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Abstract. This invited paper reports the current progress on smart
contract verification with the K framework in a language-independent
style.

1 Introduction and Motivation

Flaws of blockchain programming languages or virtual machines have led and
continue to lead to cryptocurrency software bugs that directly translate into sig-
nificant money loss [6,4,1,3,14]. Formal analysis and verification of blockchain
languages and virtual machines is thus very much in need. Traditionally, this
is done by giving a formal model of the program-to-verify, either by a manual
construction in theorem provers such as Coq [10] or Isabelle [15], or by a trans-
lation to some intermediate verification languages (IVL) such as Boogie [2] or
Why [7]. Developing program models in theorem provers can be expensive and
is only done to mission critical systems, while a translation to IVL may loose
program behavior. In either case, a trusted formal semantics of the target lan-
guage together with a proof of correctness of either the program models built in
Coq or Isabelle, or the translation to IVL, are required. Such correctness proofs
are often done manually on paper and can be expensive. They are also sensitive
to the target languages and programs, so small changes on the verification tar-
gets require to redo the proofs. Due to the fact that blockchain programming
languages are often moving targets and have a rather rapid development cycle,
with new versions being released and deployed in a weekly pace, the traditionally
program verification approaches are often too expensive to use in practice.

The K framework [13] adopts a language-independent approach to program
verification; it was derived from our firm belief that every programming lan-
guage must have a formal semantics, and that all formal or informal analysis
tools for that language should be automatically generated from that semantics
in a correct-by-construction manner. Fig. 1 illustrates the K approach. In terms
of verification, the language-independent verifier is parametric on the semantics
of the language, and it takes as input a program and a specification of the pro-
gram and solves the verification problem (see Fig. 2). Extensive experiments and
case studies confirm that this language-independent approach to verification is
feasible. For example, [5,11] show that when instantiated with formal seman-
tics of real languages such as C, Java, and JavaScript, the generic K program



Fig. 1: The K framework approach
to language design and formal veri-
fication.

Fig. 2: A language-independent pro-
gram verifier takes a program and
its specification, and verifies it with
respect to its formal semantics.

verifier is able to check well-known challenging functional correctness proper-
ties of heap manipulation programs with mutable data structures, such as AVL
trees, read-black trees, and even the Schorr-Waite graph marking algorithm, all
implemented in each of C, Java, and JavaScript. Nothing was needed in the
generic verifier specific to any of these languages, except for their formal seman-
tics. When it comes to blockchain languages, the advantage of the K approach
is even more significant, as languages and virtual machines in this field change
at an unusually high rate and thus there is no need to redo the correctness
proofs for either the high-level program models or the translation to IVL. All
verification tools are correct-by-construction, and thus are suitable to the rapid
development cycle of blockchain languages.

In the rest of the paper, we briefly introduce the K framework in Section 2
and summarize the current progress on blockchain languages and smart contracts
verification in Section 3. Then we discuss the general workflow of smart contract
verification with K framework in Section 4, and conclude with future work in
Section 5.

2 An Overview of the K Framework

The K framework is a rewrite-based executable semantics framework for pro-
gramming language design and development. It can be regarded as a meta-
programming language that defines programming languages. As an example, con-
sider the simple imperative language IMP whose syntax is given in Fig. 3. IMP
has arithmetic expressions and the usual assignment, sequential, if-, and while-
statements. Arithmetic expressions are used as conditions where zero means
false and nonzero values mean true. The complete K definition of IMP is given
in Fig. 4. The definition consists of two modules IMP-SYNTAX and IMP. The
module IMP-SYNTAX defines the concrete syntax using the conventional BNF
grammar where terminals are in quotes. Production rules are separated by the
“|” and “>”, where “|” means the two productions (before and after “|”) have
the same precedence while “>” means the production before has higher prece-
dence (binds tighter) than the ones after. In other words, all the other language



Exp ::= Id | Int | Exp + Exp | Exp - Exp

Stmt ::= Id = Exp; | Stmt Stmt | { Exp } | if(Exp) Stmt Stmt | while(Exp) Stmt

Ids ::= Id | Id,Ids

Pgm ::= int Ids; Stmt

Fig. 3: The syntax of the language IMP.

constructs bind tighter than the sequential operator in IMP. Categories Int and
Id are built-in categories for integers and identifiers (program variables), respec-
tively. Exp is the category for expressions, which subsumes Int and Id and has
two productions for plus and minus. Pgm is the category for programs, which
is a declaration of a list of program variables (the category Ids) followed by a
statement. Ids is defined using K’s built-in list template List, whose second
argument is the separating character. In other words, Ids is the category of
comma-separated lists of Id’s.

