
Defining P systems in K

Defining P systems in K

Traian Florin S, erbănut,ă†, Gheorghe S, tefănescu‡,
and Grigore Ros, u†

†University of Illinois at Urbana-Champaign
‡University of Bucharest

July 31, 2008

Defining P systems in K

Introduction

I First formal definition of P systems in a specification language
I Definition, not implementation or encoding
I One-to-one correspondence of rules
I Almost zero representation distance

I Embedding into K gives possibilities for extensions of P systems
I Objects with algebraic structure, satisfying global axioms and rules
I Membranes with nucleus – modeling DNA transcription

I K comes with the plethora of formal tools from Maude
I Rewriting engine, state space exploration
I LTL model checking, theorem prover

Defining P systems in K

Outline

Briefly introduction to K
Motivation
K Features

P systems in K
P systems as transition systems
P systems as communicating systems
P systems with active membranes

Final remarks
Improvements of K suggested by P systems

Defining P systems in K

Briefly introduction to K

Motivation

K: a rewriting-based framework for computations

I Based on list and multiset term rewriting
I Inherits Rewriting Logic concepts of equations and rules

I Configurations are equivalence classes of terms
I Rules are used to transit between states

I Specialized notation to improve readability and modularity

I Parallelism with sharing of data (e.g., concurrent reads)
I Was used to define highly non-trivial programming languages

I Java 1.4, Scheme, Haskell

I Q: Can K model a highly dynamic execution environment?

Defining P systems in K

Briefly introduction to K

K Features

K configurations: nested multisets

I Configuration items are encapsulated into labeled “cells”
I Notation: L<contents>M<label>
I One to one correspondence to membrane structures

Example: Configuration of KOOL, an OO language

...

input output class setstore busy−locks

Config

thread

environment current object

control

computation loop stack call stack exception stack

locks heldcurrent class thread id

V
Location L

L

L L’

Variable X

class C
<code>

C
Lock L

N... ...

... ...

Defining P systems in K

Briefly introduction to K

K Features

K optimized notation for rules

K Contexts avoid repeating information not changed by the rule

I Assignment rule using multiset&list rewriting:
Lx := v y kMk LLv ′Mx sMstate → LkMk LLvMx sMstate

I Assignment using K contexts: Lx := v
·

y kMk LLv ′

v
Mx sMstate

Angle brackets simplify list and set matching

I Use L |〉 , 〈| M , and 〈| |〉 to match prefixes, suffixes, and subsets
Lx := v

·
|〉k 〈|L_

v
Mx |〉state

I Anonymous variables replace unchanged or not-needed variables

Defining P systems in K

Briefly introduction to K

K Features

Good notation yields good results – Parallelism in K

I SOS definitions enforce interleaving semantics
I Rewriting logic (CHAM similarly) more parallel, but still not enough

I Concurrent accesses to the state are disallowed
e.g., Lx := v y kMk LLv ′Mx sMstate → LkMk LLvMx sMstate

I K allows concurrent modifications with shared structure
I As long as they do not change their shared part

Lx := v
·

|〉k 〈|L_
v
Mx |〉state

I Extremely usefull when defining promoters & inhibitors

Defining P systems in K

P systems in K

Outline

Briefly introduction to K
Motivation
K Features

P systems in K
P systems as transition systems
P systems as communicating systems
P systems with active membranes

Final remarks
Improvements of K suggested by P systems

Defining P systems in K

P systems in K

P systems as transition systems

Basic transition P systems

I A membrane [h]h with contents x is represented as 〈|x |〉h
I Here concatenation is a multiset constructor (ACU)
I x can contain other membranes, as well as common objects

I A rule in [h]h: u → vherevout
∏k

i=1 vinhi
becomes a global rule

〈| u
vhere

〈| ·
vinh1

|〉h1
. . . 〈| ·

vinhk

|〉hk
|〉h ·

vout

I δ is considered to have here attribute
I Configuration is globally normalized by equations

