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Abstract
This paper presents K-Java, a complete executable formal seman-
tics of Java 1.4. K-Java was extensively tested with a test suite de-
veloped alongside the project, following the Test Driven Develop-
ment methodology. In order to maintain clarity while handling the
great size of Java, the semantics was split into two separate defi-
nitions – a static semantics and a dynamic semantics. The output
of the static semantics is a preprocessed Java program, which is
passed as input to the dynamic semantics for execution. The pre-
processed program is a valid Java program, which uses a subset of
the features of Java. The semantics is applied to model-check multi-
threaded programs. Both the test suite and the static semantics are
generic and ready to be used in other Java-related projects.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics

Keywords Java, mechanized semantics, K framework

1. Introduction
Java is the second most popular programming language (http:
//langpop.com/), after C and followed by PHP. Both C and PHP
have recently been given formal semantics [20, 22]. Like the au-
thors of the C and PHP semantics, and many others, we firmly
believe that programming languages must have formal semantics.
Moreover, the semantics should be public and easily accessible, so
inconsistencies are more easily spotted and fixed, and formal anal-
ysis tools should be based on such semantics, to eliminate the se-
mantic gaps and thus errors in such tools. Without a formal seman-
tics it is impossible to state or prove anything about the language
with certainty, including that a program meets its specification, that
a type system is sound, or that a compiler or interpreter is correct.
While all analysis tools or implementations for the language in-
variably incorporate some variant of the language semantics, or a
projection of it, these are hard to access and thus to asses.

To the best of our knowledge, the most notable attempts to give
Java a formal semantics are ASM-Java [35], which uses abstract
state machines, and JavaFAN [21], which uses term rewriting.
However, as discussed in Section 2, these semantics are far from
being complete or even well tested. Each comes with a few sample
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Java programs illustrating only the defined features, and each can
execute only about half of the other’s programs.

We present K-Java, a semantics for Java which systemati-
cally defines every single feature listed in the official definition
of Java 1.4, which is the Java Language Specification, 2nd edi-
tion (JLS) [25], a 456-page 18-chapter document. Moreover, our
semantics is thoroughly tested. In fact, we spent about half the time
dedicated to this project to write tests, which are small Java pro-
grams exercising special cases of features or combinations of them.
Specifically, we followed a Test Driven Development methodology
to first develop the tests for the feature to be defined and inter-
actions of it with previous features, and then defined the actual
semantics of that feature. This way we produced a comprehen-
sive set of 840 tests, which serves as a conformance test suite not
only for our semantics, but also for testing various other Java tools.
Considering that no such conformance test suite exists for Java, our
tests can also be regarded as a contribution made by this paper.

As a semantic framework and development tool for our Java se-
mantics we chose K [33] (http://kframework.org). There are
several appealing aspects of K that made it suitable for such a large
project. K provides a convenient notation for modular semantics of
languages, as well as automatically-generated execution and formal
analysis tools for the defined languages, such as a parser and inter-
preter, state-space explorer for reachability, model-checker, sym-
bolic execution engine, deductive program verifier, and, recently,
a translator of semantics to Coq. In particular, recent advances in
matching and reachability logic [17, 32] have been incorporated
in K, making it unnecessary to define multiple semantics for the
same language, e.g. an operational semantics for execution and
an axiomatic semantics for program verification. The C [20] and
PHP [22] semantics mentioned above have both been defined in K,
and demonstrated their usefulness using the generic K tools; the
MatchC prover [5, 31], for example, automatically turns the C se-
mantics into a Hoare-style deductive verifier of C programs.

To emphasize that our Java semantics is useful beyond just
providing a reference model for the language, we show how the
builtin model-checker of K can be used to model-check multi-
threaded Java programs. While this illustrates only one possible
application of the semantics, other applications can be similarly
derived from the language-independent tools provided by K.

Besides such immediate applications, we believe that our ex-
ecutable semantics of Java is also a convenient platform for ex-
perimenting with Java extensions. For example, [9] proposes to
extend Java with traits and records, [23] with mixins, and [27]
with immutable objects. The proposal to extend Java with generic
types [14] made it to the language in Java 5. The widely debated
lambda expression feature, with at least three evolving propos-
als [29], was finally incorporated in Java 8. Such extensions are
easy to add to our semantics, and thanks to K one would imme-
diately benefit not only from a reference model for them but also
from all the formal analysis tools automatically offered by K.

This paper makes the following two specific contributions:
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• K-Java, the first complete semantics of Java 1.4, including
multi-threading. More generally, K-Java is the first complete se-
mantics for an imperative statically typed object-oriented con-
current language. Section 3 illustrates some challenges of for-
malising Java, Section 4 describes our definitional methodology
and shows selected rules, and Section 5 shows an application to
model-checking multithreaded programs.

• Comprehensive test suite covering all Java constructs (Sec-
tion 6), also used to compare Java semantics in Section 2.

2. Related Work
Here we discuss two other major formal executable semantics of
Java and compare them with K-Java. We also recall other large
language semantics that influenced the design of K-Java.

2.1 Other Executable Semantics of Java
ASM-Java [35] is the first attempt to define a complete semantics
of Java 1.0, and the most complete prior to K-Java, showing that
is it feasible to define formal semantics to real-life programming
languages. It was defined using Abstract State Machiness (ASMs)
and covers almost all major features of Java, except packages.
ASM-Java is also executable; with the kind help of its authors we
were able make it work. ASM-Java comes with 58 tests that touch
all their implemented features, which we used as one of our external
test suites for K-Java. ASM-Java contains not only the semantics
of Java, but also defines the compiler and the bytecode format, and
gives a manual proof for the correctness of their compiler.

While K-Java uses a different formalism, it follows the ASM-
Java methodology to separate the static and the dynamic semantics.
Except for that, ASM-Java and K-Java are quite different. ASM-
Java uses many auxiliary constructs in their preprocessed programs
produced by the static semantics, while K-Java uses (a subset of)
plain Java. ASM-Java is monolithic, while in K-Java the static and
the dynamic semantics are two separate definitions that can be
used independently. For example, other projects can use our static
semantics to reduce the set of Java programs they need to handle.

JavaFAN [21] is another large-scale executable semantics of
Java, defined using term rewriting in Maude [16]. Our testing re-
vealed that JavaFAN is overall less complete than ASM-Java, al-
though JavaFAN passed a few tests that ASM-Java failed to pass.
However, unlike ASM-Java, thanks to the high-performance Maude
model-checker [18], JavaFAN was successfully used to perform
state-space exploration and model-checking of Java programs. For
example, JavaFAN was able to detect the deadlock in the Dining
Philosophers problem and prove the fixed program correct.

Comparison. Since both ASM-Java and JavaFAN are exe-
cutable, we evaluated their completeness by running our compre-
hensive test suite (Section 6) with each. The results of our findings
are presented in Figure 1. The list of Java features is divided into
10 large groups, separated by horizontal bars. The first 8 groups
contain features introduced with Java 1.0: literals, expressions,
statements, arrays, classes and instance members, interfaces, static
members and static initialization, packages and identifier resolu-
tion. Group 9 includes features introduced with Java 1.2, and the
last group includes the single new feature of Java 1.4 - assert.

