
Technical Report:

Initial Algebra Semantics in Matching Logic

Xiaohong Chen1, Dorel Lucanu2, and Grigore Roşu1

1University of Illinois at Urbana-Champaign, Champaign, USA
2Alexandru Ioan Cuza University, Iaşi, Romania

xc3@illinois, dlucanu@info.uaic.ro, grosu@illinois.edu

July 24, 2020

Abstract

Matching logic is a unifying foundational logic for defining formal programming language semantics,
which adopts a minimalist design with few primitive constructs that are enough to express all properties
within a variety of logical systems, including FOL, separation logic, (dependent) type systems, modal
µ-logic, and more. In this paper, we consider initial algebra semantics and show how to capture it
by matching logic specifications. Formally, given an algebraic specification E that defines a set of
sorts (of data) and a set of operations whose behaviors are defined by a set of equational axioms, we
define a corresponding matching logic specification, denoted INITIALALGEBRA(E), whose models are
exactly the initial algebras of E. Thus, we reduce initial E-algebra semantics to the matching logic
specifications INITIALALGEBRA(E), and reduce extrinsic initial E-algebra reasoning, which includes
inductive reasoning, to generic, intrinsic matching logic reasoning.

1 Introduction

Initial algebra semantics is a main approach to formal programming language semantics based on algebraic
specifications and their initial models. It originated in the 1970s, when algebraic techniques started to be
applied to specify basic data types such as lists, trees, stacks, etc. The original paper on initial algebra
semantics [Goguen et al., 1977] reviewed various existing algebraic specification techniques and showed that
they were all initial models, making the concept of initiality explicit for the first time in formal language
semantics. Since 1977, initial algebra semantics has gathered much research interest and become a well-
established field, leading to a profound study on its foundations as well as applications, tools, libraries,
packages, provers [Goguen et al., 2000; Clavel et al., 2020; Diaconescu and Futatsugi, 1998; Pitts, 2019;
van den Brand et al., 2001; Astesiano et al., 2002].

The key idea of initial algebra semantics is as follows. Let E be an algebraic specification that defines the
sorts of data and the operations on the data, whose behaviors are axiomatized by equations. In the class C of
all algebras satisfying E, an algebra I ∈ C is initial iff for any A ∈ C there is a unique morphism hA : I → A.
According to this view, program syntax is an initial algebra, and C includes all possible implementations, or
semantic models, of E. A formal semantics is then a way to associate the syntax with the intended semantic
model A ∈ C, where the unique morphism hA is the semantic function mapping syntax to semantics. As
an example, the Scott-Strachey denotational semantics [Scott, 1982] uses complete partial orders as the
intended semantic models, and inductively defines denotations for each syntactic constructs to be the unique
morphisms.

Initiality has a close relationship with induction. Since program syntax is often defined inductively, the
initial algebra I enjoys the principle of induction, which can then be mapped to the semantic models through

1

xc3@illinois
dlucanu@info.uaic.ro
grosu@illinois.edu

the unique morphisms. Note that this use of the initiality often occurs without being noticed; e.g. when we
apply “structural induction on program syntax” to prove “properties about the semantic models”, we are
mapping the inductive reasoning on the initial algebra (program syntax) to its semantics, via the unique
morphism. We explain this in detail in Section 9.

Contribution

We show how to internalize initial algebra semantics within matching logic [Roşu, 2017; Chen and Roşu,
2019a, 2020a], the logical foundation of the language semantics framework K (http://kframework.org),
which was used to define complete formal semantics to several real-world languages: C [Hathhorn et al.,
2015], Java [Bogdănaş and Roşu, 2015], JavaScript [Park et al., 2015], Ethereum VM [Hildenbrandt et al.,
2018], x86 [Dasgupta et al., 2019], etc. The gist of matching logic is that it allows us to specify and reason
about program configurations compactly and modularly, using a formalism that keeps and respects the
original syntactic/semantic structures (programs, continuations, heaps, stacks, etc) as are, without losing
them in translations. Matching logic is minimal and expressive. Its formulas, called patterns, are built from
only these syntactic constructs:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ

where x ranges over elements; X ranges over sets; σ is a symbol that can represent functions, predicates,
modal operators, etc., and can be applied to other patterns like in (σ ϕ); ⊥ and ϕ1 → ϕ2 build propositional
constraints; ∃ builds quantification; and µ builds least fixpoints (induction). The entire metatheory of
matching logic, including proof theory and model theory, can be presented in one page (Fig. 17), and a
proof checker can be implemented in fewer than 250 LOC [K Team, 2020]. Yet, matching logic is very
expressive and captures many logical systems axiomatically as specifications, including FOL, separation
logic, λ-calculus, (dependent) type systems, Hoare logic, rewriting logic, reachability logic, temporal logics,
and modal µ-logic [Roşu, 2017; Chen and Roşu, 2019a, 2020a]. Unfortunately, matching logic is only partly
supported by K, as a foundation for its decision procedures, interactive theorem proving, and proof search
heuristics. K’s support for initial algebra semantics is limited and hidden under the hood; users cannot
make explicit use of matching logic’s fixpoint patterns yet to carry out inductive reasoning. We are actively
working with the K team to adopt the results in this paper and incorporate them in their interactive theorem
prover.

Organization

We review related work on initial algebra in Section 2 and basic concepts in Section 3. Then we propose a
new variant of matching logic that has direct support for induction in Section 4 and use it to methodologically
capture sorts in Section 5. Then, in Section 6, we define the matching logic specification EQSPEC(E) that
captures all the algebras that satisfy a given algebraic equational specification E; in Sections 7-8, we define
the matching logic specification INITIALALGEBRA(E) that captures precisely the initial algebras of E; term
algebras are considered as a special case in Section 7; in Section 9, we show how INITIALALGEBRA(E) sup-
ports inductive reasoning in initial algebras. We discuss extensions of initial algebra semantics in Section 10
and conclude in Section 11.

The appendix contains all proof details.

2 Related Work

Related work on algebraic specification is vast. [Kutzler and Lichtenberger, 1983] gives an early bibliography
of 870 papers that are about “algebraically specified abstract data types”. Here, we focus on (1) the
applications of initial algebra semantics to programming languages and (2) the related work that connect
initial algebra semantics with other logical systems and/or frameworks.

2

http://kframework.org

The practical use of initial algebra semantics in programming started with the OBJ system [Goguen
et al., 2000] based on order-sorted equational logic and parameterized programming. Its successors include
Maude [Clavel et al., 2020] that is based on membership equational logic [Meseguer, 1997] and rewriting
logic [Meseguer, 1992], and CafeOBJ [Diaconescu and Futatsugi, 1998] based on hidden algebra [Goguen and
Malcolm, 2000]. Other systems include ASF+SDF [van den Brand et al., 2001] that uses initial semantics for
its modules, and CASL [Astesiano et al., 2002] that allows to declaratively specify the initiality of the intended
models. Initial algebra semantics also has applications in other aspects of programming. [Fiore et al., 1999]
uses initial algebra semantics to define syntax with variable binding. [Dybjer, 1997] characterizes W-types as
initial algebras of polynomial endofunctors, and the result is lifted to higher inductive types [Sojakova, 2015].
[Rutten and Turi, 1993] studies the duality between initial algebra semantics and final coalgebra semantics.

Many implementations of algebraic approaches are based on type theory using proof assistants like
Coq [Coq Team, 2020] and Agda [Norell, 2009]. [Capretta, 1999] may be the first Coq implementation
of the fundamentals such as signatures, algebras, quotient algebras, and term algebras, where sorts are de-
fined as setoids (i.e., sets paired with an equivalence relation) and operations as constructors of the inductive
types. The same idea is used by several frameworks of constructive algebraic hierarchy, consisting of im-
plementations of various concrete algebras such as groups, rings, and fields [Geuvers et al., 2002; Spitters
and van der Weegen, 2011; Garillot et al., 2009]. More recent work are based on homotopy type theory and
formalize homotopy-initial algebras [Sojakova, 2015; Awodey et al., 2012, 2017; Kaposi et al., 2019; Fiore
et al., 2020]. [Gunther et al., 2018] is a recent Agda implementation of algebraic specifications and initial
algebras.

In general, modern type systems have more powerful features than initial algebra semantics, and it is not
surprising that initiality can be defined by inductive types and their constructors, whose logical foundation,
often a variant of (inductive) type theory, has complex and powerful proof rules (e.g., [Coq Team, 2020])
and native support for induction, fixpoints, and higher-order reasoning. The other direction is to give
type systems an initial algebra semantics. [Coquand and Paulin, 1990] gives a set-theoretic semantics to
inductive types using initial algebras. [Abel et al., 2008] gives an algebraic presentation of the Martin-Löf’s
intuitionistic type theory and uses initiality to formulate the correctness of the type-checking algorithm.
[Johann and Ghani, 2007] suggests that initial algebra is sufficient as a semantics for functional programming
languages with nested types.

Compared to powerful type systems and even initial algebra semantics, matching logic has a relatively
small and straighforward proof/model theory (see Fig. 17). [Chen and Roşu, 2020a] investigates type systems
in matching logic, but inductive reasoning is left as future work. This paper systematically studies induction
via initial models; the resulting specification of initial algebra, which also fits in one page (Fig. 18), captures
both the models and the formal inductive reasoning.

3 Initial Algebra Semantics

Here we review the main concepts, definitions, and results about initial algebra semantics. In this paper we
follow the standard many-sorted approach in [Goguen and Meseguer, 1985; Meseguer and Goguen, 1985],
which we recall in detail in Sections 3.1-3.4 for self-containedness and notation. The reader interested in
variants, extensions, more insights and the history of initial algebra semantics, is referred to [Ehrig and Mahr,
1985; Manca and Salibra, 1992; Goguen et al., 1977; Goguen and Meseguer, 1992; Sannella and Tarlecki,
2012]; we include a brief discussion in Section 3.5.

3.1 Signatures, Algebras, and Terms

Definition 3.1. A (many-sorted) signature (S, F), often abbreviated F , consists of:

1. a finite set S of sorts denoted s, s1, s2, . . . ; and

2. a finite (S∗ × S)-indexed set F = {Fs1...sn,s}s1,...,sn,s∈S of operation symbols or just operations.

3

For each f ∈ Fs1...sn,s, we call s1, . . . , sn the argument sorts and s the return sort, where n is the number of
arguments that f takes. When n = 0, we write f ∈ Fε,s and call it a constant operation.

Remark 3.2. The requirement that S and F are finite is for presentation convenience in this section. We
discuss generalizations where S and F are allowed to be infinite in Section 10.

Definition 3.3. Given a signature (S, F), an (S, F)-algebra A, or simply an F -algebra, consists of:

1. a (possibly empty) carrier set As for each sort s ∈ S; and

2. an operation interpretation Af : As1 × · · · ×Asn → As for each operation f ∈ Fs1...sn,s.
Definition 3.4. Let (S, F) be a signature. An S-sorted variable set V is a set of variables denoted x, y, . . .
where each variable x ∈ V is associated with its sort denoted sort(x) ∈ S. The set TF,s(V) of terms of sort
s with variables from V is inductively defined by the following grammar:

ts ::= x where x ∈ V and sort(x) = s

| f(ts1 , . . . , tsn) where f ∈ Fs1...sn,s and ts1 ∈ TF,s1(V), . . . , tsn ∈ TF,sn(V)

We define TF (V) =
⋃
s∈S TF,s(V) as the set of all terms with variables from V . The set TF,s = TF,s(∅)

consists of the ground terms of sort s. We define TF =
⋃
s∈S TF,s to be the set of all ground terms.

Definition 3.5. Let (S, F) be a signature, A be an (S, F)-algebra, and V be an S-sorted variable set. An
A-valuation % : V → A is a function such that %(x) ∈ Asort(x) for all x ∈ V . It yields a term interpretation
%̄ : TF (V)→ A as expected: (1) %̄(x) = %(x) for all x ∈ V ; and (2) %̄(f(ts1 , . . . , tsn)) = Af (%̄(ts1), . . . , %̄(tsn))
for all f(ts1 , . . . , tsn) ∈ TF (V).

Remark 3.6. When V = ∅, the unique “empty valuation” is denoted ∅ : ∅ → A. It yields the term
interpretation ∅̄ : TF → A for all ground terms. For clarity, we define evalA(t) = ∅̄(t) for all ground terms
t ∈ TF and abbreviate it as eval(t) when A is understood.

3.2 Equational Specifications and Deduction

Definition 3.7. Given a signature (S, F), an (F -)equation has the form ∀V . t = t′ where V is a finite
variable set and t, t′ ∈ TF,s(V) are two terms of same sort s. We use e, e1, e2, . . . to range over equations.
When V = ∅, we call ∀∅. t = t′ a ground equation, where t, t′ ∈ TF,s are ground terms.

Definition 3.8. Given signature (S, F), an (S, F)-algebra A validates an equation ∀V . t = t′, or that the
equation holds in A, written A �Alg ∀V . t = t′, if %̄(t) = %̄(t′) for all valuations % : V → A.

Definition 3.9. An equational specification (S, F,E) consists of a signature (S, F) and a finite set E of
F -equations. An (S, F,E)-algebra, or simply an (F,E)-algebra or just E-algebra, is an F -algebra A that
validates all equations in E, written A �Alg E. We define E �Alg e to mean that A �Alg e for all E-algebras
A. We often abbreviate the equational specification (S, F,E) as (F,E) or simply E.

There are many (equivalent) equational proof systems in the literature; the following is standard:

Definition 3.10. For an equational specification E, we define equational deduction E `Alg e as:

1. axiom: if (∀V . t = t′) ∈ E then E `Alg ∀V . t = t′;

2. reflexivity: E `Alg ∀V . t = t;

3. symmetry: if E `Alg ∀V . t = t′ then E `Alg ∀V . t′ = t;

4. transitivity: if E `Alg ∀V . t = t′ and E `Alg ∀V . t′ = t′′ then E `Alg ∀V . t = t′′;

5. congruence: if E `Alg ∀V . ti = t′i for 1 ≤ i ≤ n then E `Alg ∀V . f(t1, . . . , tn) = f(t′1, . . . , t
′
n);

6. substitution: if E `Alg ∀V . t = t′ and θ : V → TF (U) then E `Alg ∀U. θ(t) = θ(t′).

The following theorem states that equational deduction is sound and complete.

Theorem 3.11. For any equational specification E and equation e, E `Alg e if and only if E �Alg e.

4

3.3 Congruences and Quotient Algebras

Definition 3.12. Given a signature (S, F) and an F -algebra A, a congruence R on A is an S-indexed family
of equivalence relations Rs ⊆ As × As for each sort s ∈ S, such that if (ai, bi) ∈ Rsi for 1 ≤ i ≤ n then
(Af (a1, . . . , an), Af (b1, . . . , bn)) ∈ Rs, for all f ∈ Fs1...sn,s and ai, bi ∈ Asi , 1 ≤ i ≤ n.

Definition 3.13. Given a signature (S, F), an F -algebra A, and a congruence R on A, we define the
R-quotient algebra A/R as the F -algebra that consists of:

1. the carrier set A/R,s = {[a]R | a ∈ As} for each s ∈ S, where [a]R = {b ∈ As | (a, b) ∈ Rs} is the
R-equivalence class of a ∈ As;

2. the operator interpretation A/R,f : A/R,s1 × · · · × A/R,sn → A/R,s for each f ∈ Fs1...sn,s, defined as
A/R,f ([a1]R, . . . , [an]R) = [Af (a1, . . . , an)]R for all [ai]R ∈ A/R,si , 1 ≤ i ≤ n.

Indeed, the operator interpretation A/R,f is well-defined because R is a congruence.

3.4 Term Algebras, Quotient Term Algebras, and Initiality

Definition 3.14. Given a signature (S, F), the (S, F)-term algebra, simply the F -term algebra or just term
algebra, is the F -algebra that consists of:

1. the carrier set Ts = TF,s for s ∈ S, where TF,s is the set of all ground terms of sort s; and

2. the operator interpretation Tf : TF,s1×· · ·×TF,sn → TF,s for each f ∈ Fs1...sn,s, defined as Tf (ts1 , . . . , tsn) =
f(ts1 , . . . , tsn) for all tsi ∈ TF,si , 1 ≤ i ≤ n.

For notational convenience, we use TF to denote the F -term algebra.

Equational deduction yields a congruence relation on the term algebra:

Proposition 3.15. Given an equational specification (S, F,E), let 'E be the S-indexed family of relations
'E,s ⊆ TF,s × TF,s for each sort s ∈ S, defined as t'E,s t iff E `Alg ∀∅. t = t′ for all t, t′ ∈ TF,s. Then, 'E
is a congruence on the term algebra TF .

Remark 3.16. We abbreviate [t]'E as [t]E , or just [t] when E is understood. We also abbreviate t'E,s t′
as t'E t′ or simply t' t′. We write TF/E,s = {[t]E | t ∈ TF,s} as the set of 'E-equivalence classes of terms
of sort s and TF/E =

⋃
s∈S TF/E,s as the set of all 'E-equivalence classes.

A quotient term algebra is then the 'E-quotient of the term algebra. Formally,

Definition 3.17. Given an equational specification (S, F,E), the (S, F,E)-quotient term algebra, simply
the (F,E)-quotient term algebra or just E-quotient term algebra, is the 'E-quotient of the F -term algebra
TF , which for notational simplicity we denote as TF/E . Specifically,

1. TF/E,s is the carrier set for each s ∈ S; and

2. TF/E,f : TF/E,s1 ×· · ·×TF/E,sn → TF/E,s is the operation interpretation for each f ∈ Fs1...sn,s, defined
as TF/E,f ([ts1], . . . , [tsn]) = [f(ts1 , . . . , tsn)] for all [ts1] ∈ TF/E,s1 , . . . , [tsn] ∈ TF/E,sn .

Term algebras and quotient term algebras are the canonical, concrete examples of initial algebras. In this
paper we work with the most standard definition of initial algebra, which is that of an initial object in the
category of algebras. We first recall algebra morphisms:

Definition 3.18. Let A and B be algebras of the same signature (S, F). An (algebra) morphism h : A→ B
is a function such that h(Af (a1, . . . , an)) = Bf (h(a1), . . . , h(an)) for all f ∈ Fs1...sn,s and ai ∈ Asi , 1 ≤ i ≤ n.
In addition, if the inverse h−1 : B → A of h exists and is also a morphism, then h is an isomorphism and A
and B are isomorphic. Isomorphic algebras are regarded as the same.

5

Definition 3.19. Let (S, F,E) be an equational specification. An initial (S, F,E)-algebra I, simply an
initial (F,E)-algebra or just initial E-algebra, is an E-algebra such that for every E-algebra A, there exists
a unique morphism hA : I → A. When E = ∅, we abbreviate initial (S, F, ∅)-algebras as the initial (S, F)-
algebras or simply initial F -algebras.

Theorem 3.20. The initial (F,E)-algebra exists and is unique up to isomorphism. In particular, the term
algebra TF is the initial F -algebra and the quotient term algebra TF/E is the initial (F,E)-algebra.

Remark 3.21. Initial E-algebras are initial objects in the category of E-algebras.

As a specification, (F,E) states the existence of some data, operations, and equational properties. The
initial (F,E)-algebra TF/E is a “minimal” realization of the specification (F,E), in the sense that all its
elements are representable by F -terms and it satisfies no other equations except those derived from E. In
other words, it satisfies the famous “no junk, no confusion” slogan, firstly proposed in [Burstall and Goguen,
1982]. In the following, we formally define the no-junk and no-confusion properties, and recall that an algebra
satisfies no-junk and no-confusion iff it is the initial algebra.

Theorem 3.22. Let (S, F,E) be an equational specification. For any E-algebra A, we say that:

1. A satisfies no-confusion, if for any ground equation e, we have A �Alg e implies E `Alg e.

2. A satisfies no-junk, if for any element a ∈ A there is a ground term ta such that evalA(ta) = a.

A satisfies no-confusion and no-junk if and only if A is the initial (F,E)-algebra.

No-confusion states that A does not equate ground terms unless provably equal. In other words, if ground
terms t and t′ are interpreted the same in A, then E `Alg ∀∅. t = t′, which implies that E �Alg ∀∅. t = t′

(Theorem 3.11), that is, t and t′ are interpreted the same in all E-algebras. No-junk states that A does not
include elements that are not representable (or reachable) by ground terms.

Theorem 3.22 states that “no junk, no confusion” is an equivalent characterization of initial algebras.
Compared with Definition 3.19, Theorem 3.22 is more convenient when we want to show that a given algebra
is an initial algebra. Our matching logic specification of initial algebras was inspired by “no-junk and no-
confusion”, and in Sections 7 and 8 we will use Theorem 3.22 to show that the algebras contained within
the matching logic models are indeed initial algebras.

3.5 Applications and Extensions

Initiality has been considered in various contexts, including many-sorted FOL [Wang, 1952; Enderton, 1972],
order-sorted algebras [Goguen and Meseguer, 1992; Poigné, 1990], membership equational logic [Meseguer,
1997], parametric specifications [Bergstra and Klop, 1983; Ehrig et al., 1984], functor-based approaches [Rut-
ten and Turi, 1993; Fiore and Hur, 2009], etc. The palette of initial semantics applications is also large,
including abstract data types [Goguen et al., 1977; Guttag and Horning, 1978; Ehrig and Mahr, 1985], for-
mal semantics [Guttag et al., 1985; Goguen and Malcolm, 1996], abstract syntax [Fiore et al., 1999], and
inductive/dependent type systems used by proof assistants such as Agda [Norell, 2007], Coq [Coq Team,
2020], and Lean [de Moura et al., 2015].

Our matching logic approach to initial algebra semantics is not limited to the standard variant. In
Section 10, we discuss three extensions that are known to be practical but also challenging. The first is
parametric specifications that support sorts like PList〈s〉, parametric in a sort s; (parametric) operations
and axioms are defined once, and then instantiated by different sorts to avoid duplication. The second is
order-sorted specifications that add a subsorting relation between sorts, e.g. Nat ≤ Int , to mean the inclusion
between the corresponding data types in models. The third is simultaneous inductive-recursive definitions
that support mutually recursive definitions of sets and operations.

6

4 A New Variant of Matching Logic

Matching logic was originally proposed in [Roşu and Schulte, 2009] as a means to specify and reason about
programs compactly and modularly, using a formalism that keeps and respects the semantic structure and
does not lose them through encodings or translations. The key concept in matching logic is that of patterns,
which are used to specify the program configurations that match them. Since 2009, matching logic has
been developed into a unifying logic for programming language semantics. On foundations, [Roşu, 2017;
Chen and Roşu, 2019a, 2020a] show that matching logic captures various popular logical systems used in
defining formal language semantics, such as FOL, Hoare logic [Hoare, 1969], separation logic [Reynolds,
2002], modal logics [Hughes and Cresswell, 1968], temporal logics [Prior, 1955], λ-calculus [Church, 1941],
type systems [Martin-Löf, 1975], and so on, including their variants and extensions. On implementa-
tions, matching logic has been adopted as the logical foundation of the K formal semantic framework
(http://kframework.org). The complete, executable formal semantics of many real-world languages, in-
cluding C [Hathhorn et al., 2015], Java [Bogdănaş and Roşu, 2015], JavaScript [Park et al., 2015], Ethereum
VM [Hildenbrandt et al., 2018], and x86 [Dasgupta et al., 2019], have been formalized in K, which means
that the formal semantics of these languages become matching logic specifications, and their formal analysis
tools have been automatically generated by K from their formal semantics.

There are several variants of matching logic. Most of them have a many-sorted flavor where a sort
set S is given and fixed by a (matching logic) signature. While the many-sorted setting is convenient for
capturing models and structures that are also many-sorted, [Chen and Roşu, 2020a] pointed out that it
actually becomes an obstacle in defining more complex sort/type structures, including those mentioned in
Section 3.5. Therefore, they proposed a new variant as an alternative, called the functional variant of
matching logic, where the many-sorted infrastructure is dropped and sorts are instead defined axiomatically.
The authors then showed that the original many-sorted setting can be easily restored in the functional variant
by appropriate axiomatization.

