
Maximal Causal Models for Sequentially

Consistent Systems

Traian Florin S, erbănut, ă Feng Chen Grigore Ros,u

Univeristy of Illinois at Urbana-Champaign
{tserban2,grosu}@illinois.edu

Abstract

This paper shows that it is possible to build a maximal and sound
causal model for concurrent computations from a given execution trace. It
is sound, in the sense that any program which can generate a trace can
also generate all traces in its causal model. It is maximal (among sound
models), in the sense that by extending the causal model of an observed
trace with a new trace, the model becomes unsound: there exists a program
generating the original trace which cannot generate the newly introduced
trace. Thus, the maximal sound model has the property that it comprises
all traces which all programs that can generate the original trace can
also generate. The existence of such a model is of great theoretical value.
First, it can be used to prove the soundness of non-maximal, and thus
smaller, causal models. Second, since it is maximal, the proposed model
allows for natural and causal-model-independent definitions of trace-based
properties; this paper proposes maximal definitions for causal dataraces
and causal atomicity. Finally, although defined axiomatically, the set
of traces comprised by the proposed model are shown to be effectively
constructed from the original trace. Thus, maximal causal models are also
amenable for developing practical analysis tools.

1 Introduction

Traces of events describing concurrent computations have been employed in a
plethora of methods for testing and analyzing concurrent systems. A common
characteristic of all these methods is that one uses an abstraction of a trace,
i.e., a model, to “predict” (problematic) event patterns occurring in other traces
abstracted by the model. Consider, for example, the conventional happens-before
causality: if two conflicting accesses to an object are not causally ordered, then
a data-race is reported [22]. But is this the best one can do? Of course, not. A
series of papers propose more relaxed happens-before causal models where one
can also permute blocks protected by the same lock, provided that they access
disjoint variables [18], thus discovering new concurrency bugs not observable
with plain happens-before. But is this the best one can do? Of course, not.

1

Technical Report http://hdl.handle.net/2142/27708, October 2011

Thread 1 Thread 2
sync(l) {
y = 1;
x = 1;
if (x == 2)
z = 1;

}
sync(l){
x = 2;
}
y = 2;

Execution
1:

y ← 1
x← 1
x→ 1

2:

x← 2

y ← 2

Thread 1 Thread 2
sync(l) {
x = 1;
}
y = 1;
sync(l) {
x = 1;
}

sync(l) {
if (x > 0)
y = 2;

}

Execution
1:

x← 1

y ← 1

x← 1

2:

x→ 1
y ← 2

(a) (b)

Figure 1: Motivating examples.

Other papers propose models where one can also permute semantic blocks (whose
actions are possibly generated by different threads) provided that each read
access continues to correspond to the same write access [23, 25]. Others could go
even further: Section 5 discusses a series of existing causal models (we only study
sound models here, i.e., ones which only report real problems in the analyzed
systems, allowing developers to focus on fixing those real problems and not on
additionally sorting them out from false positives). We would naturally like to
know whether there is an end to the question “Is this the best we can do?”, that
is, whether there is any causal model that can be associated to a given execution
trace which comprises the maximum number of causally equivalent traces.

Although most runtime analysis techniques are built upon some underlying
sound causal model, possibly relaxed for efficiency reasons, each effort seems to
focus more on how to capture it efficiently rather than proving its soundness
(often implicitly assumed) or studying its relationship to existing models (other
than empirically comparing the number of found bugs). Moreover, since such
approaches attempt to extract information from one observed trace and to
find property violations, they actually deal with causal properties (e.g., causal
datarace, causal atomicity), which are instances of desired system-wise properties
that can be detected using only the causal information gathered from the observed
trace. Since what can be inferred from a trace intrinsically depends on the chosen
causal model, definitions of causal properties differ from technique to technique,
with the undesirable effect that a causal property (e.g., a datarace) in one
model might not be recognized by another model.

1.1 Motivating Examples

Each example in Figure 1(a) and (b) shows a two-threaded program, together
with one of its possible executions, in which Thread 1 is executed completely
before Thread 2 starts. In this representation of executions, synchronized blocks
are boxed, while write and read operations on shared locations are denoted by

2

Technical Report http://hdl.handle.net/2142/27708, October 2011

← (receiving a value), and → (yielding a value), respectively. Both programs
exhibit a race condition between the two write operations on y. However, are
the observed executions also exhibiting a causal datarace?