Besides packages, ASM-Java does not define all literal forms,
an important set of operators, the switch statement, array initializ-
ers, and complex cases of method overloading and method access
modes. The remaining features of Java 1.0 are defined, except for
some corner cases. JavaFAN, despite being more recent than ASM-
Java, covers a smaller subset of Java. Yet, it surpasses ASM-Java in
a few areas. JavaFAN supports a wider set of operators, but still not
all of them, and it has better support for local variable shadowing.
Yet many other features are not supported: switch and continue, ad-

Feature AJ JF KJ
Basic integer, boolean, String literals    
Other literals # #  
Overflow, distinction between integer types  #  
Prefix ++i --i, also += -= ... , || && #   
Bit-related operators: | & ^ >> << >>> # #  
Other integer operators    
String + <other types> G# G#  
Reference operators  G#  
Basic statements    
Switch # #  
Try-catch-finally  #  
Break  G#  
Continue  #  
Array basics    
Array-related exceptions  #  
Array length  #  
Array polymorphism  #  
Array initializers # #  
Array default values  #  
Basic OOP - classes, inheritance, polymorphism    
Method overloading – distinct number of arguments    
Method overloading without argument conversion  #  
Method overloading with argument conversion # #  
Method access modes # #  
Instance field initializers  G#  
Chained constructor calls via this() and super()  #  
Keyword super  #  
Interfaces  #  
Interface fields  #  
Static methods and fields    
Accessing unqualified static fields G# #  
Static initialization G# G#  
Static initialization trigger  #  
Packages # #  
Shadowing G#   
Hiding  #  
Instance initialization blocks #   
Static inner classes # #  
Instance inner classes # #  
Local & anonymous classes # #  
Assert statement # #  
Support level:  = Full G# = Partial # = None

AJ represents ASM-Java [35], JF is JavaFAN [21] and KJ is our work.

Figure 1. Completeness comparison of various semantics of Java
vanced array features, many class-related features and interfaces.
Also, JavaFAN makes no distinction between various integer types
and integer overflow is not defined. From Java 1.2 and 1.4, it only
supports the simplest feature, instance initializers.

Methodology. The level of granularity differs widely both
among groups and among individual rows in Figure 1. We inten-
tionally compressed large portions of Java into one row when all
semantics defined them (e.g., Basic OOP). Yet, when we identified
interesting features not supported by some of the semantics, we
extracted them into individual rows. We were careful to interpret
the test results objectively. In particular, we designed each test to
touch as few Java features as possible other than the tested one, to
minimize the number of reasons for failure (Section 6). In the rare
cases when we were unable to identify why a particular test failed,
we gave the semantics the benefit of the doubt (except for K-Java).

2.2 Other Large-Scale Executable Semantics
Several large-scale semantics have been defined recently. Due to
space constraints, we only mention those which had a direct influ-
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ence on K-Java. The first large-scale semantics developed in K was
that of C [20]. It covered all the C features, was tested using the
GCC torture test suite [24], and was used to explore C undefined-
ness. A large fragment of PHP [22], also defined in K, was tested
for conformance using the PHP standard test suite and applied to
prove simple properties using model-checking. Two different se-
mantics of large fragments of Python were defined using K [26] and
resp. PLT Redex [30]. Both were tested against publicly available
test suites. The ASM-Java techniques were also successfully reused
to define C# [13], benefiting from the fact that Java and C# are sim-
ilar. JSCert [10] is an almost complete semantics for JavaScript in
Coq, using a methodology that ensured a close visual resemblance
to the standard, and tested against the JavaScript standard test suite.

3. Background and Challenges
Here we give background on Java and K, and discuss some of the
major challenges faced when giving semantics to Java.

3.1 The Java Language Specification
Java is a statically, strongly typed, object-oriented, multi-threaded
language. It is completely defined, i.e., unlike other languages [10,
20], it has no undefined or implementation-dependent features.
Except for threads, Java is completely deterministic. The official
definition of Java 1.4 is the JLS [25]. JLS has 456 pages and 18
chapters; the part that defines the language has 377 pages. Java is
distributed as part of the Java Development Kit (JDK), together
with a several thousand class library. The class library, however,
is not part of the JLS. Nevertheless, we defined semantics to all
classes that are central to the language and mentioned in the JLS,
such as Object, String, Thread and a dozen exception types.

Challenges. The K-Java project faced formidable challenges.
The first challenge is the sheer size of Java. At the imperative level
the language has 36 operators (JLS §15) and 18 statements (§16).
Java values may be subject to a large number of conversions (§5).
There are complex rules for resolving an identifier (§6). More pre-
cisely, an identifier in Java could mean one of the following: pack-
age, class, field, local variable or method. Method name could be
decided based on the immediate syntactic context alone. However,
disambiguating between the remaining categories is non-trivial and
involves many special cases. One of the most complex features of
Java is method overloading, that we illustrate in the next subsection.
Classes have complex initialization rules that include static initial-
ization (§8.3.2, 12.4) and instance initialization (§8.3.2, 12.5). The
matter is further complicated by the ability to call on the first line of
a constructor either a constructor of the same class through this()
or a constructor of the base class through super(). Interfaces in-
teract with a wide number of features as they may have methods,
static fields, specific rules for initialization and method overwriting.

Java has a number of modularity features, such as packages,
imports, and four categories of nested classes: static inner, non-
static inner, local and anonymous. Since nested classes may access
names from their enclosing classes, they bring a large number of
special cases for name resolving. Packages are important to define
access modes, and access modes have challenging interactions with
the other Java features, as will be illustrated in Section 3.2.

The separation of the whole semantics into static and dynamic
definition is a consequence of Java being statically typed. Dynam-
ically typed languages like PHP or JavaScript need just a dynamic
semantics. JLS clearly defines what computations should happen
before the execution (compile-time) and what should happen dur-
ing the execution (runtime). In Section 3.2 we present an example
that illustrates the difficulties produced by static typing. While it
might seem natural to have the two semantics for Java, we did not
follow this approach from the beginning. How static typing influ-
enced the design decisions of K-Java is discussed in Section 4.1.

Another challenge was the careful testing and implementation
of all corner cases for each new feature. The difficulty arises when
the new feature interacts with already defined features. For exam-
ple, packages were among the last features added. We had to make
sure packages were properly resolved in all contexts — in vari-
able declarations, extends/implements clauses, cast expressions,
etc. When we later added inner classes, we had to make sure inner
classes work equally well in all the contexts above. For each context
we had to test that inner classes might be referred both by simple
names and by fully qualified names, that might contain package
names. Our testing methodology is presented in Section 6.

Despite these challenges, we made no compromises and com-
pletely defined every single feature of Java 1.4.

JLS content unrelated to K-Java. Java was designed to be
compiled into a bytecode format that is executed on a hardware-
independent Java Virtual Machine (JVM). Consequently, some de-
tails of JLS deal specifically with the bytecode representation and
are irrelevant here. Such parts are §12.1-12.3, 12.6-12.8 (details of
JVM execution) and §13 (bytecode binary compatibility). JLS also
defines all the compile-time errors that might be produced by in-
correct programs. We do not cover them, as the focus of K-Java is
to model the behavior of valid Java programs only.

Also, we do not cover Dynamic Class Loading (DCL), §12.2.
Instead, in K-Java all classes are loaded at the beginning of the
execution. JLS mentions the possibility to load classes at runtime,
from other formats than bytecode, but sends the reader to the JVM
specification for details. No other details are given. For this reason,
it is fair to consider DCL a JVM rather than a Java feature, and
to regard the default class loader (the one loading classes from
“.class” files from the startup classpath) purely as a performance
optimization, with no implication to the semantics.