In this paper, we are interested in finding the most basic and simplest logic that can capture initial algebra
semantics, and thus we build upon the functional variant of matching logic proposed in [Chen and Roşu,
2020a]. However, that variant has no support for induction or recursion or fixpoints, which are crucial to
capture initiality. Therefore, our first contribution is an extension with fixpoint patterns. To avoid inventing
new terminology, we still call our extension matching logic. We will thoroughly develop its metatheory.
In particular, we define the semantics of fixpoint patterns by the Knaster-Tarski fixpoint theorem [Tarski,
1955] and propose a set of proof rules for fixpoint reasoning. In Sections 4.1-4.2, we define the syntax and
semantics of matching logic, and in Section 4.3, we define matching logic specifications. In Section 4.4, we
define the proof system.

4.1 Matching Logic Syntax

Throughout the paper, we fix two disjoint, unsorted variable sets EV and SV , where EV includes element
variables denoted x, y, . . . and SV includes set variables denoted X,Y,

Definition 4.1. Let Σ be an at most countable set of (constant) symbols called a matching logic signature.
Symbols are denoted σ, σ′, σ1, σ2, The set PatternΣ of Σ-patterns, simply called patterns, is inductively
defined by the following grammar, where x ∈ EV , X ∈ SV , and σ ∈ Σ:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ if ϕ is positive in X (1)

A pattern ϕ is positive in X iff X does not occur in an odd number of times of the left-hand sides of
implications ϕ1 → ϕ2. We abbreviate PatternΣ as Pattern when Σ is understood.

Remark 4.2. Compared to [Chen and Roşu, 2020a], our syntax in Definition 4.1 adds the µ-binder, which is
used to build the least fixpoint pattern µX.ϕ. As we will see later in this paper, it is the key construct that
captures initial algebra semantics axiomatically. Our syntax also extends first-order modal µ-calculus [Groote
and Mateescu, 1999], which generalizes the classical (propositional) modal µ-calculus with FOL quantifica-
tion. Since propositional µ-calculus is a fragment of matching logic [Chen and Roşu, 2019a] and FOL

7

http://kframework.org

quantification is present in the grammar in Eq. (1), first-order modal µ-calculus falls as a methodological
fragment of matching logic.

We call ϕ1 ϕ2 an application pattern, which is left associative. Both ∃x. ϕ and µX.ϕ create the binding
of x and, resp., X into ϕ. The scope of a binder goes as far as possible to the right, so for example,
∃x. y → x should be understood as ∃x. (y → x). We assume the standard notions of free variables FV (ϕ) ⊆
EV ∪ SV , α-equivalence ϕ1 ≡α ϕ2, and capture-free substitution ϕ[ψ/x]. We regard α-equivalent patterns
to be syntactically identical. We define the following notations:

1. ¬ϕ ≡ ϕ→ ⊥;

2. > ≡ ¬⊥;

3. ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2;

4. ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2);

5. ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1);

6. ∀x. ϕ ≡ ¬∃x.¬ϕ;

7. νX.ϕ ≡ ¬µX.¬ϕ[¬X/X].

4.2 Matching Logic Semantics

Matching logic patterns are interpreted on an underlying carrier set. A pattern is interpreted as a set that
includes all the elements that match the pattern. Intuitively, the pattern ⊥ (called bottom) is matched by no
elements, while > (called top) is matched by all elements. Conjunction ϕ1 ∧ ϕ2 is matched by the elements
that match both ϕ1 and ϕ2, disjunction ϕ1 ∨ ϕ2 by the elements that match ϕ1 or ϕ2, negation ¬ϕ by the
elements that do not match ϕ, and implication ϕ1→ϕ2 by all elements a such that if a matches ϕ1 then a
matches ϕ2. Element variable x is matched by the element to which x evaluates (see Definition 4.4). Set
variable X is matched by the set of elements to which X evaluates; this set can be empty, or total, or any
subset of the carrier set. Quantification ∃x. ϕ is matched by the elements that match ϕ for some valuation of
x; that is, it abstracts away the irrelevant part x from the matched part ϕ. Least fixpoint µX.ϕ is matched
by the smallest set X of elements that satisfies the equation X = ϕ (this is interesting when X occurs in ϕ).

Now, we formally define matching logic models and the valuation of patterns.

Definition 4.3. Let Σ be a matching logic signature. A Σ-model M , or simply a model, consists of:

1. a nonempty carrier set, which we also denote M ;

2. an application interpretation • : M ×M → P(M), where P(M) is the powerset; and

3. for every σ ∈ Σ, a symbol interpretation σM ⊆M as a subset.

Let us compare matching logic models to FOL models. Both types of models are associated with a
nonempty carrier set, but FOL constants are interpreted as elements while matching logic symbols/constants
are interpreted as subsets of the carrier set. Similarly, FOL interprets binary operations as functions M ×
M → M that return one element while matching logic interprets the application as a function that returns
a set. We use the terminology functional interpretation to refer to how FOL interprets functions and
terms. Note that the FOL functional interpretation is a special instance of the matching logic set-theoretic
interpretation: due to the bijection between an element a and the singleton {a}, any set M is isomorphic to
the set of all singletons of M .

Definition 4.4. Let Σ be a matching logic signature and M be a Σ-model. Let •̄ : P(M) × P(M) →
P(M) be the pointwise extension of • , i.e., A •̄ B =

⋃
a∈A,b∈B a • b for A,B ⊆ M . A(n) (M -)valuation

ρ : (EV ∪ SV) → M ∪ P(M) is a function that maps element variables to elements and set variables to
sets, i.e., ρ(x) ∈ M for x ∈ EV and ρ(X) ⊆ M for X ∈ SV . It yields a pattern valuation, written
| |M,ρ : Pattern→ P(M), which is inductively defined as follows:

8

1. |x|M,ρ = {ρ(x)} for x ∈ EV ;

2. |X|M,ρ = ρ(X) for X ∈ SV ;

3. |σ|M,ρ = σM for σ ∈ Σ;

4. |ϕ1 ϕ2|M,ρ = |ϕ1|M,ρ
•̄ |ϕ2|M,ρ;

5. |⊥|M,ρ = ∅;

6. |ϕ1 → ϕ2|M,ρ = M \ (|ϕ1|M,ρ \ |ϕ2|M,ρ);

7. |∃x. ϕ|M,ρ =
⋃
a∈M |ϕ|M,ρ[a/x];

8. |µX.ϕ|M,ρ =
⋂
{A ⊆M | |ϕ|M,ρ[A/X] ⊆ A};

where “\” denotes set difference, ρ[a/x] (resp. ρ[A/X]) is the updated valuation ρ′ such that ρ′(x) = a
(resp. ρ′(X) = A) and agrees with ρ on all the other (element and set) variables in EV ∪ SV \ {x} (resp.
EV ∪ SV \ {X}). We abbreviate |ϕ|M,ρ as |ϕ|ρ when M is understood. When ϕ is a closed pattern, i.e.,
FV (ϕ) = ∅, we abbreviate |ϕ|M,ρ as |ϕ|M or just |ϕ|, because ρ is irrelevant.

Remark 4.5. The above semantic rules are not unexpected. Rules (1) and (2) interpret variables according
to ρ. Rules (3) and (4) interpret symbols and application according to M . For rules (5)-(7), if we regard
∅ as “false” and M as “true”, then these rules become the FOL semantic rules of bottom, implication,
and ∃-quantification, respectively. Rule (8) computes the smallest set A such that |ϕ|M,ρ[A/X] = A, by the

Knaster-Tarski fixpoint theorem [Tarski, 1955]; see Section 4.2.3.

Proposition 4.6. The following propositions hold:

1. |¬ϕ|M,ρ = M \ |ϕ|M,ρ;

2. |ϕ1 ∨ ϕ2|M,ρ = |ϕ1|M,ρ ∪ |ϕ2|M,ρ;

3. |ϕ1 ∧ ϕ2|M,ρ = |ϕ1|M,ρ ∩ |ϕ2|M,ρ;

4. |>|M,ρ = M ;

5. |ϕ1 ↔ ϕ2|M,ρ = M \ (|ϕ1|M,ρ 4 |ϕ2|M,ρ);

6. |∀x. ϕ|M,ρ =
⋂
a∈M |ϕ|ρ[a/x];

7. |νX.ϕ|M,ρ =
⋃
{A ⊆M | A ⊆ |ϕ|M,ρ[A/X]};

where “4” denotes set symmetric difference.

We next discuss three important types of patterns: predicate patterns, functional patterns, and fixpoint
patterns. Intuitively, predicate patterns are the counterpart of FOL formulas; they make “statements”, so
their valuations can only be either true, denoted by total set M , or false, denoted by empty set ∅. Functional
patterns are the matching logic counterpart of FOL terms; they denote elements, so their valuations are
always singletons. Fixpoint patterns create induction and recursion.

4.2.1 Predicate Patterns

Unlike FOL, matching logic patterns can be interpreted as any subsets of the carrier set. Following up
on Remark 4.5, we identify two special sets, M and ∅, and use them to represent (logical) true and false,
respectively. For a pattern ϕ, we call it a predicate (pattern) if |ϕ|M,ρ ∈ {∅,M} for all M and ρ and say
that ϕ holds, if it evaluates to the total carrier set, M . Several important predicates such as equality and
membership will be defined as examples in Section 4.3.1.

9

4.2.2 Functional Patterns

A functional pattern ϕ is one that always evaluates to a singleton set, i.e., for any M and ρ there exists
a ∈ M such that |ϕ|M,ρ = {a}. Therefore, a functional pattern denotes, or is matched by, exactly one
element, so we often blur the semantic distinction between elements and singletons, and regard ϕ as being
the element a. The simplest functional pattern is an element variable x, while more interesting examples
can be built from symbols and application. In Section 4.3.1, we will show how to define functional patterns
axiomatically. More concrete examples are included in Section 4.3.2 and throughout the paper.

4.2.3 Fixpoint Patterns

Given a model M and a valuation ρ, the fixpoint pattern µX.ϕ yields a function F : P(M) → P(M),
defined by F(A) = |ϕ|ρ[A/X] for all A ⊆ M . By the requirement that ϕ is positive in X (Definition 4.1),
we can prove that F is a monotone function, whose unique least fixpoint µF ⊆ M is exactly the valuation
|µX.ϕ|M,ρ. Therefore, µX.ϕ is a direct, logical incarnation of the least fixpoints in powersets into matching
logic patterns. More interestingly, the semantic rule in Definition 4.4(8) inspires an induction principle for
reasoning about fixpoint patterns, which we discuss informally here and formalize in Section 4.4 as the proof
rule (Knaster-Tarski). By Definition 4.4(8), to show that |µX.ϕ|M,ρ ⊆ A for a set A, one only needs to show
that |ϕ|M,ρ[A/X] ⊆ A; or written syntactically, to prove that (µX.ϕ)→ ψA for a pattern/property ψA, one

only needs to prove that ϕ[ψA/X]→ ψA. This general form of inductive reasoning is included in Section 4.4.

4.3 Matching Logic Specifications

Definition 4.7. Let Σ be a matching logic signature and M be a Σ-model. For a Σ-pattern ϕ, we say
that M validates ϕ or ϕ holds in M , written M � ϕ, if |ϕ|M,ρ = M for all valuations ρ. Let Γ be a set of
Σ-patterns called axioms. We say that M validates Γ or M is a Γ-model, if M � ϕ for all ϕ ∈ Γ. For a
Σ-pattern ψ, if M � ψ for all models M � Γ, then we write Γ � ψ. A matching logic specification consists of
a matching logic signature Σ and an axiom set Γ of Σ-patterns.

Below, we give two examples of matching logic specifications. The first example in Section 4.3.1 shows
how to axiomatically capture the true equality in any model M , by which we mean the identity relation over
M , and not any equivalence or congruence relation. Recall that FOL can not capture the true equality but
only congruence relations, which is why FOL has been extended to FOL with equality that adds explicit
syntactic and semantic components to support true equality; see, e.g. [Hamilton, 1978, Definition 5.7]. In
contrast, we will see that true equality can be axiomatically defined using one symbol and one axiom in
matching logic, without the need to extend the logic. Besides, the true equality is used to define other
important mathematical instruments such as membership and set inclusion, all of which are examples of
predicate patterns (Section 4.2.1).

The second example in Section 4.3.2 defines the set of natural numbers as the smallest set built from
zero and the successor function. This example is interesting and important for several reasons. It shows
how to axiomatically define functions and functional patterns (Section 4.2.2). It shows how to axiomatically
define inductive structures, such as natural numbers, using fixpoint patterns (Section 4.2.3). It also forms
the prelude specification given in Section 5, which will be imported and used in the specifications of initial
algebra semantics in Section 7.

4.3.1 The First Example: Capturing Equality

Here we define the specification that captures equality. Specifically, we define a predicate pattern ϕ = ϕ′

that holds iff ϕ equals to ϕ′ in all models. To do that, we introduce an important mathematical instrument
called definedness. A definedness pattern dϕe is a predicate pattern that holds iff ϕ is defined, that is, it is
matched by at least one element.

Definition 4.8. We define DEFINEDNESS in Specification. 1.

10

spec DEFINEDNESS
Symbols: def
Notations:
dϕe ≡ def ϕ

Axioms:
(Definedness) ∀x. dxe

endspec

Specification 1: DEFINEDNESS

For clarity, we propose and use a semi-formal syntax
for writing specification definitions. A specification, like
DEFINEDNESS, is enclosed in the keywords spec and end-
spec and has a name DEFINEDNESS, all in capital letters.
Within it are several declaration keywords: Symbols declares
a list of matching logic symbols; Notations defines a list of no-
tations, where “≡” is read as “is sugar for”; Axioms defines a
list of named axioms. There is a fourth declaration keyword
called Imports that is used to import existing specifications.
We will see one example in Specification 2 shortly.

spec DEFINEDNESS+

Imports: DEFINEDNESS
Notations:
bϕc ≡ ¬d¬ϕe // totality
ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c // (true) equality
ϕ1 ⊆ ϕ2 ≡ bϕ1 → ϕ2c // set inclusion
x ∈ ϕ ≡ x ⊆ ϕ // membership

endspec

Specification 2: DEFINEDNESS+

DEFINEDNESS defines one symbol def , one notation
dϕe, and one axiom ∀x. dxe named (Definedness). (Definedness)
states that every element x is defined. This is in tune
with our intuition about definedness—matching at least one
element—because, indeed, x is matched by exactly one ele-
ment, which is the one to which it evaluates. Now, consider
any model M � DEFINEDNESS and any pattern ϕ. We have
two cases: (1) ϕ is defined in M , or (2) ϕ is undefined. If it
is defined, then there exists at least an element x included in
ϕ. By pointwise extension (Definition 4.7), dxe is included
in dϕe, and since dxe holds by (Definedness), dϕe must also
hold. If ϕ is undefined, then ϕ is the empty set. Also by
pointwise extension, dϕe must also be empty. Thus, dϕe is
a predicate that holds iff ϕ is defined. Formally,

Proposition 4.9. For any M � DEFINEDNESS, pattern ϕ, and valuation ρ:

1. daeM = M for every a ∈M , where daeM = defM •̄ {a} and defM is the interpretation of def ;

2. |dϕe|M,ρ = M if |ϕ|M,ρ 6= ∅; otherwise, |dϕe|M,ρ = ∅.

We use definedness to define equality and also totality, membership, and inclusion in DEFINEDNESS+,
Specification 2. Their semantic meaning is formalized by the following proposition. Note that semantically,
x ∈ ϕ is the same as x ⊆ ϕ. We still define x ∈ ϕ because it fits well the intuition that x is an element in ϕ.

Proposition 4.10. For M � DEFINEDNESS, patterns ϕ,ϕ′, element variable x, and valuation ρ:

1. |bϕc|M,ρ = M if |ϕ|M,ρ = M ; otherwise, |bϕc|M,ρ = ∅;

2. |ϕ = ϕ′|M,ρ = M if |ϕ|M,ρ = |ϕ′|M,ρ; otherwise, |ϕ = ϕ′|M,ρ = ∅;

3. |ϕ ⊆ ϕ′|M,ρ = M if |ϕ|M,ρ ⊆ |ϕ′|M,ρ; otherwise, |ϕ ⊆ ϕ′|M,ρ = ∅;

4. |x ∈ ϕ|M,ρ = M if ρ(x) ∈ |ϕ|M,ρ; otherwise, |x ∈ ϕ|M,ρ = ∅.

4.3.2 The Second Example: Capturing Natural Numbers

Here we define NN in Specification 3 that captures the set N of natural numbers as the smallest set built
from zero and the successor function.

NN imports DEFINEDNESS+ and defines three symbols: N denotes the set of natural numbers; zero
denotes the number zero; and succ denotes the successor function. Intuitively, axiom (Nat Zero) is a typical
axiom, which states that zero is a functional pattern (see Section 4.2.2), and the element that zero denotes is
in N (recall that x is matched by exactly one element). Axiom (Nat Succ) states that for any x in N, (succ x)
is an element in N. Axioms (Nat Succ.1) and (Nat Succ.2) state that zero, (succ zero), (succ succ zero), . . . are
all distinct. Finally, (Nat Domain) defines N as the smallest set D that includes zero and is closed under succ.

11

spec NN

Imports: DEFINEDNESS+

Symbols: N, zero, succ
Axioms:

(Nat Zero) ∃x. x ∈ N ∧ zero = x
(Nat Succ) ∀x. x ∈ N→ ∃y. y ∈ N ∧ succ x = y
(Nat Succ.1) succ zero 6= zero
(Nat Succ.2) ∀x.∀y. x ∈ N ∧ y ∈ N

→ succ x = succ y → x = y
(Nat Domain) N = µD. zero ∨ succ D

endspec

Specification 3: NN

The above intuition about defining functional
patterns and functions in matching logic is of vital
importance to understand the specifications of ini-
tial algebra semantics in later sections. Therefore,
we give the formal details below. Let us consider
a model M � NN, where • : M ×M → P(M) is
the application interpretation, •̄ is its pointwise ex-
tension, and NM , zeroM , succM ⊆ M are the corre-
sponding symbol interpretations. Then, M derives
the standard model of natural numbers as follows,
where for clarity we explicitly specify the axioms
that make the claims true:

Proposition 4.11. For any M � NN, the following properties hold:

1. By axiom (Nat Zero): NM 6= ∅; zeroM is a singleton; and zeroM ⊆ NM ; thus, we can define Mzero ∈ NM
to be the unique element that is in zeroM ;

2. By axiom (Nat Succ): for any m ∈ NM there exists nextm ∈ NM such that succM •̄ {m} = {nextm}; thus,
we can define Msucc : NM → NM to be the unique function such that Msucc(m) = nextm;

3. By axioms (Nat Succ.1) and (Nat Succ.2): Msucc(Mzero) 6= Mzero, and for any m,n ∈ NM , Msucc(m) =
Msucc(n) implies m = n, that is, Msucc is injective;

4. By axiom (Nat Domain): NM is the set {Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . };

5. Thus, (NM ,Mzero ,Msucc) is the standard model of natural numbers.

As a notational convention, we write zeroM and succM for the symbol interpretations given directly
by the matching logic model, and Mzero and Msucc for the elements and/or functions that are derived
from M as above. Similarly, in Section 5 we will define sorts in matching logic, and we will write sM for
the interpretation of the sort name s given directly by the matching logic model, and Ms for the actual
inhabitant set of s derived from M . This way, our matching logic notations are the same as the notations
for carrier sets and operation interpretations of algebras (Definition 3.3).

4.4 Matching Logic Proof System

Matching logic has a fixed Hilbert-style proof system that supports formal reasoning for all specifications Γ.
We write Γ ` ϕ to mean that ϕ is a provable pattern from the axioms in Γ. In this paper, the actual proof
system is not necessary for the technical results, so we exile it to Appendix B. In the following, we review
some important meta-theorems that can be proved about the proof system so as to give intuition about the
types of formal reasoning that are supported in matching logic.

Proposition 4.12. Let Γ be any specification. Then, the following propositions hold:

1. Γ ` ϕ, if ϕ is a tautology over patterns;

2. Γ ` ϕ1 and Γ ` ϕ1 → ϕ2 imply Γ ` ϕ2;

3. Γ ` ϕ[y/x]→ ∃x. ϕ;

4. Γ ` ϕ1 → ϕ2 and y 6∈ FV (ϕ2) imply Γ ` (∃y. ϕ1)→ ϕ2;

5. Γ ` ϕ = ϕ;

6. Γ ` ϕ1 = ϕ2 and Γ ` ϕ2 = ϕ3 imply Γ ` ϕ1 = ϕ3;

12

7. Γ ` ϕ1 = ϕ2 implies Γ ` ϕ2 = ϕ1;

8. Γ ` ϕ1 = ϕ2 implies Γ ` ψ[ϕ1/x] = ψ[ϕ2/x], known as the Leibniz’s law of equality.

9. Γ ` (µX.ϕ) = ϕ[µX.ϕ/X];

10. Γ ` ϕ[ψ/X]→ ψ implies Γ ` (µX.ϕ)→ ψ; this proof rule is denoted (Knaster-Tarski);

where for (5)-(9) we naturally require that Γ defines equality (Section 4.3.1).

Properties (1)-(4) capture standard FOL reasoning, (5)-(8) capture standard equational reasoning, and
(9)-(10) provide standard fixpoint reasoning (cf. [Kozen, 1983, Section 5]). Particularly, rule (9) states that
µX.ϕ is a fixpoint, and thus it is the same after unfolding. Rule (10) characterizes an induction principle
about µX.ϕ, following the discussion in Section 4.2.3. As expected, ` is sound:

Theorem 4.13. For any Γ and ϕ, we have Γ ` ϕ implies Γ � ϕ.

5 Capturing Sorts: Pairs, Tuples, and Functions

Matching logic is unsorted. In this section, we propose a systematic and extensible way to defining arbitrary
sorting structures axiomatically in matching logic and show in detail how to define pair sorts, tuple sorts,
and function sorts as examples. We only discuss these very basic sort constructs here, since they are all
we need to capture many-sorted initial algebra. More complex sort constructs, such as subsorts, parametric
sorts, and recursively-constrained sorts are discussed in Section 10.

5.1 Sorts in Matching Logic

spec SORT

Imports: DEFINEDNESS+

Symbols: inh,Sort
Notations:

[[s]] ≡ inh s
¬sϕ ≡ (¬ϕ) ∧ [[s]]
∀x:s. ϕ ≡ ∀x. x ∈ [[s]]→ ϕ
∃x:s. ϕ ≡ ∃x. x ∈ [[s]] ∧ ϕ
ϕ:s ≡ ∃z :s. ϕ = z
∀x1, . . . , xn :s. ϕ ≡ ∀x1 :s. . . . ∀xn :s. ϕ
∃x1, . . . , xn :s. ϕ ≡ ∃x1 :s. . . . ∃xn :s. ϕ

endspec

Specification 4: SORT

By Definition 4.3, a matching logic model M has only one
universal carrier set. As seen from specification NN of natu-
ral numbers (Section 4.3.2), the carrier set includes not only
the intended elements but also elements corresponding to
symbols meant to be functions, predicates, etc. From that
perspective, in matching logic a sort s is regarded as a means
to refer to a subset of the total universe M including only the
elements “having sort s”. Specifically, we can define a sort s
as a symbol that represents the name of the sort, which we
use to generically refer to all the elements that inhabit it. To
obtain the actual subset of elements associated with s, called
the inhabitant set of s, we define a symbol inh, called the
inhabitant symbol, and use the application pattern (inh s)
to represent the inhabitant set of s.

