lemmas. The correctness of the
lemmas is either taken for granted or manually proved using an interactive proof assistant (e.g., [Co-
hen et al. 2009, Section 6] mentions several tools that are based on Coq [The Coq development team
2004] or Isabelle [The Isabelle development team 2018]). While it is acceptable for deductive verifiers
to take additional annotations and/or program invariants, the use of manually-proved lemmas is
not ideal because it makes the verification tools not fully automatic.

An interesting approach to formal verification that inspired this paper is reachability logic [Şte-
fănescu et al. 2016], which uses the operational semantics of a programming language to verify
the programs of that language, using one fixed proof system. In that sense, it shares a similar
vision with our unified proof framework, where the formal semantics of programming languages
are defined as the logical theories and only one proof system is needed to verify all programs
written in all languages. In Sections 4.3.5, we will show how our proof framework can carry out
reachability-style formal reasoning, and thus support program verification in a unified way.

There is recent work that considers inductive reasoning for more general data structures, beyond
only heap structures [Brotherston et al. 2011, 2012; Chu et al. 2015; Löding et al. 2017; Ta et al. 2019;
Unno et al. 2017]. Tac [Baelde et al. 2010] is an automated theorem prover for a variant of FOL
extended with fixpoints that uses the techniques of focusing to reduce the nondeterminism involved
in proof search. [Brotherston et al. 2012] proposes Cyclist, a proof framework that implements a
generic notion of cyclic proof as a “design pattern” about how to do inductive reasoning, which
generalize the proof systems of LFP and SL. In Cyclist, inductive reasoning is achieved not by an
explicit induction proof rule, but implicitly by cyclic proof trees with “back-links”. In contrast, our
unified proof framework uses one fixed logic (matching logic) and relies on an explicit induction
proof rule (knaster-tarski). Therefore, Cyclist represents a different approach from ours but
towards a similar goal of a unified framework for fixpoint reasoning.

3 MATCHING LOGIC PRELIMINARIES
We recall the preliminaries of matching logic. Many-sorted matching logic was firstly proposed
in [Roşu 2017] and the support for fixpoints was added later in [Chen and Roşu 2019]. The proof
framework in this paper aims at the many-sorted matching logic as proposed in [Chen and Roşu
2019]. Recently, [Chen et al. 2020a; Chen and Roşu 2020] proposed a new functional variant of
matching logic, whose reasoning will be considered in the future work. Here, we simply call many-
sorted matching logic as matching logic, abbreviated ML. We shall keep the presentation informal
and intuitive unless necessary. Technical details can be found in the mentioned citations.

3.1 An Informal Overview of Matching Logic
Matching logic (ML) can be summarized by the following equation:

Matching Logic = A unified syntax of
patterns + A unified semantics based on

pattern matching + One fixed Hilbert
proof system

ML formulas are called patterns, which are built from variables, symbols, logical connectives such
as ∧ and ∨, FOL-style quantification ∃𝑥 and ∀𝑥 , and two constructs 𝜇 and 𝜈 for the least/greatest
fixpoints (formalized in Section 3.2). In particular, there is no distinction made between terms
and formulas like in FOL, giving ML the flexibility to subsume, unchanged, the various syntaxes
of formulas, assertions, expressions, etc. in FOL, separation logic (SL), modal logics, temporal
logics, reachability logic, and more. This syntactic generality may surprise at first sight, but it is a
critical feature that makes ML an expressive logic to uniformly specify and reason about properties
expressed in various logical systems in their original notation, without awkward encodings.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:6 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

ML has a pattern matching semantics. Intuitively, a pattern 𝜑 is interpreted as the set ∥𝜑 ∥
of elements that match 𝜑 . For example, cons (𝑥, cons (𝑦, nil)) is a pattern matched by (and only
by) the list consisting of 𝑥 and 𝑦, so ∥cons (𝑥, cons (𝑦, nil))∥ is always a singleton set. Pattern
cons (𝑥, cons (𝑦, nil)) ∧ 𝑥 ≠ 𝑦 additionally states that 𝑥 is different from 𝑦, and its interpretation is
either a singleton set (if 𝑥 ≠ 𝑦) or the empty set (if 𝑥 = 𝑦). Note how the “term” cons (𝑥, cons (𝑦, nil))
is constrained by a logical condition 𝑥 ≠ 𝑦; a (likely awkward) encoding would be required to
express the same in FOL.
Separation logic (SL) is a good example to illustrate the pattern matching semantics of ML. SL

defines heap formulas that evaluate to true or false on a heap ℎ. Heaps can be composed using a
binary _ ∗ _ construct over formulae (not terms). This semantics is properly captured by ML by
letting ∥𝜑 ∥ be the set of heaps on which 𝜑 evaluates to true in SL. [Roşu 2017, Section 9] shows that
this treatment of SL heap formulas as ML patterns verbatim et litteratim indeed yields the correct,
intended semantics. We show some examples below (more formal details are in Section 3.2):

• emp is a pattern matched by the empty heap;
• 𝑥 ↦→ 𝑦 is a pattern matched by the singleton heap from 𝑥 to 𝑦 if 𝑥 is nonzero and by no heaps
if otherwise; in other words, its semantics depends on the valuations of 𝑥 (and 𝑦);

• 𝑥 ↦→ 𝑧 ∗ 𝑦 ↦→ 𝑧 is a pattern matched by a 2-entry heap if 𝑥 ≠ 𝑦, and by no heaps if otherwise.
Note that there is a big, fundamental difference between SL and ML in how they support the

semantics (models) of heaps and their formal reasoning. In SL, the notion of heaps is built into the
logic, into its syntax, semantics, and proof system. This makes SL “a specialized logic for heaps”,
and different models or notions of heaps require inventions of different SL variants. In contrast,
ML is one fixed logic, with fixed syntax, semantics, and proof system. The heap constructors emp,
_ ↦→_, _∗_ are treated the same as, e.g., the list constructors cons and nil , which are all symbols in
the unified pattern syntax and have no pre-defined, built-in semantics. Their semantics is instead
axiomatized by the logical theories, whose formal reasoning is provided by the one fixed proof
system of ML. In that sense, ML is a more general-purpose logic than SL, making it motivating to
study its formal reasoning and develop its automated provers because they can be applied to not
only one specialized theory, but all theories. That SL assertions can be regarded as ML patterns is a
plus, suggesting that existing proof techniques used by SL provers can be adopted and generalized
to reason about ML patterns and therefore, go beyond the scope of heap reasoning. We shall revisit
and elaborate on this point in Section 4 when we present our proof framework.

3.2 Matching Logic Syntax and Semantics: Formal Definitions
Here, we formalize the intuition in Section 3.1 and define the syntax and semantics of ML. This
subsection is compact and may look dense to the reader who is not already familiar with ML, but it
makes this paper self-contained. We refer the reader to [Chen and Roşu 2019, 2020; Roşu 2017] for
details; the rest of the paper is accessible with the level of detail about ML discussed below.

Definition 3.1. Given a signature (𝑆, Σ) that consists of a sort set 𝑆 and an (𝑆∗ ×𝑆)-indexed family
Σ = {Σ𝑠1 ...𝑠𝑛,𝑠 }𝑠1,...,𝑠𝑛,𝑠∈𝑆 of many-sorted symbols, ML syntax defines patterns as follows1:

𝜑 F 𝑥 | 𝜎 (𝜑1, . . . , 𝜑𝑛)︸ ︷︷ ︸
structures

| 𝜑1 ∧𝜑2 | 𝜑1 ∨𝜑2 | ¬𝜑 | 𝜑1 =𝜑2 | 𝜑1 ⊆𝜑2︸ ︷︷ ︸
logical constraints

| ∃𝑥 . 𝜑 | ∀𝑥 . 𝜑︸ ︷︷ ︸
quantification

| 𝑋 | 𝜇𝑋 . 𝜑 | 𝜈𝑋 . 𝜑︸ ︷︷ ︸
fixpoints

We divide the above syntax into four groups. Structures are built from element variables (denoted
𝑥,𝑦, . . .) and symbols, like FOL terms, but with a more flexible, pattern matching semantics (see
1We list more constructs than necessary, because we use them in the rest of the paper and we are not trying to be minimal
here. As seen in [Chen and Roşu 2019], only two logical constructs (∧ and ¬), one quantifier, and one fixpoint are necessary.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:7

Definition 3.2(2)). For readability, we may use the mixfix syntax for symbols; e.g., we write 𝜑1 ∗ 𝜑2

for the binary symbol _∗_ of separating conjunction. Logical constraints are built from equations,
inclusions, and standard propositional connectives. 𝜑1 ⊆ 𝜑2 states that all elements matching
𝜑1 match 𝜑2. A common form of patterns is 𝜑structure ∧ 𝜑constraint, which states both the structure
and the constraint that the structure should satisfy. Quantification can be applied to structures or
constraints. For constraints, it is the same as FOL quantification. For structures, it creates data
abstraction. For example, ∃𝑧. (𝑥 ↦→ 𝑧 ∗ 𝑦 ↦→ 𝑧) is matched by any heap where 𝑥 and 𝑦 point to the
same (unspecified) value 𝑧; that is, the data 𝑧 is abstracted away from the pattern. Finally, fixpoints
are built from set variables (denoted𝑋 ,𝑌 , . . . , different from element variables) and constructs 𝜇 and
𝜈 . Intuitively, 𝜇𝑋 . 𝜑 (resp. 𝜈𝑋 . 𝜑) denotes the least (resp. greatest) set 𝑋 that satisfies the equation
𝑋 = 𝜑 , where 𝑋 may recursively occur in 𝜑 . To guarantee that the fixpoints exist, we enforce the
usual syntactic requirement that 𝑋 has no negative occurrences in 𝜑 ; see, e.g., [Kozen 1982].

The ML syntax above includes more constructs than necessary, because we use them in the rest
of the paper and we are not trying to be minimal here. As seen in [Chen and Roşu 2020], only two
logical constructs are necessary (⊥ and →), one quantifier, and one fixpoint.

ML semantics defines models, symbol interpretations, and pattern interpretations. Amodel 𝑀 is a
nonempty underlying carrier set equipped with an interpretation 𝜎𝑀 : 𝑀𝑠1 × · · · ×𝑀𝑠𝑛 → P(𝑀𝑠) of
any symbol 𝜎 ∈ Σ𝑠1 ...𝑠𝑛,𝑠 , where𝑀𝑠1 , . . . , 𝑀𝑠𝑛 , 𝑀𝑠 are the carrier sets of sorts 𝑠1, . . . , 𝑠𝑛, 𝑠 , respectively,
and P(𝑀𝑠) denotes the powerset of𝑀𝑠 . Formally,

Definition 3.2. Given a signature (𝑆, Σ), an MLmodel consists of a nonempty carrier set𝑀 and an
interpretation 𝜎𝑀 : 𝑀𝑠1 × · · · ×𝑀𝑠𝑛 → P(𝑀𝑠) for each 𝜎 ∈ Σ𝑠1 ...𝑠𝑛,𝑠 , where P(𝑀𝑠) is the powerset
of𝑀𝑠 . Given a valuation 𝜌 that maps element variables to elements in𝑀 and set variables to subsets
of𝑀 , we define pattern interpretation ∥𝜑 ∥𝑀,𝜌 inductively as follows:

(1) ∥𝑥 ∥𝑀,𝜌 = {𝜌 (𝑥)}
(2) ∥𝜎 (𝜑1, . . . , 𝜑𝑛)∥𝑀,𝜌

=
⋃

𝑎𝑖 ∈∥𝜑𝑖 ∥𝑀,𝜌
𝜎𝑀 (𝑎1, . . . , 𝑎𝑛)

(3) ∥𝜑1 ∧ 𝜑2∥𝑀,𝜌 = ∥𝜑1∥𝑀,𝜌 ∩ ∥𝜑2∥𝑀,𝜌

(4) ∥𝜑1 ∨ 𝜑2∥𝑀,𝜌 = ∥𝜑1∥𝑀,𝜌 ∪ ∥𝜑2∥𝑀,𝜌

(5) ∥¬𝜑 ∥𝑀,𝜌 = 𝑀 \ ∥𝜑 ∥𝑀,𝜌

(6) ∥𝜑1 = 𝜑2∥𝑀,𝜌 = 𝑀 if ∥𝜑1∥𝑀,𝜌 = ∥𝜑2∥𝑀,𝜌

(7) ∥𝜑1 = 𝜑2∥𝑀,𝜌 = ∅ if ∥𝜑1∥𝑀,𝜌 ≠ ∥𝜑2∥𝑀,𝜌

(8) ∥𝜑1 ⊆ 𝜑2∥𝑀,𝜌 = 𝑀 if ∥𝜑1∥𝑀,𝜌 ⊆ ∥𝜑2∥𝑀,𝜌

(9) ∥𝜑1 ⊆ 𝜑2∥𝑀,𝜌 = ∅ if ∥𝜑1∥𝑀,𝜌 ⊈ ∥𝜑2∥𝑀,𝜌

(10) ∥∃𝑥 . 𝜑 ∥𝑀,𝜌 =
⋃

𝑎∈𝑀 ∥𝜑 ∥𝑀,𝜌 [𝑎/𝑥]
(11) ∥∀𝑥 . 𝜑 ∥𝑀,𝜌 =

⋂
𝑎∈𝑀 ∥𝜑 ∥𝑀,𝜌 [𝑎/𝑥]

(12) ∥𝑋 ∥𝑀,𝜌 = 𝜌 (𝑋)
(13) ∥𝜇𝑋 . 𝜑 ∥𝑀,𝜌 = l.f.p.(𝜆𝐴 ↦→ ∥𝜑 ∥𝑀,𝜌 [𝐴/𝑋])
(14) ∥𝜈𝑋 . 𝜑 ∥𝑀,𝜌 = g.f.p.(𝜆𝐴 ↦→ ∥𝜑 ∥𝑀,𝜌 [𝐴/𝑋])

Definition 3.2 is not unexpected. Note that in (6)-(9), equations/inclusions hold if they evaluate
to 𝑀 and do not hold if they evaluate to ∅; that is, we use 𝑀 to denote “true” and ∅ to denote
“false”. We shall see it again when we define axioms and validity in ML. The rest of the cases
are normal: (1) and (12) interpret element/set variables according to 𝜌 . (2) interprets structure
patterns according to symbol interpretations. (3)-(5) interpret propositional connectives as the
corresponding set-theoretic operations. (10)-(11) interpret quantification by ranging over 𝑥 , where
𝜌 [𝑎/𝑥] denotes the updated valuation. (13)-(14) interpret fixpoint patterns as the fixpoints in the
model.

ML uses a logical theory, or simply a theory Γ, which is a set of patterns called axioms, to restrict
the models and symbol interpretations, by enforcing all axioms in Γ to evaluate to “true” (i.e., total
set𝑀). For example, the following pattern/axiom enforces that the binary symbol/operation ∗ is
commutative: ℎ1 ∗ℎ2 = ℎ2 ∗ℎ1. We say that a pattern/property𝜓 holds in a model𝑀 , or𝑀 validates
𝜓 , written𝑀 ⊨ 𝜓 , iff𝜓 evaluates to the total set𝑀 under all valuations. Given a set Γ of axioms, we
write𝑀 ⊨ Γ iff𝑀 ⊨ 𝜓 for all𝜓 ∈ Γ, and Γ ⊨ 𝜓 iff𝑀 ⊨ 𝜓 for all𝑀 ⊨ Γ. In the following, we show an
example theory ΓSL that captures separation logic and its semantics and formal reasoning.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:8 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Example: Separation Logic in Matching Logic. As an example, we show that separation logic (SL)
models can be formulated as ML models, and the heap assertions/formulas of separation logic can
be represented by ML patterns that yield the same semantics (see also [Roşu 2017, Section 9]).
Let us define the signature (𝑆SL, ΣSL), where 𝑆SL = {Nat,Map} has two sorts for natural

numbers and (finite) maps, respectively, and ΣSL includes the basic arithmetic operations and
three map constructors: emp ∈ ΣSL

𝜖,Map for the empty map, ↦→ ∈ ΣSL
Nat Nat,Map for building the

singleton maps, and ∗ ∈ ΣSL
MapMap,Map for merging two disjoint maps (i.e., separating conjunction).