Limitations. We do not define the Java Memory Model (JMM)
that governs the allowed multi-threaded execution behaviors (§17).
Instead, we define a sequentially consistent memory model with a
global store and no caches, consistent with the JLS only if all fields
are volatile. Defining JMM would be a significant effort on its
own, relatively orthogonal to the present work. Also, JMM 1.4 was
replaced by JMM 5, so is no longer actual. It has been demonstrated
that K allows for modular replacement of the memory model [19,
§4.2.6]; we plan to do the same for Java in future work.

3.2 A Flavor of Java: Static Typing and Access Modes
Every Java expression has a statically assigned type. Static types
have various functions during execution:

• Subexpression types influence the type of the parent expression.
For example, 1 + 2 is not the same as 1 + (long)2.

• Integers’ type gives their precise representation within the al-
lowed range. When the range for a certain type is exceeded,
overflow occurs: 1000 is different from (byte)1000.

• When an object has a member (field or static method) that
hides an inherited member one can pick the right member by
manipulating the type of the qualifier. Given b of type B, then
b.v and ((A)b).v could refer to different fields.

• Method overloading allows methods with the same name and
number of arguments, but with different argument types. Then
f(0) and f((long)0) may invoke different methods.

For most expressions, the static type might be computed at the
same time as the actual value of the expression. One might think
that static types could be computed during execution at the same
time as the value of an expression is computed. We actually did this
in an older version of the semantics, and it worked great for a while.
However, we had to rethink this approach when the time came
to define the ternary conditional operator _?_:_. An expression
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class A {
private String f(int a) {return "int";}
String f(long a) {return "long";}

String test() {
return f((byte)0); } //int

}
class B {

String test() {
return new A().f((byte)0); } //long

}

Figure 2. Method overloading with access modes

package a;
public class A {

void f() { ... }
void g() { ... }

}

package a;
public class B extends A {

protected void f() { ... }
void g() { ... }

}

package b;
import a.*;
public class C extends B {

protected void f() { ... }
protected void g() { ... }

}

A c = new C(); c.f(); //C.f()
c.g(); //B.g()

Figure 3. Package access mode and method overriding

a ? b : c evaluates to b when a is true, and to c otherwise. When
b and c have different static types, the conditional expression will
have the join type of the two1. Thus, the static type of the operator
depends on the type of the two arguments, yet only one of these
arguments is evaluated at runtime. It would be incorrect to compute
the value of both b and c just for the sake of having their static type
(due to possible side effects). Therefore the computation of static
types had to be separated from the actual execution.

One of the most complex features of Java is method overload-
ing. First, the arguments of a method call may have types that are
different from the parameter types. When the method is overloaded,
the version with the most specific types that are compatible with the
argument types is invoked. Moreover, the choice of available ver-
sions of the method is influenced by access modes.

In Figure 2, both versions of f() are compatible with the call
f((byte)0), yet the set of accessible versions is different for the
two call sites. The call from A.test() has access to both ver-
sions, and it chooses the more specific one. However, the call from
B.test() cannot access the private f(); it calls the one with de-
fault access mode. The situation is even more complex when over-
loading is combined with inheritance and subtype polymorphism.

One might be tempted to think that access modes are only re-
quired for static semantics and could be discarded before execution.

1 JLS §15.25 puts some restrictions on the types of arguments of _?_:_,
that makes join in most cases to be the widest type of arguments 2 and 3.

In Java this is not the case. In Figure 3 the two methods f() and
g() are very similar, yet the declaring class of the actually invoked
methods is different. Since A.f() is declared with package access
mode, and class C is in a different package, the method C.f() does
not directly override A.f(). However, it does override A.f() in-
directly, through the declaration B.f(). The method A.f() is ac-
cessible to B since both A and B are in the same package. As B.f()
is declared with protected access mode, the method is accessible to
any subclass of B, including to C. Thus, a link is established that
allows C.f() to override A.f(). The very similar method g() is
declared with the default (package) access mode in B, that prevents
the connection between B.g() and C.g(). Hence, in order to de-
termine the right method to be invoked, it is not sufficient to pick
the last one visible to the dynamic (runtime) type of the qualifier. A
correct semantics has to analyse the entire chain of classes between
the static type of the qualifier and the dynamic type.

The examples above illustrate how static typing allows for a rich
set of features, but it also brings significant complexity. Moreover,
it is not enough to consider each language feature in isolation. It is
required to define and test each combination that might lead to non-
trivial interactions. Section 6 addresses testing. Some rules related
to method invocation are presented in Section 4.3.

3.3 K (http://kframework.org)
K [33] is a framework for engineering language semantics. Given
a syntax and a semantics of a language, K generates a parser, an
interpreter, as well as formal analysis tools such as model checkers
and deductive theorem provers, at no additional cost. It also sup-
ports various backends, such as Maude and, experimentally, Coq,
that is, it can translate language semantics defined in K into Maude
or Coq definitions. The interpreter allows the semanticists to con-
tinuously test their semantics, significantly increasing their effec-
tiveness. Furthermore, the formal analysis tools facilitate formal
reasoning for the given language semantics, which helps both in
terms of applicability of the semantics and in terms of engineering
the semantics itself; for example, the state-space exploration capa-
bility helps the language designer to cover all the non-deterministic
behaviors of certain language constructs or combinations of them.

Here we describe K only very briefly. More details are given
on an as-needed basis in the rest of the paper. In K, a language
syntax is given using conventional BNF annotated with semantic
attributes. A language semantics is given as a set of reduction rules
over configurations. A configuration is an algebraic structure of the
program state, organized as nested labeled cells holding semantic
information, including the program itself. Figure 4 shows a subset
of the Java configuration. The order of cells is irrelevant in a
configuration. Leaf cells contain pieces of the program state like
a computation stack or continuation (e.g., k), environments (e.g.,
env), stacks (e.g., stack), etc. As this is all best understood through
an example, let us consider a typical rule for reading a variable:Æ

X

V
···
∏

k 〈··· X 7→ L ···〉 env 〈··· L 7→ V ···〉 store

We see here three cells, k, env and store. The k cell represents a list
(or stack) of computations waiting to be performed. The left-most
(i.e., top) element of the stack is the next item to be computed. The
env cell is simply a map of variables to their locations. And the
cell store is a map from locations to values. The rule above says
that if the next thing to be evaluated (which here we call a redex)
is the variable lookup expression X , then one should match X in
the environment to find its location L in memory, and match L
in the store to find its value V . With this information, one should
transform the redex into that value, V ; the horizontal line represents
a reduction. A cell with no horizontal line means that it is read
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≤〈〈〈K〉 k 〈List〉 stack 〈〈Map〉 env 〈ClassType〉 crntClass 〈Int〉 location〉 methodContext

〈〈Int〉 tid 〈Map〉 holds 〈Bool〉 interrupted〉 threadData

〉
thread∗

〉
threads≠≠

〈ClassType〉 classType 〈Map〉 methods〈〈
〈K〉 methodSignature 〈List〉 methodParams 〈K〉 methodBody

〉
methodDec∗

〉
methodDecs

∑
class∗

∑
classes

〈Map〉 store 〈List〉 in 〈List〉 out 〈Set〉 busy 〈Map〉 waitingThreads

º
T

Figure 4. Subset of the Java Configuration

but does not change during the reduction. The “...” are structural
frames, that is, they match portions of cells that are irrelevant.