Formally, we define SORT in Specification 4, which pro-
vides no particular sorts are defined but only the generic sorting infrastructure, which supports the subse-
quent sort structures such as pair sorts, function sorts, etc. Specifically, SORT defines two symbols inh and
Sort , and some standard notations about sorting. As mentioned, inh is the inhabitant symbol, and pattern
(inh s), also written [[s]] according to the notation, is matched by all elements that have sort s. Sorted
negation ¬sϕ is matched by the elements of sort s that do not match ϕ. Sorted quantification ∀x :s. ϕ and
∃x :s. ϕ restrict the range of x to the inhabitants of s. Sorted membership ϕ :s specifies that ϕ is a functional
pattern (Section 4.2.2) and that ϕ is an inhabitant of s. Symbol Sort is the sort of all sort names. Later in
this section, we will define pair sorts, tuple sorts, and function sorts for all sorts in Sort , which thus act as
constructors for Sort .

Remark 5.1. SORT is a generic specification to be imported when sorts are desired. The actual semantic
meaning of an element x having a sort s is arbitrary and open for interpretation, and is completely decided by

13

(user-defined) axioms. For example, if Nat is the sort of natural numbers (see Section 5.1.1), then x having
sort Nat means that x is a natural number. In general, a sort s can mean that a certain property holds, and
then the sorted membership x :s holds iff x has the property associated with s, which is reminiscent of the
typing relation t :τ in type systems.

5.1.1 An Example: The Sort of Natural Numbers

We defined a specification NN of natural numbers (Specification 3). Based on that, we define the sort Nat
of natural numbers in NAT as Specification 5.

spec NAT
Imports: NN, SORT
Symbols: Nat , plus,mult
Axioms:

(Nat Sort) Nat :Sort
(Nat) [[Nat]] = N
(Nat Plus.1) ∀x:Nat . plus x zero = x
(Nat Plus.2) ∀x, y :Nat . plus x (succ y)

= succ (plus x y)
(Nat Mult.1) ∀x:Nat .mult x zero = zero
(Nat Mult.2) ∀x, y :Nat .mult x (succ y)

= plus x (mult x y)

endspec

Specification 5: NAT

Intuitively, (Nat Sort) states that Nat is an inhab-
itant of Sort . (Nat) states that the inhabitant set of
Nat equals N, which is the set of natural numbers
defined in Section 4.3.2. The other four axioms de-
fine the Peano addition and multiplication of natu-
ral numbers, where we use the sorted quantification
(Specification 4).

NAT is an important example that shows how
to use the generic sorting infrastructure in SORT to
axiomatically define sorts and operations. The sort
Nat of natural numbers will also be imported and
used by the specification of tuples (Section 5.3) to
define tuple projection.

Like in Section 4.3.2, we can consider a model
M � NAT and show how symbol interpretations
plusM ,multM ⊆ M derive the standard addition and multiplication Mplus and Mmult over naturals, same
way the successor function Msucc was derived. Specifically, if MSort = |[[Sort]]|M = inhM •̄ SortM as is the
inhabitant set of Sort and MNat = |[[Nat]]|M = inhM •̄ NatM is the inhabitant set of Nat , then,

Proposition 5.2. The following propositions hold:

1. By (Nat Sort): NatM is a singleton, whose unique element we (ambiguously) denote also as NatM ; then,
NatM ∈MSort ; intuitively, NatM is the interpretation of the sort name Nat in M ;

2. By (Nat): the set MNat equals NM = {Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . }, which was
defined in Proposition 4.11; intuitively, MNat is the inhabitant set of Nat in M ;

3. Following the same reasoning in Proposition 4.11, we can define functions Mplus ,Mmult : MNat ×
MNat →MNat , such that plusM •̄ {m} •̄ {n} = {Mplus(m,n)} and multM •̄ {m} •̄ {n} = {Mmult(m,n)},
for all m,n ∈MNat ; that is, they capture the addition and multiplication functions.

spec NAT+

Imports: NAT
Symbols: NzNat
Notations:

0 ≡ zero
1 ≡ succ 0
2 ≡ succ 1
· · ·

Axioms:

(NzNat Sort) NzNat :Sort
(NzNat) [[NzNat]] = succ [[Nat]]

endspec

Specification 6: NAT+

In other words, MSort is the inhabitant set of
Sort and NatM ∈ MSort denotes the sort name
Nat . MNat is the inhabitant set of Nat , and
Mzero ,Msucc ,Mplus ,Mmult are element and/or func-
tions over MNat .

For notational simplicity, we want to use natural
numbers 0, 1, 2, . . . as is in matching logic patterns
and specifications. Thus, we define NAT+ in Speci-
fication 6 that defines all natural numbers 0, 1, 2, . . .
as notations that are desugared into the correspond-
ing patterns zero, (succ zero), (succ (succ zero)),
. . . . We also define a new sort NzNat for positive
(nonzero) natural numbers as a subsort of Nat ; Sec-
tion 10 shows how subsorts can be rigorously handled in matching logic.

14

5.2 Pair Sorts

spec PAIR
Imports: SORT
Symbols: Pair , pair , fst , snd
Notations:
s1 ⊗ s2 ≡ Pair s1 s2
〈ϕ1, ϕ2〉 ≡ pair ϕ1 ϕ2

Axioms: // all axioms are quantified by “∀s1, s2 :Sort”

(Pair Sort) (s1 ⊗ s2):Sort
(Pair) ∀x1 :s1.∀x2 :s2. 〈x1, x2〉 :(s1 ⊗ s2)
(Pair Fst) ∀x1 :s1.∀x2 :s2. fst 〈x1, x2〉 = x1
(Pair Snd) ∀x1 :s1.∀x2 :s2. snd 〈x1, x2〉 = x2
(Pair Inj) ∀x1, y1 :s1. ∀x2, y2 :s2.

〈x1, x2〉= 〈y1, y2〉 → x1=x2 ∧ y1=y2
(Pair Domain) [[s1 ⊗ s2]] = 〈[[s1]], [[s2]]〉

endspec

Specification 7: PAIR

For any two sorts s1 and s2, we define a new sort
Pair s1 s2, called the pair sort of s1 and s2. Here,
Pair is a symbol that serves as a sort constructor.
For the new pair sort, we also define a symbol pair as
the constructor of the pairs and fst , snd destructors.
This is formalized by PAIR in Specification 7.

Intuitively, 〈x1, x2〉 is the pair of x1 and x2. If x1

has sort s1 and x2 has sort s2, then by (Pair), 〈x1, x2〉
is an element of sort s1 ⊗ s2. (Pair Sort) states that
s1 ⊗ s2 is a sort when s1 and s2 are sorts in Sort .
Hence, we can have nested product sorts such as
s1⊗ (s2⊗ s3) where s1, s2, s3 are sorts in Sort . This
allows us to define (finite) tuple sorts (Section 5.3).
(Pair Fst) and (Pair Snd) define the destructors fst and
snd . (Pair Inj) states that two pairs are equal only if
their corresponding components are equal. Finally,
(Pair Domain) states that the inhabitant set of s1⊗s2

is the set of all pairs 〈x1, x2〉, with x1 of sort s1 and x2 of sort s2.
Like in Propositions 4.11 and 5.2, we formalize the above intuition by considering a model M � PAIR,

where pairM , fstM , sndM ,PairM ⊆ M are the corresponding symbol interpretations. Recall that we let
MSort = Minh •̄ SortM to be the inhabitant set of Sort that includes all sort names in M . Then for each
s ∈MSort , let the set Ms = Minh •̄ {s} be the inhabitant set of s in M .

Proposition 5.3. Under the above conditions and notations, the following properties hold:

1. By (Pair Sort): for s1, s2 ∈MSort , PairM •̄ {s1} •̄ {s2} is a singleton, whose (unique) element we denote
s1 ⊗M s2; then we have s1 ⊗M s2 ∈MSort ; intuitively, s1 ⊗M s2 is the pair sort of s1 and s2;

2. By (Pair): for s1, s2 ∈MSort , x1 ∈Ms1 , and x2 ∈Ms2 , pairM •̄{x1}•̄{x2} is a singleton, whose (unique)
element we denote 〈x1, x2〉M ; then we have 〈x1, x2〉M ∈Ms1⊗Ms2 ;

3. Like in Propositions 4.3.2 and 5.1.1, let Mfst : Ms1⊗Ms2 → Ms1 and Msnd : Ms1⊗Ms2 → Ms2 be such
that fstM •̄ {y} = {Mfst(y)} and sndM •̄ {y} = {Msnd(y)}, for any s1, s2 ∈MSort and y ∈Ms1⊗Ms2 ;

4. By (Pair Fst/Snd/Inj): for s1, s2 ∈MSort , x1, y1 ∈Ms1 , and x2, y2 ∈Ms2 , we have Mfst(〈x1, x2〉M) = x1,
Msnd(〈x1, x2〉M) = x2, and 〈x1, x2〉M = 〈y1, y2〉M implies xi = yi, (i = 1, 2);

5. Ms1⊗Ms2 = {〈x1, x2〉M | x1 ∈Ms1 , x2 ∈Ms2};

6. Then, Ms1⊗Ms2 is exactly the Cartesian product Ms1 ×Ms2 of Ms1 and Ms2 , for s1, s2 ∈MSort .

5.3 Tuple Sorts

spec TUPLE Imports: PAIR,NAT
Symbols: proj
Notations:
〈ϕ1, ϕ2, . . . , ϕn〉 ≡ 〈ϕ1, 〈ϕ2, . . . , ϕn〉〉
s1 ⊗ s2 ⊗ · · · ⊗ sn ≡ s1 ⊗ (s2 ⊗ · · · ⊗ sn)

Axioms: // all axioms are quantified by “∀s1, s2 :Sort”

(Proj First) ∀x1 :s1.∀x2 :s2. (proj 1 〈x1, x2〉) = x1
(Proj Rest) ∀x1 :s1.∀x2 :s2. ∀n:NzNat .

(proj (succ n) 〈x1, x2〉) = proj n x2
endspec

Specification 8: TUPLE

Tuples are nested pairs, so we import PAIR and de-
fine notations for tuples. We also define a new sym-
bol proj , which takes a positive number i and a tu-
ple, and returns its ith component.

Remark 5.4. Following the notations in Propo-
sition 5.3, for a model M � TUPLE, we write
〈x1, . . . , xn〉M ∈Ms1⊗M ···⊗Msn for the tuple of x1 ∈
Ms1 , . . . , xn ∈ Msn . Then, Ms1⊗M ···⊗Msn is ex-
actly the Cartesian product Ms1 × · · · ×Msn of sets
Ms1 , . . . ,Msn , for s1, . . . , sn ∈MSort .

15

arity of f function sort axiomatizing that f is a function applying f on argument(s)
nullary Unit →○ s f :Unit →○ s f(), which equals f
unary s1 →○ s f :s1 →○ s f(x1)
multary s1 ⊗ · · · ⊗ sn →○ s f :s1 ⊗ · · · ⊗ sn →○ s f(x1, . . . , xn)

Table 1: Handling functions in matching logic.

5.4 Function Sorts

spec FUNCTION
Imports: SORT
Symbols: Function
Notations: s1 →○ s2 ≡ Function s1 s2
Axioms: // all axioms are quantified by “∀s1, s2 :Sort”

(Func Sort) (s1 →○ s2):Sort
(Func Domain) [[s1 →○ s2]] = ∃f. f ∧ (∀x:s1. (f x):s2)
(Func Ext) ∀f, g :s1→○s2. (∀x:s1. f x = g x)→ f = g

endspec

Specification 9: FUNCTION

For any two sorts s1 and s2, we define a new sort
Function s1 s2 called the function sort from s1 to
s2, where Function is a symbol that serves as a sort
constructor. This is formalized by FUNCTION in
Specification 9.

Intuitively, (Func Sort) states that s1 →○ s2 is a
sort in Sort whenever s1 and s2 are sorts in Sort .
(Func Domain) states that s1 →○ s2 is the sort of all
“elements” f that behave as a function from s1 to
s2, i.e., for any x of sort s1, the application (f x)
returns a value of sort s2. (Func Ext) states that two
functions f and g of sort s1 →○ s2 are equal iff they
return the same value on all arguments of sort s1.

spec PRELUDE
Imports: FUNCTION,TUPLE
Symbols: Unit , unit
Notations:

() ≡ unit
f(ϕ) ≡ f ϕ
f(ϕ1, . . . , ϕn) ≡ f 〈ϕ1, . . . , ϕn〉 // for n ≥ 2

Axioms:

(Unit Sort) Unit :Sort
(Unit) unit :Unit
(Unit Domain) [[Unit]] = unit
(Unit Identity) ∀s:Sort .∀x:s. (x unit) = x

endspec

Specification 10: PRELUDE

Although FUNCTION only defines the sorts of
unary functions, the same methodology can be ap-
plied to dealing with multary functions and nullary
functions (i.e., constants) in a uniform way. Specif-
ically, a multary function f from sorts s1, . . . , sn to
s for n ≥ 2, can be defined as a unary function from
the pair/tuple sort s1⊗· · ·⊗sn to s. A nullary func-
tion c of sort s can be defined as a unary function
from the unit sort Unit to s, where Unit is a special
sort with exactly one element unit that is the right
identity of application, i.e., (c unit) always equals c.
Then, the nullary function c can be represented as a
function from Unit to s. This leads us to PRELUDE
in Specification 10.

PRELUDE shows a systematic way to represent functions of any arity, including nullary, unary, and
multary functions, using a uniform and familiar notation as summarized in Table 1.

In the rest of the paper, when we discuss functions, we feel free to mention only the multary cases, where
the nullary and unary cases are implicitly covered in the sense described above. For example, when we say
that f :s1⊗· · ·⊗ sn →○ s is a function, it should be understood that f can be a nullary function (when n= 0),
or a unary function (when n= 1), or a multary function (when n≥ 2).

The following proposition characterizes the behavior of a function.

Proposition 5.5. The following holds for any n ≥ 0:

PRELUDE ` ∀s1, . . . , sn :Sort . (f : s1 ⊗ · · · ⊗ sn →○ s)→ (∀x1 :s1. . . .∀xn :sn. f(x1, . . . , xn):s)

Remark 5.6. A common design pattern that will occur in the rest of the paper when we define the speci-
fications of initial algebra semantics, is that we declare a symbol f and the following axiom:

(Function) f : s1 ⊗ · · · ⊗ sn →○ s

16

for sorts s1, . . . , sn, s in Sort . Following the same idea as in Propositions 4.11 and 5.2, we can show that given
a model M , the symbol f indeed derives a function from the inhabitant sets of s1, . . . , sn to the inhabitant
set of s in M . Due to its importance, we formalize the intuition in detail below:

Proposition 5.7. Let SPEC be a specification that imports PRELUDE and includes the above axiom (Function)
for a symbol f . Then f yields a function Mf : Ms1 × · · · ×Msn →Ms in any M � SPEC.

Note that the proposition holds for all n ≥ 0 and f can be a nullary, unary, or multary function.

6 Capturing Algebras and Equational Specifications

Here, we define the matching logic specifications that capture (many-sorted) algebras (Definition 3.3) and
equational specifications (Definition 3.7). For each signature (S, F), we define a corresponding matching
logic specification ALGEBRA(S, F), where the sorts s1, s2, · · · ∈ S are captured by matching logic symbols
of sort Sort (Specification 4), and each operation f ∈ Fs1...sn,s is captured by a matching logic symbol f
with the (Function) axiom f :s1 ⊗ · · · ⊗ sn →○ s (Remark 5.6). To formally show that ALGEBRA(S, F) indeed
captures the (S, F)-algebras, we use the categorical notion of institution (co)morphisms [Goguen and Rosu,
2002] to show that there exists a simple theoroidal comorphism from the category of (S, F)-algebras to the
category of matching logic ALGEBRA(S, F)-models.

For presentational purpose, we will not use much category theory in the main text. Instead, we show
the equivalence result using a model transformation. Specifically, we define a transformation α that sends a
model M � ALGEBRA(S, F) to an (S, F)-algebra α(M) and prove that M and α(M) validate the same set
of F -equations (via syntactic sugar where F -equations are patterns):

M � e if and only if α(M) �Alg e (2)

We also show that α is essentially surjective, that is, for any (S, F)-algebra A there exists a model M such
that α(M) is exactly A. The reader familiar with the theory of institutions will notice that the above model
translation is actually what establishes the above-mentioned simple theoroidal comorphism; for details we
refer to Appendix D.3.

6.1 Capturing Signatures

Definition 6.1. For a signature (S, F) like in Definition 3.1, we define ALGEBRA(S, F) in Specification 11,
often abbreviated ALGEBRA(F).

spec ALGEBRA(S, F) Imports: PRELUDE
Symbols: s ∈ S, f ∈ F,SigOps,SigArgs
Axioms:

(Sort) s:Sort for s ∈ S
(Function) f :s1 ⊗ · · · ⊗ sn →○ s for f∈Fs1...sn,s
(Signature Ops) [[SigOps]] =

∨
f∈F f

(Signature Args) [[SigArgs]] =
∨

f∈Fs1...sn,s

[[s1⊗ · · ·⊗sn]]
endspec

Specification 11: ALGEBRA(S, F)

For technical convenience, we define the auxil-
iary sorts SigOps and SigArgs, where SigOps is the
sort for all operations in F as given by the signa-
ture (S, F), and SigArgs is the sort of all argument
tuples of the operations in F . With these sorts, we
can quantify over operations and their arguments
using the sorted quantification such as ∀f :SigOps
and ∀arg :SigArgs.

6.2 Capturing Algebras

Here we show that specification ALGEBRA(S, F) precisely captures (S, F)-algebras. Formally, we build a
model transformation from M � ALGEBRA(S, F) to an F -algebra α(M) and prove that α is essentially
surjective (Theorem 6.5). A more precise analysis of the semantic equivalence between M and α(M) in
terms of the set of F -equations that they validate is made in Section 6.3. The model transformation α is
based directly on how matching logic models properly produce the interpretations of the inhabitant sets of
sorts and operations, following Proposition 5.7.

17

Definition 6.2. Let (S, F) be a signature and M � ALGEBRA(S, F). Then by Proposition 5.7, M produces
the inhabitant set Ms for each sort s ∈ S and the function Mf : Ms1×· · ·×Msn →Ms for each f ∈ Fs1...sn,s,
restated as Corollary 6.3 for clarity. We define A = α(M) as the F -algebra where:

1. for s ∈ S, the carrier set As = Ms;

2. for each f ∈ Fs1...sn,s, the operation interpretation Af = Mf .

Corollary 6.3. Under the notations and conditions of Definition 6.2, we define Ms = |[[s]]|M = inhM •̄ {sM}
as the inhabitant set of s for each s ∈ S. For any f ∈ Fs1...sn,s and x1 ∈ Ms1 , . . . , xn ∈ Msn , we know by
axiom (Function) that fM •̄ 〈x1, . . . , xn〉M is a singleton, whose (unique) element we denote Mf (x1, . . . , xn).
Thus, Mf is a function from Ms1 × · · · ×Msn to Ms, for each f ∈ Fs1...sn,s.

Remark 6.4. Although the matching logic model M has a nonempty carrier set by definition, the derived
algebra α(M) can have empty carrier sets. This is because the carrier set As of sort s is Ms = |[[s]]|M .
Therefore, if [[s]] is interpreted by M as the empty set then As is also empty.

Next, we state the theorem that shows that α is essentially surjective.

Theorem 6.5. Let (S, F) be a signature and A be any (S, F)-algebra. Then there exists a matching logic
model M � Signature(S, F) such that α(M) is exactly A.

It turns out that the most technically tedious proof of all results in this paper is to show the existence of
any model of ALGEBRA(S, F), that is, to show the consistency of the specification ALGEBRA(S, F). Indeed,
ALGEBRA(S, F) imports PRELUDE, which not only defines pairs and functions, but also pairs of pairs,
functions of functions, and all possible nested combinations. Therefore, we exile the proof of Theorem 6.5,
which is straightforward but tedious, to Appendix D.

6.3 Capturing Equational Specifications

We now study the semantic equivalence between M and the derived algebra α(M). We show that they
validate the same F -equations (there are two validity relations: the matching logic validity in Definition 4.7
and the algebra validity in Definition 3.8), but first we define F -equations as patterns.

By Definition 3.7, an F -equation is associated with an S-sorted variable set V where each variable x ∈ V
is associated with its sort, denoted sort(x) ∈ S. For technical convenience, we assume that all sorted variables
used in F -equations are element variables of matching logic, that is, V ⊆ EV . Then, F -equations can be
defined using matching logic equality and sorted quantification. Formally,

Definition 6.6. For an equational specification (F,E), we define EQSPEC(S, F,E) in Specification 12,
abbreviated EQSPEC(F,E) or EQSPEC(E).

spec EQSPEC(S, F,E)
Imports: ALGEBRA(S, F)
Notations:

// V = {x1, . . . , xn} is a set of sorted variables
∀V . ϕ ≡ ∀x1 :sort(x1). . . .∀xn :sort(xn). ϕ
∃V . ϕ ≡ ∃x1 :sort(x1). . . .∃xn :sort(xn). ϕ

Axioms: (Equation) e for every e ∈ E
endspec

Specification 12: EQSPEC(S, F,E)

In EQSPEC(F,E), an F -equation ∀V . t = t′ for
t, t′ ∈ TF (V) is a well-formed pattern, because t
and t′ are application patterns (see PRELUDE) and
equality is defined in Section 4.3.1.

Since EQSPEC(F,E) imports ALGEBRA(F), we
can apply the model transformation α on a model
M � EQSPEC(F,E), and the result, α(M), is an F -
algebra by Definition 6.2. In the following, we show
that α(M) is actually an (F,E)-algebra by proving
the stronger result, that α(M) and M validate the
same set of F -equations.

Theorem 6.7. Let M � EQSPEC(F,E) and α(M) be the derived F -algebra. Then, for any F -equation e,
we have M � e iff α(M) �Alg e. Particularly, we know that α(M) is an (F,E)-algebra.

18

Remark 6.8. Theorem 6.7 together with Theorem 6.5 actually show that there exists a theoroidal co-
morphism ALGth → MLth from the category of many-sorted E-algebras to the category of matching logic
EQSPEC(E)-models; details in Appendix D.3.

Finally, we show that the specification EQSPEC(E) is a conservative extension of E:

Theorem 6.9. For any equational specification E and any equation e, the following are equivalent: (1)
EQSPEC(E) ` e; (2) EQSPEC(E) � e; (3) E �Alg e; (4) E `Alg e.

Proof. We prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). (1) =⇒ (2) is by the soundness of matching logic
(Theorem 4.13). (2) =⇒ (3) is by the semantic equivalence (Theorem 6.7) and the surjectivity of α (The-
orem 6.5). (3) =⇒ (4) is by the completeness of equational deduction (Theorem 3.11). (4) =⇒ (1) holds
because the matching logic proof system supports equational reasoning (Proposition 4.12).

6.3.1 A Pitfall w.r.t. Theorem 6.9

Recall that the initial E-algebra I has no-confusion (Theorem 3.22), that is, I �Alg e iff E `Alg e. Combing
that with Theorem 6.9, one may conclude that all valid equations in the initial algebra I can be inferred
using equational deduction, and that is all, since we now have a sound and complete solution to formal
reasoning in initial algebra semantics.

The above conclusion is, of course, wrong, because after all, (equational) validity in initial algebras is Π0
2-

complete (see Section 9) and thus has no complete (and effective) proof system like equational deduction. The
problem is that no-confusion of I only works on ground equations, not all equations. Therefore, equational
deduction is only complete w.r.t. ground equational validity, but not equational validity in general. In fact,
in Section 9, we will give a concrete example where equational deduction fails to prove a valid equation (with
variables) of I, which can instead be proved using the matching logic proof system (Section 4.4). For that,
we need to capture initiality by matching logic patterns/axioms and support induction—the main topics in
Sections 7-9.