When analyzing the observed execution in Figure 1(a), a simple happens-
before approach ordering all accesses to concurrent objects [22] cannot observe
a causal datarace: the release operation of the lock in Thread 1 is required
to happen-before the acquire of the lock in Thread 2. Happens-before with
lock atomicity [18] is not able to infer a causal datarace either: although the
lock atomicity would allow for the two lock-blocks to be permuted, the read
of x in Thread 1 is still required to happen-before the write of x in Thread 2.
Yet, the race condition can be captured as a causal datarace of the observed
execution by weaker happens-before models [23, 25], since in those models, one
can additionally permute a write before a read of same location, as long as
it is permuted before the write corresponding to that read. Thus, the trace
generated by the program in Figure 1(a) has or does not have a causal datarace,
depending upon the particular causal model employed.

However, we were not able to find any existing (sound) causal model able to
detect the race condition in Figure 1(b) as a causal datarace for the observed
execution. The reason for this is that all models enforce at least the read-after-
write dependency (i.e., a read should always follow the latest write event of the
same variable), and therefore would not allow the permutation of the last two
lock-blocks of the execution, since the read of x in Thread 2 must follow the last
write of x in Thread 1. Nevertheless, there is enough information in the observed
execution to be able to detect the race: since both writes of x in Thread 1 write
the same value, it is actually possible to permute the last two lock blocks, and
thus detect the race. Moreover, since one could conceive a technique specialized
for finding such cases, it can be rightfully claimed that the observed execution
has in fact a causal datarace, although not captured by any existing definition!

Given this ever increasing (regarding coverage) sequence of causal models and
definitions for causal properties, it is only natural to ask the following questions:

Is there any causal model that generalizes all existing models, and
which cannot be surpassed? Also, is there a unified definition for a
causal property, which all present and future causal models can relate
to?

We give positive answers to these questions in the context of sequential
consistency [14]. While we believe the presented approach can be applied to
other memory models, we chose sequential consistency here for three reasons: (1)
it is broadly accepted, popular and intuitive; (2) it is subsumed by other memory
models: errors detected under sequential consistency are also errors for other
memory models; (3) recent research in computer architecture (e.g., [4]) shows
that it actually can be efficiently supported and implemented in multiprocessor
hardware, strengthening the applicability of our approach.

Contributions. Our first contribution is a novel axiomatization for concurrent
computations, based on consistency and feasibility axioms, which yields sound (by

3

Technical Report http://hdl.handle.net/2142/27708, October 2011

definition) causal models for observed executions. We then show the theoretical
significance of a provable sound maximal model, as a means to unify existing
definitions of causal properties, but also as a tool for proving soundness of runtime
analysis techniques. We exemplify the latter by using our causal model to easily
(re)prove the soundness for a series of existing causal models. The main result of
the paper is that the obtained model is indeed the maximal causal model for the
observed execution, in the sense that it comprises precisely all traces which can
be generated by all programs which can generate the observed trace. Concretely,
we show that: (1) all programs which can produce the observed execution can
generate all traces in the model; and (2) for any trace not in the model there
exists a program generating the observed trace which cannot generate it.

Comparison with past work. There has been a considerable amount of
research on models and techniques to abstract executions for the purpose of infer-
ring causally equivalent executions satisfying/violating particular but important
properties, such as dataraces or atomicity/serializability [3, 9, 12, 17, 18, 21–24].
Section 5 discusses the relation between our model and the sound causal models
upon which the above mentioned techniques were based [11, 18, 22, 23, 25].
Our axiomatic approach is closest in spirit to that of Netzer and Miller [17],
which proposes an axiomatization of a happens-before causal order between
memory accesses and semaphore operations. Instead, we directly axiomatize
legal sequentially consistent execution traces.