This unconventional notation is actually quite useful. The above
rule would be written out as a traditional rewrite rule like this:

〈X y κ〉 k 〈ρ1,X 7→ L, ρ2〉 env 〈ρ3,L 7→ V , ρ4〉 store
⇒ 〈L y κ〉 k 〈ρ1,X 7→ L, ρ2〉 env 〈ρ3,L 7→ V , ρ4〉 store

Items in the k cell are separated with “y”, which can now be
seen. The κ and ρ1, ρ2, ρ3, ρ4 take the place of the “···” above.
The most important thing to notice is that nearly the entire rule is
duplicated on the right-hand side (RHS). Duplication in a definition
requires that changes be made in concert, in multiple places. If
this duplication is not kept in sync, it leads to subtle semantic
errors. In a complex language like Java, the configuration is much
more complex, and would require including additional cells like
methodContext, thread and threads (Figure 4). K automatically
infers these intervening cells, keeping the rules local and modular.

In fact, one of the most appealing aspects of K is its modularity.
It is very rarely the case that one needs to touch existing rules
in order to add a new feature to the language. There are two K
features specifically targeting modularity. First, the configuration
can be structured as nested cells. Second, the language designer
needs only to mention the cells that are needed in each rule, and
only the needed portions of those cells. For example, the above
rule only refers to the k, env and store cells, while the entire
configuration contains many other cells as shown in Figure 4.
This modularity contributes not only to compact and thus human
readable semantics, but also to the overall effectiveness of the
semantics development process. For example, even if a new cell
is added to the configuration later on in order to support a new
feature, the above rule does not change.

4. K-Java: The Semantics of Java in K
K-Java is divided into two separate definitions: static semantics and
dynamic semantics (Figure 5). For parsing we use JavaFront [15],
a Java grammar defined in SDF [28], which we turned into a parser
compatible with K by using the SDF-to-K adapter [11].

The static semantics takes as input the AST representation of
a Java program and produces a preprocessed program as the out-
put. It performs computations that could be done statically, and are
referred in JLS as compile-time operations. Such computations in-
clude converting each simple class name into a fully qualified class
name or computing the static type of each expression. The prepro-
cessed AST is passed to the dynamic semantics for execution.

Statistics We define the semantics for all 186 syntactic produc-
tions of Java. Here are some statistics for our semantics:

Static Dynamic Common Lib Total
SLOC 3112 2035 539 497 6183
CLOC 857 1189 383 98 2527
Size (KB) 168 139 52 22 381
N cells 31 36 28 – 95
N rule 497 347 183 47 1074
N aux 111 83 79 9 282

Static
semantics

Dynamic
semantics

program

Parser

program AST

Collect Class Names

Process Compilation Units

Process Class Declarations

Process Class Members

Elaboration

Folding

preprocessed AST (valid Java program)

Unfolding

Execution

Figure 5. The structure of K-Java

The rows represent source lines of code (SLOC), comment lines
of code (CLOC), total files size, number of cells, number of rules,
number of auxiliary functions. The columns represent the static se-
mantics, the dynamic semantics except class library, modules com-
mon for both static and dynamic semantics, class library (including
multi-threading) and the total size.

Next we present an overview of the static semantics and con-
tinue with selected rules from the dynamic semantics.

4.1 Static Semantics
The static semantics consists of several phases, depicted in Fig-
ure 5. Each phase digs deeper into the syntactic structure of Java
and either performs a set of transformations over the program or
computes some new configuration cells.

Collect class names phase. In this phase the initial program is tra-
versed and all class names are collected into a map. The names map
serves two purposes at later phases: to resolve simple class names
into fully qualified class names and to determine the set of classes
available inside a package. Each class is traversed recursively, so
that the inner classes are also registered. Yet the traversing does not
proceed inside code blocks, thus classes defined at the block level
(local and anonymous) are not discovered at this stage.
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Process compilation units phase. In this phase the traversal starts
again from the initial program AST and performs two tasks. The
first is to move class content from the initial AST to the class cells
inside the configuration, from where it will be easier to access dur-
ing subsequent phases. From this point on the program is no longer
a monolithic AST but a collection of class cells. The granularity of
the initial class content is very rough. At this stage just the class
declaration, including extends/implements clauses, is analysed,
and not the class members. The class content is analysed recur-
sively like in the the previous phase, to process all the inner classes.
The second task of this phase is to process imports and produce the
map of class names accessible for each top-level class.

Process class declarations phase. In this phase the simple class
names inside extends/implements clauses of each class are con-
verted into fully qualified class names. This allows us to compute
the map of accessible class names for inner classes. JLS has com-
plex rules for the names accessible inside inner classes that do not
allow computing those names at an earlier stage.

Process class members phase. At this stage the body of each
class is processed and each member is stored in an appropriate cell.
For methods, the parameter and return types are now resolved.

Elaboration phase. This phase involves analysing the code
blocks and is the most complex of all phases. The transformations
here involve resolving class names inside blocks, resolving expres-
sion types and method overloading. Also at this stage block-level
classes (local and anonymous) are first detected. Upon their detec-
tion, block-level classes must be passed through all the previous
phases, to be normalized to the same format as the other classes.

Transformations. Figure 6 depicts most of the transformations
performed by static K-Java. Left column contains sample input
fragments together with the minimal relevant context. The right
column represents the transformed fragment. These transforma-
tions illustrate the means by which it was possible to represent the
preprocessed program as valid Java, without any extra annotations.

The simple class names are transformed into fully qualified
class names (row 1). This allows us to eliminate imports clauses
in preprocessed programs. Each expression is additionally wrapped
into a cast expression that encodes its static type (row 2). During
execution this cast is treated like a regular cast. The example in the
figure also illustrates binary numeric promotion: the result type of
the addition between an int and a long is a long.

In addition, for method calls each argument is wrapped into one
more cast, namely to the expected parameter type (row 3). This
allows us to effectively encode method overloading.

Row 4 illustrates the preprocessing of fields accessed by simple
names. Each such field access is converted into a qualified access. If
the field is non-static, it will be qualified by this (first case in row
4), and this should be additionally cast to the current class type,
according to rule 2. If the field is static, it will be qualified with the
class that defined the field (second case). The same transformation
is performed for methods called without a qualifier.

This last transformation allows us to disambiguate among the
four roles of a name, namely package, class, field or local variable:

Syntax Syntactic Context Resulting Role
Id package package
Id package or class package
Id class class
((Type) Qual.Id) expression field
((Type) Id) expression local var

An identifier inside a syntactic context where only a package is
allowed will be considered a package. If either a package or a class
is allowed, then the identifier will also be considered a package

Initial code Preprocessed code
Object java.lang.Object

1 + 2L (long)((int)1+( long)2)

void f(long a);

f(1); f((long)(int)1);

class A{ int v;
static int s;}

v (int)((A) this).v

s (int)A.s

class A{ A(){} }
class A {

A(){ super(); }
}

class A {
static int a=1;
static{a++;}

}

class A {
static int a;
static{a=1;a++;}

}

class A {
int a=1;
{a++;}
A(){
super();

}
}

class A {
int a;
void $init(){
a=1;a++;

}
A(){
super();
$init();

}
}

class O {
void m() {
final
int a=1,b=2;

class L {
int f(){
return a+b;

}
};
new L().f();

}
}

class O {
void m() {
final int a=1,b=2;
LEnv $env

=new LEnv();
$env.a=a;
$env.b=b;
new L($env).f();

} //m()

class LEnv{
int a,b;

}
class L{
LEnv $env;
L(LEnv $env){
this.$env=$env;

}
int f(){
return

$env.a+$env.b;
}

} //L
} //O

final int a;
new A() {
int f() {
return a;

}
}.f();

final int a;
class LocalA

extends A{...};
new LocalA ().f();

Figure 6. Transformations performed by the static semantics
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(here we consider classes that are used as qualifiers to refer to an
inner class also as packages). A field or a local variable will always
be part of a cast expression, thus will always be inside an expression
context. If the respective identifier is qualified, then it is a field.
Otherwise it is a local variable.