Now, we consider a particular ML model 𝑀 whose carrier sets 𝑀Nat and 𝑀Map are the set N of
natural numbers and the set [N≥1 ⇀fin N] of finite maps, i.e., finite-domain partial functions
from nonzero numbers (locations) to numbers. We define the symbol interpretation in 𝑀 in the
following, expected way: emp has interpretation emp𝑀 = {·Map}, where ·Map : N≥1 ⇀fin N is
the partial function that is undefined everywhere, denoting the empty map; ↦→ has interpretation
↦→𝑀 (𝑥,𝑦) ⊆ 𝑀Map for any 𝑥,𝑦 ∈ N, often written in the mixfix form 𝑥 ↦→𝑀 𝑦, which is defined to
be the partial function mapping 𝑥 to 𝑦 and undefined everywhere else if 𝑥 ≠ 0, or ·Map if 𝑥 = 0; ∗
has interpretation ∗𝑀 (ℎ1, ℎ2) ⊆ 𝑀Map for any ℎ1, ℎ2 ∈ 𝑀Map , or written ℎ1 ∗𝑀 ℎ2, which is defined
to be the merge (disjoint union) of ℎ1 and ℎ2 if their domains are disjoint, or ·Map if otherwise. We
call such model𝑀 of signature (𝑆SL, ΣSL) the standard map model. In [Roşu 2017, Section 9], the
authors showed that heap assertions are ML patterns of signature (𝑆SL, ΣSL) and their separation
logic semantics coincide with their interpretations in the standard map model𝑀 ; that is, given an
SL formula 𝜑 , a finite map (heap) ℎ, and a valuation 𝜌 mapping variables in 𝜑 to natural numbers,
ℎ satisfies 𝜑 under 𝜌 iff in the standard map model𝑀 , ℎ ∈ ∥𝜑 ∥𝑀,𝜌 .

Properties about the standard model 𝑀 can be specified using ML axioms. For example, the
axioms 0 ↦→ 𝑥 = ⊥ and 𝑥 ↦→ 𝑦 ∗ 𝑥 ↦→ 𝑧 = ⊥ specify nonzero locations and disjoint map union,
which we will see in Section 4.3.1. In [Chen and Roşu 2019, Section 5], the authors showed how
to define recursive symbols using ML patterns as axioms. For example, we can define ML symbols
ll , lr ∈ ΣSL

Nat Nat,Map and list ∈ ΣSL
Nat,Map with the following axioms:

ll (𝑥,𝑦) =lfp (𝑥 = 𝑦 ∧ emp) ∨ (𝑥 ≠ 𝑦 ∧ ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ ll (𝑡, 𝑦))
lr (𝑥,𝑦) =lfp (𝑥 = 𝑦 ∧ emp) ∨ (𝑥 ≠ 𝑦 ∧ ∃𝑡 . lr (𝑥, 𝑡) ∗ 𝑡 ↦→ 𝑦)
list (𝑥) =lfp (𝑥 = nil ∧ emp) ∨ (𝑥 ≠ nil ∧ ∃𝑦. 𝑥 ↦→ 𝑦 ∧ list (𝑦))

where the notation =lfp means, intuitively, that the interpretation ll𝑀 (similarly for lr𝑀 and list𝑀)
is the least one that satisfies the equation among all interpretations [N × N → P(𝑀Map)]. Recall
that the 𝜇 construct in ML can only build sets, so we need to transform (“de-sugar”) symbol
interpretations to sets, using the equivalence [N×N → P(𝑀Map)] ≃ P(N×N×𝑀Map), and thus
reduce the task of defining recursive symbols to defining least fixpoints of P(𝑀 ×𝑀 ×𝑀) using 𝜇.
Full technical details about the automatic de-sugaring of =lfp into 𝜇 are in [Chen and Roşu 2019],
but are not necessary to understand the results presented in this paper.

3.3 The Hilbert Proof System and Its Limitations on Automated Reasoning
A Hilbert-style ML proof system that defines the provability relation Γ ⊢𝐻 𝜑 of a given theory Γ
and pattern/pattern 𝜑 was proposed in [Chen and Roşu 2019, Fig. 1]. As a high-level overview, we
list some important meta-theorems about the formal reasoning carried out by the proof system.

Proposition 3.3. For any Γ and 𝜑 , the following propositions hold:
(1) Γ ⊢𝐻 𝜑 , if 𝜑 is a propositional tautology over patterns;
(2) Γ ⊢𝐻 𝜑1 and Γ ⊢𝐻 𝜑1 → 𝜑2 imply Γ ⊢𝐻 𝜑2, known as the (modus ponens) rule;
(3) Γ ⊢𝐻 𝜑 [𝑦/𝑥] → ∃𝑥 . 𝜑 ;
(4) Γ ⊢𝐻 𝜑1 → 𝜑2 and 𝑦 ∉ FV(𝜑2) imply Γ ⊢𝐻 (∃𝑦. 𝜑1) → 𝜑2;

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:9

(5) Γ ⊢𝐻 𝜑 = 𝜑 ;
(6) Γ ⊢𝐻 𝜑1 = 𝜑2 and Γ ⊢𝐻 𝜑2 = 𝜑3 imply Γ ⊢𝐻 𝜑1 = 𝜑3;
(7) Γ ⊢𝐻 𝜑1 = 𝜑2 implies Γ ⊢𝐻 𝜑2 = 𝜑1;
(8) Γ ⊢𝐻 𝜑1 = 𝜑2 implies Γ ⊢𝐻 𝜓 [𝜑1/𝑥] = 𝜓 [𝜑2/𝑥], known as the Leibniz property of equality;
(9) Γ ⊢𝐻 𝜑 [(𝜇𝑋 . 𝜑)/𝑋] = 𝜇𝑋 . 𝜑 ;
(10) Γ ⊢𝐻 𝜑 [𝜓/𝑋] implies Γ ⊢𝐻 𝜇𝑋 . 𝜑 → 𝜓 , known as the (knaster-tarski) rule or Park induction.

In other words, the Hilbert proof system supports standard propositional/FOL reasoning, standard
equational reasoning, and standard fixpoint reasoning. We review the soundness theorem below:

Theorem 3.4 (Soundness Theorem [Chen and Roşu 2019]). Γ ⊢𝐻 𝜑 implies Γ ⊨ 𝜑 .

We point out that the Hilbert system, although important and interesting from a foundational
aspect, is not practical for automated reasoning because it gives too many degrees of freedom in
proof search. For example, its (modus ponens) rule does not bode well with automation because
the premise 𝜑 needs to be guessed. More importantly, the fixpoint reasoning rule (knaster-tarski)
requires the LHS of the proof goal be a least fixpoint, and thus cannot be applied directly to
recursive predicates and structures or when the least fixpoint occurs within a context. All the above
make proof automation based on the Hilbert system unfeasible. In Section 4, we discuss our main
technical contribution, which is a proof framework that is most suitable for proof automation.

3.4 Important Logics Defined as Matching Logic Theories
The main motivation of this paper is to propose an automated proof framework for ML. By defining
various logical systems as theories in ML, we capture the various forms of formal reasoning by one
proof framework in a unified way. In this subsection, we consider three typical logical systems that
involve fixpoint reasoning and discuss how they can be defined as ML theories. They are separation
logic extended with user-defined recursive predicates [Iosif et al. 2013] (abbreviated SL), linear
temporal logic [Pnueli 1977] (abbreviated LTL), and reachability logic [Roşu et al. 2013] (abbreviated
RL) for semantics-based formal verification (of which Hoare-style verification [Hoare 1969] is an
instance). We use these three logical systems to demonstrate the generality of our prover.

3.4.1 Separation Logic (SL). We already discussed SL in Section 3.2. Here, we only mention that
recursive symbols in SL can take the following general form:

𝑝 (𝑥) =lfp ∃𝑥1. 𝜑1 (𝑥, 𝑥1) ∨ · · · ∨ ∃𝑥𝑚 . 𝜑𝑚 (𝑥, 𝑥𝑚)
where 𝑥𝑖 is a vector of variables. Each ∃𝑥𝑖 . 𝜑𝑖 (𝑥, 𝑥𝑖) is called a case. If 𝑝 does not occur in 𝜑𝑖 then
the case is a base case. Otherwise, it is an inductive case. For example, in the following definition
(𝑥 = 𝑦 ∧ emp) is the base case and (𝑥 ≠ 𝑦 ∧ ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ ll (𝑡, 𝑦)) is the inductive case:

ll (𝑥,𝑦) =lfp (𝑥 = 𝑦 ∧ emp) ∨ (𝑥 ≠ 𝑦 ∧ ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ ll (𝑡, 𝑦))
The ML theory ΓSL axiomatizes the algebraic properties about heap constructs and defines

recursive heap predicates as recursive symbols. When our generic prover is used to prove SL
properties, it will be instantiated by ΓSL that includes the following axioms:

ML theory for Separation Logic
Sorts 𝑆SL: Nat , Map
Symbols ΣSL: emp ∈ ΣSL

𝜖,Map _ ↦→_ ∈ ΣSL
Nat Nat,Map _∗_ ∈ ΣSL

MapMap,Map

recursive heap predicate 𝑝 ∈ ΣSL
Nat ...Nat,Map

Axioms ΓSL:
ℎ1 ∗ (ℎ2 ∗ ℎ3) = (ℎ1 ∗ ℎ2) ∗ ℎ3 ℎ1 ∗ ℎ2 = ℎ2 ∗ ℎ1 emp ∗ ℎ = ℎ 𝑥 ↦→ 𝑦 → 𝑥 ≠ nil
𝑥1 ↦→ 𝑦 ∗ 𝑥2 ↦→ 𝑧 → 𝑥1 ≠ 𝑥2 𝑝 (𝑥) =lfp ∃𝑥1. 𝜑1 (𝑥, 𝑥1) ∨ · · · ∨ ∃𝑥𝑚 . 𝜑𝑚 (𝑥, 𝑥𝑚)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:10 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Another core SL construct, which we have not emphasized much but which is important and
challenging in formal reasoning, is the separating implication 𝜑1 −∗ 𝜑2, also known as the “magic
wand”. Its semantics is the inverse of separating conjunction ∗, in the sense that (𝜑1 ∗ 𝜑2) → 𝜓

iff 𝜑1 → (𝜑2 −∗𝜓). Many proof systems and provers for SL rely on the magic wand. In ML, we
can define a more general concept, called contextual implication and discussed in Section 4.1.2,
and show that magic wand is a special instance. Although in ML contextual implication can be
axiomatized, i.e., it is not an extension of the logic, we found it to be a very practical and intuitive
instrument. We will propose the context reasoning module, which has a set of (automatic) proof
rules to reason about contextual implication. As it turns out, contextual implication can be used
to guide our automatic prover through the goal pattern to where inductive reasoning is actually
needed. Its usage is far beyond the scope of SL and has occurred in almost all our examples.

3.4.2 Linear Temporal Logic (LTL). LTL is an important temporal logic for specifying and reasoning
about infinite execution traces. Its syntax extends propositional logic with a set of temporal operators
including “next” ◦𝜑 , “always” □𝜑 , “eventually” ♢𝜑 , “until” 𝜑1 𝑈 𝜑2, etc. Intuitively, ◦𝜑 holds iff 𝜑

holds on the next state; □𝜑 holds iff 𝜑 always holds; ♢𝜑 holds iff 𝜑 eventually holds; and 𝜑1 𝑈 𝜑2

holds iff 𝜑2 eventually holds and before that 𝜑1 holds.
As shown in [Chen and Roşu 2019, Section 7], we need only one sort State for states and one

(unary) ML symbol •_ ∈ ΣLTL
State,State , called one-path next, to define LTL as a theory in ML. We

explain the idea intuitively. Consider any transition system and a state 𝑠 . Let •𝑠 be the pattern
matched by those states whose next states include 𝑠 . In other words, •𝑠 is matched by all predecessor
states of 𝑠 , because, by definition, they can transit to 𝑠 in one step, so “one-path next 𝑠” holds.

The one-path next • encodes the entire transition relation, so we can use it to build patterns that
express various temporal properties. For example •𝜑 is matched by the states which have at least a
next state that matches 𝜑 , i.e., “on one path ‘next 𝜑’ holds”. Its dual is the “all-path next”, defined
by ◦𝜑 ≡ ¬•¬𝜑 , which is matched by the states whose nest states all match 𝜑 . In LTL models, the
next-state relation is a function, so • and ◦ coincide. This is easily captured by an ML pattern/axiom
•𝜑 = ◦𝜑 . The other LTL constructs can be defined from • (and ◦) as fixpoints in the usual way, and
thus the following definitions are standard:

ML theory for Linear Temporal Logic
Sort 𝑆LTL: State
Symbol ΣLTL: one-path next • ∈ ΣLTL

State,State

Axioms ΓLTL:
◦𝜑 = ¬•¬𝜑 ♢𝜑 =lfp 𝜑 ∨•♢𝜑 □𝜑 =gfp 𝜑 ∧◦□𝜑 𝜑1𝑈 𝜑2 =lfp 𝜑2 ∨𝜑1 ∧•(𝜑1𝑈 𝜑2)
•𝜑 = ◦𝜑 ◦(𝜑1 ∧ 𝜑2) = ◦𝜑1 ∧ ◦𝜑2 referred as (◦∧)

3.4.3 Reachability Logic (RL). RL is an approach to program verification based on operational
semantics. Its main difference from the traditional Hoare-style verification is that RL uses one
fixed proof system, the reachability proof system, to achieve sound and relatively complete de-
duction for all languages. Thus, RL can be pragmatically seen as a generic Hoare logic, where
the target programming language is plug-and-played. RL has been used to define the complete
formal semantics of several large languages such as C [Hathhorn et al. 2015], Java [Bogdănaş
and Roşu 2015], and JavaScript [Park et al. 2015], as well as of emerging blockchain languages
such as the EVM [Hildenbrandt et al. 2018], yielding program verifiers for all these languages
automatically [Ştefănescu et al. 2016]. The RL formulae, called (reachability) rules and written
𝜑1 ⇒ 𝜑2 where 𝜑1, 𝜑2 are patterns, mean that for all program configurations 𝛾 matching 𝜑1, either
𝛾 has an infinite execution trace or it reaches a configuration matching 𝜑2 (partial correctness).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:11

Fixing a RL semantics, the coresponding ML theory ΓRL, like ΓLTL, also uses the one-path
next • symbol to capture the transition relation on configurations and axiomatizes the following
reachability constructs (we only show a part; see [Chen and Roşu 2019] for full details):

ML theory for Reachability Logic
Sorts 𝑆RL: Cfg for configurations and sorts for programs, data, and environments (omit-
ted)
Symbols ΣRL: one-path next • ∈ ΣRL

Cfg,Cfg and constructors of data and environments
Axioms ΓRL

WF = 𝜇𝑋 . ◦𝑋 (well-founded states)
𝜑1 ⇒ 𝜑2 = 𝜑1 → (WF → ♢𝜑2) referred as (reach)
◦𝜑1 ∧ •𝜑2 → •(𝜑1 ∧ 𝜑2) referred as (◦•)

4 AUTOMATED PROOF FRAMEWORK FOR MATCHING LOGIC
In this section, we propose our automated proof framework for ML and a set of automatic proof
rules (Fig. 2) that accomplish the five reasoning modules as illustrated in Fig. 1. As we discussed in
Section 3.3, the existing Hilbert proof system of ML is not suitable for automated reasoning. Our
main contribution in this paper is the proposal of a new set of higher-level proof rules (Fig. 2) that
aim at proof automation. The generic ML prover simply runs a simple bounded depth-first search
algorithm over the proposed set of proof rules. We will give an overview of the three key reasoning
modules offered by the automated proof rules in Section 4.1 and then explain all proof rules in
detail in Section 4.2. In Section 4.3, we use several examples to show how our proof framework can
be applied to various logical theories.