δδ ⇀ δ and LxδMh ⇀ x

Defining P systems in K

P systems in K

P systems as transition systems

Catalysts vs. Promoters/Inhibitors

I Catalysts. c is required for a to become b: 〈|ac
bc
|〉h

I Promoters. a becomes b if c is present: 〈|a
b

c|〉h

I In RWL, the two rules above would be identical
I P systems add special syntax to distinguish promoters
I In K, c actively participates to first rule, passively to the second

I Inhibitors. a becomes b if c is not present: La
b

xMh if c 6∈ x

Defining P systems in K

P systems in K

P systems as transition systems

Other variations of transition P systems

Polarities

I Pair each data/membrane label with its polarity. E.g.,

a polarity changing rule: 〈|u|〉+h → 〈|u|〉−h or, equivalently, 〈|u|〉
+
−
h

Membrane Permeability allows for impenetrable membranes

I Pair membrane labels with permeability indexes

I Check permeability through matching: 〈|u|〉1
h → . . .

I Disolve membranes with permeability 0: LxM0
_ ⇀ x

Defining P systems in K

P systems in K

P systems as communicating systems

Basic symport/antiport P systems

I Same assumptions as in the original setting: one membrane, initial
configuration Ll0M , potentially infinite environment

I Antiport rule ((u, out), (v , in)) becomes in K 〈|u
v
|〉 v

u
I l1 : (inc(r), l2, l3) is represented as 〈| l1

ar l2
|〉 ar l2

l1
and 〈| l1

ar l3
|〉 ar l3

l1

I Symport rules (u, out) and (v , in) become in K 〈|u
·
|〉 ·

u
and 〈| ·

u
|〉 u
·

I l1 : halt is represented as Ll1
·
M ·

l1

Defining P systems in K

P systems in K

P systems with active membranes

P systems with active membranes

I Object evolution rule [ha → v]eh becomes in K: 〈|a
v
|〉e

h

I in communication rule a[h]
e1
h → [hb]e2

h becomes in K: a
·

〈| ·
b
|〉

e1
e2
h

I out communication rule [ha]e1
h → [h]

e2
h b becomes in K: 〈|a

·
|〉

e1
e2
h ·

b
I dissolving rule [ha]eh → b becomes in K: La xMe

h → b x

I division rule for elementary membranes,
[ha]e1

h → [hb]e2
h [hc]e3

h becomes in K: LaMe1
h → LbMe2

h LcMe3
h

Defining P systems in K

P systems in K

P systems with active membranes

Active membranes variations

I Membrane creation.
a → LvMh

I Merging of membranes.

LxMh LyMh′ → LzMh′′

I Split of membranes.

LzMh′′ → LxMh LyMh′

I Endocytosis and exocytosis.

LxMh

·
〈| ·
LyMh

|〉h′

Defining P systems in K

Final remarks

Outline

Briefly introduction to K
Motivation
K Features

P systems in K
P systems as transition systems
P systems as communicating systems
P systems with active membranes

Final remarks
Improvements of K suggested by P systems

Defining P systems in K

Final remarks

Improvements of K suggested by P systems

Improvements of K suggested by P systems

Priorities and other strategies

I Capturing control mechanisms is a matter of strategies

I K does not currently employ strategies

Arbitrary Jumps directly move an object into another membrane. In K:

I if membranes don’t contain each other, 〈|〈|∗ u
·

∗|〉h 〈|∗ ·
v

∗|〉h′ |〉

I if the jump is into an enclosed membrane, then 〈|u
·

〈|∗ ·
v

∗|〉h′ |〉h

Gemmation Encapsulate into [@h]@h a to be carried to [h]h.

I [@hu]@h travels through the system, one membrane at a time.

I Maintaining dynamic structure information can solve this problem

Defining P systems in K

Final remarks

Conclusions

I K seems powerful enough to capture the parallelism of P systems
I Suitable as a definition/implementation medium for P systems

I Granularity of computation can be preserved
I Almost zero-representation distance
I Use tools available for K through Maude

I Opens new lines of research for P systems
I P systems with structured objects
I Dynamic rule generation – modeling DNA transcription?

	Briefly introduction to K
	Motivation
	K Features

	P systems in K
	P systems as transition systems
	P systems as communicating systems
	P systems with active membranes

	Final remarks
	Improvements of K suggested by P systems