Continuing with row 5, if a constructor does not call another
constructor on the first line, then it should call the base class con-
structor, super(), except if the current class is Object. For legibil-
ity, we omit the already discussed transformations (e.g., wrapping
into cast expressions) in the remaining examples.

Initializers of static fields as well as static initializing blocks are
collected into one big static initializing block (row 6), which is in-
voked during execution when the class is for the first time accessed
by the program. For instance initializers the same procedure cannot
be followed (row 7). Instead, all the instance initialization code is
collected into the method $init(), that is called by the construc-
tors right after the base constructor super() was called.

Arguably the most complex transformation is that of local
classes. It is encoded into a separate module with 26 rules, one
of the largest of K-Java. Local classes are converted into instance
inner classes within the same enclosing class. The unusual diffi-
culty of this transformation arises from the ability of local classes
to access final local variables visible at the point when the class
was declared. The most common case is presented in row 8. For
each such local class L, an additional inner class LEnv is defined
that stores the enclosing local environment of L. LEnv contains a
field for each variable in the environment. Accesses to the local
environment of L are encoded as accesses to fields of LEnv.

Finally, anonymous classes are first converted into local classes,
which are in turn converted into inner classes (the last row).

Motivation for elaboration phase. Initially, K-Java was devel-
oped without an elaboration phase. For example expression types
were computed along their value each time they were executed.
Similarly, other computations that are now done in the elabora-
tion phase were performed on the fly during execution. This ap-
proach worked up to a point, and produced a monolithic semantics
which was more compact than the present one. However, when we
reached the point to define the semantics of the conditional expres-
sion _?_:_ and of the local classes, it eventually became clear that
we had to compute the static types upfront. As described in Sec-
tion 3.2, it is impossible to compute the type of a conditional ex-
pression by evaluating its operands dynamically. Also, local classes
had to be discovered and preprocessed prior to execution, in order
to cover all the corner cases. For this we needed a pre-execution
phase capable to dig into code blocks.

Folding phase. The last and simplest phase of preprocessing,
Folding, combines the information stored in class cells back into
one big AST, acting as an interface to the dynamic semantics. Since
all the transformations performed by the static semantics maintain
the validity of the program, the resulting preprocessed AST repre-
sents a valid Java program as well. This phase is technically unnec-
essary for the dynamic semantics alone, because Unfolding phase
in dynamic K-Java (Figure 5) is the exact mirror of Folding, dis-
tributing the AST back into the same cells that were used to pro-
duce it. Folding and Unfolding phases were required to complete
the division between the static and the dynamic parts of K-Java.

The preprocessed AST. The output of the static semantics is the
preprocessed AST. This AST has a valuable property: it corre-
sponds to a valid Java program, equivalent to the initial one. More
precisely, for every Java program P1 there is a program P2 such
that the preprocessed AST of P1 is equal to the AST of P2. We do
not prove this property, we only state it, supported by the obser-
vation that every transformation performed by the static semantics
preserves program equivalence.

Maintaining this equivalence imposed some challenges. First,
we were forced to use only transformations that preserve program
validity. All the transformations presented in Figure 6 are also per-
formed by the Java compiler (javac), with the difference that javac
produces bytecode. In contrast, not all transformations performed
by javac were accessible to static K-Java. For example, javac flat-
tens inner classes into top-level classes. We could not do the same
because we would lose method access modes, and access modes
have to be preserved (Section 3.2). Also, we could not use any aux-
iliary constructs in the preprocessed AST. Despite the challenges,
we believe producing a preprocessed AST with stated properties
was worthwhile, since it enables our static semantics to be usable
in conjunction with tools outside the K ecosystem.

4.2 Exceptions
We choose to illustrate the first rules from K-Java through the
dynamic semantics of throw and try/catch (Figure 7). These
rules are relatively self-contained and require just the cell k. By
default, rules without a cell context (as are all the rules in Figure 7)
automatically apply to the current computation task (the first task
in k, which holds the current computation). Virtually all the rules in
a language definition in K match the first task of k either explicitly
or (like here) implicitly.

The first rule rewrites a try/catch into the body of try, S,
followed by catch clauses wrapped into the auxiliary construct
catchBlocks. The binary associative construct “y” (spelled “fol-
lowed by”) is builtin to K and stands for computation task sequen-
tialization. The constructor’s role is to separate individual tasks in
the current computation. Now rules for other statements will apply
over the content of S until it is either entirely consumed or a throw
statement becomes the first task.

In the first case, if S was consumed, it means the execution
of try block completed normally. Then the term catchBlocks
reaches the top of computation and is discarded by the second
rule. In the second rule, “_” is an anonymous variable, which can
match anything. Here it can match one or more catch clauses.
The term catchBlocks is rewritten into “ · ”, the unit (or empty)
computation. In words, this rule says that if catchBlocks reaches
the top of computation then discard it. Now the entire try/catch
is consumed and the execution continues with the next statement.

In case S throws an exception, a throw statement will eventu-
ally reach the top of the computation. Figure 7 continues with the
syntax definition of throw, as it has a semantic role. Before throw
could be evaluated, the expression inside throw has to be evalu-
ated to a value. K has a compact notation to achieve this — the
[strict] annotation, meaning: bring the non-terminals of the anno-
tated syntax to the top of computation, and plug them back when
they are evaluated to a final value. Specifically for the statement
throw, this annotation is compiled into one heating and one cool-
ing rule, as shown in the inner box figure. The heating rule brings
the expression to the top of computation for evaluation. The no-
tation “2” (spelled “hole”) is a placeholder marking the context
from which the expression was heated. The rule should only apply
if the expression is not a final result yet (here a typed value); this
restriction is encoded in the side condition. The cooling rule brings
the produced typed value back to its original context. The typed
value is V :: ThrowT — an auxiliary notation of K-Java. The left
side of “::” is the value, while the right side is the static type. K
also has more general forms of [strict], allowing to control which
arguments should be heated and the evaluation order.

Now the actual rules for throw are ready to apply. Rule 3
(THROW-MATCH) matches when the type of the exception carried
by throw is compatible with the type accepted by the first catch
clause, so the exception is caught. The compatibility of the excep-
tion type and the catch clause’s type is verified by the expres-
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sion subtype(ThrowT,CatchT ) in the side condition. In this
case, both the throw statement and the catchBlocks construct
are rewritten into a sequence of three statements: a declaration
of the catch parameter X of type CatchT as a local variable
(CatchTX;), an initialization ofX with the exception value typed
with the type expected by X (X = V :: CatchT ;), and the body
of catch — CatchS. All three statements are wrapped inside a
block { }, to confine the variable X to its expected scope.