4.1 Reasoning Modules
Our proof framework consists of three main reasoning modules: fixpoint reasoning module, context
reasoning module, and frame reasoning module (also illustrated in Fig. 1). In this subsection, we
give an intuitive introduction to these three modules. We write Γ ⊢ 𝜑 to mean that 𝜑 can be proved
by the proof framework within theory Γ, and ⊢ 𝜑 when Γ is understood or irrelevant.

4.1.1 Fixpoint Reasoning Module and the Core Fixpoint Rule (lfp). As discussed above, the existing
(knaster-tarski) rule has several limitations due to its general nature, making it impractical for
automation. Therefore, we consider two specialized proof rules, (lfp) and (gfp), explained below.
Let 𝑝 be a recursive symbol defined by (𝑥, 𝑥1, . . . , 𝑥𝑚 denote variable vectors):

𝑝 (𝑥) =lfp ∃𝑥1. 𝜑1 (𝑥, 𝑥1) ∨ · · · ∨ ∃𝑥𝑚 . 𝜑𝑚 (𝑥, 𝑥𝑚)

To prove ⊢ 𝑝 (𝑥) → 𝜓 for some property 𝜓 , the proof rule (lfp) firstly unfolds 𝑝 (𝑥) according to
its definition, and secondly replaces each recursive occurrence 𝑝 (𝑦) (whose arguments 𝑦 might be
different from the original arguments 𝑥) in 𝜑𝑖 by 𝜓 [𝑦/𝑥], i.e., the result of substituting in 𝜓 the
new arguments 𝑦 for the original arguments 𝑥 . Let us denote the result of substituting each 𝜑𝑖 as
𝜑𝑖 [𝜓/𝑝]. In summary, (lfp) is the following rule (also shown in Fig. 2b):

∃𝑥1. 𝜑1 [𝜓/𝑝] → 𝜓 · · · ∃𝑥𝑚 . 𝜑𝑚 [𝜓/𝑝] → 𝜓
(lfp)

𝑝 (𝑥) → 𝜓 (1)

Note that (lfp) generates 𝑚 new sub-goals (above the bar), each corresponding to one case in
the definition of 𝑝 . All sub-goals have the same, original property𝜓 on the RHS. Intuitively, (lfp)
is a logical incarnation of the induction principle that consists of case analysis (according to the
definition of 𝑝) and inductive hypotheses (i.e., replacing 𝑝 by the intended property𝜓 on the LHS).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:12 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

4.1.2 Context Reasoning Module and Contextual Implication. Although (lfp) is more syntax-driven
than the original (knaster-tarski) rule, it still has limitations. We illustrate them using a simple
separation logic (SL) example (where ll and list are defined at the end of Section 3.2):

⊢ ll (𝑥,𝑦) ∗ list (𝑦) → list (𝑥) (2)

Clearly, (lfp) cannot be applied directly to (2), because the LHS is not a recursive symbol, but
a larger pattern ll (𝑥,𝑦) ∗ list (𝑦) in which the recursive pattern ll (𝑥,𝑦) occurs. In other words,
ll (𝑥,𝑦) occurs within a context in the LHS. Let 𝐶 [ℎ] ≡ ℎ ∗ list (𝑦) be the context pattern where ℎ is
a distinguished hole variable. We rewrite proof goal (2) to the following form using context 𝐶:

⊢ 𝐶 [ll (𝑥,𝑦)] → list (𝑥) (3)

Introducing contexts allows us to examine the limitations of rule (lfp) from a more structural point
of view. Clearly, (lfp) can only be applied when 𝐶 is the identity context, i.e., 𝐶id [ℎ] ≡ ℎ, but as
we have seen above, in practice recursive patterns often occur within a non-identity context, so a
major challenge in applying (lfp) in automated fixpoint reasoning is to handle such non-identity
contexts in a systematic way.

Contextual Implications. To solve the above challenge, we propose an important concept called
contextual implication. In the following, we first give a formal definition of context patterns and
contextual implications and then revisit the above SL example.

Definition 4.1. A context pattern 𝐶 or simply context is a pattern with a distinguished variable
denoted ℎ, called the hole variable. We write 𝐶 [𝜑] as the substitution 𝐶 [𝜑/ℎ]. Given an ML theory
Γ, we say that 𝐶 is a structure context w.r.t. Γ if 𝐶 ≡ 𝑡 ∧𝜓 where 𝑡 is a structure pattern and 𝜓 is
a predicate, and ℎ only occurs in 𝑡 within nested symbols (and not other logical constructs). All
contexts considered in this paper are structure contexts.

In other words, a context𝐶 is a structure context if the hole variable ℎ occurs only within nested
structures. For example, ℎ ∗ list (𝑦) ∧ 𝑦 > 1 is a structure context (w.r.t. ℎ) because separating
conjunction ∗ is an ML symbol. A structure context 𝐶 is extensive in the hole position, in the
following sense. An element 𝑎 matches 𝐶 [𝜑] where 𝐶 is a structure pattern and 𝜑 is any pattern
plugged into the hole, if and only if there exists an element 𝑎0 that matches 𝜑 such that 𝑎 equals
𝐶 [𝑎0]. In other words, matching the entire structure 𝐶 [𝜑] can be reduced to matching the local
structure 𝜑 and the local reasoning we make about 𝜑 at the hole position can be lifted to the entire
structure 𝐶 [𝜑]. Therefore, structure contexts allows us to do contextual reasoning.
Let 𝐶 [ℎ] be a structure context, and𝜓 be some property. We define contextual implication w.r.t.

𝐶 and𝜓 as the pattern whose matching elements, if plugged into 𝐶 , satisfy𝜓 . Formally

Definition 4.2. We define contextual implication 𝐶 ⊸ 𝜓 ≡ ∃ℎ. ℎ ∧ (𝐶 [ℎ] ⊆ 𝜓).

Recall Definition 3.2, where the semantics of ∃means set union. Thus,𝐶 ⊸ 𝜓 is the pattern matched
by all ℎ such that 𝐶 [ℎ] ⊆ 𝜓 holds, i.e., when plugged in 𝐶 , the result 𝐶 [ℎ] satisfies property𝜓 . The
following is a useful result about contextual implications for structure contexts 𝐶:

⊢ 𝐶 [𝜑] → 𝜓
(wrap) context𝐶

−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−
(unwrap) context𝐶

⊢ 𝜑 → (𝐶 ⊸ 𝜓)

Note that contextual implication 𝐶 ⊸ 𝜓 is a normal ML pattern defined using the ML syntax in
Section 3. It is not an extension of ML, but simply a convenient use of the existing expressiveness of
ML patterns to simplify (and automate) formal reasoning by “pulling the target out of its context”.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:13

Now, we revisit the SL example at the beginning of this subsection and look at proof goal (3). By
wrapping the structure context𝐶 [ℎ] = ℎ ∗ list (𝑦), we transform it to the following equivalent goal,
to which (lfp) can be applied:

⊢ ll (𝑥,𝑦) → (𝐶 ⊸ list (𝑥)) where 𝐶 [ℎ] = ℎ ∗ list (𝑦)

This way, contextual implication helps address the limitations of (lfp) by offering a systematic and
general method to wrap/unwrap any contexts, making proof automation based on (lfp) possible.

We conclude the discussion on contextual implication with two remarks. Firstly, after context 𝐶
is wrapped, the RHS becomes 𝐶 ⊸ 𝜓 , which by (lfp) will be moved back to LHS and replace the
recursive occurrences of the recursive pattern (see Eq. (1), where𝜓 becomes 𝐶 ⊸ 𝜓). Therefore,
we need a set of proof rules to handle and match those contextual implications that occur on the
LHS using pattern matching. This is explained in detail in Section 4.2.

The second remark is that our contextual implication generalizes separating implication 𝜑 −∗𝜓
(the “magic wand”) in SL. Indeed, let context𝐶𝜑 [ℎ] = ℎ ∗𝜑 , then we have 𝜑 −∗𝜓 = 𝐶𝜑 ⊸ 𝜓 . In other
words, SL magic wand is a special instance of ML contextual implication, where the underlying
theory is ΓSL (see Section 3.4.1) and context 𝐶 [ℎ] has the specific form ℎ ∗ 𝜑 where ℎ occurs
immediately below the top-level ∗ operator, and the SL proof rule (adj) [Reynolds 2002, pp. 5],
⊢ 𝜑1 ∗ 𝜑 → 𝜓 iff ⊢ 𝜑1 → (𝜑 −∗𝜓), is also a special instance of (wrap) and (unwrap). However,
contextual implications are more general, because they can be applied to any ML theories and any
complex contexts 𝐶 [ℎ], e.g., to entire program configurations (see Section 4.3.5) not only heaps.
Also, the (wrap) and (unwrap) proof rules generalize the (adj) proof rule in SL.

4.1.3 Frame Reasoning within Any Contexts. Another advantage of having an explicit notion of
context as shown above, is that frame reasoning can be generalized to all contexts 𝐶 (the mild
technical conditions mentioned in Section 4.1.2 are sufficient for its soundness). In the following,
we compare the frame reasoning in separation logic for heap contexts (left, also called (monotone)
in [Reynolds 2002]) and the general frame reasoning in matching logic for any contexts 𝐶 (right):

𝜑 → 𝜓
(frame) in SL

𝜑 ∗ 𝜑rest → 𝜓 ∗ 𝜑rest

𝜑 → 𝜓
(frame) in ML

𝐶 [𝜑] → 𝐶 [𝜓]

Clearly, (frame) in SL is a special instance of (frame) in ML, where context 𝐶 [ℎ] ≡ ℎ ∗ 𝜑rest is a
heap context. ML (frame) is more general and can be applied to any theories and complex contexts.
We conclude the discussion on frame reasoning with a remark about framing for Hoare-style

program correctness using SL as an assertion logic, which has the following form:
𝜑 {code} 𝜓

(frame on programs)
𝜑 ∗ 𝜑rest {code} 𝜓 ∗ 𝜑rest if no variable free in 𝜑rest is modified by code

If we instantiate code by the idle program skip, then (frame) in SL becomes an instance of (frame
on programs). While (frame on programs) is certainly convenient in practice, we would like to
point out that it is language-specific and generally unsound. Indeed, the rule and its side condition
itself suggest that the language has a heap and code can modify pointers, which may not be the
case for some functional, logic, or domain specific languages. Also, if the language has a construct
get_memory() that returns the total memory size, which we can find in most real languages, and
code requires exactly say 8GB of memory space as specified by 𝜓 , then 𝜑 ∗ 𝜑rest {code} 𝜓 ∗ 𝜑rest
does not hold for any nonempty 𝜑rest, so the rule is unsound. In other words, the (frame on
programs) proof rule is a privilege of certain toy programming languages, or abstractions of
real languages, whose soundness must be established for each language on a case by case basis.
In contrast, (frame) in ML is universally sound for all logical theories and thus programming

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:14 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

(elim-∃)
𝜑 → 𝜓

(∃𝑥 . 𝜑) → 𝜓
if 𝑥 ∉ FV(𝜓)

(smt)
True

𝜑 → 𝜓
if ⊨SMT 𝜑 → 𝜓

(match-ctx)
𝐶rest [𝜑 ′𝜃] → 𝜓

𝐶o [∀𝑦. (𝐶 ′ ⊸ 𝜑 ′)] → 𝜓

where (𝐶rest , 𝜃)
= cm(𝐶o ,𝐶

′, 𝑦)

(pm)
𝜑 → 𝜓𝜃

𝜑 → ∃𝑦.𝜓
where 𝜃 ∈ pm(𝜑,𝜓, 𝑦)
matches 𝜑 with𝜓

(frame)
𝜑 → 𝜓

𝐶 [𝜑] → 𝐶 [𝜓]

(unfold-r)
𝜑 → 𝐶 [𝜑𝑖]

𝜑 → 𝐶 [𝑝 (𝑥)]

(kt)
Composition of Rules in Fig. 2b

𝜑 → 𝜓

(a) Proof Rules for ML Fixpoint Reasoning

(wrap)
𝑝 (𝑥) → (𝐶 ⊸ 𝜓)
𝐶 [𝑝 (𝑥)] → 𝜓

(intro-∀)
𝑝 (𝑥) → ∀𝑦. (𝐶 ⊸ 𝜓)
𝑝 (𝑥) → (𝐶 ⊸ 𝜓)

where
𝑦 = FV(𝜓) \ 𝑥

(lfp)
· · · 𝜑𝑖 [∀𝑦. (𝐶 ⊸ 𝜓)/𝑝] → ∀𝑦. (𝐶 ⊸ 𝜓)

𝑝 (𝑥) → ∀𝑦. (𝐶 ⊸ 𝜓)

(elim-∀)
𝜑 → (𝐶 ⊸ 𝜓)

𝜑 → ∀𝑦. (𝐶 ⊸ 𝜓)
if 𝑦 ∉ FV(𝜑)

(unwrap)
𝐶 [𝜑] → 𝜓

𝜑 → (𝐶 ⊸ 𝜓)

(b) Breakdown of Rule (kt) in Fig. 2a

Fig. 2. Automatic Proof Framework for ML Fixpoint Reasoning (where 𝑝 (𝑥) =lfp
∨

𝑖 𝜑𝑖)

languages whose semantics are defined as ML theories. If one’s particular language allows a proof
rule like (frame on programs), then one can prove it as a separate lemma and then use it in proofs.

4.2 Framework Description
Here we discuss our automated proof rules in Fig. 2a, where the (kt) rule is a composition of
(wrap), (lfp), and (unwrap) as shown in Fig. 2b. The generic proof framework is parametric in an
ML theory Γ, and it proves implications, i.e., Γ ⊢ 𝜑 → 𝜓 . Formally:

Definition 4.3. If 𝜑 → 𝜓 can be proved using the proof rules in Fig. 2 within the underlying
theory Γ, we write Γ ⊢ 𝜑 → 𝜓 , abbreviated ⊢ 𝜑 → 𝜓 if Γ is understood.

A proof rule consists of several premises written above the bar and a conclusion written below the
bar. Our prover takes the proposed proof rules and axioms in theory Γ and reduces the (given) proof
goal by applying the rules backward, from conclusion to premises. New sub-goals will be generated
during the proof. When all sub-goals are discharged, the prover stops with success. Therefore, our
prover is essentially a simple search algorithm over the set of proof rules.
Before explaining the proof rules, we define some terminology. A structure pattern is a pattern

built only from variables and symbols, containing no logical constraints, quantification, or fixpoints
(see ML syntax in Section 3). A conjunctive (resp. disjunctive) pattern is a pattern of the form
𝜑1 ∧ · · · ∧𝜑𝑛 (resp. 𝜑1 ∨ · · · ∨𝜑𝑛), where 𝜑1, . . . , 𝜑𝑛 are structure patterns. In Fig. 2, we assume 𝑝 is
a recursive symbol defined by 𝑝 (𝑥) =lfp

∨
𝑖 𝜑𝑖 where each 𝜑𝑖 denotes one definition case.

➢ (elim-∃) is a standard FOL rule that simplifies the LHS by removing existential variables. Note
that the side condition 𝑥 ∉ FV(𝜓) is necessary for the soundness of the rule, but it can be easily
satisfied by renaming the bound variables to some fresh ones. Therefore, by applying (elim-∃)
exhaustively, we can obtain a LHS that is quantifier-free at the top.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:15

➢ (smt) does domain reasoning using SMT solvers such as Z3 [De Moura and Bjørner 2008] and
CVC4 [Barrett et al. 2011], where recursive symbols are treated as uninterpreted functions. Note
that (smt) is the only proof rule that finishes the proof, so it is always tried first. In practice, goals
that can be proved by (smt) are those about the common mathematical domains such as natural
and integer numbers, using the underlying theory Γ. We write ⊨SMT 𝜑 → 𝜓 to mean that 𝜑 → 𝜓 is
proved by SMT solvers.
➢ (pm) uses the pattern matching algorithm, pm, to instantiate the quantified variable(s) 𝑦 on the
RHS. The algorithm pm will be discussed in Section 5. The algorithm returns a match result as a
substitution 𝜃 , which tells us how to instantiate the variables 𝑦. If match succeeds, the instantiated
proof goal 𝜑 → 𝜓𝜃 should be immediately proved by (smt).