Attributes are wrapped with braces “[” and “]”. Some attributes are only
for parsing purpose while others may carry additional semantic meaning and
affect how K executes programs. The attribute left means left-associative. The
attribute strict defines evaluation contexts, so when K sees the expression
e1 + e2 (and similarly e1 - e2), it first evaluates e1 to an integer i1 and e2 to
an integers i2 in a fully nondeterministic way, and then evaluates i1 + i2. The
attribute strict(1) means if K sees the if-statement if(B) P Q it should only
evaluates the first argument B to a value v while keeping the other arguments
P and Q untouched. Therefore, the two branches of if-statement are frozen and
will not be evaluated if the condition is not a value. The attribute bracket

tells K that certain productions are only used for grouping, and K will not
generate nodes in its internal abstract syntax trees for those productions. Here,
parentheses are used to group arithmetic expressions while curly brackets are
used to group program statements. The empty curly bracket “{}” represents the
empty statement.

The module IMP defines the operational semantics of IMP in terms of a set
of human readable rewrite rules. The category KResult tells K which categories
contain non-reducible values. It helps K perform efficiently with evaluation con-
texts. The only category of values here is Int. Configuration is a core concept
in the K framework. A configuration of a language holds all information that is
needed to execute programs, gathered in cells. Simple languages such as IMP
have only a few cells, while complex real languages such as C usually have more
than one hundred. In K, configurations are defined using using a syntax bor-
rowed from the XML format. The configuration of IMP contains two cells: the k
cell and the state cell. For clarity, we put all cells in configuration in a top cell:
the T cell, but it is not mandatory. The k cell holds the remaining computation
(program) that needs to execute and the state cell holds a mapping from pro-
gram variables to their values in the memory. Initially, the state cell holds the



module IMP-SYNTAX

imports DOMAINS-SYNTAX

syntax Exp ::= Int | Id

| Exp "+" Exp [left, strict]

| Exp "-" Exp [left, strict]

| "(" Exp ")" [bracket]

syntax Stmt ::= Id "=" Exp ";" [strict(2)]

| "if" "(" Exp ")" Stmt Stmt [strict(1)]

| "while" "(" Exp ")" Stmt

| "{" Stmt "}" [bracket]

| "{" "}"

> Stmt Stmt [left]

syntax Pgm ::= "int" Ids ";" Stmt

syntax Ids ::= List{Id, ","}

endmodule

module IMP

imports IMP-SYNTAX

imports DOMAINS

syntax KResult ::= Int

configuration <T> <k> $PGM:Pgm </k> <state> .Map </state> </T>

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>

rule I1 + I2 => I1 +Int I2

rule I1 - I2 => I1 -Int I2

rule <k> X = I:Int; => . ...</k> <state>... X |-> (_ => I) ...</state>

rule S1:Stmt S2:Stmt => S1 ~> S2 [structural]

rule if (I) S _ => S requires I =/=Int 0

rule if (0) _ S => S

rule while(B) S => if(B) {S while(B) S} {} [structural]

rule {} => . [structural]

rule <k> int (X, Xs => Xs); S </k> <state> ... (. => X |-> 0) </state> [structural]

rule int .Ids; S => S [structural]

endmodule

Fig. 4: The complete K definition of the language IMP, consisting of two modules.

empty map, denoted as .Map. In K, we use dot “.” to denote “nothing”, and
.Map means the nothing has type Map. The k cell initially contains a program
$PGM:Pgm, where $PGM is a special K variable name. To execute an IMP program,
say sum.imp, the name of the source file is passed to K, and K will parse the
source file using the concrete syntax and associate the result (of category Pgm)
to the variable $PGM:Pgm in the k cell.