7 Capturing Term Algebras

In this section, we define the matching logic specifications TERMALGEBRA(F) that capture the term algebras
(Definition 3.14), by taking the specification ALGEBRA(F) for F -algebras and define two additional axioms,
(No Confusion) and (No Junk), that capture the no-confusion and no-junk properties (Theorem 3.22). We show
that for any model M � TERMALGEBRA(F), the derived algebra α(M) is exactly the term algebra TF .
Specifically, we will discuss no-confusion in Section 7.1 and no-junk in Section 7.2. Then we put them
together in Section 7.3 and state the main theorem.

7.1 Capturing Term Algebras: No-Confusion

In Theorem 3.22, no-confusion and no-junk were defined for all (F,E)-algebras, in general; in this section
we are only considering the special case when E = ∅, that is, when there are no underlying equations. In
this special case, no-confusion takes a simpler form, which we state in Lemma 7.1.

Lemma 7.1. Let (F, ∅) be an equational specification with no equational axioms. Then, an (F, ∅)-algebra A
satisfies no-confusion iff (1) Af is injective for each f ∈ F , and (2) the ranges/codomains of Af and Af ′

are disjoint for all distinct f, f ′ ∈ F .

In other words, in term algebra TF all operations in F are constructors; two terms are equal iff they are
built from the same operation and the same argument(s). This leads us to the following:

Definition 7.2. For a signature (S, F), we define NOCONFUSION(S, F) in Specification 13, abbreviated
NOCONFUSION(F).

19

spec NOCONFUSION(S, F)
Imports: ALGEBRA(S, F)
Axioms:

(Distinct Function) f 6= f ′ for distinct f, f ′ ∈ F
(No Confusion) ∀f, f ′ : SigOps. ∀args, args′ : SigArgs.

(f args)=(f ′ args′)→f=f ′∧args=args′

endspec

Specification 13: NOCONFUSION(S, F)

Intuitively, (Distinct Function) states that dis-
tinct operations are indeed different functions.
This is true in term algebras, where different
operations build different terms, so by axiom
(Func Ext) in FUNCTION, they are different func-
tions. (No Confusion) captures no-confusion by one
axiom, where sorts SigOps and SigArgs (Defini-
tion 6.1) restrict the ranges accordingly.

Lemma 7.3. For any M � NOCONFUSION(F),
α(M) satisfies no-confusion. Particularly, for any
t, t′ ∈ TF , these are equivalent: (1) M � t = t′; (2) α(M) �Alg ∀∅. t = t′; (3) t and t′ are the same.

7.2 Capturing Term Algebras: No-Junk

By Theorem 3.22, an algebra A satisfies no-junk if, intuitively, its carrier sets are generated by the sets
of ground terms; that is, they are the smallest sets that are closed under the operations in F . Therefore,
no-junk can be defined axiomatically by the µ-binder and fixpoint patterns (Section 4.2.3).

Let us first build some intuition with a few simple examples.

Example 7.4. Let (S, F) be a signature where S = {s} has one sort and F = {a ∈ Fε,s, f ∈ Fs,s, g ∈ Fs s,s}
has a constant a, a unary operation f , and a binary operation g. Then, we define no-junk as:

[[s]] = µD. a ∨ f(D) ∨ g(D,D)

Intuitively, it specifies that [[s]] is the smallest set D that includes a and is closed under f and g.

Example 7.4 is in principle the same as axiom (Nat Domain) in specification NN that captures natural
numbers; see Specification 3. Since the signature has only one sort, its carrier set only depends on itself. In
recursive data types, this is called single recursion or direct recursion. In general, however, the signature
(S, F) may include many sorts and also operations among them, which causes mutual recursion. We will
follow the usual way to convert mutual recursion to single recursion, of which the main idea is shown in the
following example.

Example 7.5. Let (S, F) be a signature where S = {s1, s2} and F = {a1 ∈ Fε,s1 , a2 ∈ Fε,s2 , f ∈ Fs1 s2,s2 , g ∈
Fs1 s2,s1}. Here, a1, a2 are two constants and f, g are two binary functions. The following is a failed attempt
that uses the µ-binder to capture the mutual recursion between [[s1]] and [[s2]]:

〈[[s1]], [[s2]]〉 = µ 〈D1, D2〉 . 〈a1 ∨ g(D1, D2), a2 ∨ f(D1, D2)〉 // wrong use of µ

The above definition, although intuitive and straightforward, is wrong, because µ can only bind a set variable,
and not a structure such as 〈D1, D2〉. We can correct it by replacing 〈D1, D2〉 with a set variable D and use
the projection function to restore D1 and D2. The corrected definition is:

〈[[s1]], [[s2]]〉 = µD. 〈a1 ∨ g((proj 1 D), (proj 2 D)), a2 ∨ f((proj 1 D), (proj 2 D))〉

where (proj i D) is the projection of D, for i ∈ {1, 2}, defined in Specification 8.

Next example is about void sorts. Given a signature F , a sort s is void in F if it has no ground terms,
i.e., TF,s = ∅. The following example shows why void sorts require special treatment:

Example 7.6. Let (S, F) be a signature where S = {s3, s4} and F = {b ∈ Fε,s3}. Then s3 is a non-void
sort and s4 is a void sort. If we follow Example 7.5 to define the carrier sets [[s3]] and [[s4]], we get:

〈[[s3]], [[s4]]〉 = µD. 〈b,⊥〉 // this is a wrong definition

20

spec NOJUNK(S, F)
Imports: ALGEBRA(S, F)
Axioms:

(No Junk Void) [[s]] = ⊥ for each s ∈ Svoid

(No Junk Non-Void) 〈[[s1]], . . . , [[sn]]〉 = µD.

〈 ∨
f∈F

s11...s
1
m1

,s1

f
(
Ds11

, . . . , Ds1m1

)
, . . . ,

∨
f∈Fsn1 ...snmn,sn

f
(
Dsn1 , . . . , Ds

n
mn

)〉

where Ds ≡ (proj i D) if s is si for some si ∈ S, or Ds ≡ ⊥ if s ∈ Svoid

endspec

Specification 14: NOJUNK(S, F)

However, the above is wrong, because one can show that 〈b,⊥〉 equals to ⊥, due to pointwise extension
(Definition 4.4). In other words, an empty fragment ⊥ empties the entire structure 〈b,⊥〉, which makes the
fixpoint pattern µD. 〈b,⊥〉 also empty. Therefore, both s3 and s4 have an empty carrier set, which is clearly
not intended. To avoid the void sorts propagating their emptiness to the non-void sorts, we separate them
and define the void sorts first. Non-void sorts are then defined like in Example 7.5. This leads us to the
following specification of no-junk.

Definition 7.7. Let (S, F) be a signature and S = Svoid ∪ Snonvoid, where Svoid includes void sorts and
Snonvoid = {s1, . . . , sn} includes non-void sorts. We define NOJUNK(S, F) in Specification 14, abbreviated
NOJUNK(F), where s, si, s

j
i , . . . are used to range over the sorts in S.

(No Junk Void) defines the carrier sets of void sorts to be empty. (No Junk Non-Void) defines the carrier sets of
non-void sorts [[s1]], . . . , [[sn]] simultaneously, using one fixpoint pattern µD. 〈· · ·〉, in which the ith component
(1 ≤ i ≤ n) is a disjunction pattern over all operations whose return sort is si applied to the projections
of D that correspond to the apporpriate argument sorts. For brevity, we refer to both (No Junk Void) and
(No Junk Non-Void) as simply (No Junk).

Lemma 7.8. For M � NOJUNK(S, F), the derived algebra A = α(M) satisfies no-junk. Specifically, for
any s ∈ S and a ∈ As, there exists a ground term ta ∈ TF,s such that eval(ta) = a (see Remark 3.6).

7.3 Capturing Term Algebras: No-Junk + No-Confusion

The specification TERMALGEBRA(S, F) of term algebras, abbreviated TERMALGEBRA(F), is obtained by
simply importing NOJUNK(S, F) and NOCONFUSION(S, F).

Theorem 7.9. For M � TERMALGEBRA(F), the derived algebra α(M) is the term algebra TF .

Remark 7.10. [Malc’ev, 1936] shows a complete FOL axiomatization of term algebras based on the same
no-junk and no-confusion characterizations; see also [Kovács et al., 2017]. Since FOL has no direct support
for fixpoints or induction, the no-confusion part is actually weaker, and only requires all elements to be built
from the operations (to see why it is weaker, consider real numbers, where each real number r is built from
succ on r′ for r′ = r−1). The FOL axiomatization is a complete theory, meaning that for any FOL sentence
ϕ, either ϕ or ¬ϕ can be proved. By the completeness of FOL deduction, it is decidable to determine whether
FOL sentences are valid in term algebras.

This classic complete FOL axiomatization of term algebras is (understandably) weaker than our result.
First, it does not precisely capture the term algebras in terms of models: indeed it allows arbitrarily large
models due to the Löwenheim-Skolem theorem [Löwenheim, 1915]. Second, it is not extensible: it requires
that all operations are constructors with no underlying axioms, so one cannot take the complete axiomatiza-
tion of constructors zero and succ, and extend it with two defined functions plus and mult with their Peano
axioms, and obtain a complete axiomatization of natural numbers with addition and multiplication—the
completeness is lost during extension. In contrast, the matching logic specification TERMALGEBRA(F) cap-
tures precisely term algebras semantically, and its extensibility is what allows us to define equational axioms

21

spec INITIALALGEBRA(S, F,E)
Imports: TERMALGEBRA(S, F)
Symbols: Eq, idRel , converseRel , composeRel , congRel
Notations:
ϕ1 ⊂∼ ϕ2 ≡ ∀x1. x1 ∈ ϕ1 → ∃x2. x2 ∈ ϕ2. 〈x1, x2〉 ∈ Eq
ϕ1 ' ϕ2 ≡ ϕ1 ⊂∼ ϕ2 ∧ ϕ2 ⊂∼ ϕ1

R−1 ≡ converseRel R
R1 ◦R2 ≡ composeRel R1 R2

Axioms:

(Identity) idRel =
∨
s∈S ∃x:s. 〈x, x〉

(Converse) R−1 = ∃x.∃y. 〈y, x〉 ∧ (〈x, y〉 ∈ R)
(Composition) R1 ◦R2 = ∃x.∃y.∃z. 〈x, z〉 ∧ (〈x, y〉 ∈ R1 ∧ 〈y, z〉 ∈ R2)

(Congruence) congRel R =
∨

f∈Fs1...sn,s

∃x1, y1 :s1 . . . ∃xn, yn :sn. 〈f(x1, . . . , xn), f(y1, . . . , yn)〉 ∧
∧

1≤i≤n
〈xi, yi〉 ∈R

(Equivalence) Eq = µR. idRel ∨R−1 ∨ (R ◦R) ∨ (congRel R) ∨
∨

(∀V . t=t′)∈E ∃V . 〈t, t′〉
endspec

Specification 15: INITIALALGEBRA(S, F,E)

constraining the operations and to capture initial E-algebras for an equational specification E, discussed in
Section 8.

8 Capturing Initial E-Algebras

Previously, we showed how to capture term algebras, which are initial E-algebras when E = ∅. In this
section, we show how to capture initial E-algebras in general, axiomatically in matching logic. We take the
specification TERMALGEBRA(F) that captures the term algebra TF and define on top of it the congruence
relation 'E ; see Section 3.4. The resulting specification, denoted INITIALALGEBRA(F,E), defines the term
algebra TF and the congruence relation 'E over terms, and thus captures the quotient term algebra TF/E ,
i.e., the initial E-algebra (Theorem 3.20).

Let (S, F,E) be an equational specification. The congruence relation 'E is the smallest relation that
includes the identity relation and all instances of the equations in E, and is closed under converse, composi-
tion, and congruence w.r.t. all operations in F . Therefore, it can be axiomatically defined by the µ-binder
and fixpoint patterns. In matching logic, a binary relation R can be represented by a pattern that is matched
by the pairs of all elements that are in relation R. This inspires the following definition, where we use a
symbol Eq to capture the congruence relation1 'E .

Definition 8.1. Let (S, F,E) be an equational specification. We define INITIALALGEBRA(S, F,E) in Spec-
ification 15, abbreviated INITIALALGEBRA(F,E) or INITIALALGEBRA(E).

INITIALALGEBRA(E) firstly defines several operations and notations for dealing with (binary) relations.
Intuitively, idRel is the identity relation on the elements in the carrier sets of sorts in S. R−1 and R1 ◦ R2

are the converse of R and composition of R1 and R2, respectively. congRel R is the relation obtained by
propagating R through all the operations in F . The last axiom (Equivalence) defines Eq as the smallest relation
R that includes idRel , is closed under converse, composition, and congruence, and includes all equations in
E. Finally, we write ϕ1 ⊂∼ ϕ2 to mean that ϕ1 is included in ϕ2 modulo the relation Eq , and ϕ1 ' ϕ2 to
mean that ϕ1 and ϕ2 are the same modulo relation Eq .

The following theorem states that Eq indeed captures the congruence relation 'E .

1Alternatively, we could have defined Eq as a sort inhabited by the pairs in 'E with constructors the equations in E,
identities, converse, and composition. This would allow us to use Eq in sort constructors (pairs, tuples, functions) similarly to
how identity types are used in higher inductive types [Kaposi et al., 2019; Fiore et al., 2020]. This is left as future work.

22

Theorem 8.2. For any M � INITIALALGEBRA(S, F,E), the derived model α(M) is exactly the term algebra
TF (Theorem 7.9). Then, the interpretation EqM is a binary relation over ground terms in TF , and we have
that (t, t′) ∈ EqM iff t'E t′ for all t, t′ ∈ TF , where 'E is defined in Proposition 3.15.

Thus, EqM is exactly the congruence relation 'M . This naturally leads us to the following theorem.

Theorem 8.3. Under the conditions and notations in Theorem 8.2, we define β(M) as the EqM -quotient
algebra of α(M). Then, β(M) is exactly the quotient term algebra TF/E.

Note that for a model M � INITIALALGEBRA(F,E), we have defined two model transformations: α
(Definition 6.2) and β (Theorem 8.3). α(M) gives us the term algebra TF , where equations in E are ignored.
β(M) builds upon α(M) by taking the quotient algebra w.r.t. the congruence relation EqM . It is important
to note that the equality t = t′ in M (recall that equality is defined in Specification 2) always means the true
equality between the ground terms t and t′, and not the 'E-equivalence relation. One can see that clearly
from Lemma 7.3, which states that M � t = t′ iff t and t′ are syntactically the same terms. To refer to the
'E-equivalence relation, one should use t' t′, which is defined as a notation in Specification 15. In fact, the
following theorem shows that t' t′ captures precisely the equality in the quotient term algebra TF/E :

Theorem 8.4. Let M � INITIALALGEBRA(F,E) and TF/E be the quotient term algebra. Then for any
ground or non-ground equations ∀V . t = t′, we have TF/E �Alg ∀V . t = t′ iff M � ∀V . t' t′.

Proof. The proof follows directly from Theorems 8.2 and 8.3. Note that a non-ground equation holds iff it
holds under all valuations of variables, which is then guaranteed by Theorem 8.2.

Theorems 8.3 and 8.4 are important for various reasons. First, they show that the matching logic theory
INITIALALGEBRA(E) captures precisely the initial E-algebra semantics, for any E. Second, they establish a
semantic equivalence between validity in initial E-algebra and matching logic validity in INITIALALGEBRA(E).
Third, they suggest that we can use the proof system of matching logic to prove, within specification
INITIALALGEBRA(E), equations/patterns of the form ∀V . t' t′. By the soundness of matching logic (Theo-
rem 4.13) all proved equations are valid in initial E-algebras, that is, INITIALALGEBRA(E) ` ∀V . t't′ implies
TF/E �Alg ∀V . t = t′. Consequently, matching logic provides a formal initial algebra reasoning framework.
We illustrate it in Section 9.

9 Inductive Reasoning in Initial Algebra using Matching Logic

Initial algebra semantics reasoning asks what truths about the initial (E-)algebras we can prove, and how.
By Theorem 3.11, we know that all valid ground equations of an initial algebra can be recursively enumerated
by the complete equational proof system (Definition 3.10), but not for non-ground equations, of which the
problem is Π0

2-complete [Subrahmanyam, 1990]. Hence, one cannot hope to have any automated procedure
to prove and/or disprove all equations in initial algebras.

Initial algebra reasoning is (almost) a synonym for induction. The application of various inductive tech-
niques in formal verification of programs flourished in the 1960s [Burstall, 1969; McCarthy, 1963; Cooper,
1966; Mccarthy and Painter, 1967; Burstall, 1968; Painter, 1967; Kaplan, 1967]. Later, it was discovered that
initiality, or more precisely, the no-junk property (Theorem 3.22), is what powers induction and induction-
based proof techniques in the initial algebra semantics [Meseguer and Goguen, 1985, Proposition 16]. Intu-
itively, an algebra A is no-junk means all elements in A can be represented by some terms, that is, the unique
morphism fA : TF/E → A from the initial algebra (quotient term algebra) TF/E to A is surjective. Since
TF/E is constructed inductively based on terms, it enjoys inductive reasoning, which can then be “mapped”
to A through the unique morphism fA, whose surjectivity guarantees that all elements in A are covered
by the induction. Since then, various induction principles have been adopted as alternative equivalents of
initiality; see, e.g., [Meseguer and Goguen, 1985, Section 4.4] and derived practical implementations and
tools [Clavel et al., 2020].

In matching logic, no-junk is captured by one axiom (No Junk) using a fixpoint pattern (Section 7.2). The
matching logic proof system also has one proof rule, (Knaster-Tarski) that is dedicated to fixpoint reasoning

23

(Section 4.4). In this section, we will show how induction in initial algebra reduces to matching logic
proofs that make use of the proof rule (Knaster-Tarski) together with the axiom (No Junk), and inductive proof
techniques become matching logic proof heuristics.

We illustrate the above by means of an example. Let us consider the set of natural numbers defined as
the initial algebra of operations {zero, succ}, and then let us define an operation plus for addition, using the
two (Peano) axioms ENat = {∀x :Nat . plus(x, zero)' x, ∀x, y :Nat . plus(x, succ(y))' succ(plus(x, y))}. Our
goal is to prove that zero is also the left identity of plus, that is:

∀y :Nat . plus(zero, y)' y (†)

Firstly, we point out a known fact that (†) does not hold in all algebras that validate the Peano axioms.
As a counterexample, consider an algebra with only two elements {0, ?}, where zero is interpreted as 0, succ
is interpreted as the identity function on {0, ?}, and plus is interpreted as the first projection (i.e., returns its
first argument). The reader is encouraged to check that both equations in ENat hold, but Eq. (†) does not.
The property holds, as expected, if we impose the additional initial algebra semantics requirement. However,
by default initial algebra semantics makes no distinction between so-called “constructors” and “defined
functions”, treating them uniformly as operations/constructors. In practice, this results in unnecessarily
tedious inductive proofs, where an induction case is needed for each operation, be it an intended constructor
or not. It is the equations that make some operations “defined” in terms of the “constructors”, which
leads to simpler and more intuitive proofs. In our case here, a usual inductive proof of (†) using the initial
algebra approach involves the following three steps: (1) prove that plus is well-defined on natural numbers
constructed with zero and succ; (2) apply structural induction on (†) using only the constructors zero and
succ; and (3) prove the generated sub-goals, respectively.

Step (1) requires us to show that all ground instances of plus(x, y) equal to the terms that are built from
zero and succ only, so the axioms of plus indeed cover all cases and does not effectively create new ground
terms. A common technique for such proofs is to observe that the two axioms/equations of plus, when
oriented from left to right, become rewrite rules that always reduce the size of the sub-terms whose top-level
operation is plus. Thus, the rewriting process for any ground term with plus will terminate at a canonical
representation without plus, and thus plus is indeed well-defined. This effective approach to proving the
well-definedness of an operation w.r.t. some equations goes back to [Jouannaud and Kounalis, 1989], and
developed and improved in [Meseguer, 2012; Hendrix et al., 2006; Hendrix and Meseguer, 2007; Rocha and
Meseguer, 2010; Hendrix, 2008; Comon et al., 2007] among many others, and has been implemented as a key
feature of Maude [Clavel et al., 2020].

Step (2) applies structural induction on the variable y in (†) and yields the following two cases:

plus(zero, zero)' zero (3)

∀z :Nat . (plus(zero, z)' z)→ (plus(zero, succ(z))' succ(z)) (4)

where (3) is often called the base case and (4) the induction step, meaning that its premise is exactly the
original proof goal (†) and the conclusion is (†) but is applied by another succ. Finally, Step (3) simply
proves (3) and (4) by standard equational reasoning, and we omit the details here.

The main inductive steps in the above proof are Steps (1) and (2), and there, the key is to show that
zero and succ are the real and only constructors of natural numbers while plus is a (well-defined) function on
the natural numbers. Without this observation, the initial algebra semantics induction principle in Step (2)
will generate three cases, with an additional case for plus, making the proof much more complicated and
challenging, as illustrated in [Comon, 2001, Section 2.4]. In practice, tools for inductive theorem proving using
equational specifications have built-in support for users to declare certain operations as constructors and
the rest as defined functions, following one (or both) of two aesthetically different but ultimately equivalent
approaches:

1. A specification declares a sub-signature of constructors; Maude [Clavel et al., 2020] and proof assistants
such as Coq [Coq Team, 2020] support this approach.

24

2. A sub-specification including only constructors is defined and then imported in a “protected” mode
by a module system to the larger specification; OBJ [Goguen et al., 2000], CafeOBJ [Diaconescu and
Futatsugi, 1998], and Maude [Clavel et al., 2020] support this approach.

In both cases, initiality is defined only for constructors and well-definedness needs to be proved for all defined
functions. Both cases are extensions to the vanilla equational specifications that we defined in Section 3,
where (1) adds constructor signatures and (2) adds a module system.

What is not an extension is the following axiomatic methodology offered by matching logic, where the
statement that {zero, succ} forms a constructor set can be expressed by a pattern/predicate and formally
proved as a theorem of the matching logic specification INITIALALGEBRA(ENat):

Theorem 9.1. INITIALALGEBRA(ENat) ` (µD. zero ∨ succ(D) ∨ plus(D,D))︸ ︷︷ ︸
equals to [[Nat]] by axiom (No Junk)

' (µD. zero ∨ succ(D)).

Intuitively, it states that the smallest set generated by {zero, succ, plus} is indeed the same as the smallest
set generated by {zero, succ}, modulo the axioms in ENat . We then know that {zero, succ} forms a construc-
tor set and that plus is well-defined, precisely because it adds no new terms to the sort Nat . Therefore, we
accomplished Step (1) in the above-mentioned common inductive proof using only matching logic reasoning.
We emphasize that Theorem 9.1 is proved within the logic as an ordinary pattern at the object-level, using
the proof system in Section 4.4, which requires no reasoning outside the formal system. This is in sharp
contrast to the classical initial algebra semantics approaches to select an induction basis, such as [Jouannaud
and Kounalis, 1989].

Next, we illustrate how to do the initial algebra inductive reasoning described above using fixpoint
patterns and the (Knaster-Tarski) rule of matching logic. The idea is to derive proof goal Eq. (†) to an
equivalent form where the LHS is a fixpoint pattern so we can apply (Knaster-Tarski). Specifically, let Ψ ≡
∃y :Nat . y ∧ (plus(zero, y)' y) be the pattern matched by the natural numbers y that satisfy Eq. (†), that
is, plus(zero, y)' y. Then, we have the following reasoning steps:

INITIALALGEBRA(ENat) ` ∀y :Nat . plus(zero, y)' y iff

INITIALALGEBRA(ENat) ` [[Nat]]→ Ψ iff

INITIALALGEBRA(ENat) ` (µD. zero ∨ succ(D))→ Ψ if

INITIALALGEBRA(ENat) ` zero → Ψ and INITIALALGEBRA(ENat) ` succ(Ψ)→ Ψ iff

INITIALALGEBRA(ENat) ` plus(zero, zero)' zero

and INITIALALGEBRA(ENat) ` ∀y :Nat . (plus(zero, y)' y)→ (plus(zero, succ(y))' succ(y))

which then restore the usual structural induction as shown in Eqs. (3)-(4).
In conclusion, the matching logic specification INITIALALGEBRA(E) not only precisely defines the initial

E-algebra semantics (Theorem 8.3), but also yields inductive reasoning in it. The matching logic proof system
in Section 4.4 only includes the most basic fixpoint rules based on (Knaster-Tarski), and yet it provides support
to do structural induction and also constructor analysis, together with the axioms in INITIALALGEBRA(E).
Therefore, our proposed specification INITIALALGEBRA(E) is interesting in terms of both models/semantics
and formal (inductive) reasoning.