Note that the soundness of our proof framework does not rely on the correctness of the matching
algorithm, because (pm) is basically a standard FOL proof rule and holds for any substitution 𝜃 . The
matching algorithm is a heuristic to find a good 𝜃 . We rely on the external SMT solver to check the
correctness of the match result given by the matching algorithm, through rule (smt).

The combination of (pm) (based on the patternmatching algorithm pm) and (smt) (based on SMT
solvers) gives us the ability to do static reasoning about structure patterns. In separation logic (SL),
for example, structural patterns correspond to spatial formulas built from the heap constructors
emp, ↦→ , and ∗, whose behaviors are axiomatized as the algebraic specification given in Section 4.3.1
where ∗ is associative and commutative and emp is its unit. If the matching algorithm pm does
not support matching modulo associativity (A), commutativity (C), and unit elements (U), then it
cannot effectively discharge (separation logic) goals that are provable. In general, matching modulo
any (given) set of equations is undecidable [Boone 1958], so in this paper, we implement a naive
matching algorithm that supports matching modulo associativity (A-matching), and matching
modulo associativity and commutativity (AC-matching), which turned out to be effective so far.
➢ (unfold-r) unfolds one recursive pattern 𝑝 (𝑥) on the RHS within any context𝐶 (satisfying mild
conditions for contextual implication in Section 4.1.2) following its definition 𝑝 (𝑥) =lfp

∨
𝑖 𝜑𝑖 . The

technical conditions guarantee that disjunction distributes over the context, so𝐶 [∨𝑖 𝜑𝑖] =
∨

𝑖 𝐶 [𝜑𝑖].
Therefore, after applying (unfold-r) we need to prove one of the new goals 𝜑 → 𝐶 [𝜑𝑖].
➢ (kt), named after the Knaster-Tarski fixpoint theorem [Tarski 1955], is a sequential composition
of five proof rules shown in Fig. 2b: (wrap), (intro-∀), (lfp), (elim-∀), and (unwrap). We explained
the core proof rule (lfp) in Section 4.1.1. We explained in Section 4.1.2 why we need (wrap) and
(unwrap) and showed how they help address the limitations of (lfp), so here we only present their
formal forms. (intro-∀) and (elim-∀) are standard FOL rules. (intro-∀) strengthens the RHS and
thus makes the subsequent proofs easier, because the (strengthened) RHS will be moved to the LHS
by (lfp). Then after (lfp), we apply (elim-∀) to restore the RHS to the form right after (wrap) is
applied (note the premise of (wrap) is the same as the premise of (elim-∀)).
There is a challenge raised by applying (lfp) on goals whose RHS are contextual implications,

because those contextual implications are moved to the LHS by (lfp) and then block the proofs,
because (so far) we have not defined any proof rules that can handle contextual implications on the
LHS. This will be solved by (match-ctx) which is explained below.
➢ (match-ctx) deals with the (quantified) contextual implication ∀𝑦. (𝐶 ′ ⊸ 𝜓 ′) on the LHS
introduced by (lfp) and is one of the most complicated proof rule in our proof system. Note
that (lfp) does the substitution [∀𝑦. (𝐶 ⊸ 𝜓)/𝑝], which means (see Section 4.1.1) to replace each
recursive occurrence 𝑝 (𝑥 ′) (where 𝑥 ′ might be different from the original argument 𝑥) by (∀𝑦. (𝐶 ⊸
𝜓)) [𝑥 ′/𝑥], whose result we denote as ∀𝑦. (𝐶 ′ ⊸ 𝜓 ′). The number of contextual implications on
the LHS is the same as the number of recursive occurrences of 𝑝 in its definition. (match-ctx)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:16 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

eliminates one contextual implication at a time, through a context matching algorithm cm, which
will be discussed in Section 5. Here, we give the key intuition behind it.

When can a contextual implication 𝐶 ′ ⊸ 𝜓 ′ be eliminated? Recall Definition 4.2, which defines
𝐶 ′ ⊸ 𝜓 ′ to be the set of elements ℎ such that 𝐶 ′[ℎ] satisfies𝜓 ′. Therefore, we have the following
key property about contextual implications:

⊢ 𝐶 ′[𝐶 ′ ⊸ 𝜓 ′] → 𝜓 ′ (4)

This property is not unexpected. Indeed, 𝐶 ′ ⊸ 𝜓 ′ is matched by any elements that imply𝜓 ′ when
plugged in context 𝐶 ′. The above is a direct formalization of that intuition.

In principle, property (4) can be used to handle contextual implication on the LHS. If contextual
implication𝐶 ′ ⊸ 𝜓 happens to occur within the same context𝐶 ′, then we can replace𝐶 ′[𝐶 ′ ⊸ 𝜓]
by𝜓 ′, using property (4) and standard propositional reasoning. However, situations in practice are
more complex. Firstly, contextual implication can be quantified, i.e., ∀𝑦. (𝐶 ′ ⊸ 𝜓 ′), so we need to
first instantiate it using a substitution 𝜃 , to 𝐶 ′𝜃 ⊸ 𝜓 ′𝜃 . Secondly, the out-most context 𝐶o might
contain more than needed to match with 𝐶 ′𝜃 . So after matching, the rest, unmatched context,
denoted 𝐶rest , stays in the proof goal. The context matching algorithm cm implements heuristics
to find a suitable substitution 𝜃 such that 𝐶 ′𝜃 matches with (a part of) the out-most context 𝐶o ,
and when succeeding, it returns 𝜃 and the remaining unmatched context 𝐶rest .
➢ (frame) is to support frame reasoning. In contrast to (match-ctx), which uses the outer context
to simply the contextual implication, i.e. it says the context does matter, (frame) is to remove the
outer context, which does not matter.

Soundness. We conclude by the soundness of the proof rules in Fig. 2, which is proved by the
following theorem stating that these rules are provable using the Hilbert proof system in Section 3.3.

Theorem 4.4. If 𝜑 is provable from Γ using the proof rules in Fig. 2, written Γ ⊢ 𝜑 , then 𝜑 is provable
from Γ using the Hilbert proof system (Section 3.3) plus the proof rule (smt).

Proof. The complete proof can be found in the companion technical report [Chen et al. 2020b].
In short, the proof rules (elim-∃), (pm), (intro-∀), (elim-∀) can be proved by standard FOL reasoning,
which are supported by the Hilbert system (see Proposition 3.3). Rules (lfp) and (unfold-r) can
be proved by standard fixpoint reasoning, also supported by the Hilbert system. Rules (frame),
(match-ctx), (wrap), and (unwrap) rely on the properties of structure contexts. □

Combining Theorem 4.4 with Theorem 3.4, we conclude that our proof framework is sound,
assuming that the SMT solvers used in the proof rule (smt) are sound.

Theorem 4.5. If 𝜑 is provable from Γ using the proof rules in Fig. 2, then Γ ⊨ 𝜑 , assuming the
soundness of the SMT solvers used in the proof rule (smt).

4.3 Examples
We have so far explained our proof rules. In this subsection, we show how these rules are put into
practice by using them to prove several example proof goals collected from the various logical
systems mentioned in Section 3. Our objective is to help the reader understand better our proof
framework and some subtle technical details, to show that the proof rules in Fig. 2 are designed
carefully to capture the essence of fixpoint reasoning, and to show that our proof method is general
and can be used to reason about fixpoints that occur in various mathematical domains.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:17

Truesmt
𝑙𝑟 (𝑥, 𝑤) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦 ∧ 𝑙𝑟 (𝑥, 𝑤) ∗ 𝑤 ↦→ 𝑦

pm
𝑙𝑟 (𝑥, 𝑤) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦 ∧ ∃𝑡 . 𝑙𝑟 (𝑥, 𝑡) ∗ 𝑡 ↦→ 𝑦

unfold-r
𝑙𝑟 (𝑥, 𝑤) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦)

match-ctx
𝑥 ↦→ 𝑧 ∗ (∀𝑥. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦) (†)

elim-∃ ∃𝑤. 𝑥 ↦→ 𝑧 ∗ (∀𝑥. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦)
unwrap

∃𝑤. (∀𝑥. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 → (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦))
elim-∀ ∃𝑤. (∀𝑥. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 → ∀𝑥. (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦)) · · ·

lfp
𝑙𝑟 (𝑧, 𝑦) → ∀𝑥. (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦))

intro-∀
𝑙𝑟 (𝑧, 𝑦) → (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦))

wrap
𝑥 ↦→ 𝑧 ∗ 𝑙𝑟 (𝑧, 𝑦) ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦)

elim-∃ ∃𝑧. 𝑥 ↦→ 𝑧 ∗ 𝑙𝑟 (𝑧, 𝑦) ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦) · · ·
lfp

𝑙𝑙 (𝑥, 𝑦) → 𝑙𝑟 (𝑥, 𝑦)

Fig. 3. Proof tree of ⊢ 𝑙𝑙 (𝑥,𝑦) → 𝑙𝑟 (𝑥,𝑦), where 𝐶 [ℎ] ≡ 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑥 ≠ 𝑦 and 𝐶 ′[ℎ] ≡ 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑥 ≠ 𝑤 .

4.3.1 A Basic Example from Separation Logic. We first prove ⊢ 𝑙𝑙 (𝑥,𝑦) → 𝑙𝑟 (𝑥,𝑦), (Example 2
in [Chu et al. 2015]), where

ll (𝑥,𝑦) =lfp (𝑥 = 𝑦 ∧ emp) ∨ (𝑥 ≠ 𝑦 ∧ ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ ll (𝑡, 𝑦))
lr (𝑥,𝑦) =lfp (𝑥 = 𝑦 ∧ emp) ∨ (𝑥 ≠ 𝑦 ∧ ∃𝑡 . lr (𝑥, 𝑡) ∗ 𝑡 ↦→ 𝑦)

The proof tree is shown in Fig. 3. Since the LHS ll (𝑥,𝑦) is already a recursive pattern, the (wrap)
rule does not make any change. Therefore, we apply directly the (lfp) rule and get two new proof
goals. One goal, shown below, corresponds to the base case of the definition of ll (𝑥,𝑦):

⊢ (𝑥 = 𝑦 ∧ emp) → lr (𝑥,𝑦)

The other goal corresponds to the inductive case and is shown in the second last line in Fig. 3. For
clarity, we breakdown the steps in calculating the substitution [lr (𝑥,𝑦)/ll] required by (lfp) below:

⊢ ll (𝑥,𝑦) → lr (𝑥,𝑦) proof goal, before (lfp) is applied
⊢ (∃𝑧. 𝑥 ↦→ 𝑧 ∗ ll (𝑧,𝑦) ∧ 𝑥 ≠ 𝑦) → lr (𝑥,𝑦) phantom step 1: unfolding to inductive case
⊢ (∃𝑧. 𝑥 ↦→ 𝑧 ∗ lr (𝑧,𝑦) ∧ 𝑥 ≠ 𝑦) → lr (𝑥,𝑦) phantom step 2: substituting lr for ll

Now, the base case goal can be proved by applying (unfold-r) to unfold the RHS lr (𝑥,𝑦) to
its base case and then calling SMT solvers. The inductive case (after eliminating ∃𝑧 from LHS),
⊢ 𝑥 ↦→ 𝑧 ∗ lr (𝑧,𝑦) ∧ 𝑥 ≠ 𝑦 → lr (𝑥,𝑦), contains a recursive pattern lr (𝑧,𝑦) within a context
𝐶 [ℎ] = 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑥 ≠ 𝑦. Therefore, we (wrap) the context and yield contextual implication
𝐶 ⊸ 𝑙𝑟 (𝑥,𝑦) on the RHS, and quantify it with ∀𝑥 by (intro-∀). Then (lfp) is applied, yielding two
sub-goals, one for the base case and one for the inductive case. We omit the base case and show the
following breakdown steps for the inductive case, for clarity:

⊢ lr (𝑧,𝑦) → (𝐶 ⊸ lr (𝑥,𝑦)) proof goal, before (lfp) is applied
⊢ (∃𝑤. lr (𝑧,𝑤) ∗𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦) → (𝐶 ⊸ lr (𝑥,𝑦)) phantom step 1: unfolding
⊢ (∃𝑤. (∀𝑥 . (𝐶 ⊸ lr (𝑥,𝑦))) [𝑤/𝑦]∗𝑤 ↦→𝑦∧𝑧 ≠ 𝑦)→(𝐶 ⊸ lr (𝑥,𝑦)) phantom step 2: substituting

where (∀𝑥 . (𝐶 ⊸ lr (𝑥,𝑦))) [𝑤/𝑦] = ∀𝑥 . (𝐶 ′ ⊸ lr (𝑥,𝑤)) and 𝐶 ′[ℎ] = 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑥 ≠ 𝑤 .
Now the proof proceeds by (unwrap)-ping the context 𝐶 on the RHS and moving it back to the

LHS, and eliminating the quantifier ∃𝑤 by (elim-∃). Then the proof goal becomes the following

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:18 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Truesmt
𝑙𝑟 (𝑥, 𝑤, 𝑠3) ∗ 𝜙 → 𝑙𝑟 (𝑥, 𝑤, 𝑠3) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑠=𝑠3∪{𝑤 } ∧ 𝑥 ≠ 𝑦

pm
𝑙𝑟 (𝑥, 𝑤, 𝑠3) ∗ 𝜙 → ∃𝑡∃𝑠4 . 𝑙𝑟 (𝑥, 𝑡, 𝑠4) ∗ 𝑡 ↦→ 𝑦 ∧ 𝑠=𝑠4∪{𝑡 } ∧ 𝑥 ≠ 𝑦

unfold-r
𝑙𝑟 (𝑥, 𝑤, 𝑠3) ∗ 𝜙 → 𝑙𝑟 (𝑥, 𝑦, 𝑠)

match-ctx
𝑥 ↦→ 𝑧 ∗ (∀𝑥∀𝑠. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤, 𝑠))) ∗ 𝜙 → 𝑙𝑟 (𝑥, 𝑦, 𝑠) (‡)

elim-∃
𝑥 ↦→ 𝑧 ∗ (∃𝑤∃𝑠2 . (∀𝑥∀𝑠. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤, 𝑠))) ∗ 𝜙) ∧ 𝑠=𝑠1∪{𝑥 } ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦, 𝑠)

unwrap
∃𝑤∃𝑠2 . (∀𝑥∀𝑠. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤, 𝑠))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑠1=𝑠2∪{𝑤 } ∧ 𝑧 ≠ 𝑦 → (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦, 𝑠))

elim-∀ ∃𝑤∃𝑠2 . (∀𝑥∀𝑠. (𝐶′ ⊸ 𝑙𝑟 (𝑥, 𝑤, 𝑠))) ∗ 𝑤 ↦→ 𝑦 ∧ 𝑠1=𝑠2∪{𝑤 } ∧ 𝑧 ≠ 𝑦 → ∀𝑥∀𝑠. (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦, 𝑠)) · · ·
lfp

𝑙𝑟 (𝑧, 𝑦, 𝑠1) → ∀𝑥∀𝑠. (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦, 𝑠))
intro-∀

𝑙𝑟 (𝑧, 𝑦, 𝑠1) → (𝐶 ⊸ 𝑙𝑟 (𝑥, 𝑦, 𝑠))
wrap

𝑥 ↦→ 𝑧 ∗ 𝑙𝑟 (𝑧, 𝑦, 𝑠1) ∧ 𝑠=𝑠1∪{𝑥 } ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦, 𝑠)
elim-∃ ∃𝑧∃𝑠1 . 𝑥 ↦→ 𝑧 ∗ 𝑙𝑟 (𝑧, 𝑦, 𝑠1) ∧ 𝑠=𝑠1∪{𝑥 } ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥, 𝑦, 𝑠) · · ·

lfp
𝑙𝑙 (𝑥, 𝑦, 𝑠) → 𝑙𝑟 (𝑥, 𝑦, 𝑠)

where 𝐶 [ℎ] ≡ 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑠 = 𝑠1 ∪ {𝑥} ∧ 𝑥 ≠ 𝑦

𝐶 ′[ℎ] ≡ 𝐶 [ℎ] [𝑤/𝑦, 𝑠2/𝑠1] = 𝑥 ↦→ 𝑧 ∗ ℎ ∧ 𝑠 = 𝑠2 ∪ {𝑥} ∧ 𝑥 ≠ 𝑤

𝜙 ≡ 𝑤 ↦→ 𝑦 ∧ 𝑠1 = 𝑠2 ∪ {𝑤} ∧ 𝑧 ≠ 𝑦 ∧ 𝑠 = 𝑠1 ∪ {𝑥} ∧ 𝑥 ≠ 𝑦

Fig. 4. Proof tree of ⊢ 𝑙𝑙 (𝑥,𝑦, 𝑠) → 𝑙𝑟 (𝑥,𝑦, 𝑠)

(formula (†) in line 5, Fig. 3):

𝑥 ↦→ 𝑧 ∗ (∀𝑥 . (𝐶 ′ ⊸ 𝑙𝑟 (𝑥,𝑤))) ∗𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥,𝑦)

At this point, the quantified contextual implication on the LHS is instantiated and matched by
(match-ctx), which calls the context matching algorithm cm, introduced in Section 5. Intuitively,
the algorithm uses heuristics to produce an instantiation for ∀𝑥 (in this case, it happens that
the algorithm instantiates ∀𝑥 to 𝑥) and then checks if the out-most context 𝐶o of (†) implies the
(instantiated) context 𝐶 ′, where 𝐶o [ℎ] ≡ 𝑥 ↦→ 𝑧 ∗ ℎ ∗𝑤 ↦→ 𝑦 ∧ 𝑧 ≠ 𝑦 ∧ 𝑥 ≠ 𝑦.