Rule 4 matches when the two types are not compatible. In this
case the first catch clause is dissolved, bringing the next one (if
any) to the top of the list. Rule 5 matches when throw cannot in-
teract with the next statement (the side condition). Statements inter-
acting with throw are the non-empty catchBlocks and finally.
Thus, if the next computation item after throw, KI:KItem, is any-
thing except the two, including the empty catchBlocks produced
eventually by the fourth rule, that statement will be dissolved. The
statement throw will remain the top of computation until it reaches
a matching catch or remains the only rule inside the k cell. The no-
tation KI:KItem means that variable KI should match only one item
in the computation sequence separated by y. If we wrote just KI,
then the entire remaining computation would be matched. If throw
remains the only task in the computation, another rule will match
that will ensure exception propagation outside the current method.

Loop statements with break/continue are defined similarly.
One may wonder why not desugar a try with multiple catch

clauses into multiple try with one catch each. We actually did so
initially, but it turned out to be incorrect. Indeed, the code

try { throw new A(); }
catch(A a) { throw new B(); }
catch(B b) { ... }

cannot be desugared into

try {
try { throw new A(); }
catch(A a) { throw new B(); }

}
catch(B b) { ... }

because in the second case the exception B would get caught by
catch(B b), and this is incorrect according to JLS. This (counter)
example is now included in our test suite.

4.3 Method Invocation
The central rule of method invocation is the first rule in Fig-
ure 8. This is actually the last rule to be applied, after a long
chain of computations that involves computing the qualifier, the
arguments, loading the required information from various cells
of configuration and deciding the actual method to be invoked,
based on the access mode, as was mentioned in Section 3.2.
When the actual invocation of the method is ready to be per-
formed, the top of computation cell contains a term of the form
Qual.methodRef(Sig,DecC)(Args). This term is a Java quali-
fied method invocation expression augmented with K-Java auxil-
iary syntax. Here Qual is the qualifier—the object or class upon
which the method is invoked. The term methodRef(Sig,DecC)
is a reference to a method with signature Sig declared in the class
DecC. The variable RestK denotes the remaining computation/-
continuation in cell k. This rule performs the following operations:

• The rest of computation (RestK) and the current content of
methodContext are saved to a new entry (or frame) on top
of the cell stack. This data will be used to restore the current
computation context by the rules for return.

• The new method context is initialized with:

An empty local variable environment (env).

RULE TRY
try S CatchList

S y catchBlocks (CatchList)

RULE CATCHBLOCKS-DISSOLVE
catchBlocks (_)

·

SYNTAX Stmt ::= throw Exp ; [ strict︸ ︷︷ ︸
compiled into:

]

RULE THROW-HEAT
·

E
y throw

E

2
;

REQUIRES ¬Bool isTypedValue (E)

RULE THROW-COOL
V :: ThrowT

·
y throw

2

V :: ThrowT
;

RULE THROW-MATCH
throw V :: ThrowT ;

y catchBlocks (catch (CatchT X ){CatchS} _)

{CatchT X ;y X = V :: CatchT ;y CatchS}
REQUIRES subtype (ThrowT ,CatchT )

RULE THROW-NOT-MATCH
throw V :: ThrowT ;

y catchBlocks

(
catch (CatchT X ){CatchS}

·
_

)
REQUIRES ¬Bool subtype (ThrowT ,CatchT )

RULE THROW-PROPAGATION

throw _ :: _ ;y KI : KItem

·
REQUIRES ¬Bool interactsWithThrow (KI )

Figure 7. Rules for try/catch and throw

The declaring class of the invoked method (crntClass).

The current object location, computed by auxiliary function
getOid(Qual) as:

− The location of the qualifier, if qualifier is an object.

− No location, if qualifier is a class (for static methods).
• Current computation is rewritten into a sequence of four terms:

Static initialization of the new declaring class.

Initialization of the parameters.

The method body.

A return statement with no arguments. This will be reached
only if the execution of the method body terminates without
reaching another return or throw statement.

The auxiliary function staticInit() triggers static initializa-
tion of the qualifying class, in case this class was not initialized yet.
Repeated calls of this function have no effect.
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RULE INVOKE-METHODREF≤
Qual . methodRef (Sig ,DecC )(Args) y RestK

staticInit (DecC ) y initParams (Params,Args)
y Body y return ;

º
k

〈
·

(RestK ,MethodContext)
···

〉
stack〈

MethodContext

〈·〉 env 〈DecC 〉 crntClass 〈 getOId (Qual)〉 location

〉
methodContext〈

〈DecC 〉 classType〈〈Sig〉 methodSignature 〈Params〉 methodParams

〈Body〉 methodBody

〉
methodDec

〉
class

RULE INITPARAMS
initParams ([[T X , ]RestP ], [TV ,RestV ])

T X ;y X = TV ;y initParams (RestP ,RestV )

RULE INITPARAMS-END
initParams (·, ·)

·

Figure 8. Final rules for method invocation

The function initParams() is defined by rules 2 and 3 in
Figure 8. It takes as arguments two lists—the list of parameter
declarations and the list of argument values. The first rule pro-
cesses the first parameter declaration in the list. The parameter with
name X of type T is rewritten into a local variable declaration
T X; followed by an assignment expression that initializes X with
the argument value. The third term in the RHS of the rewrite is
initParams with the processed parameter and argument removed.
Here we use [ ] as K brackets, to disambiguate terms grouping.

When all parameters are processed, both arguments of
initParams become empty lists. In this case the third rule from
the figure applies, dissolving the initParams term.

The complete semantics of method invocation, as well as the
semantics of new, are discussed in the companion report [12].

4.4 Multithreading and Synchronization
K-Java has basic support for threads. First is the class Thread
with methods start(), join() and interrupt(). We also sup-
port thread synchronization through the synchronized statement
(JLS §14.19) and the synchronized modifier for methods (JLS
§8.4.3.6). For more advanced usage we support threading-related
methods from class Object: wait(), notify(), notifyAll().

Below we discuss the key rules for methods wait() and
notify(). Both methods have to be called from a synchronized
block that holds the monitor (lock) of the target object. When
wait() is called, the thread releases the lock on target object
and blocks until another thread calls notify() on the same ob-
ject. When notify() is called, the waiting thread does not wake
up immediately, but only after the notifying thread exited the
synchronized block. When waking up, the thread re-acquires the
lock on the target object. When there are multiple threads waiting
on the same monitor object, notify() will non-deterministically
wake up one of them. Finally, if either wait() or notify() is
called in a state where the current thread does not hold the appro-
priate monitor, an exception is thrown.

