Defining P systems in K

Traian Florin Şerbănuţă[†], Gheorghe Ştefănescu[‡], and Grigore Roşu[†]

†University of Illinois at Urbana-Champaign ‡University of Bucharest

July 31, 2008

Introduction

- First formal definition of P systems in a specification language
 - Definition, not implementation or encoding
 - One-to-one correspondence of rules
 - Almost zero representation distance
- Embedding into K gives possibilities for extensions of P systems
 - Objects with algebraic structure, satisfying global axioms and rules
 - Membranes with nucleus modeling DNA transcription
- K comes with the plethora of formal tools from Maude
 - ► Rewriting engine, state space exploration
 - LTL model checking, theorem prover

Outline

Briefly introduction to K

Motivation

K Features

P systems in K

P systems as transition systems

P systems as communicating systems

P systems with active membranes

Final remarks

Improvements of K suggested by P systems

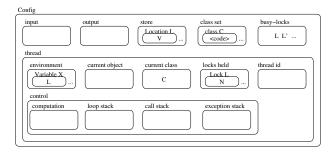
K: a rewriting-based framework for computations

- Based on list and multiset term rewriting
- Inherits Rewriting Logic concepts of equations and rules
 - Configurations are equivalence classes of terms
 - Rules are used to transit between states
- Specialized notation to improve readability and modularity
- Parallelism with sharing of data (e.g., concurrent reads)
- Was used to define highly non-trivial programming languages
 - Java 1.4, Scheme, Haskell
- Q: Can K model a highly dynamic execution environment?

K configurations: nested multisets

- Configuration items are encapsulated into labeled "cells"
 - ▶ Notation: (<contents>)<label>
 - One to one correspondence to membrane structures

Example: Configuration of KOOL, an OO language



K optimized notation for rules

K Contexts avoid repeating information not changed by the rule

Assignment rule using multiset&list rewriting:

$$(\!(x:=v \curvearrowright k)\!\!)_k ((\!(v')\!\!)_x s)\!\!)_{\mathit{state}} \ \to (\!(k)\!\!)_k ((\!(v)\!\!)_x s)\!\!)_{\mathit{state}}$$

▶ Assignment using K contexts: $(x := v \curvearrowright k)_k ((v')_x s)_{state}$

$$\frac{|x:=v \wedge k|_k ((\underline{v'})_x s)_{state}}{v}$$

Angle brackets simplify list and set matching

▶ Use () , () , and () to match prefixes, suffixes, and subsets

$$(\underbrace{x := v}_{k})_{k} \ \langle (\underline{\underline{}})_{x} \rangle_{state}$$

Anonymous variables replace unchanged or not-needed variables

Good notation yields good results - Parallelism in K

- SOS definitions enforce interleaving semantics
- Rewriting logic (CHAM similarly) more parallel, but still not enough
 - Concurrent accesses to the state are disallowed

e.g.,
$$(x := v \curvearrowright k)_k ((v')_x s)_{state} \rightarrow (k)_k ((v)_x s)_{state}$$

- K allows concurrent modifications with shared structure
 - As long as they do not change their shared part

$$(\underbrace{x := v}_{k})_{k} (\underbrace{(\underline{}_{v})_{x}}_{state})_{state}$$

Extremely usefull when defining promoters & inhibitors

Outline

Briefly introduction to K

Motivation

K Features

P systems in K

P systems as transition systems

P systems as communicating systems

P systems with active membranes

Final remarks

Improvements of K suggested by P systems

Basic transition P systems

- A membrane $[h]_h$ with contents x is represented as $\langle x \rangle_h$
 - Here concatenation is a multiset constructor (ACU)
 - x can contain other membranes, as well as common objects
- ▶ A rule in $[h]_h$: $u \to v_{here}v_{out}\prod_{i=1}^k v_{in_{h_i}}$ becomes a global rule

$$\langle \underbrace{U}_{V_{here}} \quad \langle \underbrace{V_{in_{h_1}}} \rangle_{h_1} \quad \dots \langle \underbrace{V_{in_{h_k}}} \rangle_{h_k} \quad \rangle_h \quad \underbrace{V_{out}}$$

- \triangleright δ is considered to have *here* attribute
 - Configuration is globally normalized by equations

$$\delta\delta \rightharpoonup \delta$$
 and $(x\delta)_h \rightharpoonup x$

Catalysts vs. Promoters/Inhibitors

- Catalysts. c is required for a to become b: $\langle ac \rangle_b$
- **Promoters.** a becomes b if c is present: $\langle a c \rangle_b$
 - In RWL, the two rules above would be identical
 - P systems add special syntax to distinguish promoters
 - In K, c actively participates to first rule, passively to the second
- ▶ Inhibitors. a becomes b if c is not present: $(a x)_h$ if $c \notin x$