Although our focus here is rather foundational, attempting to unify existing
causal models and causal definitions of execution-dependent properties by build-
ing a provable maximally sound model to support them, this should not imply
that axiomatic approaches to concurrent executions have an exclusively theo-
retical value. For example, Ganai and Gupta [10] apply a similar technique for
softawre model checking, attempting to reduce the state space to be explored us-
ing sequential consistency constraints. Moreover, building on a previous draft of
this paper [1], Said et al. [20] encoded the axioms of our proposed model (extended
with constructs for thread creation and wait/notify) into an SMT solver and used
that to effectively search the model for potential dataraces in Java programs.

Another interesting and productive line of research attempts to use infor-
mation about the actual program code to either statically detect potential
bad behaviors [7, 16], or to use information about the program and about
the property to be checked to further relax the models of executions [5, 6].
Our approach is complementary to these, establishing a foundation on which
code-based techniques can be developed.

Paper structure. Section 2 introduces some notation and discusses sequential
consistency. Section 3 axiomatizes consistent concurrent systems and defines our
proposed causal models. Section 4 uses these models to give uniform semantic
definitions of trace-related properties, such as causal dataraces and atomicity.
Section 5 shows how existing models are included in ours, thus proving their
soundness. Section 6 presents a constructive characterization of the maximal

4

Technical Report http://hdl.handle.net/2142/27708, October 2011

model. Section 7 formally defines the maximality claim and proves our model
maximal among sound models, and Section 8 concludes.

2 Execution Model

Assume a machine that can execute arbitrarily many threads in parallel. The
execution environment contains a set of concurrent objects (shared memory
locations, locks, . . .), which are accessed by threads to share data and synchro-
nize. Threads, which can only interact through the execution environment, are
abstracted as sequences of operations on concurrent objects. The only source of
thread non-determinism is the execution environment, that is, if the interaction
between a thread and the environment is the same across executions, the thread
will execute the same operations, in the same order. To simplify the presentation,
we assume no dynamic creation of threads (this presents no technical difficulty).

2.1 Concurrent Objects, Serial Specification

We adopt the Herlihy and Wing [13] definition of concurrent objects and serial
specifications. A concurrent object is behaviorally defined through a set of
atomic operations, which any thread can perform on it, and a serial specification
of its legal behavior in isolation. The serial specification describes the valid
sequences of operations which can be performed on the object. We next describe
two common types of concurrent objects.

Shared memory locations. Each shared memory location can be regarded
as a shared object with read and write operations, whose serial specification
states that each read yields the same value as the one of the previous write.
Moreover, to avoid non-determinism due to the initial state of the memory,
we will further require that all memory locations are initialized, that is, the
first operation for each location is a write.

Mutexes. Each mutex can be regarded as a concurrent object providing acquire
and release operations. Their mutual exclusion property is achieved through the
serial specification which accepts only those sequences in which the difference
between the number of acquire and release operations is either 0 or 1 for each
prefix, and all consecutive pairs of acquire-release share the same thread.

To keep the proofs simple and the concepts clear we refrain here from adding
more concurrency constructs (such as spawn/join, wait/notify, or semaphores).
Note, however, that this would not introduce additional complexity, but just
constrain further the notion of consistency.

2.2 Events and Traces

Operations performed by threads on concurrent objects are recorded as events.
We consider events to be abstract entities from an infinite “collection”Events, and

5

Technical Report http://hdl.handle.net/2142/27708, October 2011

describe them as tuples of attribute-value pairs. The only attributes considered
here are: thread—the unique id of the thread generating the event, op—the
operation performed (e.g., write, read, acquire, or release), target—the concurrent
object accessed by the event, and data—the value sent/received by the current
event, if such exists (e.g., for the write/read operations). For example, (thread=
t1, op=write, target=x, data=1) describes an event recording a write operation
by thread t1 to memory location x with value 1. When there is no confusion,
we only list the attribute values in an event, e.g., (t1,write, x, 1). For any event
e and attribute attr, attr(e) denotes the value corresponding to the attribute
attr in e, and e[v/attr] to denote the event obtained from e by replacing the
value of attribute attr by v. An execution trace is abstracted as a sequence of
events. Given a trace τ , a concurrent object o and a thread t, let τ�o and τ�t
denote the restriction of τ to events involving only o, and only t, respectively.
Let latesto(τ) be the latest event of τ having the op attribute o. If o is omitted,
it simply means the latest event in τ .