10 Extensions

So far, we have discussed how the standard, many-sorted initial algebra semantics is captured by matching
logic. In this section, we apply the same methodology to various extensions. We do not have space to
consider all variants of initial algebra listed in Section 3.5, so we only focus on three of them which are
known to be both practical and challenging: (1) parametric specifications, where signatures and axioms
are parameterized and can have many instances (e.g., parametric lists PList〈s〉); (2) order-sorted algebras
(OSA), where sorts are associated with an additional subsorting relation that enforces the corresponding

25

inclusion relations between carrier sets (e.g., Nat is a subsort of Int); and (3) simultaneous inductive-recursive
definitions, where the carrier sets of sorts and their constructors are inductively defined at the same time.
We will discuss these extensions using examples. The reader will notice how simple and natural the resulting
matching logic specifications are. We use these examples to make the point that matching logic provides a
simple, powerful, and extensible framework for defining and reasoning about initial algebra semantics.

10.1 Parametric Equational Specifications

Here we discuss specifications with (sort) parameters. For example, the specification of parametric lists is
({s,PList}, {nil ∈ Fε,PList , cons ∈ FsPList,PList}, ∅), where s is a sort parameter, PList constructs the sort
of lists over base sort s, nil and cons are the constructors of PList , and there are no axioms. Parameter
s can be instantiated to any sort. Therefore, this parametric specification is a “recipe” telling how to take
an instance of parameter s and turn it into an instance of lists over s. In general, parameters need not be
restricted to sorts (can include operations or even a whole specification).

spec PLIST
Imports: PRELUDE
Symbols: PList ,nil , cons
Notations:
PList〈s〉 ≡ PList s
nil〈s〉 ≡ nil s
cons〈s〉 ≡ cons s

Axioms: // all axioms are quantified by “∀s:Sort”

(PList Sort) PList〈s〉:Sort
(PList Nil) nil〈s〉:PList〈s〉
(PList Cons) cons〈s〉:s⊗ PList〈s〉 →○ PList〈s〉
(No Junk) [[PList〈s〉]] = µL.nil〈s〉 ∨ cons〈s〉([[s]], L)
(No Confusion) ∀x:s. ∀l :PList〈s〉.nil〈s〉 6= cons〈s〉(x, l)
(No Confusion) ∀x1, x2 :s. ∀l1, l2 :PList〈s〉.

cons〈s〉(x1, l1)=cons〈s〉(x2, l2)→x1=x2∧l1=l2
endspec

Specification 16: PLIST

Formally, a parametric specification is a spec-
ification morphism Φ: (SP ,FP ,EP) → (S, F,E)
from a parameter specification (SP ,FP ,EP) to
a parameterized specification (S, F,E). Initial
algebra semantics of Φ is defined using cate-
gory theory, by considering the reduct functor
|Φ :Alg(S, F,E) → Alg(SP ,FP ,EP), whose left
adjoint functor is associated with its free ex-
tension (F(A), ηA :A→ F(A)|Φ) for each A ∈
|Alg(SP ,VP ,EP)|, such that for each B ∈
|Alg(S, F,E)| and % : A → B|Φ, there exists a
unique morphism %̄ : F(A) → B with %̄|Φ ◦ ηA = %,
and the initial semantics of Φ is given by the alge-
bras F(A). Thus, for parametric lists, the parame-
ter specification ({s}, ∅, ∅) has only one sort param-
eter s and the parameterized specification is the one
given at the beginning; the specification morphism
is the inclusion, and the initial semantics is that of
lists freely generated by the set interpreting the sort s; see, e.g., [Bergstra and Klop, 1983; Ehrig et al., 1984].

While making admittedly elegant use of category theory and categorical concepts, the folklore approach
towards parametric specifications is in our view still too complex and likely demotivating for practitioners.
In addition, inductive reasoning is not handled in the core logic, but from the outside, at the categorical
meta-level. After all technical preparation and setup, all is saying is that for any sort s, we have a List
sort with constructors nil and cons, all parametric in s. This can be directly defined in matching logic
in Specification 16, PLIST. We encourage the reader to compare PLIST with TERMALGEBRA(F), the
specification of (non-parametric) term algebras in Section 7. The only difference is that PLIST allows axioms
to be quantified/parametric by sorts.

10.2 Order-Sorted Algebras

Order-sorted algebra (OSA) extends many-sorted algebra by subsorting and operation overloading ; e.g., we
can define sort Nat to be a subsort of Int , written Nat ≤ Int , and define the operation plus ∈ FNat Nat,Nat ∩
FInt Int,Int as the (overloaded) addition on natural and integer numbers. OSA has many variants; [Goguen and
Diaconescu, 1994] surveyed 13 different variants. Generally speaking, many-sorted initial algebra semantics
can be extended to the order-sorted setting, but subtle technical conditions must be studied carefully, which
are necessary to make the results listed in Section 3 also hold for OSA. We cannot discuss all technical
details, but show at a high level how the two core extensions, subsorting and overloading, can be directly
axiomatized in matching logic.

26

Formally, subsorting is a partial ordering on sorts. If s ≤ s′, then it is required that in any algebras, the
carrier sets As ⊆ As′ . Therefore, to capture subsorting, we define the following axiom:

(Subsorting) [[s]] ⊆ [[s′]]

for every s ≤ s′, which states that the carrier set of s is included by the carrier set of s′, as intended
(set inclusion ⊆ is defined as a notation in Specification 2). For operation overloading, let us consider an
overloaded operation f ∈ Fs1...sn,s ∩ Fs′1...s′n,s′ . Thus, f can be applied to arguments of sorts s1, . . . , sn,
and of sorts s′1, . . . , s

′
n, so we define one (Function) axiom in Section 5.4 for every arity of f (i.e., we use one

matching logic symbol f for all overloaded copies/instances of operation f):

(Function.1) f :s1 ⊗ · · · ⊗ sn →○ s (Function.2) f :s′1 ⊗ · · · ⊗ s′n →○ s′

By extending the specification TERMALGEBRA(F) of (many-sorted) term algebras in Section 7 with the
above two features, subsorting and overloading, we obtain the matching logic specification that captures
order-sorted term algebras. In Appendix H, we pick one typical OSA variant that is proposed in [Goguen
and Meseguer, 1992] as an example and work out the technical details.

10.3 Simultaneous Inductive-Recursive Definitions

Simultaneous inductive-recursive definitions consist of inductive sets and recursive functions that are induc-
tively defined at the same time. Such definitions are often studied for dependent type systems [Cardelli, 1996;
Martin-Löf, 1975], where the boundary between operations and sort/type constructors begins to blur. The
following is a typical example2 of simultaneous inductive-recursive definitions called distinct-element lists.
It defines a sort DList of natural numbers built from nil and cons, but cons is mutually depended on a
predicate fresh(x, l) that states that number x is not in list l. By mutual dependence, we mean (1) cons will
call fresh to check whether x is in l before it builds the extended list cons(x, l), and (2) fresh is inductively
defined on the lists of DList built from cons.

As we show below, the technique that we use to axiomatically define DList in matching logic is the same
as the one we used to capture mutual recursion in Section 7.2. We can think of fresh as the “constructor”
of a set Fresh that includes the pairs 〈x, l〉 such that fresh(x, l) holds. Then, the two inhabitant sets [[DList]]
and [[Fresh]] form a mutual recursion and can be axiomatically defined by:

〈[[DList]], [[Fresh]]〉 = µD. 〈ΦDList ,ΦFresh〉
where ΦDList ≡ nil ∨ ∃x :Nat .∃l. cons(x, l) ∧ l ∈ DDList ∧ 〈x, l〉 ∈ DFresh

ΦFresh ≡ 〈nil , [[Nat]]〉 ∨ ∃x, y :Nat .∃l. 〈x, cons(y, l)〉 ∧ x 6= y ∧ 〈y, l〉 ∈ DFresh

DDList ≡ proj 1 D

DFresh ≡ proj 2 D

The same technique applies to all simultaneous inductive-recursive definitions we are aware of.

11 Conclusion

We showed that initial algebra semantics can be axiomatized in matching logic: given an equational spec-
ification E, we defined a corresponding matching logic specification INITIALALGEBRA(E) that captures
precisely the initial E-algebras. Then, we showed how to use it to do inductive reasoning in any E using the
fixed matching logic proof system. We discussed the many-sorted setting in detail, and covered three typ-
ical extensions—parametric specifications, order-sorted specifications, and simultaneous inductive-recursive
definitions. In conclusion, we demonstrated that initial E-algebra semantics can be faithfully represented in
matching logic, both theoretically and practically.

2This (artificial) example is described in [Dybjer, 2000, pp. 4], whose author gave the credit to Catarina Coquand.

27

References

Andreas Abel, Thierry Coquand, and Peter Dybjer. On the algebraic foundation of proof assistants for
intuitionistic type theory. In Jacques Garrigue and Manuel V. Hermenegildo, editors, Functional and
Logic Programming, pages 3–13, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
78969-7.

Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Peter D. Mosses, Donald San-
nella, and Andrzej Tarlecki. CASL: the common algebraic specification language. Journal of Theoretical
Computer Science, 286(2):153–196, 2002. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(01)
00368-1. URL http://www.sciencedirect.com/science/article/pii/S0304397501003681. Current
trends in Algebraic Development Techniques.

Steve Awodey, Nicola Gambino, and Kristina Sojakova. Inductive types in homotopy type theory. In
Proceedings ot the 27th Annual IEEE Symposium on Logic in Computer Science (LICS’12), pages 95–104,
Dubrovnik, Croatia, 2012. IEEE.

Steve Awodey, Nicola Gambino, and Kristina Sojakova. Homotopy-initial algebras in type theory. Journal
of the ACM, 63(6), January 2017. ISSN 0004-5411. doi: 10.1145/3006383. URL https://doi.org/10.

1145/3006383.

Jan A. Bergstra and Jan Willem Klop. Initial algebra specifications for parametrized data types. J. Inf.
Process. Cybern., 19(1/2):17–31, 1983.

Denis Bogdănaş and Grigore Roşu. K-Java: A complete semantics of Java. In Proceedings of the 42nd

Symposium on Principles of Programming Languages (POPL’15), pages 445–456, Mumbai, India, 2015.
ACM.

R. M. Burstall. Semantics of assignment. Machine Intelligence, 2:3–20, 1968.

R. M. Burstall. Proving properties of programs by structural induction. The Computer Journal, 12(1):41–48,
1969. ISSN 0010-4620. doi: 10.1093/comjnl/12.1.41.

R. M. Burstall and J. A. Goguen. Algebras, theories and freeness: an introduction for computer scientists,
volume 91 of NATO Advanced Study Institutes Series (Series C — Mathematical and Physical Sciences),
chapter 11, pages 329–349. Springer, Dordrecht, Netherlands, 1982. doi: 10.1007/978-94-009-7893-5 11.
URL https://doi.org/10.1007/978-94-009-7893-5_11.

Venanzio Capretta. Universal algebra in type theory. In Yves Bertot, Gilles Dowek, Laurent Théry, André
Hirschowitz, and Christine Paulin, editors, Theorem Proving in Higher Order Logics, pages 131–148,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-3-540-48256-7.

Luca Cardelli. Type systems. ACM Computing Surveys (CSUR), 28(1):263–264, 1996.

Xiaohong Chen and Grigore Roşu. Matching µ-logic. In Proceedings of the 34th Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS’19), pages 1–13, Vancouver, Canada, 2019a. IEEE. doi:
10.1109/LICS.2019.8785675.

Xiaohong Chen and Grigore Roşu. Matching µ-logic. Technical report, University of Illinois at Urbana-
Champaign, 2019b. URL http://hdl.handle.net/2142/102281.

Xiaohong Chen and Grigore Roşu. A general approach to define binders using matching logic. In Proceedings
of the 25th ACM SIGPLAN International Conference on Functional Programming (ICFP’20), pages 1–32,
New Jersey, USA, 2020a. ACM. URL http://hdl.handle.net/2142/106608.

Xiaohong Chen and Grigore Roşu. A general approach to define binders using matching logic. Technical
report, University of Illinois at Urbana-Champaign, 2020b. URL http://hdl.handle.net/2142/106608.

28

http://www.sciencedirect.com/science/article/pii/S0304397501003681
https://doi.org/10.1145/3006383
https://doi.org/10.1145/3006383
https://doi.org/10.1007/978-94-009-7893-5_11
http://hdl.handle.net/2142/102281
http://hdl.handle.net/2142/106608
http://hdl.handle.net/2142/106608

Alonzo Church. The calculi of lambda-conversion. Princeton University Press, Princeton, New Jersey, USA,
1941. doi: 10.2307/2267126.

Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso Mart́ı-Oliet, José
Meseguer, Rubén Rubio, and Carolyn Talcott. Maude manual (version 3.0). SRI International, 2020.
URL http://maude.lcc.uma.es/maude30-manual-html/maude-manual.html.

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata, 2007.
Release October 12th, 2007.

Hubert Comon. Inductionless induction. In Alan Robinson and Andrei Voronkov, editors, Hand-
book of automated reasoning, chapter 14, pages 913–962. North Holland, Amsterdam, 2001. doi:
10.1016/B978-044450813-3/50016-3.

D. C. Cooper. The equivalence of certain computations. The Computer Journal, 9(1):45–52, May 1966.
ISSN 0010-4620. doi: 10.1093/comjnl/9.1.45.

Coq Team. Coq documents: calculus of inductive constructions. Online at https://coq.inria.fr/refman/
language/cic.html., 2020.

Thierry Coquand and Christine Paulin. Inductively defined types. In Proceedings of International Conference
on Computer Logic, pages 50–66, Tallinn, USSR, 1990. Springer Berlin Heidelberg. ISBN 978-3-540-46963-
6. doi: 10.1007/3-540-52335-9 47.

Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grigore Roşu. A complete
formal semantics of x86-64 user-level instruction set architecture. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI’19), pages 1133–1148,
Phoenix, Arizona, USA, 2019. ACM.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The Lean
theorem prover (system description). In Amy P. Felty and Aart Middeldorp, editors, Proceedings of the
25th International Conference on Automated Deduction Automated Deduction (CADE’15), pages 378–388,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-21401-6.

Razvan Diaconescu. Institution-independent model theory. Birkhäuser Basel, Boston, Berlin, 2008. ISBN
3764387076.

Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ report: the language, proof techniques, and methodolo-
gies for object-oriented algebraic specification, volume 6 of AMAST Series in Computing. World Scientific,
Singapore, 1998. doi: 10.1142/3831.

Peter Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type theory. Theoretical
Computer Science, 176(1):329–335, 1997. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(96)
00145-4. URL http://www.sciencedirect.com/science/article/pii/S0304397596001454.

Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. J. Symb.
Log., 65(2):525–549, 2000. doi: 10.2307/2586554. URL https://doi.org/10.2307/2586554.

Hartmut Ehrig and Bernd Mahr. Fundamentals of algebraic specification 1: equations and initial semantics,
volume 6 of Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin Heidelberg,
Germany, 1985. doi: 10.1007/978-3-642-69962-7.

Hartmut Ehrig, Hans-Jörg Kreowski, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. Pa-
rameter passing in algebraic specification languages. Theor. Comput. Sci., 28:45–81, 1984. doi:
10.1016/0304-3975(83)90065-8. URL https://doi.org/10.1016/0304-3975(83)90065-8.

29

http://maude.lcc.uma.es/maude30-manual-html/maude-manual.html
http://www.grappa.univ-lille3.fr/tata
https://coq.inria.fr/refman/language/cic.html
https://coq.inria.fr/refman/language/cic.html
http://www.sciencedirect.com/science/article/pii/S0304397596001454
https://doi.org/10.2307/2586554
https://doi.org/10.1016/0304-3975(83)90065-8

Herbert B. Enderton. A mathematical introduction to logic. Academic Press, Califonia, USA, 1972. ISBN
978-0-12-238450-9.

M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings. 14th Symposium
on Logic in Computer Science (Cat. No. PR00158), pages 193–202, Trento, Italy, 1999. IEEE.

Marcelo P. Fiore and Chung-Kil Hur. On the construction of free algebras for equational systems. Theor.
Comput. Sci., 410(18):1704–1729, 2009. doi: 10.1016/j.tcs.2008.12.052. URL https://doi.org/10.1016/

j.tcs.2008.12.052.

Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. Constructing infinitary quotient-inductive types.
In Jean Goubault-Larrecq and Barbara König, editors, Proceedings of the 23rd International Conference on
Foundations of Software Science and Computation Structures (FOSSACS’20) Held as Part of the European
Joint Conferences on Theory and Practice of Software (ETAPS’20), volume 12077 of Lecture Notes in
Computer Science, pages 257–276, Dublin, Ireland, 2020. Springer. doi: 10.1007/978-3-030-45231-5\ 14.
URL https://doi.org/10.1007/978-3-030-45231-5_14.

François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. Packaging mathematical struc-
tures. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics, pages 327–342, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
ISBN 978-3-642-03359-9.

Herman Geuvers, Randy Pollack, Freek Wiedijk, and Jan Zwanenburg. A constructive algebraic hierarchy
in Coq. J. Symb. Comput., 34(4):271–286, October 2002. ISSN 0747-7171. doi: 10.1006/jsco.2002.0552.
URL https://doi.org/10.1006/jsco.2002.0552.

Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra. Mathematical Structures
in Computer Science, 4(3):363–392, 1994. doi: 10.1017/S0960129500000517.

Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55–
101, 2000. ISSN 0304-3975. doi: https://doi.org/10.1016/S0304-3975(99)00275-3. URL http://www.

sciencedirect.com/science/article/pii/S0304397599002753.

Joseph Goguen and José Meseguer. Order-sorted algebra, part I: equational deduction for multiple inher-
itance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217–273,
1992. doi: 10.1016/0304-3975(92)90302-V.

Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra semantics and continuous
algebras. Journal of the ACM, 24(1):68–95, 1977.

Joseph Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud. Software
engineering with OBJ: Algebraic specification in action, chapter Introducing OBJ, pages 3–167. Springer,
Massachusetts, USA, 2000.

Joseph A. Goguen and Rod M. Burstall. Institutions: Abstract model theory for specification and program-
ming. Journal of the ACM, 39(1):95–146, 1992. URL http://doi.acm.org.proxy2.library.illinois.

edu/10.1145/147508.147524.

Joseph A. Goguen and Grant Malcolm. Algebraic semantics of imperative programs. MIT Press, Cambridge,
MA, USA, 1996. ISBN 026207172X.

Joseph A. Goguen and José Meseguer. Completeness of many-sorted equational logic. Houston Journal of
Mathematics, 11(3):307–334, 1985.

Joseph A. Goguen and Grigore Rosu. Institution morphisms. Formal Asp. Comput., 13(3-5):274–307, 2002.
doi: 10.1007/s001650200013. URL https://doi.org/10.1007/s001650200013.

30

https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1016/j.tcs.2008.12.052
https://doi.org/10.1007/978-3-030-45231-5_14
https://doi.org/10.1006/jsco.2002.0552
http://www.sciencedirect.com/science/article/pii/S0304397599002753
http://www.sciencedirect.com/science/article/pii/S0304397599002753
http://doi.acm.org.proxy2.library.illinois.edu/10.1145/147508.147524
http://doi.acm.org.proxy2.library.illinois.edu/10.1145/147508.147524
https://doi.org/10.1007/s001650200013

Jan Friso Groote and Radu Mateescu. Verification of temporal properties of processes in a setting with data.
In Armando M. Haeberer, editor, Algebraic Methodology and Software Technology, pages 74–90, Berlin,
Heidelberg, 1999. Springer. ISBN 978-3-540-49253-5. doi: 10.1007/3-540-49253-4 8.

Emmanuel Gunther, Alejandro Gadea, and Miguel Pagano. Formalization of universal algebra in Agda.
Electronic Notes in Theoretical Computer Science, 338:147–166, 2018. ISSN 1571-0661. doi: https:
//doi.org/10.1016/j.entcs.2018.10.010. URL http://www.sciencedirect.com/science/article/pii/

S1571066118300768. The 12th Workshop on Logical and Semantic Frameworks, with Applications (LSFA
2017).

J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types. Acta Informatica, 10(1):
27–52, March 1978. ISSN 1432-0525. doi: 10.1007/BF00260922.

John V. Guttag, James J. Horning, and Jeannette M. Wing. The larch family of specification languages.
IEEE Softw., 2(5):24–36, 1985. doi: 10.1109/MS.1985.231756. URL https://doi.org/10.1109/MS.

1985.231756.

Alan G. Hamilton. Logic for mathematicians. Cambridge University Press, Cambridge, UK, 1978.

Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the undefinedness of C. In Proceedings
of the 36th annual ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’15), pages 336–345, Portland, OR, 2015. ACM.

Joe Hendrix and José Meseguer. On the completeness of context-sensitive order-sorted specifications. In
Franz Baader, editor, Term Rewriting and Applications, pages 229–245, Berlin, Heidelberg, 2007. Springer.
ISBN 978-3-540-73449-9. doi: 10.1007/978-3-540-73449-9 18.

Joe Hendrix, José Meseguer, and Hitoshi Ohsaki. A sufficient completeness checker for linear order-sorted
specifications modulo axioms. In Ulrich Furbach and Natarajan Shankar, editors, Automated Reasoning,
pages 151–155, Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-37188-5. doi: 10.1007/11814771 14.

Joseph D. Hendrix. Decision procedures for equationally based reasoning. PhD thesis, University of Illinois
at Urbana-Champaign, 2008.

Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian, Dwight Guth, Bran-
don Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KEVM: A complete semantics
of the Ethereum virtual machine. In Proceedings of the 2018 IEEE Computer Security Foundations Sym-
posium (CSF’18), pages 204–217, Oxford, UK, 2018. IEEE. http://jellopaper.org.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):
576–580, 1969.

George Edward Hughes and Max Cresswell. An introduction to modal logic. Routledge, England, UK, 1968.

Patricia Johann and Neil Ghani. Initial algebra semantics is enough! In Simona Ronchi Della Rocca,
editor, Typed Lambda Calculi and Applications, pages 207–222, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-73228-0.

Jean-Pierre Jouannaud and Emmanuel Kounalis. Automatic proofs by induction in theories without con-
structors. Information and Computation, 82(1):1–33, 1989. ISSN 0890-5401. doi: 10.1016/0890-5401(89)
90062-X.

K Team. Matching logic proof checker. GitHub page https://github.com/kframework/

matching-logic-prover/tree/master/checker, 2020.

D. M. Kaplan. Correctness of a compiler for Algol-like programs. Stanford Artificial Intelligence Memo
No. 48, 48(1):1–35, 1967.

31

http://www.sciencedirect.com/science/article/pii/S1571066118300768
http://www.sciencedirect.com/science/article/pii/S1571066118300768
https://doi.org/10.1109/MS.1985.231756
https://doi.org/10.1109/MS.1985.231756
http://jellopaper.org
https://github.com/kframework/matching-logic-prover/tree/master/checker
https://github.com/kframework/matching-logic-prover/tree/master/checker

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-inductive types.
Proc. ACM Program. Lang., 3(POPL), January 2019. doi: 10.1145/3290315. URL https://doi.org/10.