Note that context 𝐶 ′ consists of a structure pattern 𝑥 ↦→ 𝑧 and a logical constraint 𝑥 ≠ 𝑤 . The
structure pattern is already matched in 𝐶o . The logical constraint can be implied from 𝐶o , which
has two structure patterns 𝑥 ↦→ 𝑧 and𝑤 ↦→ 𝑦, and using the SL axiom 𝑥1 ↦→ 𝑦 ∗ 𝑥2 ↦→ 𝑧 → 𝑥1 ≠ 𝑥2
given in Section 4.3.1. Therefore, (match-ctx) is applied successfully, and the rest, unmatched
context of 𝐶o is left in the goal (line 4 of Fig. 3) and proved in the subsequent proofs.

4.3.2 A Slightly More Complex Example from Separation Logic. The previous simple example does
not illustrate the usage of (intro-∀), because (match-ctx) applied to goal (†) in Fig. 3 decides to
instantiate ∀𝑥 by 𝑥 , which means that the proof could also work without (intro-∀). In this section,
we show a slightly more complex example that shows the necessity of (intro-∀).

Consider the following slightly modified definitions of ll and lr that take a third argument 𝑠
denoting the set of elements in the list segment:

ll (𝑥,𝑦, 𝑠) =lfp (𝑥 = 𝑦 ∧ emp ∧ 𝑠 = ∅) ∨ ∃𝑥1∃𝑠1. 𝑥 ↦→𝑥1 ∗ ll (𝑥1, 𝑦, 𝑠1) ∧ 𝑠=𝑠1∪{𝑥} ∧ 𝑥≠𝑦

lr (𝑥,𝑦, 𝑠) =lfp (𝑥 = 𝑦 ∧ emp ∧ 𝑠 = ∅) ∨ ∃𝑦1∃𝑠1. lr (𝑥,𝑦1, 𝑠1) ∗ 𝑦1 ↦→𝑦 ∧ 𝑠=𝑠1∪{𝑦1} ∧ 𝑥≠𝑦

Its proof tree in Fig. 4 is similar to the one in Fig. 3, except that the use of rule (intro-∀) is necessary
for the proof to succeed, because we need to instantiate the quantifier ∀𝑠 of goal (‡) in Fig. 4, line 5,
with a fresh variable 𝑠3 in the application of rule (match-ctx).

Suppose there is no application of rule (intro-∀). Then, instead of having ‡, we will have

𝑥 ↦→ 𝑧 ∗ (𝐶 ′ ⊸ 𝑙𝑟 (𝑥,𝑤, 𝑠)) ∗𝑤 ↦→ 𝑦 ∧ 𝑠1 = 𝑠2 ∪ {𝑤} ∧ 𝑧 ≠ 𝑦 ∧ 𝑠 = 𝑠1 ∪ {𝑥} ∧ 𝑥 ≠ 𝑦 → 𝑙𝑟 (𝑥,𝑦, 𝑠)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:19

Truesmt
𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llE (𝑡2, 𝑧) → 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llE (𝑡2, 𝑧)pm

𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llE (𝑡2, 𝑧) → ∃𝑢1∃𝑢2 . 𝑥 ↦→ 𝑢1 ∗𝑢1 ↦→ 𝑢2 ∗ llE (𝑢2, 𝑧)unfold-r
𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llE (𝑡2, 𝑧) → llE (𝑥, 𝑧)

match-ctx
𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ (∀𝑧. (𝐶 ⊸ llE (𝑡2, 𝑧))) ∗ llO (𝑦, 𝑧) → llE (𝑥, 𝑧)

elim-∃ ∃𝑡1∃𝑡2 . 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ (∀𝑧. (𝐶 ⊸ llE (𝑡2, 𝑧))) ∗ llO (𝑦, 𝑧) → llE (𝑥, 𝑧)
unwrap

∃𝑡1∃𝑡2 . 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ ∀𝑧. (𝐶 ⊸ llE (𝑡2, 𝑧)) → (𝐶 ⊸ llE (𝑥, 𝑧))
elim-∀ ∃𝑡1∃𝑡2 . 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ ∀𝑧. (𝐶 ⊸ llE (𝑡2, 𝑧)) → (𝐶 ⊸ llE (𝑥, 𝑧)) · · ·

lfp
llO (𝑥, 𝑦) → ∀𝑧. (𝐶 ⊸ llE (𝑥, 𝑧))

intro-∀
llO (𝑥, 𝑦) → (𝐶 ⊸ llE (𝑥, 𝑧))

wrap
llO (𝑥, 𝑦) ∗ llO (𝑦, 𝑧) → llE (𝑥, 𝑧)

Fig. 5. Proof tree of ⊢ llO (𝑥,𝑦) ∗ llO (𝑦, 𝑧) → llE (𝑥, 𝑧), where 𝐶 [ℎ] ≡ ℎ ∗ llO (𝑦, 𝑧)

where𝐶 ′[ℎ] = 𝑥 ↦→ 𝑧 ∗ℎ∧ 𝑠 = 𝑠2 ∪ {𝑥} ∧𝑥 ≠ 𝑤 . So we cannot match 𝑠=𝑠1∪{𝑥} ∧ 𝑠1=𝑠2∪{𝑤} in the
outer context with 𝑠=𝑠2∪{𝑥} in the inner context. In other words, we cannot eliminate the inner
context and the proof will get stuck.

4.3.3 A Mutual Recursion Example from Separation Logic. Mutually recursive definitions are in
general defined as:

𝑝1 (𝑦1) =lfp ∃𝑥11 . 𝜑11 (𝑦1, 𝑥11) ∨ · · · ∨ ∃𝑥1𝑚1 . 𝜑1𝑚1 (𝑦1, 𝑥1𝑚1)
· · ·

𝑝𝑘 (𝑦𝑘) =lfp ∃𝑥𝑘1 . 𝜑𝑘1 (𝑦𝑘 , 𝑥𝑘1) ∨ · · · ∨ ∃𝑥𝑘𝑚𝑘
. 𝜑𝑘𝑚𝑘

(𝑦𝑘 , 𝑥𝑘𝑚𝑘
)

which simultaneously define 𝑘 recursive definitions 𝑝1, . . . , 𝑝𝑘 to be the least among those satisfy the
equations. Our way of dealing with mutual recursion is to reduce it to several non-mutual, simple
recursions. We use the following separation logic challenge test qf_shid_entl/10.tst.smt2
from the SL-COMP’19 competition [Sighireanu et al. 2019] as an example. Consider the following
definition of list segments of odd and even length:{

llO (𝑥,𝑦) =lfp 𝑥 ↦→ 𝑦 ∨ ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ llE (𝑡, 𝑦)
llE (𝑥,𝑦) =lfp ∃𝑡 . 𝑥 ↦→ 𝑡 ∗ llO (𝑡, 𝑦)

and the proof goal ⊢ llO (𝑥,𝑦) ∗ llO (𝑦, 𝑧) → llE (𝑥, 𝑧).
To proceed the proof, we first reduce the mutual recursion definition into the following two

non-mutual, simple recursion definitions, which can be obtained systematically by unfolding the
other recursive symbols to exhaustion.

llO (𝑥,𝑦) =lfp 𝑥 ↦→ 𝑦 ∨ ∃𝑡1∃𝑡2. 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llO (𝑡2, 𝑦)
llE (𝑥,𝑦) =lfp ∃𝑡1∃𝑡2. 𝑥 ↦→ 𝑡1 ∗ 𝑡1 ↦→ 𝑡2 ∗ llE (𝑡2, 𝑦)

Then, the proof can be carried out in the normal way. We show the proof tree in Fig. 5.

4.3.4 A Linear Temporal Logic (LTL) Example. The purpose of this and the next examples is to
demonstrate the generality of our proof method. In this subsection, we show an example of proving
the induction proof rule of the sound and complete proof system of LTL [Goldblatt 1992; Lichtenstein
and Pnueli 2000], which uses the ML axiomatization for LTL given in Section 4.3.4 and the greatest
fixpoint reasoning rules that are dual to those in Fig. 2. The key dual rule (gfp) will be shown
explicitly. In the next subsection, we show an example of proving the (partial) correctness of a
simple sum program that computes the total from 1 to a symbolic input 𝑛, which shows that formal
verification is also a form of fixpoint reasoning and can be achieved by our proof method.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:20 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Truesmt
𝑝 ∧ (𝑝 → ◦𝑝) ∧ ◦□(𝑝 → ◦𝑝) → ◦𝑝 ∧ ◦□(𝑝 → ◦𝑝)

unfold-L
𝑝 ∧ □(𝑝 → ◦𝑝) → ◦𝑝 ∧ ◦□(𝑝 → ◦𝑝)

◦∧
𝑝 ∧ □(𝑝 → ◦𝑝) → ◦(𝑝 ∧ □(𝑝 → ◦𝑝))

pm
𝑝 ∧ □(𝑝 → ◦𝑝) → 𝑝 ∧ ◦(𝑝 ∧ □(𝑝 → ◦𝑝))

gfp
𝑝 ∧ □(𝑝 → ◦𝑝) → □𝑝

Fig. 6. Greatest fixpoint reasoning: proof tree of ⊢ 𝑝 ∧ □(𝑝 → ◦𝑝) → □𝑝

The reader will notice that both this and the next subsections are short. Most texts are about
helping the reader understand how the example proof goals are set up and not how they are
proved. This is exactly the point: their proofs are not different from the proofs we have seen in
Sections 4.3.1-4.3.3 for separation logic, thanks to the generality of our proof rules.
Consider the following induction proof rule in the sound and complete LTL proof system:

⊢ 𝑝 ∧ □(𝑝 → ◦𝑝) → □𝑝 . As defined in Section 3.4.2, the “always □” temporal operator is a greatest
fixpoint: □𝜑 =gfp 𝜑 ∧ ◦□𝜑 . To reason about it, we need a set of proof rules dual to those in Fig. 2,
where the key rule, (gfp) (dual to (lfp)), is shown below:

(gfp)
𝜑 → 𝜓𝑖 [𝜑/𝑞]
𝜑 → 𝑞(𝑦)

𝑞 (𝑦) =gfp
∨
𝜓𝑖

(gfp) is used to discharge the RHS □𝑝 of the proof goal. We show the self-explanatory proof tree in
Fig. 6. Note that during the proof we use the distributivity law provided by the ML theory ΓLTL in
Section 3.4.2, denoted as proof step (◦∧) in Fig. 6.

4.3.5 A Program Verification Example from Reachability Logic (RL). We have discussed RL and
showed its ML theory in Section 3.4.3. Here, we use one example to illustrate how reachability
reasoning, i.e. formal verification, can be handled uniformly by our proof framework. Before we dive
into the technical details, let us remind readers that in RL, structure patterns are used to represent
the program states, called configurations in RL, of the programming language. The reachability
property 𝜑1 ⇒ 𝜑2 then builds on top of the structure patterns and defines the transition relation
among program configurations.

We use the following simple program sum to explain the core RL concepts.
sum ≡ while (--n) {s=s+n;}

The program sum is written in a simple imperative language that has a C-like syntax. It calculates
the total from 1 to 𝑛 and adds it to the variable s. Its functional correctness means that when it
terminates, the value of variable s should be 𝑠 + 𝑛(𝑛 − 1)/2, where 𝑠 and 𝑛 are the initial values we
give to the variables s and n, respectively.

In order to execute sum, we need to know the concrete values of s and n. This semantic information
is organized as a mapping from variables to their values and we call the mapping a state. Knowing
the program and the state where it is executed allows us to execute the program to termination.
Thus, a program and a state forms a complete computation configuration for this simple imperative
language and the configurations can be represented using structure patterns that hold all the
semantic information needed for program execution. For example, let us write down the initial and
final configurations of sum where we initialize s and n by the integer values 𝑠 and 𝑛, respectively:

𝜑pre ≡
〈〈
sum

〉
code

〈
n↦→𝑛, s↦→𝑠

〉
state

〉
cfg ∧ 𝑛 ≥ 1

𝜑post ≡
〈〈
·
〉
code

〈
n↦→0, s↦→𝑠 + 𝑛(𝑛 − 1)/2

〉
state

〉
cfg

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:21

𝑆 ⊢ Truesmt
𝑆 ⊢ 𝜑′

3 → 𝜑′
3pm

𝑆 ⊢ 𝜑′
3 → ♢𝜓

frame
𝑆 ⊢ •3𝜑′

3 → •3♢𝜓
unfold-r

𝑆 ⊢ •3𝜑′
3 → ♢𝜓

fol
𝑆⊢◦4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓))∧•3𝜑′

3→♢𝜓

𝑆 ⊢ Truesmt
𝑆⊢sum(1, 𝑛′1, 𝑠

′
1, 𝑠2)→𝑠′1=𝑠1+𝑛

′
1∧𝑛

′
1=𝑛1−1∧sum(1, 𝑛′1, 𝑠

′
1, 𝑠2)pm

𝑆⊢sum(1, 𝑛′1, 𝑠
′
1, 𝑠2)→∃𝑥∃𝑦. 𝑦=𝑠1+𝑥∧𝑥=𝑛1−1∧sum(1, 𝑥, 𝑦, 𝑠2)

unfold-r
𝑆 ⊢ sum(1, 𝑛′1, 𝑠

′
1, 𝑠2) → sum(1, 𝑛1, 𝑠1, 𝑠2)

pm
𝑆 ⊢ ♢𝜓 ′ → ♢𝜓

match-ctx
𝑆 ⊢ ∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓) ∧ 𝜑4 → ♢𝜓

frame
𝑆 ⊢ •4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓) ∧ 𝜑4) → •4♢𝜓

unfold-r
𝑆 ⊢ •4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓) ∧ 𝜑4) → ♢𝜓◦•

𝑆 ⊢ ◦4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)) ∧ •4𝜑4 → ♢𝜓
app-sym