The rules are presented in Figure 9 (see Figure 4 for the configu-
ration cells). The first rule [object-wait] corresponds to the invoca-
tion of wait(). Here the term objectRef(Oid, _) :: _ represents

RULE OBJECT-WAITµµ
objectRef (OId , _) :: _

. methodRef

(
sig (wait, _),
class Object

)
(·)

waitImpl (OId)
···

ø
k

〈TId〉 tid 〈··· OId 7→ HoldLevel ···〉 holds

···

ø
thread

〈
··· OId

·
···

〉
busy

〈
···

·

TId 7→ OId
···

〉
waitingThreads

REQUIRES HoldLevel ≥Int 1

RULE OBJECT-NOTIFY±
objectRef (OId , _) :: _

. methodRef ( sig (notify, _), class Object)(·)
notifyImpl (OId)

···

ª
k

〈··· OId 7→ HoldLevel ···〉 holds
REQUIRES HoldLevel ≥Int 1

RULE NOTIFYIMPL-SOMEONE-WAITING〈
notifyImpl (OId)

·
···

〉
k

〈
··· _ 7→ OId

·
···

〉
waitingThreads

RULE WAITIMPL-MAIN〈
waitImpl (OId)

·
···

〉
k 〈TId〉 tid

〈
Busy

·

OId

〉
busy

〈false〉 interrupted 〈WT 〉 waitingThreads
REQUIRES ¬BoolTId in keys (WT ) ∧Bool ¬BoolOId in Busy

Figure 9. Rules for Object.wait() and Object.notify()

a typed object reference—the qualifier of the method call. The only
part that is of interest to us from this term is Oid—the object iden-
tifier in the store, that is also used as synchronization key. The next
term, methodRef(sig(wait, _), class Object), represents a
method reference to the method with signature sig(wait, _) (name
wait and irrelevant arguments), declared in the class Object.
The expression above the horizontal line (LHS of the rewrite) is
a method call expression, for the given object reference, the given
method reference and no arguments. This rule replaces the method
call expression in cell k with waitImpl()—an auxiliary function
used later, to exit from the waiting state. The id of the current thread
(TId) has to be registered in the set in waitingThreads. The cell
holds attached to each thread stores the number of times the current
thread acquired the lock on each object. Here we use it to make sure
that the current thread acquired the lock at least once (see the side
condition). Another cell matched here is busy. This one, in contrast
with holds is a global cell, unique for the whole configuration. It
stores the set of objects that are currently used as synchronization
monitors—arguments of blocks synchronized. When an object
enters the waiting state, it has to release its ownership to the moni-
tor; this is done by deleting OL from the set.

The second rule [object-notify] is the starting rule for notify().
The side condition ensures that the current thread holds the monitor
on the target object. The actual logic of notify() is delegated to
notifyImpl(). The construct notifyImpl() requires two rules
for two cases—the case when there is at least one thread waiting
on the target object, and the case when there is none.

Rule [notifyImpl-someone-waiting] is the rule for the first case.
If there is a thread waiting on the current object, then the object
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identifier OId will be present among the map values of waitingTh-
reads. By deleting the whole entry associated to that value we en-
able the waiting thread to proceed. If there is no thread waiting for
this object then term notifyImpl() is simply consumed.

At this stage, after a call to notify(), the rule for waitImpl()
could match inside another thread (rule [waitImpl-main]). The rule
checks in its side conditions that the current thread identifier, TId,
is not among the waiting threads anymore. It also checks that the
target object, represented by OId, is not busy. This is required
because the thread exiting from waiting state has to reacquire the
monitor on the target object. Finally, the rule has to make sure
that the thread was not interrupted while it was waiting. Otherwise
another rule will match and will throw the appropriate exception.

We only presented the key rules above, corresponding to the
most common execution scenario. The corner cases, such as illegal
calls that should result in various exceptions, are not included but
are nevertheless fully supported and tested.

5. Applications
Here we show how K-Java together with builtin K tools can be used
to explore multi-threaded program behaviors. The first application
is state space exploration and the second is LTL model-checking.

5.1 State Space Exploration
The next simplest way to use K-Java besides execution is state
space exploration. When a program is run with the K runner and
option --search, the tool outputs all of the possible executions
for the program, exposing any possible non-deterministic behav-
ior. This capability was successfully used in the semantics of
C [20] to expose the non-determinism of expression evaluation.
While single-threaded Java is deterministic, threads bring non-
determinism. By running a multi-threaded Java program in search
mode, we can produce all its interleaving behaviors.

Additionally, the option --pattern allows us to filter the
search results according to a pattern. This feature may be effec-
tively used, for example, to detect deadlocks. In K-Java, the cell
〈〉 thread is dissolved when the corresponding thread finishes its ex-
ecution. Consequently, we can detect successful execution paths
by using the pattern 〈·〉 threads. The pattern will match when there
are no threads remaining. Conversely, the pattern 〈_〉 thread would
match the final states where at least one thread did not finish its
execution, e.g. a deadlock. We successfully used this approach to
detect the deadlock in the Dining Philosophers problem.

5.2 LTL Model-Checking
While state space search might be used to test some programs, K
offers a more powerful capability for exploring non-deterministic
behavior. Specifically, K provides linear temporal logic (LTL)
model-checking capabilities through its Maude [16] backend. In
this section we show how K-Java can be seamlessly used to verify
LTL properties of multi-threaded applications.

Consider the program in Figure 10 (a modified version of [8]).
The program contains a blocking queue – a classical producer-
consumer example with one producer and one consumer thread.
The inner class BlockingQueue contains two methods - put()
and get(). The methods are synchronized, designed to be called
from a multi-threaded environment. When put() is called on a full
queue, the calling thread has to wait until some other thread de-
queues an element. Similarly, the consumer thread calling get()
has to wait when the queue is empty. The producer (the main
thread) calls put() four times, while the consumer (anonymous
thread inside main()) calls get() the same four times. Aside from
demonstrating multi-threading capabilities, this small program il-
lustrates many other features of Java: expressions with side effects,

public class QueueTest {
static class BlockingQueue {

int capacity = 2;
int[] array = new int[capacity ];
int head=0, tail =0;
synchronized void put(int element)

throws InterruptedException {
if (tail -head == capacity) {

wait(); // 1
}
array[tail++ % capacity] = element;
System.out.print (0);
notify (); // 2

}
synchronized int get()

throws InterruptedException {
if (tail -head == 0) {

wait(); // 3
}
int element

= array[head++ % capacity ];
System.out.print (1);
notify (); // 4
return element;

}
}

public static void main(String [] args)
throws Exception {

final BlockingQueue queue
= new BlockingQueue ();

new Thread () {
public void run() {

for(int i=0; i<4; i++) {
try {

queue.get();
}
catch(InterruptedException e) {}

} } }. start ();
for(int i=0; i<4; i++) {

queue.put(i);
}

}
}

Figure 10. A two-threaded blocking queue

exception handling, arrays, static and instance methods, inner and
anonymous classes. Running state space exploration for the exam-
ple above correctly produces all eight expected interleavings of the
output text (0 represents a call to put(), 1 – a call to get()):

00101011 00101101 00110011 00110101
01001011 01001101 01010011 01010101

The implementation of BlockingQueue contains a deliberate,
subtle problem. The wait() call is within an if inside both get()
and put(), thus is executed at most once. This is actually a correct
behavior if we have just one producer and one consumer,2 but leads
to problems when the number of threads is at least three. Above, the
only way a thread waiting on line labelled "3" could be awakened
is from a call to notify() from method put(), line labeled "2".
Since at the end of the method put() we have at least one element
in the queue, method get() can safely extract an element.

In a scenario with one producer and two consumers the thread
waiting on "3" could be awakened by a call to notify() from ei-

2 We do not consider spurious wakeups here.
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ther "2" or "4". If the thread executing get() was awakened by "2"
(another get()), that other get() could have actually extracted the
last element from the queue, thus rendering the queue empty. Un-
aware of the queue state, the freshly-awakened thread will execute
the body of get() and will extract a non-existing element from
the queue. To eliminate this possibility, we need to replace the if
statements with while above both at "1" and "3". A programmer
might make such a subtle mistake, when first designing the queue
for a two-threaded usage, and then extending the context to more
threads. It is difficult to expose this bug through traditional testing.
We executed the incorrect three-threaded program a dozen times
with the JVM; it never picked the buggy path.