1145/3290315.

Laura Kovács, Simon Robillard, and Andrei Voronkov. Coming to terms with quantified reasoning. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’17),
pages 260–270, Paris, France, 2017. ACM. ISBN 978-1-4503-4660-3.

Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science, 27(3):333–354, 1983.
doi: 10.1016/0304-3975(82)90125-6.

B. Kutzler and F. Lichtenberger. Bibliography on abstract data types, volume 68 of Informatik-Fachberichte.
Springer, New York, USA, 1983. doi: 10.1007/978-3-642-69032-7.

Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen, 76(4):447–470, 1915.

Anatoli Ivanovi Malc’ev. Axiomatizable classes of locally free algebras of various type. The Metamathematics
of Algebraic Systems: Collected Papers, 1(1):262–281, 1936.

Vincenzo Manca and Antonino Salibra. Soundness and completeness of the Birkhoff equational calculus
for many-sorted algebras with possibly empty carrier sets. Theoretical Computer Science, 94(1):101–124,
1992. ISSN 0304-3975. doi: 10.1016/0304-3975(92)90325-A.

Per Martin-Löf. An intuitionistic theory of types: predicative part. In Logic Colloquium, volume 80, pages
73–118. Elsevier, Amsterdam, The Netherlands, 1975.

Coq Team. The Coq proof assistant. LogiCal Project, 2020. URL http://coq.inria.fr.

John McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal Systems, volume 35 of Studies in Logic and the Foundations
of Mathematics, pages 33–70. Elsevier, Amsterdam, The Netherlands, 1963. doi: 10.1016/S0049-237X(08)
72018-4.

John Mccarthy and James Painter. Correctness of a compiler for arithmetic expressions. In Proceedings of
Symposiain Applied Mathematics, volume 19, pages 33–41, Rhode Island, USA, 1967. American Mathe-
matical Society.

José Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput. Sci., 96
(1):73–155, 1992. doi: 10.1016/0304-3975(92)90182-F. URL https://doi.org/10.1016/0304-3975(92)

90182-F.

José Meseguer. Membership algebra as a logical framework for equational specification. In Francesco Parisi-
Presicce, editor, Recent Trends in Algebraic Development Techniques (WADT’97), volume 1376 of Lecture
Notes in Computer Science, pages 18–61, Tarquinia, Italy, 1997. Springer. doi: 10.1007/3-540-64299-4\ 26.
URL https://doi.org/10.1007/3-540-64299-4_26.

José Meseguer. Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming, 81(7–8):
721–781, 2012. doi: 10.1016/j.jlap.2012.06.003.

José Meseguer and Joseph A. Goguen. Initiality, induction, and computability. In Algebraic Methods in
Semantics, pages 459–543. Cambridge University Press, New York, USA, 1985.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD thesis, De-
partment of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden, September 2007.

Ulf Norell. Dependently typed programming in Agda. In Proceedings of the 6th International Conference on
Advanced Functional Programming (AFP’09), pages 230–266, Heijen, The Netherlands, 2009. Springer.

32

https://doi.org/10.1145/3290315
https://doi.org/10.1145/3290315
http://coq.inria.fr
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1007/3-540-64299-4_26

J. A. Painter. Semantic correctness of a compiler for an Algol-like language. Stanford Artificial Intelligence
Memo. No. 44, 1(1):1–260, 1967.

Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A complete formal semantics of JavaScript.
In Proceedings of the 36th annual ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’15), pages 346–356, Portland, OR, 2015. ACM.

Andrew Pitts. Construction of the initial algebra for a strictly positiveendofunctor on Set using uniqueness
of identity proofs, functionextensionality, quotients types and sized types. Available at www.cl.cam.ac.

uk/users/amp12/agda/initial-T-algebras., November 2019.

Axel Poigné. Parametrization for order-sorted algebraic specification. J. Comput. Syst. Sci., 40(2):229–268,
1990. doi: 10.1016/0022-0000(90)90013-B. URL https://doi.org/10.1016/0022-0000(90)90013-B.

Arthur Prior. Time and modality. Greenwood Press, California, USA, 1955.

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings of the 17th

Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages 55–74, Copenhagen, Denmark,
2002. IEEE.

Camilo Rocha and José Meseguer. Constructors, sufficient completeness, and deadlock freedom of rewrite
theories. In Christian G. Fermüller and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 594–609, Berlin, Heidelberg, 2010. Springer. ISBN 978-3-642-16242-8.
doi: 10.1007/978-3-642-16242-8 42.

Grigore Roşu. Matching logic. Logical Methods in Computer Science, 13(4):1–61, 2017. doi: 10.23638/
LMCS-13(4:28)2017.

Grigore Roşu and Wolfram Schulte. Matching logic—extended report. Technical Report Department of
Computer Science UIUCDCS-R-2009-3026, University of Illinois at Urbana-Champaign, January 2009.

Jan J. M. M. Rutten and Daniele Turi. Initial algebra and final coalgebra semantics for concurrency. In J. W.
de Bakker, Willem P. de Roever, and Grzegorz Rozenberg, editors, A Decade of Concurrency, Reflections
and Perspectives, REX School/Symposium, Noordwijkerhout, The Netherlands, June 1-4, 1993, Proceed-
ings, volume 803 of Lecture Notes in Computer Science, pages 530–582, Noordwijkerhout, The Netherlands,
1993. Springer. doi: 10.1007/3-540-58043-3\ 28. URL https://doi.org/10.1007/3-540-58043-3_28.

Donald Sannella and Andrzej Tarlecki. Foundations of algebraic specification and formal software de-
velopment. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin Hei-
delberg, Germany, 2012. ISBN 978-3-642-17335-6. doi: 10.1007/978-3-642-17336-3. URL https:

//doi.org/10.1007/978-3-642-17336-3.

Dana Scott. Domains for denotational semantics. In International Colloquium on Automata, Languages,
and Programming, pages 577–610, Berlin Heidelberg, Germany, 1982. Springer, Springer.

Kristina Sojakova. Higher inductive types as homotopy-initial algebras. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’15), POPL ’15,
pages 31–42, New York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450333009.
doi: 10.1145/2676726.2676983. URL https://doi.org/10.1145/2676726.2676983.

Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type theory. Interactive Theorem
Proving and the Formalisation of Mathematics, 21(4):795–825, 2011. doi: 10.1017/S0960129511000119.

Ramesh Subrahmanyam. Complexity of algebraic specifications. In Kesav V. Nori and C. E. Veni Madha-
van, editors, Foundations of Software Technology and Theoretical Computer Science, pages 33–47, Berlin,
Heidelberg, 1990. Springer. doi: 10.1007/3-540-53487-3 33.

33

www.cl.cam.ac.uk/users/amp12/agda/initial-T-algebras
www.cl.cam.ac.uk/users/amp12/agda/initial-T-algebras
https://doi.org/10.1016/0022-0000(90)90013-B
https://doi.org/10.1007/3-540-58043-3_28
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1007/978-3-642-17336-3
https://doi.org/10.1145/2676726.2676983

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5
(2):285–309, 1955.

Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Merijn de Jonge, Tobias Kuipers, Paul
Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J. Vinju, Eelco Visser, and Joost Visser.
The ASF+SDF meta-environment: a component-based language development environment. Electronic
Notes in Theoretical Computer Science, 44(2):3–8, 2001. doi: 10.1016/S1571-0661(04)80917-4. URL
https://doi.org/10.1016/S1571-0661(04)80917-4.

H. Wang. Logic of many-sorted theories. J. Symb. Log., 17:105–116, 1952.

34

https://doi.org/10.1016/S1571-0661(04)80917-4

A Matching Logic in One Page

The entire metatheory of matching logic is very small and can be put in one page; see Fig. 17.

Signature: a countable set Σ

Variables: two disjoint and countably infinite sets EV and SV

Syntax: ϕ ::= x ∈ EV | X ∈ SV | σ ∈ Σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ (if ϕ positive in X)

Model: a nonempty carrier set M ,
an application interpretation • : M ×M → P(M)
a symbol interpretation σM ⊆M for each σ ∈ Σ

Valuation: a function ρ such that ρ(x) ∈M for x ∈ EV and ρ(X) ⊆M for X ∈ SV

Interpretation: a function | |ρ from patterns to subsets of M

|x|ρ = {ρ(x)} |X|ρ = ρ(X)

|σ|ρ = σM |ϕ1 ϕ2|ρ
⋃
a∈|ϕ1|ρ

⋃
b∈|ϕ2|ρ

a • b

|⊥|ρ = ∅ |ϕ1 → ϕ2|ρ = M \
(
|ϕ1|ρ \ |ϕ2|ρ

)
|∃x. ϕ|ρ =

⋃
a∈M |ϕ|ρ[a/x] |µX.ϕ|ρ =

⋂{
A ⊆M | |ϕ|ρ[A/X] ⊆ A

}
Proof System:

FOL
Reasoning

Frame
Reasoning

Fixpoint
Reasoning

Technical
Rules

(Propositional Tautology) ϕ if ϕ is a tautology over patterns

(Modus Ponens)

ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x. ϕ

(∃-Generalization)

ϕ1 → ϕ2
if x 6∈ FV (ϕ2)

(∃x.ϕ1)→ ϕ2

(Propagation⊥) C[⊥]→ ⊥

(Propagation∨) C[ϕ1 ∨ ϕ2]→ C[ϕ1] ∨ C[ϕ2]

(Propagation∃) C[∃x. ϕ]→ ∃x.C[ϕ] if x 6∈ FV (C)

(Framing)

ϕ1 → ϕ2

C[ϕ1]→ C[ϕ2]

(Set Variable Substitution)

ϕ

ϕ[ψ/X]

(PreFixpoint) ϕ[(µX.ϕ)/X]→ µX.ϕ

(Knaster-Tarski)

ϕ[ψ/X]→ ψ

µX.ϕ→ ψ

(Existence) ∃x. x

(Singleton) ¬ (C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where C[ϕ] denotes the application pattern (ϕ ψ) or (ψ ϕ), for any ψ.

Figure 17: The entire metatheory of matching logic (model theory and proof theory) can be put in one page.

35

B Proofs of the Results in Section 4

B.1 Proofs of Propositions 4.6, 4.9, and 4.11

Proposition 4.6. The following propositions hold:

1. |¬ϕ|M,ρ = M \ |ϕ|M,ρ;

2. |ϕ1 ∨ ϕ2|M,ρ = |ϕ1|M,ρ ∪ |ϕ2|M,ρ;

3. |ϕ1 ∧ ϕ2|M,ρ = |ϕ1|M,ρ ∩ |ϕ2|M,ρ;

4. |>|M,ρ = M ;

5. |ϕ1 ↔ ϕ2|M,ρ = M \ (|ϕ1|M,ρ 4 |ϕ2|M,ρ);

6. |∀x. ϕ|M,ρ =
⋂
a∈M |ϕ|ρ[a/x];

7. |νX.ϕ|M,ρ =
⋃
{A ⊆M | A ⊆ |ϕ|M,ρ[A/X]};

where “4” denotes set symmetric difference.

Proof. The proofs of (1)-(6) can be found in [Chen and Roşu, 2020b, Appendix A.1]. For (7), we have the
following reasoning:

|νX.ϕ|M,ρ = |¬µX.¬ϕ[¬X/X]|M,ρ

= M \ |µX.¬ϕ[¬X/X]|M,ρ

= M \
⋂
{A ⊆M | |¬ϕ[¬X/X]|M,ρ[A/X] ⊆ A}

= M \
⋂
{A ⊆M | (M \A) ⊆ |ϕ[¬X/X]|M,ρ[A/X]}

= M \
⋂
{A ⊆M | (M \A) ⊆ |ϕ|M,ρ[(M\A)/X]}

= M \
⋂
{B ⊆M | B ⊆ |ϕ|M,ρ[B/X]}

=
⋃
{A ⊆M | A ⊆ |ϕ|M,ρ[A/X]}.

Proposition 4.9. For any M � DEFINEDNESS, pattern ϕ, and valuation ρ:

1. daeM = M for every a ∈M , where daeM = defM •̄ {a} and defM is the interpretation of def ;

2. |dϕe|M,ρ = M if |ϕ|M,ρ 6= ∅; otherwise, |dϕe|M,ρ = ∅.

Proof. (1). For any element a ∈ M , we consider an M -valuation ρa such that ρa(x) = a for some variable
x. Since M � ∀x. dxe, we know that M � dxe for all valuations ρ. In particular, we have |dxe|M,ρa

=
def M •̄ {a} = M . Therefore, by definition, daeM = M for every a ∈M .

(2). If |ϕ|M,ρ 6= ∅, there exists a ∈ |ϕ|M,ρ. Therefore, by pointwise extension, daeM ⊆ |dϕe|M,ρ. By (1),
daeM = M , so |dϕe|M,ρ = M . If |ϕ|M,ρ = ∅, then by pointwise extension |dϕe|M,ρ = ∅.

Proposition 4.11. For any M � NN, the following properties hold:

1. By axiom (Nat Zero): NM 6= ∅; zeroM is a singleton; and zeroM ⊆ NM ; thus, we can define Mzero ∈ NM
to be the unique element that is in zeroM ;

2. By axiom (Nat Succ): for any m ∈ NM there exists nextm ∈ NM such that succM •̄ {m} = {nextm}; thus,
we can define Msucc : NM → NM to be the unique function such that Msucc(m) = nextm;

3. By axioms (Nat Succ.1) and (Nat Succ.2): Msucc(Mzero) 6= Mzero, and for any m,n ∈ NM , Msucc(m) =
Msucc(n) implies m = n, that is, Msucc is injective;

36

4. By axiom (Nat Domain): NM is the set {Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . };

5. Thus, (NM ,Mzero ,Msucc) is the standard model of natural numbers.

Proof. (1). By (Nat Zero), we have M � ∃x. x ∈ N ∧ zero = x. Therefore, there exists a ∈ NM such that
zeroM = {a}. Thus, NM 6= ∅, and zeroM is a singleton.

(2). By (Nat Succ), we have M � ∀x. x ∈ N → ∃y. y ∈ N ∧ succ x = y. Therefore, for all m ∈ NM there
exists nextm ∈ NM , such that succM •̄ {m} = {nextm}, and clearly such nextm is unique. Therefore, the
function Msucc : NM → NM defined by Msucc(m) = nextm for all m ∈ NM is indeed well-defined.

(3). The conclusion holds trivially.
(4). We verify that the set {Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . }, denoted as N′M for now,

is indeed the least fixpoint of function F : P(M) → P(M) defined by F(A) = zeroM ∪ (succM •̄ A) for all
A ⊆M . Firstly, we verify that N′M is a fixpoint of F as follows:

F(N′M) = zeroM ∪ (succM •̄ N′M)

= {Mzero} ∪
⋃

a∈N′
M

succM •̄ {a}

= {Mzero} ∪ {Msucc(Mzero),Msucc(Msucc(Mzero)), . . . }
= N′M .

Secondly, we show that any strict subset N0
M (N′M is not a fixpoint of F , and thus N′M is indeed the

least fixpoint of F . Let k ≥ 0 be the smallest k such that Mk
succ(Mzero) 6∈ N0

M , where Mk
succ(Mzero) =

Msucc(Msucc(. . .Msucc︸ ︷︷ ︸
k times

(Mzero) . . .)). If k = 0, then Mzero 6∈ N0
M , and thus N0

M is not a fixpoint of F .

If k > 0, then we have Mk−1
succ (Mzero) ∈ N0

M but Mk
succ(Mzero) 6∈ N0

M , which also shows that N0
M is

not a fixpoint of F . Therefore, N′M is indeed the least fixpoint of F , and thus we have NM = N′M =
{Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . }.

B.2 Matching Logic Proof System

The proof system of matching logic is shown in Fig. 17, where we draw inspiration from [Chen and Roşu,
2019a, 2020a]. It consists of four modules: FOL reasoning, equational reasoning, fixpoint reasoning, and some
technical rules. Particularly, the fixpoint reasoning module consists of three rules. (Set Variable Substitution)
allows one to substitute any pattern ψ for a set variable X in a (formal) theorem. (PreFixpoint) states that
µX.ϕ is a pre-fixpoint, in the sense that the unfolded pattern ϕ[(µX.ϕ)/X] is included by original fixpoint
µX.ϕ. (Knaster-Tarski) is the logical incarnation of the Knaster-Tarski fixpoint theorem.

B.3 Proofs of Proposition 4.12 and Theorem 4.13

Proposition 4.12. Let Γ be any specification. Then, the following propositions hold:

1. Γ ` ϕ, if ϕ is a tautology over patterns;

2. Γ ` ϕ1 and Γ ` ϕ1 → ϕ2 imply Γ ` ϕ2;

3. Γ ` ϕ[y/x]→ ∃x. ϕ;

4. Γ ` ϕ1 → ϕ2 and y 6∈ FV (ϕ2) imply Γ ` (∃y. ϕ1)→ ϕ2;

5. Γ ` ϕ = ϕ;

6. Γ ` ϕ1 = ϕ2 and Γ ` ϕ2 = ϕ3 imply Γ ` ϕ1 = ϕ3;

7. Γ ` ϕ1 = ϕ2 implies Γ ` ϕ2 = ϕ1;

37

8. Γ ` ϕ1 = ϕ2 implies Γ ` ψ[ϕ1/x] = ψ[ϕ2/x], known as the Leibniz’s law of equality.

9. Γ ` (µX.ϕ) = ϕ[µX.ϕ/X];

10. Γ ` ϕ[ψ/X]→ ψ implies Γ ` (µX.ϕ)→ ψ; this proof rule is denoted (Knaster-Tarski);

where for (5)-(9) we naturally require that Γ defines equality (Section 4.3.1).

Proof. The proofs of (1)-(8) can be found in [Chen and Roşu, 2020b, Appendix B.3]. (10) is exactly the
proof rule (Knaster-Tarski) in Fig. 17. Therefore, we only need to prove (9), which is equivalent to Γ `
b(µX.ϕ)↔ ϕ[µX.ϕ/X]c. The implication from right to left is the proof rule (PreFixpoint). Therefore, we
only need to prove the other direction: Γ ` (µX.ϕ)→ ϕ[(µX.ϕ)/X].

We apply rule (Knaster-Tarski) and obtain the proof goal Γ ` ϕ[(ϕ[(µX.ϕ)/X])/X]→ ϕ[(µX.ϕ)/X]. Note
that ϕ is positive in X, and thus by frame reasoning (see, e.g., [Chen and Roşu, 2019b, Lemma 89]), we only
need to prove that ϕ[(µX.ϕ)/X]→ µX.ϕ, which is proved by (Pre-Fixpoint).

Theorem 4.13. For any Γ and ϕ, we have Γ ` ϕ implies Γ � ϕ.

Proof. We only need to show that all 13 proof rules listed in Fig. 17 are sound. Here we only show the proofs
for the fixpoint reasoning rules, (PreFixpoint) and (Knaster-Tarski), as the rest can be found in [Chen and Roşu,
2020b, Appendix B.3].

For a model M and a valuation ρ, the pattern ϕ defines (w.r.t. X) a monotone function F : P(M) →
P(M) given by F(A) = |ϕ|ρ[A/X]. By the Knaster-Tarski fixpoint theorem, the least fixpoint of F , denoted
µF , is given as:

µF =
⋂
{A ⊆M | F(A) ⊆ A}.

For (PreFixpoint), we have that |ϕ[(µX.ϕ)/X]|M,ρ = |ϕ|M,ρ[(|µX.ϕ|M,ρ)/X] = F(|µX.ϕ|M,ρ) = F(µF), which

equals to µF because it is a fixpoint of F . For (Knaster-Tarski), let us consider any pattern ψ such that
` ϕ[ψ/X]→ ψ. Let B = |ψ|M,ρ, then we have |ϕ[ψ/X]|M,ρ ⊆ B, which implies that F(B) ⊆ B. Therefore,
(Knaster-Tarski) is sound.

C Proofs of the Results in Section 5

Proposition 5.2. The following propositions hold:

1. By (Nat Sort): NatM is a singleton, whose unique element we (ambiguously) denote also as NatM ; then,
NatM ∈MSort ; intuitively, NatM is the interpretation of the sort name Nat in M ;

2. By (Nat): the set MNat equals NM = {Mzero ,Msucc(Mzero),Msucc(Msucc(Mzero)), . . . }, which was
defined in Proposition 4.11; intuitively, MNat is the inhabitant set of Nat in M ;

3. Following the same reasoning in Proposition 4.11, we can define functions Mplus ,Mmult : MNat ×
MNat →MNat , such that plusM •̄ {m} •̄ {n} = {Mplus(m,n)} and multM •̄ {m} •̄ {n} = {Mmult(m,n)},
for all m,n ∈MNat ; that is, they capture the addition and multiplication functions.

Proof. The proofs of (1) and (3) follow the same idea as the proof of Proposition 4.11, and (2) follows directly
from Proposition 4.11.

Proposition 5.3. Under the above conditions and notations, the following properties hold:

1. By (Pair Sort): for s1, s2 ∈MSort , PairM •̄ {s1} •̄ {s2} is a singleton, whose (unique) element we denote
s1 ⊗M s2; then we have s1 ⊗M s2 ∈MSort ; intuitively, s1 ⊗M s2 is the pair sort of s1 and s2;

2. By (Pair): for s1, s2 ∈MSort , x1 ∈Ms1 , and x2 ∈Ms2 , pairM •̄{x1}•̄{x2} is a singleton, whose (unique)
element we denote 〈x1, x2〉M ; then we have 〈x1, x2〉M ∈Ms1⊗Ms2 ;

38

3. Like in Propositions 4.3.2 and 5.1.1, let Mfst : Ms1⊗Ms2 → Ms1 and Msnd : Ms1⊗Ms2 → Ms2 be such
that fstM •̄ {y} = {Mfst(y)} and sndM •̄ {y} = {Msnd(y)}, for any s1, s2 ∈MSort and y ∈Ms1⊗Ms2 ;

4. By (Pair Fst/Snd/Inj): for s1, s2 ∈MSort , x1, y1 ∈Ms1 , and x2, y2 ∈Ms2 , we have Mfst(〈x1, x2〉M) = x1,
Msnd(〈x1, x2〉M) = x2, and 〈x1, x2〉M = 〈y1, y2〉M implies xi = yi, (i = 1, 2);

5. Ms1⊗Ms2 = {〈x1, x2〉M | x1 ∈Ms1 , x2 ∈Ms2};

6. Then, Ms1⊗Ms2 is exactly the Cartesian product Ms1 ×Ms2 of Ms1 and Ms2 , for s1, s2 ∈MSort .

Proof. The proofs of (1)-(3) are the same as the proof of Proposition 4.11 and (4) follows directly from
the axioms and Proposition 4.6. (5) follows directly from the axiom (Pair Domain), and (6) follows from the
bijection function i : Ms1 ×Ms2 →Ms1⊗s2 , defined by i(x1, x2) = 〈x1, x2〉M for all x1 ∈Ms1 and x2 ∈Ms2 .
The injectivity of i is guaranteed by axiom (Pair Injectivity) and the surjectivity of i is guaranteed by axiom
(Pair Domain).

Proposition 5.5. The following holds for any n ≥ 0:

PRELUDE ` ∀s1, . . . , sn :Sort . (f : s1 ⊗ · · · ⊗ sn →○ s)→ (∀x1 :s1. . . .∀xn :sn. f(x1, . . . , xn):s)

Proof. Recall that f :s1 ⊗ · · · ⊗ sn →○ s is sugar for ∃g :s1 ⊗ · · · ⊗ sn →○ s ∧ f = g (see Definition 5), and the
latter further desugars to ∃g. (g ∈ s1⊗· · ·⊗sn →○s)∧f = g. By FOL reasoning, we have f ∈ s1⊗· · ·⊗sn →○s,
and by axiom (Function Domain), we have the intended property ∀x1 :s1. . . .∀xn :sn. f(x1, . . . , xn):s.