𝑆 ∪ {𝜑pre → (•3𝜑′
3 ∨ •4𝜑4) } ⊢ ◦4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)) ∧ 𝜑pre → ♢𝜓

unwrap
𝑆 ∪ {𝜑pre → (•3𝜑′

3 ∨ •4𝜑4) } ⊢ ◦4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)) → (𝐶 ⊸ ♢𝜓)
elim-∀

𝑆 ∪ {𝜑pre → (•3𝜑′
3 ∨ •4𝜑4) } ⊢ ◦4 (∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)) → ∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)

lfp
𝑆 ∪ {𝜑pre → (•3𝜑′

3 ∨ •4𝜑4) } ⊢ 𝜇𝑓 . ◦4 𝑓 → ∀𝑛1∀𝑠1 . (𝐶 ⊸ ♢𝜓)
intro-∀

𝑆 ∪ {𝜑pre → (•3𝜑′
3 ∨ •4𝜑4) } ⊢ 𝜇𝑓 . ◦4 𝑓 → (𝐶 ⊸ ♢𝜓)

wrap
𝑆 ∪ {𝜑pre → (•3𝜑′

3 ∨ •4𝜑4) } ⊢ 𝜑pre → (𝜇𝑓 . ◦4 𝑓 → ♢𝜓)
sym

𝑆 ∪ {𝜑pre → (•3𝜑′
3 ∨ •3𝜑3) } ⊢ 𝜑pre → (𝜇𝑓 . ◦3 𝑓 → ♢𝜓)

sym
𝑆 ∪ {𝜑pre → •2 (𝜑′

2 ∨ 𝜑2) } ⊢ 𝜑pre → (𝜇𝑓 . ◦2 𝑓 → ♢𝜓)
sym

𝑆 ∪ {𝜑pre → •𝜑1 } ⊢ 𝜑pre → (𝜇𝑓 . ◦ 𝑓 → ♢𝜓)
sym

𝑆 ∪ {𝜑pre → 𝜑pre } ⊢ 𝜑pre → (𝜇𝑓 . ◦ 𝑓 → ♢𝜓)
reach

𝑆 ∪ {𝜑pre → 𝜑pre } ⊢ 𝜑pre ⇒ 𝜓

sum(𝑙,𝑢,𝑏, 𝑠) =lfp (𝑙>𝑢∧𝑠=𝑏)∨(∃𝑏1∃𝑢1 . 𝑏1=𝑏+𝑢1∧𝑢1=𝑢−1∧sum(𝑙,𝑢1, 𝑏1, 𝑠))
𝜓 ≡ ∃𝑛2∃𝑠2 .

〈〈
·
〉
code

〈
n ↦→𝑛2, s ↦→𝑠2

〉
state

〉
cfg ∧ 𝑛2 = 0 ∧ sum(1, 𝑛1, 𝑠1, 𝑠2)

𝜓 ′ ≡ ∃𝑛2∃𝑠2 .
〈〈
·
〉
code

〈
n↦→𝑛2, s ↦→𝑠2

〉
state

〉
cfg ∧ 𝑛2 = 0 ∧ sum(1, 𝑛′1, 𝑠′1, 𝑠2)

𝜑1 ≡
〈〈
n−−; cond

〉
code

〈
n ↦→𝑛1, s ↦→𝑠1

〉
state

〉
cfg ∧ 𝑛1 ≥ 1 sum ≡ while(–n){s=s+n;}

𝜑2 ≡
〈〈
cond

〉
code

〈
n ↦→𝑛′1, s ↦→𝑠1

〉
state

〉
cfg ∧ 𝑛1 ≥ 2 cond ≡ if(n>0){s=s+n;sum}

𝜑′
2 ≡

〈〈
cond

〉
code

〈
n ↦→𝑛′1, s ↦→𝑠1

〉
state

〉
cfg ∧ 𝑛1 = 1 body ≡ s=s+n;sum

𝜑3 ≡
〈〈
body

〉
code

〈
n ↦→𝑛′1, s ↦→𝑠1

〉
state

〉
cfg ∧ 𝑛1 ≥ 1 𝐶 [ℎ] ≡ 𝜑pre ∧ ℎ

𝜑′
3 ≡

〈〈
·
〉
code

〈
n ↦→𝑛′1, s ↦→𝑠1

〉
state

〉
cfg ∧ 𝑛1 ≥ 1 𝑛′1 ≡ 𝑛1 − 1

𝜑4 ≡
〈〈
sum

〉
code

〈
n ↦→𝑛′1, s ↦→𝑠′1

〉
state

〉
cfg ∧ 𝑛1 ≥ 1 𝑠′1 ≡ 𝑠1 + 𝑛1 − 1

Fig. 7. Verifying functional correctness of sum in terms of reachability rules

Following RL convention, we write configurations in cells such as ⟨. . . ⟩code, ⟨. . . ⟩state; from a
logical point of view, these are simply structure patterns and are built from ML symbols in the same
way how FOL terms are defined. The functional correctness of sum states the following: if we start
from the initial configuration 𝜑pre and the program terminates, then the final configuration is 𝜑post,
where there is nothing to be executed anymore (as denoted by the dot “ · ”, meaning “nothing”, in the
⟨. . . ⟩code cell), n is mapped to 0, and s is mapped to the correct total 𝑠 +𝑛(𝑛 − 1)/2. This functional
(partial) correctness property can be expressed by the reachability property 𝜑pre ⇒ 𝜑post. According
to Section 3.4.3, 𝜑pre ⇒ 𝜑post is a notation for 𝜑pre → (WF → ♢𝜑post), where WF = 𝜇𝑋 . ◦𝑋
is matched by all well-founded configurations (i.e., those without infinite execution traces) and
♢𝜑post = 𝜇𝑋 . 𝜑post ∨ •𝑋 is matched by all configurations that eventually reach 𝜑post, after at most
finitely many execution steps. This encoding correctly captures the partial correctness.

We now prove that sum satisfies the correctness property 𝜑pre ⇒ 𝜑post. We put the proof tree in
Fig. 7 and explain it at a higher-level below. Intuitively, the proof works by symbolically executing
the program step by step and applying inductive reasoning to finish the proof as soon as repetitive
configurations (i.e., those generated by the while-loop in sum) are identified during the proof. Each
symbolic execution step corresponds to a reachability property that can be proved about sum. While
we proceed with the proof and carry out symbolic execution, we collect the proved reachability
properties so that they can be used (by induction) to resolve the proof goal about the while-loop.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:22 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

The proof goals have the form 𝑆 ∪ 𝑆𝑖 ⊢ 𝜑𝑖 → 𝜓𝑖 where 𝑆 is a set of RL rules that include all
the reachability rules axiomatizing the small-step style operational semantics of the language
and 𝑆𝑖 include those representing the results of 𝑖-step symbolic execution. Initially, the functional
correctness proof goal is 𝑆 ∪ {𝜑𝑝𝑟𝑒 →𝜑pre} ⊢ 𝜑pre → ♢𝑤𝜓 , where𝜓 is the final configuration 𝜑post
rewritten using the recursive predicate sum(𝑙, 𝑢, 𝑏, 𝑠), meaning the partial-sum relation: 𝑠 = 𝑏 +
(𝑢 + (𝑢 − 1) + · · · + 𝑙). Pattern 𝜑𝑝𝑟𝑒 → 𝜑𝑝𝑟𝑒 corresponds to the symbolic execution reachability
rule (i.e., lemma) that we can prove by executing the initial configuration 𝜑𝑝𝑟𝑒 by 0 step. As the
proof proceeds, more symbolic execution steps are carried out and more lemmas are proved. The
following domain-specific rule is used to carry out symbolic execution and flush the newly-proved
lemmas/rules that summarize the semantics of SUM into 𝑆𝑖 :

(sym)
𝑆 ∪ 𝑆𝑘 ⊢ 𝜑 → (𝜇𝑓 . ◦𝑗 𝑓 → ♢𝜓)

𝑆 ∪ {𝜑 → 𝜑 ′} ⊢ 𝜑 → (𝜇𝑓 . ◦𝑖 𝑓 → ♢𝜓)
if 𝑆𝑘 ≠ ∅ ∧ 𝑖 ≥ 1 where (𝑆𝑘 , 𝑗) = next(𝜑′)

where next takes the current symbolic configuration, executes it according to the semantics 𝑆 , and
outputs a rule that specifies the step (implemented similarly to [Ştefănescu et al. 2016]) and the
number of steps taken. We stop execution when the code cell ⟨. . .⟩code becomes empty (as in the
case of 𝜑 ′

3) or contains the same code as that of 𝜑pre (as in the case of 𝜑4). The collected rules (e.g.
{𝜑pre → (•3𝜑 ′

3 ∨ •4𝜑4)}) will be used to simplify 𝜑pre later (e.g. as in the application of (app-sym)).

5 ALGORITHMS
As shown in Fig. 1, our generic ML prover runs a simple depth-first proof search (DFS) algorithm
on top of the proof rules in Fig. 2. In this section, we show the top-level DFS algorithm in Fig. 8a.
We also show the pattern matching algorithms used by the proof rules (pm) and (match-ctx).

5.1 Top-Level Proof Search Algorithm
The top-level proof search algorithm in Fig. 8a starts with procedure Prove on the goal ⊢ 𝜑 → 𝜓 ,
which uses two counters 𝑐ru, 𝑐kt, both initialized to zero, to keep track of how many times (unfold-
r) and (kt) have been applied. Proof search terminates (unsuccessfully) if they exceed the preset
search bounds, so the proof procedure is incomplete, which is expected. Specifically, the algorithm
consists of the following two cases:

Base Case: Procedure BasicProof is the exit point of the algorithm. For each proof goal, it firstly
attempts a basic proof, i.e., to discharge by applying rule (pm) and then querying an SMT solver,
where recursive symbols are treated as uninterpreted as in (smt) proof rule. Intuitively, this step
succeeds if the proof goal is simple enough such that a proof by matching can be achieved.

Recursive Call:When a basic proof fails, we collect all possible transformations of the proof goal,
using (kt), (unfold-r) rules, into a disjunction of conjunctions of sub-goals𝑂𝑟𝑆𝑒𝑡 (i.e., a set of goal
sets)—here, we only present the least fixpoint reasoning. The current proof goal can be successfully
discharged if there is one set 𝑂𝑏𝑠 ∈ 𝑂𝑟𝑆𝑒𝑡 whose goals can all be proved. The realization of the
proof rules in our algorithm is straightforward, except for two noteworthy points:
(1) (kt) applications will exhaustively search for all possible candidates.
(2) When a proof goal has an unsatisfiable LHS, the proof goal is trivially true, which is denoted

trivially_true in Fig. 8a, and is removed immediately.
Fig. 8a essentially implements a (bounded) depth-first proof search, so the order in which the
sets of goals 𝑂𝑏𝑠 ∈ 𝑂𝑟𝑆𝑒𝑡 are tried may affect performance greatly but not effectiveness, i.e. the
ability to prove the proof goals of our proof framework. The algorithm is parametric in a procedure
OrderByHeuristics (line 24) that controls the mentioned order. For the experiments considered in

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:23

function Prove(𝜑 → 𝜓, 𝑐ru, 𝑐kt)
⟨1⟩ if (BasicProof (𝜑 → 𝜓)) return true
⟨2⟩ let {𝑝𝑖 }:=rec_sym(𝜑), {𝑞𝑖 }:=rec_sym(𝜓),𝑂𝑟𝑆𝑒𝑡 := ∅
⟨3⟩ foreach (∀𝑦.𝐶 ′ ⊸ 𝜑 ′) ∈ 𝜑 /* (match-ctx)*/
⟨4⟩ 𝐶0:=𝜑 \ {∀𝑦.𝐶 ′ ⊸ 𝜑 ′}
⟨5⟩ (𝐶rest, 𝜃):=cm(𝐶0,𝐶

′, 𝑦) /*Section 5.2.1*/
⟨6⟩ 𝜑 ′′:=𝐶rest ∪ 𝜑 ′𝜃
⟨7⟩ 𝑜𝑏:=[𝜑 ′′ → 𝜓, 𝑐ru, 𝑐kt], 𝑂𝑟𝑆𝑒𝑡 ∪={{𝑜𝑏}}
⟨8⟩ foreach 𝑝𝑖 ∈ 𝜑,𝑞𝑖′ ∈ 𝜓 /* (frame)*/
⟨9⟩ if (𝜃 := pm([𝑝𝑖], [𝑞𝑖′], FV(𝜓) \ FV(𝜑))) ≠ Failure

⟨10⟩ 𝜑 ′:=𝜑 \ {𝑝𝑖 },𝜓 ′:=(𝜓 \ {𝑞𝑖′})𝜃
⟨11⟩ 𝑜𝑏:=[𝜑 ′ → 𝜓 ′, 𝑐ru, 𝑐kt], 𝑂𝑟𝑆𝑒𝑡 ∪={{𝑜𝑏}}
⟨12⟩ if (𝑐ru < MAXRIGHTBOUND) /* (unfold-r)*/
⟨13⟩ foreach (𝑞𝑖 ∈ 𝜓)
⟨14⟩ foreach (𝜓 𝑗 ∈ ({𝜓1 . . .𝜓𝑘 } := UNFOLD(𝜓,𝑞𝑖)))
⟨15⟩ 𝑜𝑏 := [𝜑 → 𝜓 𝑗 , 𝑐ru + 1, 𝑐kt], 𝑂𝑟𝑆𝑒𝑡 ∪={{𝑜𝑏}}
⟨16⟩ if (𝑐kt < KTBOUND) /* (kt) */
⟨17⟩ foreach (𝑝𝑖 ∈ 𝜑)
⟨18⟩ foreach (𝜑 𝑗 ∈ ({𝜑1, 𝜑2, . . . 𝜑𝑙 } := KT(𝜑, 𝑝𝑖)))
⟨19⟩ 𝑜𝑏 := [𝜑 𝑗 → 𝜓, 𝑐ru, 𝑐kt + 1]
⟨20⟩ if (trivially_true(𝑜𝑏)) continue
⟨21⟩ 𝑂𝑏𝑠 := 𝑂𝑏𝑠 ∪ {𝑜𝑏}
⟨22⟩ 𝑂𝑟𝑆𝑒𝑡 ∪= {𝑂𝑏𝑠}
⟨23⟩ if (𝑂𝑟𝑆𝑒𝑡 = ∅) return false
⟨24⟩ 𝑂𝑟𝑆𝑒𝑡 := OrderByHeuristics(𝑂𝑟𝑆𝑒𝑡)
⟨25⟩ foreach (𝑂𝑏𝑠 ∈ 𝑂𝑟𝑆𝑒𝑡)
⟨26⟩ if (ProveAll(𝑂𝑏𝑠)) return true
⟨27⟩ return false
endfunction

(a) Top-Level Proof Search Algorithm

function ProveAll(𝑂𝑏𝑠)
⟨1⟩ foreach ([𝜑 → 𝜓, 𝑐ru, 𝑐kt] ∈ 𝑂𝑏𝑠)
⟨2⟩ if (not Prove(𝜑 → 𝜓, 𝑐ru, 𝑐kt))
⟨3⟩ return false;
⟨4⟩ return true

endfunction

function pm([𝜓𝑖]𝑚1 , [𝜑𝑖]
𝑚
1 ,Vs)

⟨5⟩ if 𝑚 = 0 return { }
⟨6⟩ if 𝜓1 ≡ 𝜎 (𝜓1) and 𝜑1 ≡ 𝜎 ′(𝜑1)
⟨7⟩ if 𝜎 ≠ 𝜎 ′ return Failure
⟨8⟩ else if length(𝜓1) ≠ length(𝜑1)
⟨9⟩ return Failure

⟨10⟩ else
⟨11⟩ [𝜓 ′

𝑖
]𝑚′
1 = 𝜓1 ∪ [𝜓𝑖]𝑚1

⟨12⟩ [𝜑 ′
𝑖
]𝑚′
1 = 𝜑1 ∪ [𝜑𝑖]𝑚1

⟨13⟩ return pm([𝜓 ′
𝑖
]𝑚′
1 , [𝜑 ′

𝑖
]𝑚′
1 ,Vs)

⟨14⟩ if 𝜓1 ≡ 𝑥 and 𝑥 ∉ Vs
⟨15⟩ if 𝜑1 ≡ 𝑥

⟨16⟩ return pm([𝜓𝑖]𝑚2 , [𝜑𝑖]
𝑚
2 ,Vs)

⟨17⟩ else
⟨18⟩ return Failure
⟨19⟩ if 𝜓1 ≡ 𝑥 and 𝑥 ∈ Vs
⟨20⟩ [𝜓 ′

𝑖
]𝑚2 = [𝜓𝑖]𝑚2 {𝑥 ↦→ 𝜑1}

⟨21⟩ [𝜑 ′
𝑖
]𝑚2 = [𝜑𝑖]𝑚2 {𝑥 ↦→ 𝜑1}

⟨22⟩ 𝜃 ′ = pm([𝜓 ′
𝑖
]𝑚2 , [𝜑

′
𝑖
]𝑚2 ,Vs)

⟨23⟩ return {𝑥 ↦→ 𝜑1} ∪ 𝜃 ′

⟨24⟩ return Failure
endfunction

(b) Pattern Matching Algorithm

Fig. 8. Implementation and Algorithms of the Proof Rules in Fig. 2

this paper, we use the following intuitive order, which follows the fact that our base case is reached
by a successful basic proof.
We proceed by a number of passes. In each pass, we first order the goals within each 𝑂𝑏𝑠 ∈

𝑂𝑟𝑑𝑒𝑟𝑆𝑒𝑡 . We then consider the order of 𝑂𝑟𝑑𝑒𝑟𝑆𝑒𝑡 by comparing the last goal in each set 𝑂𝑏𝑠 ∈
𝑂𝑟𝑑𝑒𝑟𝑆𝑒𝑡 . Subsequent passes will not undo the work of the previous passes, but instead work on
the goals and/or sets of goals which are tied in previous passes. Below are a few things to note.
(1) Goals without recursive patterns on the RHS are prioritized.
(2) Goals with recursive patterns on the RHS but not on the LHS are considered next.
(3) Goals with fewer existential variables are prioritized.

