
1

CS422 - Programming Language Design

General Information and Introduction

Grigore Roşu
Department of Computer Science

University of Illinois at Urbana-Champaign



2

General Information

• Class Webpage:
http://fsl.cs.illinois.edu/grosu (go to “Teaching”)

• Lectures: Wednesday/Friday 14:00 - 15:15, 1304 Siebel Center

• Office hours: 2110 Siebel Center, by appointment

• Instructor: Grigore Roşu
– Office: 2110 Siebel Center
– Email: grosu@illinois.edu
– WWW: http://fsl.cs.illinois.edu/grosu

• Prerequisites: CS421 or equivalent, or instructor’s approval



3

• Textbooks
No textbook required! Self contained lecture notes will be
posted on class’ webpage. The following may be useful:
1) Friedman, Wand and Haynes, Essentials of Programming

Languages, MIT Press, Second Edition, 2001
2) Winskel. The Formal Semantics of Programming

Languages: An Introduction, MIT Press, 1993

• Other sources
– The K Framework: http://kframework.org

– Proceedings of Conferences on Programming Languages
∗ POPL, PLDI, OOPSLA



4

Grading

• Students registered for 4 units
– Assignments (or MPs): 75%
– Individual project: 25%

• Students registered for 3 units
– Assignments: 100%



5

The Homework Assignments

• This is a labor intensive class. The notions presented in class
will be often backed by machine supported formalizations
which you are supposed to modify or redo entirely as part of
your assignments and as part of your project

• Assignments will be complete approximately every 4 lectures



6

The Unit Project

• The unit project will consist of designing a new programming
language with specified features. This language will most likely
be an extended version of an existing language. The design will
be formalized and an interpreter will be provided, which we
will test against many carefully selected programs.

No Final Exam!



7

Course Description

• Advanced course on principles of programming language design

• Major semantic approaches to programming languages will be
introduced

• Major programming language design paradigms will be
investigated and mathematically defined (or specified)

• Since the rigorous definitional framework will be executable,
interpreters for the designed languages will be obtained for free

• Software analysis tools reasoning about programs in these
languages will arise naturally

• Major theoretical models will be discussed



8

Tentative Subjects Covered in CS422

• Big-step and Small-step Structural operational semantics (SOS)

• Defining/designing a simple programming language using the
formalisms above; discussing possible extensions of the simple
language to reflect limitations of the formalisms above

• K, a tool-supported language definitional framework.

• Defining SIMPLE, a simple C-like imperative language with
functions, together with type checker

• Defining KOOL, an object-oriented language; different method
dispatch styles discussed, such as static versus dynamic method
dispatch; defining typed and untyped variants of KOOL

• Defining FUN, a functional programming language; different
binding styles discussed, such as static versus dynamic binding,



9

as well as different parametric passing styles, such as
call-by-value, reference, name, need; defining static and
dynamic type checkers, and a type inferencer for FUN

• Defining LOGIK, a simple logic programming language

• Other subjects covered include: continuation-passing style
transformations, exceptions, concurrency, denotational
semantics, lambda-calculus.



10

Course Objectives

• Present and define rigorously the major features and design
concepts in programming languages

• Show how elegantly and easily one can design a programming
language if one uses the right tools and framework

• Understand the significant theory of programming languages

• The practical objective of this course is not to implement
programming languages, but rather to specify, or define them
formally and modularly, on a feature by feature basis
– Interpreters will, however, be obtained for free, because in

the discussed framework one can execute specifications
– For that reason, we take the freedom to interchangeably use

the words define and implement in this course



11

Important Notes and Advice

• The lecture notes for this class will be all posted on the web
and will be as detailed as needed. No other textbooks are
necessary, though those of you interested in the covered topics
may find it useful to check other books as auxiliary material in
order to have a better understanding of the discussed concepts.

• We will not use Scheme, ML, OCAML or Haskell in this class
as implementation languages! These are quite advanced
programming languages; using them to implement interpreters
hides some of the real important and interesting issues in
specifying a programming language.



12

Collaboration and Other Policies

• You are free (and encouraged!) to discuss the assignments with
other students. The focus of any such discussion should be
limited to figuring the problem specification, not coming up
with a solution. You may not jointly write or code any
assignment. To do so will be considered cheating! All cheating
will be penalized by automatically assigning a failing grade for
the course and instigating further disciplinary action with the
appropriate university disciplinary body.

• You should retain copies of your assignments until you receive
your final grade. In the event of a discrepancy between your
scores on assignments and those on the exams, you may be
asked to explain any work you performed. Your grade may be
adversely affected by an inability to explain your work or by
failure to retain copies of it.