Proposition 5.7. Let SPEC be a specification that imports PRELUDE and includes the above axiom (Function)
for a symbol f . Then f yields a function Mf : Ms1 × · · · ×Msn →Ms in any M � SPEC.

Proof. The proof follows the same idea as the proof of Proposition 4.11. Due to the importance of this
proposition, we re-state the proof as follows.

Let fM be the interpretation of f in M . For each sort t ∈ {s1, . . . , sn, s}, let tM be its interpretation
and Mt = inhM •̄ tM be the inhabitant set of t in M . Then, for any xi ∈ Msi , 1 ≤ i ≤ n, the set
fM •̄ {〈x1, . . . , xn〉M} is a singleton, whose (unique) element we denote Mf (x1, . . . , xn). Thus, f yields a
function Mf : Ms1 × · · · ×Msn →Ms.

Note that axiom (Function) also enforces the interpretation fM of the symbol f in M to be a singleton,
containing exactly the “function object”. This fact is not needed to prove the subsequent results, so we do
not state it in the above proposition, but it helps to build the intuition for the matching logic specification
of functions.

D Proofs of the Results in Section 6

Here, we study the matching logic specifications ALGEBRA(S, F) of F -algebras, and also the matching logic
specifications EQSPEC(S, F,E) of E-algebras. In Appendix D.1, we show the construction of the standard
matching logic models of ALGEBRA(S, F). In Appendix D.2, we study the semantic equivalence between the
matching logic models and the derived algebras. In Appendix D.3, we capture the equivalence relation using
institution comorphisms, a categorical notion for logic embeddings developed in [Goguen and Rosu, 2002].

D.1 Standard Models of ALGEBRA(S, F)

Throughout this section, we assume and fix an (arbitrary) many-sorted signature (S, F) and an (S, F)-
algebra A. We will construct a corresponding matching logic model M , which we call the standard model
(w.r.t. A). Intuitively, M interprets the carrier sets of sorts s ∈ S the same as A, and interprets operations
the same as the operation interpretations of A. Our goal is to prove that the model transformation α is
essentially surjective (Theorem 6.5). As said before, the most technically tedious work is to construct the
nested pair and function sorts defined in Section 5 when we construct the standard model M .

39

D.1.1 A Summary of ALGEBRA(S, F)

For representational purpose, we show the entire specification ALGEBRA(S, F) in one place in Fig. 18, where
all imported specifications are expanded inline. We omit notation definitions for simplicity.

spec ALGEBRA(S, F)
Symbols: def , inh,Sort ,N,Nat , zero, succ, plus,mult ,NzNat ,Pair , pair , fst , snd , proj ,Function

Unit , unit , s ∈ S, f ∈ F,SigOps,SigArgs
Notations: omitted
Axioms:

(Definedness) ∀x. dxe
(Nat Zero) ∃x. x ∈ N ∧ zero = x
(Nat Succ) ∀x. x ∈ N→ ∃y. y ∈ N ∧ succ x = y
(Nat Succ.1) succ zero 6= zero
(Nat Succ.2) ∀x.∀y. x ∈ N ∧ y ∈ N→ succ x = succ y → x = y
(Nat Domain) N = µD. zero ∨ succ D
(Nat Sort) Nat :Sort
(Nat) [[Nat]] = N
(Nat Plus.1) ∀x:Nat . plus x zero = x
(Nat Plus.2) ∀x, y :Nat . plus x (succ y) = succ (plus x y)
(Nat Mult.1) ∀x:Nat .mult x zero = zero
(Nat Mult.2) ∀x, y :Nat .mult x (succ y) = plus x (mult x y)
(NzNat Sort) NzNat :Sort
(NzNat) [[NzNat]] = succ [[Nat]]
(Pair Sort) ∀s1, s2 :Sort . (s1 ⊗ s2):Sort
(Pair) ∀s1, s2 :Sort . ∀x1 :s1.∀x2 :s2. 〈x1, x2〉 :(s1 ⊗ s2)
(Pair Fst) ∀s1, s2 :Sort . ∀x1 :s1.∀x2 :s2. fst 〈x1, x2〉 = x1
(Pair Snd) ∀s1, s2 :Sort . ∀x1 :s1.∀x2 :s2. snd 〈x1, x2〉 = x2
(Pair Inj) ∀s1, s2 :Sort . ∀x1, y1 :s1. ∀x2, y2 :s2. 〈x1, x2〉 = 〈y1, y2〉 → x1 = x2 ∧ y1 = y2
(Pair Domain) ∀s1, s2 :Sort . [[s1 ⊗ s2]] = 〈[[s1]], [[s2]]〉
(Proj First) ∀s1, s2 :Sort . ∀x1 :s1.∀x2 :s2. (proj 1 〈x1, x2〉) = x1
(Proj Rest) ∀s1, s2 :Sort . ∀x1 :s1.∀x2 :s2. ∀n:NzNat . (proj (succ n) 〈x1, x2〉) = proj n x2
(Function Sort) ∀s1, s2 :Sort . (s1 →○ s2):Sort
(Function Domain) ∀s1, s2 :Sort . [[s1 →○ s2]] = ∃f. f ∧ (∀x:s1. (f x):s2)
(Function Ext) ∀s1, s2 :Sort . ∀f, g :s1→○s2. (∀x:s1. f x = g x)→ f = g
(Unit Sort) Unit :Sort
(Unit) unit :Unit
(Unit Domain) [[Unit]] = unit
(Unit Identity) ∀s:Sort .∀x:s. (x unit) = x
(Sort) s:Sort for each s ∈ S
(Function) f :s1 ⊗ · · · ⊗ sn →○ s for each f ∈ Fs1...sn,s
(Signature Operation) [[SigOps]] =

∨
f∈F f

(Signature ArgTuple) [[SigArgs]] =
∨
f∈Fs1...sn,s

[[s1 ⊗ · · · ⊗ sn]]

endspec

Figure 18: The entire matching logic specification ALGEBRA(S, F) is shown in one place; the specification
INITIALALGEBRA(S, F,E) of initial algebras is extended by axiom (No Junk); axiom (No Confusion); and axioms that
define the E-equivalence classes like in Section 8, which can also fit in one page.

D.1.2 Constructing the Carrier Set of M

At a high level, the carrier set M includes both the regular elements and elements that represent sort names,
functions, operations, and predicates. We first introduce some definitions and notations.

Definition D.1. For a finite set S of sets, we define S∗ as the smallest set such that:

1. S ⊆ S∗;

2. S1 × S2 ∈ S∗ if S1, S2 ∈ S∗.

40

Therefore, S∗ is the smallest set that includes S and is closed under the Cartesian product/square.

Definition D.2. For a finite set SortName whose elements we call sort names, we define SortName∗ as the
smallest set that satisfies the following conditions:

1. SortName ⊆ SortName∗;

2. s⊗ s′ ∈ SortName∗, if s, s′ ∈ SortName;

3. s →○ s′ ∈ SortName∗, if s, s′ ∈ SortName.

Therefore, SortName∗ is the smallest set that includes SortName and is closed under the construction of
pair and function sorts.

Recall that we have assumed and fixed an (S, F)-algebra A at the beginning of the section. The carrier sets
of A are denoted As for each sort s ∈ S, and operation interpretations are denoted Af : Ms1×· · ·×Msn →Ms

for each f ∈ Fs1...sn,s.

Definition D.3. Let M be the disjoint union of the following sets:

1. {#def,#inh,#Sort,#Nat,#zsucc,#plus,#mult,#NzNat,#Pair,#pair,#fst,#snd,#proj,#Function,
#Unit,#unit,#SigOps,#SigArgs}, which include distinguished elements used to interpret the cor-

responding symbols in ALGEBRA(S, F);

2. {#s | s ∈ S}, where #s is used to interpret the sort name s;

3. N, which is the set of natural numbers N = {0, 1, 2, . . . };

4. As, for each s ∈ S;

5. each set in S∗, where S = {N,N>0} ∪ {As | s ∈ S};

6. SortName∗, where SortName = {#Nat,#NzNat,#Unit} ∪ {#s | s ∈ S};

7. the set of functions [As1 × · · · ×Asn → As] if Fs1...sn,s 6= ∅;

8. {#plus n | n ∈ N}, where #plus n is the partial evaluation result of #plus on n;

9. {#mult n | n ∈ N}, where #mult n is the partial evaluation result of #mult on n;

10. {#pair a | a ∈ S∗}, where #pair a is the partial evaluation result of #pair on a;

11. {#Pair s | s ∈ SortName∗}, where #Pair s is the partial evaluation result of #Pair on s;

12. {#proj n | n ∈ N>0}, where #proj n is the partial evaluation result of #proj on n > 0.

13. {#Function s | s ∈ SortName∗}, where #Function s is the partial evaluation result of #Function
on s.

Here we finish the construction of the carrier set M .

D.1.3 Defining Symbol Interpretation in M

Recall that we use σM ⊆M to denote the interpretation of a symbol σ that is defined in ALGEBRA(S, F).

Definition D.4. We define symbol interpretation in M as follows:

1. def M = {#def};

2. inhM = {#inh};

41

3. SortM = {#Sort};

4. NM = N, where N is the set of natural numbers;

5. NatM = {#Nat};

6. zeroM = {0};

7. succM = {#zsucc};

8. plusM = {#plus};

9. multM = {#mult};

10. NzNatM = {#NzNat};

11. PairM = {#Pair};

12. pairM = {#pair};

13. fstM = {#fst};

14. sndM = {#snd};

15. projM = {#proj};

16. FunctionM = {#Function};

17. UnitM = {#Unit};

18. unitM = {#unit};

19. sM = {#s}, for each s ∈ S;

20. fM = {fA}, for each f ∈ Fs1...sn,s, where fA : As1 × · · · ×Asn → As is the operation interpretation of
f in the algebra A; note that if Fs1...sn,s 6= ∅, the function space [As1 × · · · ×Asn → As] is included in
M according to Definition D.3(7);

21. SigOpsM = {#SigOps};

22. SigArgsM = {#SigArgs}.

D.1.4 Defining Application Interpretation in M

The application interpretation • : M ×M → P(M) consists of three main parts: (1) the result of applying
#def to all elements; (2) the result of applying #inh to sorts; (3) the (partial) evaluation results of applying
functions to their arguments.

Definition D.5. Let S∗ and SortName∗ be defined like in Definition D.3(5,6). We define the application
interpretation function • : M ×M →M as follows:

1. #def • a = M , for all a ∈M ;

2. #inh • #Sort = SortName∗, where SortName∗ is defined in Definition D.3(6);

3. #inh • #Nat = N;

4. #inh • #NzNat = N>0;

5. #inh • #Unit = {#unit};

42

6. #inh • #s = As;

7. #zsucc • n = {n+ 1}, for each n ∈ N;

8. #plus • n = {#plus n}, for each n ∈ N;

9. (#plus n) •m = {n+m}, for each m,n ∈ N;

10. #mult • n = {#mult n}, for each n ∈ N;

11. (#mult n) •m = {mn}, for each m,n ∈ N;

12. #Pair • s = {#Pair s}, for each s ∈ SortName∗;

13. (#Pair s) • s′ = {s⊗ s′}, for each s, s′ ∈ SortName∗;

14. #pair • a = {#pair a}, for each a ∈ S∗;

15. (#pair a) • b = {(a, b)}, for each a, b ∈ S∗;

16. #fst • (a, b) = {a}, for each a, b ∈ S∗;

17. #snd • (a, b) = {b}, for each a, b ∈ S∗;

18. #proj • n = {#proj n}, for each n ∈ N>0;

19. (#proj i) • (a1, . . . , ai, . . . , an) = ai, for i > 0 and a1, . . . , an ∈ S∗;

20. #inh • (s⊗ s′) = (#inh • s)× (#inh • s′), for each s, s′ ∈ SortName∗;

21. #Function • s = {#Function s}, for each s ∈ SortName∗;

22. (#Function s) • s′ = {s →○ s′}, for each s, s′ ∈ SortName∗;

23. #inh • (s1 ⊗ · · · ⊗ sn →○ s′) = [As1 × · · · ×Asn → As′], if Fs1...sn,s 6= ∅; see Definition D.3(7);

24. #inh • #Unit = {#unit};

25. a • #unit = a, for each a ∈ S∗;

26. f • (a1, . . . , an) = f(a1, . . . , an), if Fs1...sn,s 6= ∅, f : As1 × · · · × Asn → As, and ai ∈ Asi , 1 ≤ i ≤ n; in
this case, the function space [As1 × · · · ×Asn → As] is included in M according to Definition D.3(7);

27. if none of the above applies, we define a • b = ∅ for a, b ∈M .

The above definition, although long, is a straightforward description of the behaviors of the definedness
symbol def , the inhabitant symbol inh, sort constructors, and (many-sorted) functions, and therefore has
(almost) nothing smart. The only smart thing is the optimization in rule (23), where we only define the
inhabitant sets for the function sorts that are indeed in the signature F . For the other (infinitely many)
function sorts, we define their inhabitant sets to be empty. This is possible because unlike the pair sort, the
function sort has no constructors, so its inhabitants can be freely determined by the model M .

43

D.1.5 Verifying the Axioms

There are 32 axioms in specification ALGEBRA(S, F); see Fig. 18. We verify that the model M previously
constructed indeed validate these axioms. The verification, listed below, is straightforward.

(Definedness). We have {#def} • {a} = M for any a ∈M .
(Nat Zero). Recall that NM = N is the set of natural numbers. Thus, we have 0 ∈ N and by definition,

|0|M = {0}.
(Nat Succ). For any n ∈ N, there exists m = n+ 1 such that #zsucc • n = {n+ 1} = {m}.
(Nat Succ.1). By definition, #zsucc • 0 = {1} 6= {0}.
(Nat Succ.2). For any m,n ∈ N such that #zsucc •m = #zsucc • n, we have {m+ 1} = {n+ 1}, and thus

m = n.
(Nat Domain). This has been proved in Proposition 4.11.
(Nat Sort). We have #Nat ∈ #inh • #Sort by definition.
(Nat). We have #inh • #Nat = N by definition.
(Nat Plus.1). For any n ∈ N, we have {#plus} •̄ {n} •̄ {0} = {n+ 0} = {n}.
(Nat Plus.2). For any m,n ∈ N, we have {#plus} •̄ {n} •̄ ({#zsucc} •̄ {m}) = {n + m + 1} = {#zsucc} •̄

({#plus} •̄ {n} •̄ {m}).
(Nat Mult.1). For any n ∈ N, we have {#mult} •̄ {n} •̄ {0} = {0}.
(Nat Mult.2). For any m,n ∈ N, we have {#mult} •̄ {n} •̄ ({#zsucc} •̄ {m}) = {nm + n} = {#mult} •̄ {n} •̄

({#plus} •̄ {n} •̄ {m}).
(NzNat Sort). We have #NzNat ∈ #inh • #Sort by definition.
(NaNat). We have #inh • #NzNat = N>0 = {#zsucc} •̄ N.
Recall that we use SortName∗ = #inh •#Sort to denote the set of sort names in M ; see Definition D.3(6)

and Definition D.5(2).
(Pair Sort). For any s1, s2 ∈ SortName∗, we have s1 ⊗ s2 ∈ SortName∗ by definition.
(Pair). For any s1, s2 ∈ SortName∗ and xi ∈Msi for i ∈ {1, 2}, we have (x1, x2) ∈Ms1⊗s2 = Ms1 ×Ms2 ,

by definition.
(Pair Fst). For any s1, s2 ∈ SortName∗ and xi ∈ Msi for i ∈ {1, 2}, we have #fst • (x1, x2) = {x1} by

definition.
(Pair Snd). For any s1, s2 ∈ SortName∗ and xi ∈ Msi for i ∈ {1, 2}, we have #snd • (x1, x2) = {x2} by

definition.
(Pair Inj). For any s1, s2 ∈ SortName∗ and xi, yi ∈ Msi for i ∈ {1, 2} such that (x1, x2) = (y1, y2), we

have x1 = y1 and x2 = y2.
(Pair Domain). For any s1, s2 ∈ SortName∗, we have Ms1⊗s2 = Ms1 ×Ms2 = {(x1, x2) | x1 ∈ Ms1 , x2 ∈

Ms2}, by definition.
(Proj First). For any s1, s2 ∈ SortName∗ and xi ∈Msi for i ∈ {1, 2}, we have {#proj} •̄{1} •̄{(x1, x2)} = x1

by definition.
(Proj Rest). For any s1, s2 ∈ SortName∗ and xi ∈ Msi for i ∈ {1, 2}, and any n ≥ 1, we have {#proj} •̄

{n+ 1} •̄ {(x1, x2)} = {#proj} •̄ {n} •̄ {x2} if x2 is a pair (note that tuples are just nested pairs); Otherwise,
both equal to ∅.

(Function Sort). For any s1, s2 ∈ SortName∗, we have s1 →○ s2 ∈ SortName∗ by definition.
(Function Domain). For any s1, s2 ∈ SortName∗ (where s1 could be a pair/tuple sort, or the unit sort

Unit), if Fs1,s2 6= ∅ then we have Ms1→○s2 = [Ms1 → Ms2], by definition, then for each f : Ms1 → Ms2 and
any x ∈ Ms1 , we have f(x) ∈ Ms2 . On the other hand, if Fs1,s2 = ∅, then Ms1→○s2 = ∅ by definition, and
the axiom holds because there are no functions in Ms1→○s2 .

(Function Ext). For any s1, s2 ∈ SortName∗ and f, g : Ms1 →Ms2 (note that this implies that Fs1,s2 6= ∅),
we have f = g iff f and g have the same extension, by definition.

(Unit Sort). We have #Unit ∈ SortName∗ by definition.
(Unit). We have #unit ∈MUnit by definition.
(Unit Domain). We have MUnit = {#unit} by definition.
(Unit Identity). For any s ∈ SortName∗ and x ∈Ms, we have x • #unit = x by definition.
(Sort). We have #s ∈ SortName∗ for each s ∈ S, by definition.

44

(Function). We have fM = fA : Ms1 × · · · ×Msn →Ms for each f ∈ Fs1...sn,s by definition.
(Signature Operation). We have MSigOps = {fA | f ∈ F} by definition.
(Signature ArgTuple). We have MSigArgs =

⋃
f∈Fs1...sn,s

Ms1 × · · · ×Msn by definition.

D.1.6 Proof of Theorem 6.5

So far, we have completed the construction of the standard model M w.r.t. A. For future reference, let us
re-state it in the following definition.

Definition D.6. For a signature (S, F) and an (S, F)-algebra A, we define the corresponding matching
logic model M � ALGEBRA(S, F), whose carrier set, symbol interpretation, and application interpretation
are given by Definitions D.3-D.5, respectively.

Lemma D.7. Under the conditions and notations in Definition D.6, we have Ms = As for each sort s ∈ S
and Mf = Af for each operation f ∈ F .

Proof. For any sort s ∈ S, we have Ms = |[[s]]|M = #inh • #s = As. For any operation f ∈ Fs1...sn,s and all
ai ∈ Asi , 1 ≤ i ≤ n, we have fM • 〈a1, · · · , an〉M = f • (a1, . . . , an) = f(a1, . . . , an). Therefore, the derived
function Mf = Af for all operations f ∈ F .

Theorem 6.5 is then a direct consequence of Lemma D.7.

Theorem 6.5. Let (S, F) be a signature and A be any (S, F)-algebra. Then there exists a matching logic
model M � Signature(S, F) such that α(M) is exactly A.

D.2 Properties about EQSPEC(E) and Proofs of Theorems 6.7 and 6.9

Firstly, we show that M and A = α(M) interpret all terms in the same way. Note that given an A-valuation
% : V → A, there is an equivalent matching logic valuation ρ such that ρ(x) = %(x) for all x ∈ Asort(x).
Under these two equivalent valuations, any term t ∈ TF (V) is interpreted the same in both models M and
A = α(M). Formally,

Lemma D.8. Under the above conditions about ρ and %, we have |t|ρ = {%̄(t)} for all t ∈ TF (V).

Proof. We apply structural induction on t.
(t is x). We have |x|ρ = {ρ(x)} = {%(x)}, by the equivalence between ρ and %.
(t is f(t1, . . . , tn)). We have |f(t1, . . . , tn)|ρ = Mf (|t1|ρ , . . . , |tn|ρ) = MA(%̄(t1), . . . , %̄(tm)) = %̄(f(t1, . . . , tn)),

where the first “=” is by Proposition 5.7 and the rest is by the construction of α(M) (see Definition 6.2).

Now, we prove Theorem 6.7.

Theorem 6.7. Let M � EQSPEC(F,E) and α(M) be the derived F -algebra. Then, for any F -equation e,
we have M � e iff α(M) �Alg e. Particularly, we know that α(M) is an (F,E)-algebra.

Proof. Let e be any F -equation ∀V . t = t′, where V = {x1, . . . , xn} is a set of sorted variables. According
to Definition 6.6, equation ∀V . t = t′ is translated to matching logic pattern using sorted quantification:
∀x1 :sort(x1). . . . xn :sort(xn). t = t′. Thus, only matching logic valuations that map the variables x1, . . . , xn
to their intended sorts matter. Thus, we have the following reasoning:

M � ∀V . t = t′ iff |t|ρ = |t′|ρ for all M -valuation ρ such that ρ(xi) ∈Msi , 1 ≤ i ≤ n
iff %̄(t) = %̄(t′) for all α(M)-valuation %

iff α(M) �Alg ∀V . t = t′.

According to specification EQSPEC(F,E), we have M � e for all e ∈ E. Therefore, α(M) �Alg e for all e ∈ E,
and thus α(M) is an (F,E)-algebra.

45

D.3 Equational Specifications in Matching Logic: An Institutional View

The theory of institutions [Goguen and Burstall, 1992] is a category-based theory that formalizes the intuitive
notion of a logical system, including syntax, semantics, and the satisfaction relation between them. Here
we use the theory of institutions to formalize the relationship between equational specifications (F,E) and
matching logic specifications EQSPEC(F,E). In Appendix D.3.1, we review the basic concepts and definitions
about institutions. In Appendix D.3.2, we prove that matching logic forms an institution. In Appendix D.3.3,
we show that there is a theoroidal comorphism from equational specifications to matching logic.

D.3.1 Institutions, Institution Morphisms, and Institution Comorphisms

We follow the definitions in [Diaconescu, 2008; Goguen and Rosu, 2002].

Definition D.9. An institution I = (Sign,Mod,Sen,�) consists of a category Sign whose objects are
called signatures, a functor Mod : Signop → Cat giving for each signature Σ a category of Σ-models, a
functor Sen : Sign→ Set giving for each signature a set of Σ-sentences, and a Σ-indexed relation � = {�Σ |
Σ ∈ Sign} with �Σ ⊆ |Mod(Σ)| × Sen(Σ), such that for any signature morphism ξ : Σ→ Σ′, the following
satisfaction relation:

M ′ �Σ′ Sen(ξ)(ϕ) if and only if Mod(ξ)(M ′) �Σ ϕ

holds for all M ′ ∈ |Mod(Σ′)| and ϕ ∈ Sen(Σ).

We use the following diagram to illustrate the satisfaction relation:

Σ |Mod(Σ)| Sen(Σ)

Σ′ |Mod(Σ′)| Sen(Σ′)

ξ

�Σ

Sen(ξ)

�Σ′

Mod(ξ)

Definition D.10. Given an institution I = (Sign,Mod,Sen,�), we define its theoroidal institution as
Ith = (Th,Modth,Senth,�th), where Th is the category of theories of I, Modth is the extension of Mod
to theories, Senth is sign; Sen, and �th is sign;�, where sign : Th → Sign is the functor that forgets the
sentences of a theory.

The institutional mechanism for expressing encodings of logics is that of comorphism.