5.2 Matching Algorithms
As discussed in Section 4.2, our proof framework is parametric in two matching algorithms: cm
used by (match-ctx) and pm used by (pm). We discuss these two algorithms below.

5.2.1 Context Matching. Procedure cm is used to check whether the inner context can be matched
with the outer context. For example, suppose we have the following proof goal:

⊢ 𝐶outer [∀𝑦. (𝐶 ′ ⊸ 𝜑 ′)] → 𝜓 (5)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:24 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

cm(𝐶outer ,𝐶
′, 𝑦) takes as inputs the outer context𝐶outer , the inner context𝐶 ′ and a list of quantifier

variables 𝑦. To check if 𝐶 ′ can be matched by (a part of) 𝐶outer , it builds the following proof goal:

⊢ 𝐶outer → ∃𝑦.𝐶 ′ (6)

In (5), what we want is to initialize the universal variables ∀𝑦 in order for the inner context 𝐶 ′ to
be matched with some part of 𝐶outer . That is also the purpose of using the existential variables ∃𝑦
in (6). The change of the quantifier 𝑦 from universal to existential is because we have moved the
inner context 𝐶 ′ from LHS to RHS.

To deal with (6), cmwill call themodified version of the Prove function in Figure 8a. The difference
between the modified version and the Prove function is only on the returning result. Specifically,
apart from returning true if the Prove function returns true, the modified version additionally (1)
returns the remaining, unmatched part of the LHS , denoted 𝐶rest , after consuming all the matched
constraints from the RHS, and (2) collects the instantiation of 𝑦, denoted 𝜃 , when applying rule (pm).
(Note that𝐶rest may contain structure patterns as we have seen in the SL examples.) Specifically, if
we can prove (6), we have ⊢ 𝐶outer → 𝐶 ′𝜃 . Furthermore,𝐶rest is the remaining part after removing
the constraint of 𝐶 ′𝜃 from 𝐶outer , so we have 𝐶rest [𝐶 ′𝜃 [𝐶 ′𝜃 ⊸ 𝜑 ′𝜃]] → 𝜓 . As a result, we now
can proceed to prove new proof goal 𝐶rest [𝜑 ′𝜃] → 𝜓 .

5.2.2 Pattern Matching. Procedure pm, used by rule (pm), implements a naive, brute-force algorithm
as shown in Fig. 8b that does matchingmodulo associativity and/or associativity-and-commutativity.
Procedure pm takes as input

• a list of “pattern” patterns [𝜓𝑖]𝑚1 ≡ [𝜓1, . . . ,𝜓𝑚];
• a list of “term” patterns [𝜑 𝑗]𝑚1 ≡ [𝜑1, . . . , 𝜑𝑚];
• a set of existential variables Vs with Vs ∩⋃𝑛

1 FV(𝜑 𝑗) = ∅ and Vs ⊆ ⋃𝑚
1 FV(𝜓𝑖).

Then it returns Failure or the match result 𝜃 with domains(𝜃) ⊆ Vs and𝜓𝑖𝜃 ≡ 𝜑𝑖 , for all 𝑖 .

6 EVALUATION
We implemented our proof framework in theK framework (http://kframework.org).K has a modular
notation for defining rewrite systems. Since our proof framework is essentially a rewriting system
that rewrites/reduces proof goals to sub-goals, it is convenient to implement it in K.
As discussed in Section 1, we evaluated our prototype implementation using four representa-

tive logical systems for fixpoint reasoning: first-order logic extended with least fixpoints (LFP),
separation logic (SL), linear temporal logic (LTL), and reachability logic (RL). Our evaluation
plan is as follows. For SL, we used the 280 benchmark properties collected by the SL-COMP’19
competition [Sighireanu et al. 2019]. These properties are entailment properties about various
inductively-defined heap structures, including several hand-crafted, challenging structures. For
LTL, we considered the (inductive) axioms in the complete LTL proof system (see, e.g., [Goldblatt
1992; Lichtenstein and Pnueli 2000]). For LFP and RL, we considered the program verification of a
simple program sum that computes the total sum from 1 to a symbolic input 𝑛. We shall use two
different encodings to capture the underlying transition relation: the LFP encoding defines it as a
binary predicate and the RL encoding defines it as a reachability rule (Section 3.4.3).

Before we discuss our evaluation results, we would like to point out that it would be unreasonable
to expect that a unified proof framework can outperform the state-of-the-art provers and algorithms
for all specialized domains from the first attempt. We believe that this is possible and within our
reach in the near future, but it will likely take several years of sustained effort. We firmly believe
that such effort will be worthwhile spending, because if successful then it will be transformative for
the field of automated deduction and thus program verification. Here, we focus on demonstrating
the generality of our proof framework. We shall also report the difficulties that we experienced.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

http://kframework.org

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:25

Table 1. Selected separation logic properties, automatically proved by our prover

sorted_list(𝑥,𝑚𝑖𝑛)→ list(𝑥)
sorted_list1(𝑥, 𝑙𝑒𝑛,𝑚𝑖𝑛) → list1(𝑥, 𝑙𝑒𝑛)
sorted_list1(𝑥, 𝑙𝑒𝑛,𝑚𝑖𝑛) → sorted_list(𝑥,𝑚𝑖𝑛)
sorted_ls(𝑥,𝑦,𝑚𝑖𝑛,𝑚𝑎𝑥) ∗ sorted_list(𝑦,𝑚𝑖𝑛2) ∧𝑚𝑎𝑥 ≤ 𝑚𝑖𝑛2 → sorted_list(𝑥,𝑚𝑖𝑛)
lr(𝑥,𝑦) ∗ list(𝑦)→ list(𝑥)
lr(𝑥,𝑦)→ ll(𝑥,𝑦)
ll(𝑥,𝑦) → lr(𝑥,𝑦)
ll1(𝑥,𝑦, 𝑙𝑒𝑛1) ∗ ll1(𝑦, 𝑧, 𝑙𝑒𝑛2) → ll1(𝑥, 𝑧, 𝑙𝑒𝑛1+𝑙𝑒𝑛2)
lr1(𝑥,𝑦, 𝑙𝑒𝑛1) ∗ list1(𝑦, 𝑙𝑒𝑛2)→ list1(𝑥, 𝑙𝑒𝑛1+𝑙𝑒𝑛2)
ll1(𝑥, 𝑙𝑎𝑠𝑡, 𝑙𝑒𝑛) ∗ (𝑙𝑎𝑠𝑡 ↦→ 𝑛𝑒𝑤) → ll1(𝑥, 𝑛𝑒𝑤, 𝑙𝑒𝑛 + 1)
dls(𝑥,𝑦) ∗ dlist(𝑦)→ dlist(𝑥)
d̂ls1(𝑥,𝑦, 𝑙𝑒𝑛1) ∗ d̂ls1(𝑦, 𝑧, 𝑙𝑒𝑛2) → d̂ls1(𝑥, 𝑧, 𝑙𝑒𝑛1+𝑙𝑒𝑛2)
dls1(𝑥,𝑦, 𝑙𝑒𝑛1) ∗ dlist1(𝑦, 𝑙𝑒𝑛2)→ dlist1(𝑥, 𝑙𝑒𝑛1+𝑙𝑒𝑛2)
avl(𝑥, ℎ𝑔𝑡,𝑚𝑖𝑛,𝑚𝑎𝑥,𝑏𝑎𝑙𝑎𝑛𝑐𝑒)→ bstree(𝑥, ℎ𝑔𝑡,𝑚𝑖𝑛,𝑚𝑎𝑥)
bstree(𝑥, ℎ𝑒𝑖𝑔ℎ𝑡,𝑚𝑖𝑛,𝑚𝑎𝑥)→ bintree(𝑥, ℎ𝑒𝑖𝑔ℎ𝑡)

Our first evaluation is based on the standard separation logic benchmark set collected by SL-
COMP’19 [Sighireanu et al. 2019]. These benchmarks are considered challenging because they are
related to heap-allocated data structures along with user-defined recursive predicates crafted by
participants to challenge the competitors. Among the benchmarks, we focus on the qf_shid_entl
division that contains entailment problems about inductive definitions. This division is considered
the hardest one, specifically because many of its tests require proofs by induction. As such, this
division is a good case study for testing the generality of our generic proof framework. Furthermore,
heap provers are currently considered to have the most powerful implementations of automated
inductive reasoning, so we would not be far from the truth considering a comparison of our
prototype with these as a comparison with the state-of-the-art in automated inductive reasoning.
To set up our prover for the SL benchmarks, we instantiate it with the set ΓSL of axioms that

captures SL, as given in Section 3.4.1. Note that the associativity and commutativity of 𝜑1 ∗ 𝜑2 are
handled by the built-in pattern matching algorithms (see Fig. 8b), so the most important axioms are
the two specifying non-zero locations and no-overlapped heap unions. The experimental results
show that our generic prover can prove 265 of the 280 benchmark tests, placing it third place among
all participants.

Interestingly, we noted that (frame) is not necessary for most tests. Only 12 out of the 265 tests
used (frame) reasoning. More experiments are needed to draw any firm conclusion, but it could
be (frame) reasoning mostly improves performance, as it reduces the matching search space and
thus proof search terminates faster, but does not necessarily increase the expressiveness of the
prover. The 15 tests that our prover cannot handle come from the benchmarks of automata-based
heap provers [Enea et al. 2017; Iosif et al. 2013]. These benchmarks demand more sophisticated
SL-specific reasoning that require more complex properties about heaps/maps than what our prover
can naively derive from the ΓSL theory with its current degree of automation; while we certainly
plan to handle those as well in the near future, we would like to note that they are not related
to fixpoint reasoning, but rather to reasoning about maps. The two provers that outperform our
generic prover, Songbird and S2S, are both specialized for SL. Compared with generic provers such
as Cyclist [Brotherston et al. 2012], our prover proves 13 more tests.

Table 1 illustrates some of the more interesting SL properties that our prover can verify automat-
ically. These are common lemmas about heap structures that arise and are collected when verifying
real-world heap-manipulating programs. For example, the property on the first line says that a

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

161:26 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Table 2. Axioms in the complete LTL proof system, automatically proved by our prover

(k□) □(𝜑1 → 𝜑2) → (□𝜑1 → □𝜑2)
(ind) 𝜑 ∧ □(𝜑 → ◦𝜑) → □𝜑
(u1) 𝜑1 𝑈 𝜑2 → ♢𝜑2

(u2.1) 𝜑1 𝑈 𝜑2 → 𝜑2 ∨ 𝜑1 ∧ ◦(𝜑1 𝑈 𝜑2)
(u2.2) 𝜑2 ∨ 𝜑1 ∧ ◦(𝜑1 𝑈 𝜑2) → 𝜑1 𝑈 𝜑2

sorted list is also a list, a typical verification condition arising in formal verification. Table 1 also
shows several proof goals about singly-linked lists and list segments (specified by predicates ls, list,
ll, lr, etc.), doubly-linked lists and list segments (specified by predicates dls, dlist, etc.), and trees.
Our second study is to automatically prove the inductive axioms in the complete LTL proof

system, shown in Table 2, whereas the proof tree of the most interesting of them, (ind), has been
given in Section 4.3.4. Note that LTL is essentially a structure-less logic, as its formulas are only
built from temporal operators and propositional connectives, and its models are infinite traces of
states that have no internal structures and are modeled as “points”. The structure-less-ness of LTL
made fixpoint reasoning for it simpler, as no context reasoning or frame reasoning was needed.
Our final study considers a simple program sum that computes the total from 1 to a symbolic

input 𝑛. We do the verification of sum following two approaches: RL and LFP. The reachability logic
(RL) approach has been illustrated in Section 4.3.5. For LFP, program configurations are encoded
as FOL terms and the program semantics is encoded as a binary FOL predicate that captures
the transition relation. In particular, reachability is defined as a recursive predicate based on the
semantics. Our prover then becomes a (language-independent) program verifier, different from
Hoare-style verification (where a language-specific verification condition generator is required).
Following a similar idea, we also considered the prototypical heap-manipulating program reverse
that reverses a singly-linked list, whose complete proof tree we exile to [Chen et al. 2020b].
We ran these tests on a single core virtual machine with 8GB of RAM. The SL-COMP’19 tests

took a total 13 hours to finish, including two outliers that took approximately one and three hours
to complete. The two LTL tests took approximately three minutes, while the ten first order logic
tests took seven minutes to complete and the sum program takes a minute to complete. To reiterate,
we do not expect our prover to outperform specialized provers this early in its development. These
results do, however, show that a unified, powerful and efficient proof framework is within reach.

In summary, we evaluated our generic proof framework using four different logical systems and
demonstrated its generality with respect to fixpoint reasoning. We find it encouraging that our
generic framework is comparable in terms of automation with specialized state-of-the-art inductive
provers for SL, while at the same time also works within other, distinct domains, such as LTL
and program verification of partial correctness. We have noticed that one major bottleneck of our
implementation is its relatively weak support for non-fixpoint reasoning, such as pattern matching
and standard FOL reasoning. In the near future, we plan to improve the non-fixpoint reasoning of
our prover, which shall increase its effectiveness at domain reasoning, and not only. We also plan
to investigate smarter proof search strategies, which shall improve its efficiency and performance.

7 CONCLUSION
We proposed a unified proof framework for automated fixpoint reasoning based on matching
logic, which allows us to encode formulae in other logical systems almost verbatim and reason
about them using one generic but fixed set of proof rules. We explained why the existing proof
system of matching logic is too low-level and not suitable for automated reasoning, and then we
proposed a new proof framework containing higher-level proof rules and proved its soundness. We
demonstrated the generality and effectiveness of our proof framework using four distinct logical

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:27

systems from first-order logic with least fixpoints and separation logic to program verification.
Our experimental results show that our generic proof framework is competitive among specialized
provers and algorithms. We hope our work presented in this paper brings some evidence that a
unified proof framework for automated inductive formal reasoning is possible.