K defines the language semantics in terms of a set of rewrite rules. These
rewrite rules specify a transition system on configurations. We point out two
important characteristics of rewrites rules in K. The first important characteristic
of rewrites rules of K is that K supports local rewrites. In other words, the rewrite
symbol “=>” does not need to appear in the top level, but can appear locally in
which the rewrite happens. Take the lookup rule as an example. Instead of

rule <k> X:Id ...</k> <state>... X |-> I ...</state>

=> <k> I ...</k> <state>... X |-> I ...</state>

one writes

rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>



to reduce space and avoid duplicates. The “...” in K is a shortcut for things
that “exist and do not matter and change.” The rule says that if the top of the
computation in the k cell is a program variable X:Id, and at the same time X

binds to the integer I somewhere in the state cell, then rewrite X:Id to I.
The second characteristic of rewrite rules in K is that K also supports con-

figuration inference and configuration completion. The rewrite rules may not
explicitly mention all cells in configuration, but just related ones. K will infer
the implicit cells and complete the configuration automatically. For example,
instead of

rule <T> <k> I1 + I2 => I1 +Int I2 ... </k> <state> M </state> </T>

one writes

rule I1 + I2 => I1 +Int I2

which is not only a lot simpler, but also extensible. If we add a new cell to the
configuration, we will not need to modify any of the existing rules.

The rest of the semantics is self-explanatory. The rule for assignment state-
ments X = I:Int; updates the value bound to X in the state cell, as specified
in the local rewrite X |-> (_ => I). Here the underscore “_” is an anonymous
K variable; it matches whatever integer that is currently bound to X. After the
update, the assignment statement is removed from the k cell, as specified by
the local rewrite X = I:Int; => .. Recall that the dot “.” means nothing, and
rewriting something to a dot means removing it. Attribute structural means
the associated rewrite rule is not counted as an explicit step by K, but an implicit
(quite) one. It should not affect how K executes the programs. The empty state-
ment {} simply reduces to nothing. The last two rules process the declaration
list of program variables and initialize their values to zero.

3 Semantics of Blockchain Virtual Machines in K

KEVM. The Ethereum Virtual Machine (EVM) [16] is a low-level bytecode
language running on a general-purpose “world computer” built by the blockchain
cryptocurrency Ethereum. Small programs called smart contracts are allowed to
execute on it, often written in high-level languages such as Solidity (https://
github.com/ethereum/solidity) or Vyper (https://github.com/ethereum/vyper)
and then compiled to EVM. To verify smart contracts, a formal semantics of
the low-level EVM language was developed [9] using the K framework, which
we refer to as KEVM. As far as we know, KEVM is the first fully executable
formal semantics of the EVM language. It is tested against the official 40,683-
test stress test suite for EVM implementations that comes with the official C++
implementation of the EVM.

Based on KEVM, the startup Runtime Verification formally verified several
smart contracts (https://runtimeverification.com/smartcontract), and the re-
sult is available for public access in the spirit of open-source (https://github.
com/runtimeverification/verified-smart-contracts). Since December 2017, a
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number of smart contracts have been verified with the K framework; the follow-
ing is a list of them in chronological order (older to newer):

– Vyper ERC20 Token Contact (https://github.com/ethereum/vyper);
– HackerGold (HKG) ERC20 Token Contract (https://github.com/ether-camp/

virtual-accelerator);
– OpenZeppelin’s ERC20 Token Contract (https://github.com/OpenZeppelin/

openzeppelin-solidity);
– Bihu Smart Contract

(https://github.com/runtimeverification/verified-smart-contracts/tree/
master/bihu);

– DSToken ERC20 Token Contract (https://github.com/dapphub/ds-token)
– Ethereum Casper Contract

(https://github.com/runtimeverification/verified-smart-contracts/tree/
master/casper)

A surprising and pleasant observation in the process of the development of
KEVM and the verification of smart contracts is that the EVM interpreter au-
tomatically generated by K based on EVM formal semantics is only one order
of magnitude slower on average than the official C++ implementation [8]. Since
smart contracts are often small programs, the above suggests that KEVM can
serve not only as a reference model of the EVM but also as an actual implemen-
tation.

IELE. Like EVM, IELE (https://github.com/runtimeverification/iele-semantics)
is another virtual machines bytecode language. Unlike EVM, IELE was designed
in the spirit of easier formal verification, and thus it is significantly different from
EVM in various aspects. For example, IELE is a register-based machine, and it
supports unbounded integers (as unbounded arithmetics is often easier than
bounded arithmetics in verification). IELE was designed purely in a semantic-
based style using K, and an automatically-generated virtual machine is derived
from its formal semantics, which makes it the first virtual machine whose devel-
opment and implementation was completely powered by formal methods.