Definition D.11. A comorphism of institutions (Φ, α, β) : I→ I′, where I = (Sign,Mod,Sen,�) and I′ =
(Sign′,Mod′,Sen′,�′), consists of a functor Φ : Sign→ Sign′, a natural transformation β : Φop ; Mod′ ⇒
Mod, and a natural transformation α : Sen⇒ Φ; Sen′ such that the following satisfaction condition:

βΣ(M ′) �Σ e if and only if M ′ �Φ(Σ) αΣ(e)

holds for any Σ ∈ |Sign|, M ′ ∈
∣∣Mod′(Φ(Σ))

∣∣, and e ∈ Sen(Σ).

We use the following diagram to illustrate the satisfaction condition:

Σ |Mod(Σ)| Sen(Σ)

Φ(Σ) |Mod(Φ(Σ))| Sen(Φ(Σ))

Φ

�Σ

αΣ

�Σ′

βΣ

Definition D.12. We make the following definitions.

1. A functor Φ : Th → Th′ is signature preserving iff there is a functor Φ� : Sign → Sign′ such that
Φ; sign′ = sign; Φ�.

2. A theoroidal comorphism is a comorphism (Φ, α, β) : Ith → I′th with Φ signature preserving.

3. A simple theoroidal comorphism is a comorphism (Φ, α, β) : I→ I′th with Φ signature preserving.

46

D.3.2 The Institution of Matching Logic

Recall that a matching logic signature Σ is simply a set of (constant) symbols. Then, for any two (nonempty)
matching logic signatures Σ and Σ′, a matching logic signature morphism ξ : Σ → Σ′ is a function from Σ
to Σ′. Therefore, the set of nonempty matching logic signatures forms a category, denoted SigML, where
objects are nonempty signatures and morphisms are functions between signatures.

Remark D.13. We only consider nonempty matching logic signatures in this section.

Definition D.14. Let Σ be a matching logic signature. A Σ-morphism from a Σ-model M to another M ′

is a function f : M →M ′ such that

1. for all a1, a2 ∈M , f̄(a1 •M a2) = f(a1) •M ′ f(a2);

2. for all σ ∈ Σ, f̄(σM) = σM ′ ;

where •M is the application interpretation in M ; •M ′ is the application interpretation in M ′; and
f̄ : P(M)→ P(M ′) is the pointwise extension of f , defined as f̄(A) = {f(a) | a ∈ A} for all A ⊆M .

Lemma D.15. Let Σ be a matching logic signature. Then Σ-models form a category ModML,Σ, whose
objects are Σ-models and morphisms are Σ-morphisms.

Proof. We show the existence of identity and composition, and prove their properties.
(Existence of identity). Let M be any Σ-model. Let idM : M → M be the identity function of a given

Σ-model M . Then, idM is a Σ-morphism, which we call the identity morphism of M .
(Existence of composition). Let f : M →M ′ and g : M ′ →M ′′ be two Σ-morphisms. Let f ; g : M →M ′′

be the composite of f and g as functions. Then we have f ; g(A) = {g(f(a)) | a ∈ A} for any A ⊆ M . We
have the following reasoning:

Firstly, for all a1, a2 ∈M ,

f ; g(a1 •M a2) = {g(f(a)) | a ∈ (a1 •M a2)}
= {g(b) | b ∈ f̄(a1 •M a2)}
= {g(b) | b ∈ f(a1) •M ′ f(a2)}
= ḡ(f̄(a1) •M ′ f̄(a2))

= g(f(a1)) •M ′′ g(f(a2)).

Secondly, for all σ ∈ Σ,

f ; g(σM) = {g(f(a)) | a ∈ σM}
= {g(b) | b ∈ f̄(σM)}
= {g(b) | b ∈ σM ′}
= ḡ(σM ′)

= σM ′′ .

Hence, f ; g : M →M ′′ is a Σ-morphism.
(idM is identity). This is trivial, due to the properties of the identity functions.
(Composition is associative). This is also trivial, because function composition is associative.
Hence, ModML,Σ forms a category.

Definition D.16. We define the functor ModML : Sigop
ML → Cat, which sends every matching logic signature

Σ to the category ModML,Σ of Σ-models, and sends every matching logic signature morphism ξ : Σ→ Σ′ to
the functor ModML(ξ) : ModML,Σ′ →ModML,Σ that:

1. sends a Σ′-model (M ′, •M ′ , {σM ′}σ∈Σ) to the Σ-model (M, •M , {σM}σ∈Σ) with M = M ′, •M =
•M ′ , and σM = (ξ(σ))M ′ ; and

47

2. sends a Σ′-morphism f ′ : M ′1 →M ′2 to the Σ-morphism:

ModML(ξ)(f ′) = f : ModML(ξ)(M ′1)→ModML(ξ)(M ′2) defined by f = f ′

Definition D.17. We define the functor SenML : SigML → Set, which sends

1. a matching logic signature Σ to SenML(Σ) = PatternΣ, and

2. a matching logic signature morphism ξ : Σ→ Σ′ to its free extension ξ̄ : PatternΣ → PatternΣ′ ,

where PatternΣ (resp. PatternΣ′) is the set of Σ-patterns (resp. Σ′-patterns).

Proposition D.18. Let ξ : Σ → Σ′ be a matching logic signature morphism and M ′ be a Σ′-model. Then
we have,

M ′ �Σ′ SenML(ξ)(ϕ) if and only if ModML(ξ)(M ′) �Σ ϕ

for all M ′ ∈ |ModML(Σ′)| and ϕ ∈ Sen(Σ).

Proof. By a mechanical check of the condition from Definition 4.7 using the inductive definition of a valuation
given in Definition 4.4.

Corollary D.19. ML = (SigML,ModML,SenML,�) forms the institution of matching logic.

D.3.3 Theoroidal Comorphisms from Algebras to Matching Logic

Firstly, we recall the classical result that (many-sorted) algebras defined in Definition 3.3 form an institution
ALG; see [Goguen and Burstall, 1992]. The institution ALG consists of:

1. SignALG, which is the category of (many-sorted) signatures;

2. ModALG, which sends each signature (S, F) to the category of (S, F)-algebras;

3. SenALG, which sends each signature (S, F) to the set of (S, F)-equations; and

4. the satisfaction relation �Alg, which relates the (S, F)-algebras with their valid (S, F)-equations.

Theorem D.20. There exists a simple theoroidal comorphism (Φ, γ, δ) : ALG→ MLth.

Proof. Let Φ: SignALG → ThML be the functor that sends each signature (S, F) to the matching logic
specification ALGEBRA(S, F) according to Definition 6.1, and sends each signature morphism ξ : (S, F) →
(S′, F ′) to the matching logic signature morphism

Φ(ξ) : ALGEBRA(S, F)→ ALGEBRA(S′, F ′),

which renames the sorts and operations symbols according to ξ and keeps the other symbols unchanged.
Then, Φ is signature preserving because its restriction to signatures Φ� : SignALG → SigML sends a signature
(S, F) to the matching logic signature of ALGEBRA(S, F).

The natural transformation δ : Φop ; ModML ⇒ModALG yields a functor

δ(S,F) : ModML(ALGEBRA(S, F))→ModALG(S, F)

defined by δ(S,F)(M
′) = α(M ′), where α is the model transformation defined in Definition 6.2.

The natural transformation γ : SenALG ⇒ Φ; SenML yields a function

γ(S,F) : SenALG(S, F)→ SenML(ALGEBRA(S, F))

define by γ(S,F)(e) = e, according to Definition 6.6.

48

Then, for any matching logic model M ′ � ALGEBRA(S, F) and equation e, the satisfaction condition

δ(S,F)(M
′) �Alg e if and only if M ′ |= γ(S,F)(e)

is equivalent to the following statement:

α(M ′) �Alg e if and only if M ′ |= e

which then holds by Theorem 6.7. Hence, (Φ, γ, δ) : ALG→ MLth is a simple theoroidal comorphism.

Theorem D.21. There exists a theoroidal comorphism (Φ, γ, δ) : ALGth → MLth.

Proof. We define Φ : ThALG → ThML to be the functor that sends each equational specification (S, F,E)
to the matching logic specification EQSPEC(S, F,E), defined in Definition 6.6. The rest of the proof is the
same as the proof of Theorem D.20.

Definition D.22. We define the institution IAS = (ThIAS,ModIAS,SenIAS,�Alg), where:

1. ThIAS is the subcategory of ThALG induced by the morphisms that protect the initial models; that is, if
φ : (S, F,E)→ (S′, F ′, E′) is a morphism in ThALG and M ′ is an initial (S′, F ′, E′)-model, then M ′|φ
is an initial (S, F,E)-model;

2. ModIAS sends (S, F,E) to the subcategory of the initial (S, F,E)-algebras and sends each φ : (S, F,E)→
(S′, F ′, E′) to ModIAS(φ) : ModIAS(S′, F ′, E′) → ModIAS(S, F,E), defined by ModIAS(φ)(M ′) =
M ′|φ;

3. SenIAS sends (S, F,E) to the set of F -equations.

Theorem D.23. There exists a simple theoroidal comorphism (Φ, γ, δ) : IAS→ MLth.

Proof. We let Φ : ThIAS → ThML to be the functor that sends each (S, F,E) to EQSPEC(S, F,E), according
to Definition 6.6. We define δ(S, F,E), which sends a model M ′ � EQSPEC(S, F,E) to the derived algebra
β(M ′), where the model transformation β is defined in Theorem 8.3. We define γ(S,F,E) like in the proof of
Theorem D.20. The rest of the proof is the same as the proof of Theorem D.20.

E Proofs of the Results in Section 7

Lemma 7.3. For any M � NOCONFUSION(F), α(M) satisfies no-confusion. Particularly, for any t, t′ ∈
TF , these are equivalent: (1) M � t = t′; (2) α(M) �Alg ∀∅. t = t′; (3) t and t′ are the same.

Proof. Note that (1) and (2) are equivalent due to Theorem 6.7. We only need to prove that (1) and (3) are
equivalent. Clearly, (3) implies (1), so we only need to prove that (1) implies (3).

The proof is based on structural induction. Let t and t′ be two ground terms f(t1, . . . , tn) and f ′(t′1, . . . , t
′
n′),

where n, n′ ≥ 0. If M � f(t1, . . . , tn) = f ′(t′1, . . . , t
′
n′), then by axiom (No Confusion), we have M � f = f ′

and M � 〈t1, . . . , tn〉 = 〈t′1, . . . , t′n′〉. For the former, we conclude that f and f ′ are the same, according to
axiom (Distinct Function). For the latter, we conclude by axiom (Pair Inj) that n = n′ and that M � t1 = t′1,
. . . , M � tn = t′n. Therefore, by induction hypothesis, we know that ti and t′i are the same term, and thus
f(t1, . . . , tn) and f ′(t′1, . . . , t

′
n′) are the same term.

Lemma 7.8. For M � NOJUNK(S, F), the derived algebra A = α(M) satisfies no-junk. Specifically, for
any s ∈ S and a ∈ As, there exists a ground term ta ∈ TF,s such that eval(ta) = a (see Remark 3.6).

49

Proof. Note that for any void sort, its carrier set is empty according to axiom (No Junk Void), which satisfies
no-junk because it has no ground terms. Therefore, we only need to consider non-void sorts.

Our proof uses [Meseguer and Goguen, 1985, Proposition 15], which states that no-junk holds iff the
(unique) morphism h : TF → A is surjective. Recall that Ms for s ∈ S is the carrier set of s in M .
For notational brevity, we define 〈M〉 = Ms1 × · · · × Msn . Then by axiom (No Junk Non-Void), we have
〈M〉 = µD.F , where the function F is the function that maps set D to:

F(D) = {Mf (a1, . . . , am) | f ∈ Ft1...tm,s1 , ai ∈ Dti} × · · · × {Mf (a1, . . . , am) | f ∈ Ft1...tm,sn , ai ∈ Dti}

where Dt = projM •̄ {i} •̄D if t is a non-void sort si ∈ Snonvoid, or Dt = ∅ if t is a void sort. Note that if t is
void, then Dt = ∅, so it does not affect the definition of F and can be omitted. In the following, we safely
assume that all appearing sorts are non-void.

By definition, 〈M〉 is the smallest (product) set D such that D = F(D), where D = D1 × · · · ×Dn. Let
us consider a new set D′ = D′1 × · · · ×D′n, defined by D′i = {eval(t) | t ∈ TF,si} for each 1 ≤ i ≤ n, which
includes precisely all reachable elements. Clearly, D′ is a fixpoint of F due to the inductive definition of
terms, and thus 〈M〉 ⊆ D′ due to the least fixpoint pattern semantics. Since 〈M〉 is the carrier set(s) of the
derived algebra A = α(M) (Definition 6.2), we know that the morphism h : TF → A is indeed surjective.
Hence, by [Meseguer and Goguen, 1985, Proposition 15], the derived algebra α(M) satisfies no-junk.

Theorem 7.9. For M � TERMALGEBRA(F), the derived algebra α(M) is the term algebra TF .

Proof. We have proved that α(M) satisfies both no-confusion and no-junk. By Theorem 3.22, α(M) is the
term algebra.

F Proofs of the Results in Section 8

Theorem 8.2. For any M � INITIALALGEBRA(S, F,E), the derived model α(M) is exactly the term algebra
TF (Theorem 7.9). Then, the interpretation EqM is a binary relation over ground terms in TF , and we have
that (t, t′) ∈ EqM iff t'E t′ for all t, t′ ∈ TF , where 'E is defined in Proposition 3.15.

Proof. Firstly, we show that the equivalence relation 'E in the term algebra TF is the smallest relation
generated by equational deduction (Definition 3.10), where the substitution rule is not needed because all
terms are ground terms without variables. Thus, 'E is defined as the smallest set that includes the identity
relation and all (ground) instances of the equations in E, and is closed under symmetry, commutativity,
associativity, and congruence.

By axiom (Equivalence), we know that EqM , the interpretation of Eq in M that forms a binary relation on
TF , includes the identity relation and is closed under symmetry, commutativity, associativity, and congruence.
Therefore, we only need to prove that pattern

∨
(∀V . t=t′)∈E ∃V . 〈t, t′〉 includes all ground instances of the

equations in E.
Let (∀V . t = t′) ∈ E with V = {x1, . . . , xn} and ∀∅. u = u′ be one of its ground instances, where

u = t[t1/x1 . . . tn/xn] and u′ = t′[t1/x1 . . . tn/xn] for t1, t
′
1 ∈ TF,sort(x1), . . . , tn, t

′
n ∈ TF,sort(xn). By standard

FOL reasoning, we have INITIALALGEBRA(F,E) ` 〈u, u′〉 → ∃V . 〈t, t′〉, so all ground instances are included
in
∨

(∀V . t=t′)∈E ∃V . 〈t, t′〉. Since the derived model α(M) is the term algebra, quantification ∃V ranges only

the (ground) terms of the appropriate sorts. We conclude that
∨

(∀V . t=t′)∈E ∃V . 〈t, t′〉 indeed includes the
ground instances of the equations in E. Thus, EqM and 'M are both the smallest binary relation that
includes identity and ground instances of E, and is closed under symmetry, commutativity, associativity,
and congruence, and therefore they are the same. Hence, we have (t, t′) ∈ EqM iff t'E t′.

Theorem 8.3. Under the conditions and notations in Theorem 8.2, we define β(M) as the EqM -quotient
algebra of α(M). Then, β(M) is exactly the quotient term algebra TF/E.

Proof. Since α(M) is the term algebra TF and EqM is the equivalence relation 'M , the quotient algebra
β(M) is by definition the quotient term algebra TF/E , according to Theorem 3.19.

50

G Proof of Theorem 9.1

Theorem 9.1. INITIALALGEBRA(ENat) ` (µD. zero ∨ succ(D) ∨ plus(D,D))︸ ︷︷ ︸
equals to [[Nat]] by axiom (No Junk)

' (µD. zero ∨ succ(D)).

Proof. Let us denote the LHS as Φ1 and the RHS as Φ2. We need to prove ` Φ1 ⊂∼ Φ2 and ` Φ2 ⊂∼ Φ1. The
latter follows directly from definition, so we only prove the former.

Let us define [x] ≡ ∃y. y∧x'y that is matched by all elements y that is E-equivalent to x, and its pointwise
extension [ϕ] ≡ ∃x. [x]∧ x ∈ ϕ. Then, we need to prove ` [Φ1]→ [Φ2], where we transform ⊂∼ to →, so as to
apply (Knaster-Tarski). By matching logic reasoning, we transform the proof goal to ` Φ1 → ∃z. z∧ [z] ⊆ [Φ2],
which is equivalent to ` Φ1 → ∃z. z ∧ z ∈ [Φ2]. By (Knaster-Tarski), we have three sub-goals:

` zero → ∃z. z ∧ z ∈ [Φ2]

` z ∈ [Φ2]→ succ(z) ∈ [Φ2]

` z1 ∈ [Φ2] ∧ z2 ∈ [Φ2]→ plus(z1, z2) ∈ [Φ2]

The first two follow by the definition of Φ2. For the last one, we transform it to ` [Φ2] → ∃z2. z2 ∧
∀z1. z1 ∈ [Φ2] ⊆ plus(z1, z2) ∈ [Φ2], and denote its RHS as Φ3. To prove ` [Φ2] → Φ3, we need to prove
` Φ2 → ∃w.w ∧ [w] ⊆ Φ3. By (Knaster-Tarski), we have two sub-goals:

` [zero] ⊆ Φ3

` [w] ⊆ Φ3 → [succ(w)] ⊆ Φ3

For the first one, we prove ` ∀x. x ' zero → ∀z1. z1 ∈ [Φ2] ⊆ plus(z1, x) ∈ [Φ2]. By the Peano axioms, we
have plus(z1, zero)' z1, so we only need to prove ` ∀z1. z1 ∈ [Φ2]→ z1 ∈ [Φ2], which clearly holds. For the
second one, we prove ` [w] ⊆ Φ3 ∧ ∀x. x' succ(w)→ ∀z1. z1 ∈ [Φ2] ⊆ plus(z1, x) ∈ [Φ2], which is equivalent
to ` [w] ⊆ Φ3 → ∀z1. z1 ∈ [Φ2] ⊆ plus(z1, succ(w)) ∈ [Φ2]. By the Peano axioms, we have plus(z1, succ(w))'
succ(plus(z1, w)), so we only need to prove ` [w] ⊆ Φ3 → ∀z1. z1 ∈ [Φ2] ⊆ succ(plus(z1, w)) ∈ [Φ2], which
holds by definition of Φ2.

H Defining Order-Sorted Initial Algebras in Matching Logic

In this section, we define order-sorted algebras (OSA) in matching logic, where subsorting and operation
overloading are defined axiomatically by patterns. We follow the definitions and notations in [Goguen and
Meseguer, 1992]. We use (S,≤) to denote the sort set and the subsorting partial ordering ≤ ⊆ S × S.
We write s1 . . . sn ≤ s′1 . . . s

′
n to mean s1 ≤ s′1, . . . , sn ≤ s′n. We require the following conditions on an

order-sorted signature (S,≤, F):

1. (monotonicity). If Fs1...sn,s ∩ Fs′1...s′n,s′ 6= ∅, and si ≤ s′i for 1 ≤ i ≤ n, then s ≤ s′;

2. (regularity). For any f ∈ Fs′1...s′n,s′ and s′′i ≤ s′i for 1 ≤ i ≤ n, there exists the least sort sequence
s1, . . . , sn, s (w.r.t. ≤), such that s′′i ≤ si for 1 ≤ i ≤ n, and f ∈ Fs1...sn,s.

We only consider signatures that are monotone and regular.

Definition H.1. Let (S,≤, F) be an order-sorted signature. An (S,≤, F)-algebra A consists of:

1. a family of carrier sets As for each s ∈ S; and

2. an operation interpretation Af : As1 × · · · ×Asn → As for every f ∈ Fs1...sn,s;

such that:

1. s ≤ s′ implies As ⊆ As′ ; and

51

2. f ∈ Fw1,s1 ∩ Fw2,s2 and w1 ≤ w2 imply that Af : Aw1 → As1 equals to Af : Aw2 → As2 on Aw1 .

Now we define the matching logic specification TERMALGEBRA(S,≤, F) that captures the order-sorted
term algebra TF , by extending the specification TERMALGEBRA(S, F) of many-sorted term algebras, defined
in Section 7.3, with the subsorting axioms:

(Subsorting) [[s]] ⊆ [[s′]] for s ≤ s′

Note that operation overloading is obtained by defining one (Function) axiom for each instance/copy of the
operation f ∈ F . In the following, we can extend the model transformation α in Definition 6.2 to order-sorted
algebras as follows:

Proposition H.2. For any M � TERMALGEBRA(S,≤, F), we define Ms as the carrier set of s in M , and
define Mf : As1 × · · · × Asn → As for f ∈ Fs1...sn,s. Then, by (Subsorting), Ms ⊆ Ms′ for all s ≤ s′. By
construction, Mf : Ms1 × · · · ×Msn → Ms and Mf : Ms′1

× · · · ×Ms′n
→ Ms′ coincide on Ms1 × · · · ×Msn ,

if s1 . . . sn ≤ s′1 . . . s′n. Hence, the derived algebra α(M) is an order-sorted algebra.

In addition, we know from Theorem 7.9 that α(M) is the many-sorted term algebra of (S, F) when we
ignore subsorting. Therefore, by Proposition H.2, α(M) is the order-sorted term algebra of (S,≤, F):

Theorem H.3. Under the conditions and notations in Proposition H.2, α(M) is the order-sorted term
algebra TF .

52

	Introduction
	Related Work
	Initial Algebra Semantics
	Signatures, Algebras, and Terms
	Equational Specifications and Deduction
	Congruences and Quotient Algebras
	Term Algebras, Quotient Term Algebras, and Initiality
	Applications and Extensions

	A New Variant of Matching Logic
	Matching Logic Syntax
	Matching Logic Semantics
	Predicate Patterns
	Functional Patterns
	Fixpoint Patterns

	Matching Logic Specifications
	The First Example: Capturing Equality
	The Second Example: Capturing Natural Numbers

	Matching Logic Proof System

	Capturing Sorts: Pairs, Tuples, and Functions
	Sorts in Matching Logic
	An Example: The Sort of Natural Numbers

	Pair Sorts
	Tuple Sorts
	Function Sorts

	Capturing Algebras and Equational Specifications
	Capturing Signatures
	Capturing Algebras
	Capturing Equational Specifications
	A Pitfall w.r.t. Theorem 6.9

	Capturing Term Algebras
	Capturing Term Algebras: No-Confusion
	Capturing Term Algebras: No-Junk
	Capturing Term Algebras: No-Junk + No-Confusion

	Capturing Initial E-Algebras
	Inductive Reasoning in Initial Algebra using Matching Logic
	Extensions
	Parametric Equational Specifications
	Order-Sorted Algebras
	Simultaneous Inductive-Recursive Definitions

	Conclusion
	Matching Logic in One Page
	Proofs of the Results in Section 4
	Proofs of Propositions 4.6, 4.9, and 4.11
	Matching Logic Proof System
	Proofs of Proposition 4.12 and Theorem 4.13

	Proofs of the Results in Section 5
	Proofs of the Results in Section 6
	Standard Models of ALGEBRA(S,F)
	A Summary of ALGEBRA(S,F)
	Constructing the Carrier Set of M
	Defining Symbol Interpretation in M
	Defining Application Interpretation in M
	Verifying the Axioms
	Proof of Theorem 6.5

	Properties about EQSPEC(E) and Proofs of Theorems 6.7 and 6.9
	Equational Specifications in Matching Logic: An Institutional View
	Institutions, Institution Morphisms, and Institution Comorphisms
	The Institution of Matching Logic
	Theoroidal Comorphisms from Algebras to Matching Logic

	Proofs of the Results in Section 7
	Proofs of the Results in Section 8
	Proof of Theorem 9.1
	Defining Order-Sorted Initial Algebras in Matching Logic