Next, we would like to expose the problem above with LTL.
In this implementation of queue tail is incremented each time an
element is added to the queue, and head is incremented each time
an element is extracted. They are never decremented. Since it is not
possible to extract more elements than are added, a basic invariant
of the queue is head <= tail. This is the exact invariant that is
violated by the example above in the three-threaded scenario.

The LTL model checking capability of the K framework allows
us to find the bug by model checking the following LTL formula:

2(this instanceof BlockingQueue
=⇒ this.head <= this.tail)

The property was correctly proven true for the example in Fig-
ure 10, but was proven false for the three-threaded version of the
same program. When we corrected the queue implementation, the
model checker proved the formula correct. The version of the pro-
gram in Figure 10 took 15 seconds to model check, produced 72
transition states and roughly two million rewrites.

Similar formal program analysis capabilities were demonstrated
within the semantics of C [20] and PHP [22].

6. Testing
Testing K-Java took almost half of the overall development time.
Here we describe our testing efforts, which resulted in what could
be the first publicly available conformance test suite for Java.

6.1 The Quest for a Test Suite
Virtually all recent executable language semantics projects [10, 20,
22, 30] used an external test suite for validation. Naturally, we tried
to do the same. The official test suite for Java, targeting both the
language and the class library, is Java Compatibility Kit (JCK) [2]
from Oracle. JCK is not publicly available. Instead Oracle offers
free access for non-profit organisations willing to implement the
whole JDK, i.e., both the language and the class library. After a
laborious application, Oracle rejected our request.

We also explored unofficial test suites. Jtreg, part of Open-
JDK [7], is a regression test suite for the class library, but not for
the language. Another test suite is Mauve [6], containing tests for
classes and for the compiler, but not for the runtime. Tests targeting
the compiler test its capability to distinguish between correct and
incorrect Java programs, and to output the appropriate error mes-
sage. Unfortunately, all these tests were unsuitable for our purpose.

There were actually two external test suites that we were able
to use. One was the set of examples from ACM-Java [35] that we
presented in Section 2. Another one was the list of examples from
the book Java Precisely [34]. We used 44 out of 58 tests from ASM-
Java and 63 out of 114 examples from Java Precisely. The programs
that we did not use either illustrated compiler errors, or were not
complete Java programs, or used classes that we do not support.

These two sets of examples, while useful, were far from enough.
Their purpose was to illustrate Java, not to exercise every single
corner case of the language. With no luxury of an available com-
prehensive test suite, we had no choice but to develop our own.

6.2 Test Development Methodology
When writing our tests we followed the Test Driven Development
(TDD). The main principle of TDD is to write tests before imple-
menting the actual feature under test. It was advantageous to use
TDD for K-Java for two reasons. First, K-Java has a complete and
final specification—JLS. Consequently, our tests are not expected
to change as a result of changes in the specification. Second, tests
for K-Java are self-contained Java programs, they do not depend on
any part of the system under test (K-Java) to be written.

For every test, we compared the output produced by K-Java with
the output produced by JDK. When developing a new feature, we
followed the following steps. First we tried to cover all corner cases
of the feature under test in isolation. For example, the first non-
terminal of the for statement might be a list of variable initializers.
In such case we will include in our tests statements with zero, one
or more initializers. Second, we would define the new feature in
the simplest way possible to pass all the tests. Sometimes, after
inspecting the implementation, we would identify some corner
cases that were not captured by the tests. We would add additional
tests for such cases. Thus our methodology was a combination of
white-box and black-box testing. In addition to the steps above, we
wrote tests for each combination of language features whenever we
thought that the two features may possibly unexpectedly interact.

We followed the development of Java starting from low-level
features such as literals, expressions, statements, towards the higher
level features. The order of development is approximately reflected
by the order in which tests were written, which can be found in
K-Java public repository [1]. We aimed at testing every detail spec-
ified in JLS; e.g., to test the precise order of execution of subex-
pressions inside an expression, we intentionally used subexpres-
sions with side-effects and verified the correct order of evaluation
by observing the correct order in which the side effects occurred.

Some features depended on other features to be properly tested.
For example, in order to test the precise static type of various ex-
pressions we used method overloading. For example, if an expres-
sion e has to return type A, but a plausible erroneous semantics
could also produce B, we tested the correct choice by calling f(e),
where f was an overloaded method that could accept an argument
of type A or B. In all such cases we were careful to postpone the
exhaustive testing of the freshly developed feature, and to write the
tests later once all prerequisites are available.

Eventually, we produced a test suite consisting of 840 tests.

Multithreading. To test multi-threading we used state space ex-
ploration. We designed a test suite comprised of 28 programs ex-
plicitly aiming at covering all the behaviours of all the supported
multi-threaded language constructs. For each program, we first pro-
duce all the possible solutions using K. Then we compare the num-
ber of solutions with the expected, manually determined one.

Later changes, testing ASM-Java and JavaFAN. When we first
tried to execute ASM-Java and JavaFAN over our test suite, the
majority of the tests unexpectedly failed. It was because some very
basic feature, used in most of the tests, was not supported. For
example ASM-Java did not support addition between a string and a
boolean. JavaFAN did not support escape characters, and we were
not able to use "\n" in our tests for this reason. To overcome this
problem, we inspected our tests and eliminated the most common
causes of failure, when they were not the actual feature under test.
This way we were able to produce the results reported in Section 2.

7. Conclusion and Discussion
We have discussed K-Java, which to our knowledge is the first
complete formal semantics of Java. The semantics has been split
into a static and a dynamic semantics, and the static semantics was
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framed so that its output is also a valid Java program. This way,
it can seamlessly be used as a frontend in other Java semantics
or analysis tools. As a side contribution we have also developed
a comprehensive conformance test suite for Java, to our knowledge
the first public test suite of its kind, comprising more than 800 small
Java programs that attempt to exercise all the corner cases of all the
language constructs, as well as non-trivial interactions of them.

The skeptical reader may argue that there is no such thing as
a ‘complete’ semantics of a large language like Java, because it is
always possible to miss a feature or, worse, an interaction of fea-
tures. While this is true in principle, we mention that completeness
of the semantics was our major objective from the inception of this
project, and that we have very carefully considered all possible in-
teractions of features that were explicitly discussed in the JSL or
that we could think of. Since there is no other attempt to completely
formalize Java that we are aware of in order to formally compare
with K-Java, due to all the above we believe that it is fair to claim
that K-Java is the first complete formal semantics of Java.

K-Java can serve as a platform to experiment with Java exten-
sions. Not only can one define such extensions rigorously, but one
also gets a reference implementation for experimentation.

We plan to extend K-Java with semantics for the the latest
versions of Java, starting with Java 5. Most of Java 5 features
can be compiled into JVM 1.4 bytecode by using javac option
-target jsr14: generics, varargs, for-each loop and autobox-
ing [3]. These features can be similarly defined in the static K-Java.
Support in the dynamic K-Java would be required for enumera-
tions and annotations. The best-known feature of Java 8 is lambda
expressions. Lambdas could be desugared into anonymous classes
implementing a functional interface. JDK uses a different strategy,
yet the designers of Java suggest desugaring as an option [4].

We also plan to define dynamic class loading. It has already
been defined in K-Python [26], so we see no impediments in adapt-
ing it for K-Java. This would allow support for a much wider set of
classes from JDK, consequently, for more real life programs.

Finally, using K’s support for Reachability Logic [17], it should
be possible to deductively verify Java applications. Deductive ver-
ification requires more user involvement that model checking and
would be a separate work on its own.
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