ACKNOWLEDGMENTS
We warmly thank the anonymous OOPSLA reviewers and our shepherd. Their wit and dedication
has helped us improve the presentation. This work was supported in part by NSF CNS 16-19275.
This material is based upon work supported by the United States Air Force and DARPA under
Contract No. FA8750-18-C-0092. This research is also partly supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

REFERENCES
David Baelde, Dale Miller, and Zachary Snow. 2010. Focused inductive theorem proving. In Proceedings of the 5th International

Joint Conference on Automated Reasoning (IJCAR’10). Springer, Edinburgh, UK, 278–292. https://doi.org/10.1007/978-3-
642-14203-1_24

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and
Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11).
Springer, Berlin, Heidelberg, 171–177.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A decidable fragment of separation logic. In Proceedings of
the 24th International Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’04).
Springer, Heidelberg, Germany, 97–109. https://doi.org/10.1007/978-3-540-30538-5_9

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Symbolic execution with separation logic. In Proceedings of
the 3rd Asian conference on Programming Languages and Systems (APLAS’05). Springer, Tsukuba, Japan, 52–68. https:
//doi.org/10.1007/11575467_5

Nikolaj Bjørner and Joe Hendrix. 2009. Linear functional fixed-points. In Proceedings of the 21st International Conference on
Computer Aided Verification (CAV’09). Springer, Grenoble, France, 124–139. https://doi.org/10.1007/978-3-642-02658-4_13

Patrick Blackburn, Maarten de Rijke, and Yde Venema. 2001. Modal logic. Cambridge University Press, New York, NY, USA.
Denis Bogdănaş and Grigore Roşu. 2015. K-Java: A complete semantics of Java. In Proceedings of the 42nd Symposium on

Principles of Programming Languages (POPL’15). ACM, Mumbai, India, 445–456. https://doi.org/10.1145/2676726.2676982
William W. Boone. 1958. The word problem. Proceedings of the National Academy of Sciences 44, 10 (1958), 1061–1065.

https://doi.org/10.1073/pnas.44.10.1061
Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. 2009. A logic-based framework for reasoning

about composite data structures. In Proceedings of the 20th International Conference on Concurrency Theory (CONCUR’09).
Springer, Bologna, Italy, 178–195. https://doi.org/10.1007/978-3-642-04081-8_13

James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. 2011. Automated cyclic entailment proofs in separation
logic. In Proceedings of the 23rd International Conference on Automated Deduction (CAV’11). Springer, Utah, USA, 131–146.

James Brotherston, Carsten Fuhs, Juan A. Navarro Pérez, and Nikos Gorogiannis. 2014. A Decision Procedure for Satisfiability
in Separation Logic with Inductive Predicates. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS) (Vienna, Austria) (CSL-LICS ’14). ACM, New York, NY, USA, Article 25, 10 pages. https://doi.org/10.1145/
2603088.2603091

James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. 2012. A generic cyclic theorem prover. In Programming
Languages and Systems, Ranjit Jhala and Atsushi Igarashi (Eds.). Springer, Kyoto, Japan, 350–367.

James Brotherston and Max Kanovich. 2014. Undecidability of propositional separation logic and its neighbours. J. ACM 61,
2, Article 14 (April 2014), 43 pages. https://doi.org/10.1145/2542667

Xiaohong Chen, Dorel Lucanu, and Grigore Roşu. 2020a. Initial algebra semantics in matching logic. Technical Report
http://hdl.handle.net/2142/107781. University of Illinois at Urbana-Champaign.

Xiaohong Chen and Grigore Roşu. 2019. Matching 𝜇-logic. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS’19). ACM, Vancouver, Canada, 1–13.

Xiaohong Chen and Grigore Roşu. 2020. A general approach to define binders using matching logic. In Proceedings of the
25th ACM SIGPLAN International Conference on Functional Programming (ICFP’20). ACM/IEEE.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

https://doi.org/10.1007/978-3-642-14203-1_24
https://doi.org/10.1007/978-3-642-14203-1_24
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-642-02658-4_13
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1073/pnas.44.10.1061
https://doi.org/10.1007/978-3-642-04081-8_13
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1145/2603088.2603091
https://doi.org/10.1145/2542667

161:28 Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu

Xiaohong Chen, Minh-Thai Trinh, Nishant Rodrigues, Lucas Peña, and Grigore Roşu. 2020b. Towards a unified proof
framework for automated fixpoint reasoning using matching logic. Technical Report. University of Illinois at Urbana-
Champaign. http://hdl.handle.net/2142/108369

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. 2012. Automated verification of shape, size and bag
properties via user-defined predicates in separation logic. Science of Computer Programming 77, 9 (Aug. 2012), 1006–1036.
https://doi.org/10.1016/j.scico.2010.07.004

Duc-Hiep Chu, Joxan Jaffar, and Minh-Thai Trinh. 2015. Automatic induction proofs of data-structures in imperative pro-
grams. In Proceedings of the 36th Annual ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’15). ACM, Portland Oregon, 457–466. https://doi.org/10.1145/2737924.2737984

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen, Wolfram Schulte,
and Stephan Tobies. 2009. VCC: A practical system for verifying concurrent C. In Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’09). Springer, Munich, Germany, 23–42. https://doi.org/
10.1007/978-3-642-03359-9

Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. 2016. Semantics-based program verifiers
for all languages. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’16). ACM, Amsterdam, The Netherlands, 74–91. https://doi.org/10.1145/
2983990.2984027

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the 14th International conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08). Springer, Budapest, Hungary, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

Constantin Enea, Ondřej Lengál, Mihaela Sighireanu, and Tomáš Vojnar. 2017. Compositional entailment checking for a
fragment of separation logic. Formal Methods in System Design 51, 3 (Dec. 2017), 575–607. https://doi.org/10.1007/s10703-
017-0289-4

Zoltán Ésik. 1997. Completeness of Park induction. Theoretical Computer Science 177, 1 (1997), 217–283. https://doi.org/10.
1016/S0304-3975(96)00240-X

Robert Goldblatt. 1992. Logics of Time and Computation (2. ed.). Number 7 in CSLI Lecture Notes. Center for the Study of
Language and Information, Stanford, CA.

Yuri Gurevich and Saharon Shelah. 1985. Fixed-point extensions of first-order logic. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (SFCS’85). IEEE, Portland, OR, 346–353.

Chris Hathhorn, Chucky Ellison, and Grigore Roşu. 2015. Defining the undefinedness of C. In Proceedings of the 36th annual
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15). ACM, Portland Oregon,
336–345. https://doi.org/10.1145/2813885.2737979

Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian, Dwight Guth, Brandon Moore, Yi
Zhang, Daejun Park, Andrei Ştefănescu, and Grigore Roşu. 2018. KEVM: A complete semantics of the Ethereum virtual
machine. In Proceedings of the 2018 IEEE Computer Security Foundations Symposium (CSF’18). IEEE, Oxford, UK, 204–217.
http://jellopaper.org.

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct. 1969), 576–580. https:
//doi.org/10.1145/363235.363259

Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Trans. Softw. Eng. 23, 5 (1997), 279–295. https://doi.org/10.1109/
32.588521

Radu Iosif, Adam Rogalewicz, and Jiri Simacek. 2013. The tree width of separation logic with recursive definitions. In
Proceedings of the 24th International Conference on Automated Deduction (CADE’13). Springer, New York, USA, 21–38.
https://doi.org/10.1007/978-3-642-38574-2_2

Bart Jacobs, Jan Smans, and Frank Piessens. 2010. A quick tour of the VeriFast program verifier. In Proceedings of the
8th Asian Symposium of Programming Languages and Systems (APLAS’10). Springer, Shanghai, China, 304–311. https:
//doi.org/10.1007/978-3-642-17164-2

Jens Katelaan, Christoph Matheja, and Florian Zuleger. 2019. Effective Entailment Checking for Separation Logic with
Inductive Definitions. In Tools and Algorithms for the Construction and Analysis of Systems, Tomáš Vojnar and Lijun
Zhang (Eds.). Springer International Publishing, Cham, 319–336.

Laura Kovács, Simon Robillard, and Andrei Voronkov. 2017. Coming to terms with quantified reasoning. In Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for
Computing Machinery, New York, NY, USA, 260–270. https://doi.org/10.1145/3009837.3009887

Dexter Kozen. 1982. Results on the propositional 𝜇-calculus. In Proceedings of the 9th Colloquium on Automata, Languages
and Programming. Springer, Ninth Colloquium Aarhus, Denmark, 348–359. https://doi.org/10.1007/BFb0012782

Shuvendu Lahiri and Shaz Qadeer. 2008. Back to the future: Revisiting precise program verification using SMT solvers. In
Proceedings of the 35th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’08).
ACM, California USA, 171–182. https://doi.org/10.1145/1328438.1328461

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

http://hdl.handle.net/2142/108369
https://doi.org/10.1016/j.scico.2010.07.004
https://doi.org/10.1145/2737924.2737984
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1007/978-3-642-03359-9
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/s10703-017-0289-4
https://doi.org/10.1007/s10703-017-0289-4
https://doi.org/10.1016/S0304-3975(96)00240-X
https://doi.org/10.1016/S0304-3975(96)00240-X
https://doi.org/10.1145/2813885.2737979
http://jellopaper.org
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/32.588521
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-17164-2
https://doi.org/10.1007/978-3-642-17164-2
https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1007/BFb0012782
https://doi.org/10.1145/1328438.1328461

Towards a Unified Proof Framework for Automated Fixpoint Reasoning using Matching Logic 161:29

K. Rustan M. Leino and Michał Moskal. 2014. Co-induction simply. In Proceedings of the 19th International Symposium on
Formal Methods (FM’14). Springer, Singapore, 382–398. https://doi.org/10.1007/978-3-319-06410-9

Orna Lichtenstein and Amir Pnueli. 2000. Propositional Temporal Logics: Decidability and Completeness. Logic Journal of
the IGPL 8, 1 (2000), 55–85. http://dblp.uni-trier.de/db/journals/igpl/igpl8.html#LichtensteinP00

Christof Löding, Madhusudan Parthasarathy, and Lucas Peña. 2017. Foundations for natural proofs and quantifier instantia-
tion. Proceedings of the ACM on Programming Languages (POPL’17) 2, 1 (2017), 1–30. https://doi.org/10.1145/3158098

Dorel Lucanu and Grigore Roşu. 2007. CIRC: A circular coinductive prover. In Proceedings of the 2nd international conference
on Algebra and coalgebra in computer science (CALCO’07). Springer, Berlin, Heidelberg, Bergen, Norway, 372–378.

The Coq development team. 2004. The Coq proof assistant reference manual. LogiCal Project.
Daejun Park, Andrei Ştefănescu, and Grigore Roşu. 2015. KJS: A complete formal semantics of JavaScript. In Proceedings

of the 36th annual ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’15). ACM,
Portland Oregon, 346–356. https://doi.org/10.1145/2737924.2737991

Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2011. Separation logic + superposition calculus = heap theorem
prover. In Proceedings of the 32nd annual ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’11). ACM, California, USA, 556–566. https://doi.org/10.1145/1993498.1993563

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating separation logic using SMT. In Proceedings of
the 25th International Conference on Computer Aided Verification (CAV’13). Springer, Saint Petersburg, Russia, 773–789.
https://doi.org/10.1007/978-3-642-39799-8_54

Amir Pnueli. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foundations of Computer
Science (FCS’77). IEEE, IEEE, DC, USA, 46–57.

Zvonimir Rakamarić, Jesse Bingham, and Alan J. Hu. 2007a. An inference-rule-based decision procedure for verification
of heap-manipulating programs with mutable data and cyclic data structures. In Proceedings of the 8th International
Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’07). Springer, California, USA, 106–121.
https://doi.org/10.1007/978-3-540-69738-1_8

Zvonimir Rakamarić, Roberto Bruttomesso, Alan J. Hu, and Alessandro Cimatti. 2007b. Verifying heap-manipulating
programs in an SMT framework. In Proceedings of the 5th International Symposium on Automated Technology for Verification
and Analysis (ATVA’07). Springer, Tokyo, Japan, 237–252. https://doi.org/10.1007/978-3-540-75596-8_18

Silvio Ranise and Calogero Zarba. 2006. A theory of singly-linked lists and its extensible decision procedure. In Proceedings
of the 4th IEEE International Conference on Software Engineering and Formal Methods (SEFM’06). IEEE, Macao, China,
206–215. https://doi.org/10.1109/sefm.2006.7

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th Annual IEEE
Symposium on Logic in Computer Science (LICS’02). IEEE, Copenhagen, Denmark, 55–74. https://doi.org/10.1109/lics.
2002.1029817

Grigore Roşu. 2017. Matching logic. LogicalMethods in Computer Science 13, 4 (Dec. 2017), 1–61. https://doi.org/10.23638/lmcs-
13(4:28)2017

Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M. Moore. 2013. One-path reachability logic. In Proceedings
of the 28th Symposium on Logic in Computer Science (LICS’13). IEEE, New Orleans, USA, 358–367. https://doi.org/10.1109/
lics.2013.42

Mihaela Sighireanu, Juan A. Navarro Pérez, Andrey Rybalchenko, Nikos Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina
Serban, Jens Katelaan, Christoph Matheja, Thomas Noll, Florian Zuleger, Wei-Ngan Chin, Quang Loc Le, Quang-Trung
Ta, Ton-Chanh Le, Thanh-Toan Nguyen, Siau-Cheng Khoo, Michal Cyprian, Adam Rogalewicz, Tomas Vojnar, Constantin
Enea, Ondrej Lengal, Chong Gao, and Zhilin Wu. 2019. SL-COMP: Competition of solvers for separation logic. In Tools
and Algorithms for the Construction and Analysis of Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard
Steffen (Eds.). Springer International Publishing, Cham, 116–132.

Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2019. Automated mutual induction proof in
separation logic. Formal Aspects of Computing 31, 2 (April 2019), 207–230. https://doi.org/10.1007/s00165-018-0471-5

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific journal of Mathematics 5, 2 (1955),
285–309. https://doi.org/10.2140/pjm.1955.5.285

The Isabelle development team. 2018. Isabelle. https://isabelle.in.tum.de/.
Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating induction for solving Horn clauses. In Proceedings of

the 29th International Conference on Computer Aided Verification (CAV’17). Springer, Heidelberg, Germany, 571–591.
https://doi.org/10.1007/978-3-319-63390-9_30

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 161. Publication date: November 2020.

https://doi.org/10.1007/978-3-319-06410-9
http://dblp.uni-trier.de/db/journals/igpl/igpl8.html#LichtensteinP00
https://doi.org/10.1145/3158098
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/1993498.1993563
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-540-69738-1_8
https://doi.org/10.1007/978-3-540-75596-8_18
https://doi.org/10.1109/sefm.2006.7
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.23638/lmcs-13(4:28)2017
https://doi.org/10.23638/lmcs-13(4:28)2017
https://doi.org/10.1109/lics.2013.42
https://doi.org/10.1109/lics.2013.42
https://doi.org/10.1007/s00165-018-0471-5
https://doi.org/10.2140/pjm.1955.5.285
https://isabelle.in.tum.de/
https://doi.org/10.1007/978-3-319-63390-9_30

	Abstract
	1 Introduction
	2 Related Work
	3 Matching Logic Preliminaries
	3.1 An Informal Overview of Matching Logic
	3.2 Matching Logic Syntax and Semantics: Formal Definitions
	3.3 The Hilbert Proof System and Its Limitations on Automated Reasoning
	3.4 Important Logics Defined as Matching Logic Theories

	4 Automated Proof Framework for Matching Logic
	4.1 Reasoning Modules
	4.2 Framework Description
	4.3 Examples

	5 Algorithms
	5.1 Top-Level Proof Search Algorithm
	5.2 Matching Algorithms

	6 Evaluation
	7 Conclusion
	Acknowledgments
	References