4 Smart Contract Verification

In this section, we briefly discuss the workflow of smart contract verification,
taking the open resource of the work of ERC20 verification (https://github.com/
runtimeverification/verified-smart-contracts/tree/master/erc20) as a case study
example. See [12] for more details.

The ERC20 token contract (abbrev. as ERC20 below) is one of the most pop-
ular and valuable smart contracts. An informal standard for ERC20 can be found
at (https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md), which we
refer to as the ERC20 standard. The ERC20 standard essentially defines an API
with an informal specification. Fig. 5 shows an example of a piece of informal
specification of the function transfer in the ERC20 standard.
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Fig. 5: The informal specification of the function transfer in the ERC20 stan-
dard.

rule

<k> transfer(To, Value) => true ... </k>

<caller> From </caller>

<account> <id> From </id>

<balance>

BalanceFrom => BalanceFrom -Int Value

</balance> </account>

<account> <id> To </id>

<balance> BalanceTo => BalanceTo +Int Value

</balance> </account>

<log> Log => Log Transfer(From, To, Value)

</log>

requires To =/=Int From andBool Value >=Int 0

andBool Value <=Int BalanceFrom

andBool BalanceTo +Int Value <=Int MAXVALUE

rule

<k> transfer(From, Value)

=> throw ...

</k>

<caller> From </caller>

<id> From </id>

<balance> BalanceFrom </balance>

requires Value <Int 0

orBool Value >Int BalanceFrom

Fig. 6: The formal specification of the function transfer in ERC20-K. The rule
on the left shows the case when the transfer succeeds and the caller is different
from the receiver. The rule on the right shows the case when the transfer fails
and the caller is the same as the receiver.

The first step of the verification is to take the informal ERC20 standard
and refine it to a formal specification. The outcome of the refinement, which we
refer to as ERC20-K, is a K definition that captures the complete functionality
of the ERC20 API (https://github.com/runtimeverification/erc20-semantics).
For example, the above informal specification is divided into four cases in ERC20-
K, namely all four combinations of whether the transfer succeeds or fails, and
whether the caller is the same as or different from the receiver. Fig. 6 gives
the formal specification for two of the fours cases. ERC20-K therefore formally
specifies the entire ERC20 API and its intended behavior. It is worth mentioning
how fast it is to develop such a complete executable formal specification in K:
the fully documented ERC20-K took a developer about two weeks to finish, with
one week writing the rules and another week revising it, fixing bugs, and writing
documentation.

Since smart contracts are compiled to lower-level EVM bytecode, we need
to refine the high-level ERC20-K specification further, to an EVM-level for-
mal specification, referred to as ERC20-EVM, which is based on KEVM and
takes all EVM-specific details into account. Finally, various smart contracts have
been verified with the ERC20-EVM specification and the built-in program ver-
ification infrastructure in K. We refer interested readers to [12] as well as our

https://github.com/runtimeverification/erc20-semantics


open source project (https://github.com/runtimeverification/verified-smart-
contracts) for more experiment details and technical discussion.

5 Conclusion and Future Work

We hope this paper demonstrates that language-independent verification is pos-
sible and feasible, and is especially preferable for blockchain languages and smart
contracts verification. With only one executable semantics, it suffices to generate
all the tools in a correct-by-construction manner, and thus eliminate the need
for redundant and error-prone proofs of correctness. In particular, for emerging
fields like the blockchain and smart contracts where new languages and programs
are released on a weekly or even daily basis, the language-independent approach
seems to be the only viable solution. We hope that this wave of blockchain lan-
guages and smart contracts verification will raise interest from the community
in language-independent semantics frameworks like K and drives application of
the techniques to all languages. As of future work, two sides of research are
needed. On the foundation side, a language-independent (program) logic is in
need, which allows us to state and reason about any properties of any programs
written in any programming languages. On the implementation side, automation
of tools is needed.

Acknowledgments: We thank the K team (http://www.kframework.org/index.
php/People) for their sustained dedication and help, as well as to numerous other
contributors to the K framework.
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