
STRUCTURAL

OPERATIONAL

SEMANTICS

Grigore Rosu

CS422 – Programming Language Semantics

1

Conventional Semantic Approaches

 Big-step structural operational semantics (Big-step SOS)

 Small-step structural operational semantics (Small-step SOS)

 Denotational semantics

 Modular structural operational semantics (Modular SOS)

 Reduction semantics with evaluation contexts

 Abstract Machines

 The chemical abstract machine

 Axiomatic semantics

A language designer should understand the existing design

approaches, techniques and tools, to know what is possible and

how, or to come up with better ones. This part of the course will

cover the two major PL semantic approaches:

2

Many other

semantic

approaches

covered in CS522

IMP

A simple imperative language

3

IMP – A Simple Imperative Language

 Arithmetic expressions

 Boolean expressions

 Assignment statements

 Conditional statements

 While loop statements

 Blocks

We will exemplify the conventional semantic

approaches by means of IMP, a very simple non-

procedural imperative language, with

4

IMP Syntax

Suppose that, for demonstration

purposes, we want “+” and “/”

to be non-deterministically strict,

“<=“ to be sequentially strict,

and “&&” to be short-circuited

Comma-separated

list of identifiers

5

IMP State

 Most semantics need some notion of state. A state holds all the
semantic ingredients to fully define the meaning of a given
program or fragment of program.

 For IMP, a state is a partial finite-domain function from identifiers
to integers (i.e., a function defined only on a finite subset of
identifiers and undefined on the rest), written using a half-arrow:

 We let State denote the set of such functions, and may write it

or

6

Lookup, Update and Initialization

 We may write states by enumerating each identifier binding.

For example, the following state binds x to 8 and y to 0:

 Typical state operations are lookup, update and initialization

 Lookup

 Update

 Initialization

 =

7

BIG-STEP SOS

Big-step structural operational semantics

8

Big-Step Structural Operational

Semantics (Big-Step SOS)

 Gilles Kahn (1987), under the name natural semantics. Also

known as relational semantics, or evaluation semantics. We can

regard a big-step SOS as a recursive interpreter, telling for a

fragment of code and state what it evaluates to.

 Configuration: tuple containing code and semantic ingredients

 E.g.,

 Sequent: Pair of configurations, to be derived or proved

 E.g.,

 Rule: Tells how to derive a sequent from others

 E.g.,

9

Read

“evaluates to”
Premises

Conclusion
May omit line

when no premises

Big-Step SOS of IMP - Arithmetic

State

lookup

10

Side condition ensures rule will never

apply when a2 evaluates to 0

Read: “provided that a1 evaluates to i1 in 

and a2 evaluates to i2 in  , then a1 + a2

evaluates to the integer sum of i1 and i2 in 

Big-Step SOS of IMP - Boolean
11

Big-Step SOS of IMP - Statements

State

update

12

Big-Step SOS of IMP - Programs

State

initialization

13

Big-Step Rule Instances

 Rules are schemas, allowing recursively enumerable many

instances; side conditions filter out instances

 E.g., these are correct instances of the rule for division

The second may look suspicious, but it is not. Normally, one should

never be able to apply it, because one cannot prove its hypotheses

 However, the following is not a correct instance (no matter what ? is):

14

Big-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

big-step SOS proof system of IMP above.

Suppose that x and y are identifiers and  (x)=8 and  (y)=0.

15

Big-Step SOS for Type Systems

 Big-Step SOS is routinely used to define type systems for
programming languages

 The idea is that a fragment of code c, in a given type environment
, can be assigned a certain type . We typically write

instead of

 Since all variables in IMP have integer type,  can be replaced by
a list of untyped variables in our case. In general, however, a
type environment  contains typed variables, that is, pairs “x :”.

16

Typing Arithmetic Expressions
17

Typing Boolean Expressions
18

Typing Statements

The type of s

can be either

block or stmt

19

Typing Programs
20

Big-Step SOS Type Derivation

Like the big-step rules for the concrete semantics of IMP,

the ones for its type system are also rule schemas. We

next show a proof derivation for the well-typed-ness of an

IMP program that adds all the numbers from 1 to 100:

where

21

Big-Step SOS Type Derivation
22

Big-Step SOS Type Derivation
23

SMALL-STEP SOS

Small-step structural operational semantics

24

 Gordon Plotkin (1981)

 Also known as transitional semantics, or reduction semantics

 One can regard a small-step SOS as a device capable of

executing a program step-by-step

 Configuration: tuple containing code and semantic ingredients

 E.g.,

 Sequent (transition): Pair of configurations, to be derived (proved)

 E.g.,

 Rule: Tells how to derive a sequent from others

 E.g.,

Small-Step Structural Operational

Semantics (Small-Step SOS)
25

Small-Step SOS of IMP - Arithmetic

State

lookup

26

+ is non-deterministic (its

arguments can evaluate in

any order, and interleaved

Small-Step SOS of IMP - Arithmetic

Side condition ensures

rule will never apply

when denominator is 0

27

/ is also non-deterministic

Small-Step SOS of IMP - Boolean

Ensures

sequential

strictness

28

Small-Step SOS of IMP - Boolean

Short-circuit

semantics

29

Small-Step SOS Derivation

The following is a valid proof derivation, or proof tree, using the

small-step SOS proof system for expressions of IMP above.

Suppose that x and y are identifiers and (x)=1.

30

Small-Step SOS of IMP - Statements

State

update

31

Small-Step SOS of IMP - Statements

State

initialization

32