Other variations of transition P systems

Polarities

▶ Pair each data/membrane label with its polarity. E.g., a polarity changing rule: $\langle u \rangle_h^+ \to \langle u \rangle_h^-$ or, equivalently, $\langle u \rangle_h^{\pm}$

Membrane Permeability allows for impenetrable membranes

- Pair membrane labels with permeability indexes
- ▶ Check permeability through matching: $\langle u \rangle_h^1 \rightarrow \dots$
- ▶ Disolve membranes with permeability 0: $(x)^0_- \rightarrow x$

Basic symport/antiport P systems

- ➤ Same assumptions as in the original setting: one membrane, initial configuration (I₀), potentially infinite environment
- Antiport rule ((u, out), (v, in)) becomes in K $\langle \underline{u} \rangle \frac{v}{v}$
 - ▶ $I_1: (inc(r), I_2, I_3)$ is represented as $\langle \underline{I_1}_{a_r I_2} \rangle \frac{a_r I_2}{I_1}$ and $\langle \underline{I_1}_{a_r I_3} \rangle \frac{a_r I_3}{I_1}$
- Symport rules (u, out) and (v, in) become in K $\langle \underline{u} \rangle \cdot \underline{u}$ and $\langle \underline{\cdot} \rangle \cdot \underline{u}$
 - ▶ I_1 : halt is represented as (I_1) $\frac{\cdot}{I_1}$

P systems with active membranes

- ▶ Object evolution rule $[ha \rightarrow v]_h^e$ becomes in K: $\langle a \rangle_h^e$
- ▶ in communication rule $a[h]_h^{e_1} \to [hb]_h^{e_2}$ becomes in K: $\underline{a} \quad \langle \underline{\cdot} \rangle_h^{\frac{e_1}{e_2}}$
- ▶ out communication rule $[ha]_h^{e_1} \rightarrow [h]_h^{e_2}b$ becomes in K: $\langle a \rangle_h^{\frac{e_1}{e_2}}$
- ▶ dissolving rule $[ha]_h^e \to b$ becomes in K: $(a \ x)_h^e \to b \ x$
- division rule for elementary membranes, $[ha]_{h}^{e_1} \rightarrow [hb]_{h}^{e_2}[hc]_{h}^{e_3}$ becomes in K: $(a)_{h}^{e_1} \rightarrow (b)_{h}^{e_2}$ $(c)_{h}^{e_3}$

Active membranes variations

► Membrane creation.

$$a \rightarrow (v)_h$$

Merging of membranes.

$$(x)_h \quad (y)_{h'} \rightarrow (z)_{h''}$$

Split of membranes.

$$(|z|)_{h''} \rightarrow (|x|)_h \quad (|y|)_{h'}$$

Endocytosis and exocytosis.

$$\frac{(|x|)_h}{\cdot} \quad \langle \frac{\cdot}{(|y|)_h} \rangle_{h'}$$

Outline

Briefly introduction to K

Motivation

K Features

P systems in K

P systems as transition systems

P systems as communicating systems

P systems with active membranes

Final remarks

Improvements of K suggested by P systems

Improvements of K suggested by P systems

Priorities and other strategies

- Capturing control mechanisms is a matter of strategies
- K does not currently employ strategies

Arbitrary Jumps directly move an object into another membrane. In K:

- if membranes don't contain each other, $\langle \langle * \underline{u} * \rangle_h \langle * \underline{\cdot} * \rangle_{h'} \rangle$
- ▶ if the jump is into an enclosed membrane, then $\langle \underline{u} \quad \langle * \quad \underline{\cdot} \quad * \rangle_{h'} \rangle_h$

Gemmation Encapsulate into $[a_h]_{a_h}$ a to be carried to $[a_h]_{a_h}$.

- \triangleright [@hu]@h travels through the system, one membrane at a time.
- ▶ Maintaining dynamic structure information can solve this problem

Conclusions

- K seems powerful enough to capture the parallelism of P systems
- Suitable as a definition/implementation medium for P systems
 - Granularity of computation can be preserved
 - Almost zero-representation distance
 - Use tools available for K through Maude
- Opens new lines of research for P systems
 - P systems with structured objects

 - Dynamic rule generation modeling DNA transcription?