Sequential consistency can be now elegantly defined:

Definition 1 (Attiya and Welch [2]) Let τ be any trace.
(1) τ is legal if and only if τ�o satisfies o’s serial specification for any object o;
(2) An interleaving of τ is a trace σ such that σ�t = τ�t for each thread t.
(3) A trace σ is (sequentially) consistent if it admits a legal interleaving.

Since we restrict ourselves to sequential consistency, from here on when we say
that a trace is sequentially consistent we automatically mean that it is also legal.

3 Feasibility Model

This section introduces a novel axiomatization for a machine producing consistent
executions, and uses it to associate a sound-by-definition causal model to any ob-
served execution, comprising all executions which can potentially be inferred from
that execution alone, without additional knowledge of the system generating it.

Figure 2 highlights the two major concepts underlying our approach, namely
consistent traces and feasible executions. A consistent trace (Definition 1) disal-
lows “wrong” behaviors, such as reading a value different from the one which was
written, or proceeding when a lock cannot be acquired. Our novel notion, that
of feasible executions, refers to sets of execution traces and aims at capturing all
the behaviors that a given system or program can manifest. No matter what
task a concurrent system or program accomplishes, its set of traces must obey
some basic properties. First, feasible traces are generate-able, meaning that any
prefix of any feasible trace is also feasible; this is captured by our first axiom
of feasible traces, prefix closedness. Second, we assume that thread interleaving
is the only source of non-determinism in producing traces; this is captured by
our second axiom of feasible traces, local determinism.

Each particular multithreaded system or programming environment, say S,
has its own notion of feasible execution, given by its specific intended semantics.
Let us call all (possibly incomplete) traces that S can yield S-feasible, and let

6

Technical Report http://hdl.handle.net/2142/27708, October 2011

(a) (b)

Figure 2: Feasibility model: (a) trace consistency; and (b) feasible executions.

feasible(S) be their set. Instead of defining feasible(S), which requires a formal
definition of S and is therefore S-specific (and tedious), we here axiomatize
it by what we believe are its crucial properties:

Prefix Closedness: Events are indivisible and generated in execution order;
hence, feasible(S) must be prefix closed : if τ1τ2 is S-feasible, then τ1 is S-feasible.

Local Determinism: The execution of a concurrent operation is determined
by the previous events in the same thread, and can happen at any consistent
moment after them. Formally, if τe, τ ′ ∈ feasible(S) and τ�thread(e) =τ ′�thread(e)
then: if τ ′e is consistent then τ ′e ∈ feasible(S); moreover, if op(e) = read and
there exists an event e′ such that e = e′[data(e)/data] and τ ′e′ is consistent,
then τ ′e ∈ feasible(S). The second part says that if a read operation is enabled,
i.e., all previous events have been generated, then it can be executed at any
consistent time (despite the fact that the value it receives might be different
from that observed in the original trace).

Definition 2 S is consistent if and only if feasible(S) satisfies the axioms
above.

A major goal of trace-based analysis is to infer/analyze as many traces as
possible using a recorded trace. When one does not know (or does not want
to use) the source code of the multithreaded program being executed, one can
only infer potential traces of the system resembling the observed trace. Let us
now define the proposed causal model, termed feasibility closure, as the set of
executions which can be inferred from an observed execution—they correspond
to the traces obtainable from τ using the feasibility axioms.

Definition 3 The feasibility closure of a consistent trace τ , written feasible(τ),
is the smallest set of traces containing τ which is prefix-closed and satisfies the
local determinism property. A trace in feasible(τ) is called τ-feasible.

7

Technical Report http://hdl.handle.net/2142/27708, October 2011

The following result formalizes the soundness of the proposed model, showing
how closure properties guarantee that all traces in our causal model are feasible.
Moreover, it shows that any system/program which can generate one trace, can
also generate all traces comprised by its causal model.

Proposition 1 If S consistent and τ ∈ feasible(S) then feasible(τ) ⊆ feasible(S).
Moreover, if σ is consistent and τ ∈ feasible(σ), then feasible(τ) ⊆ feasible(σ).

proof. Both feasible(S) and feasible(σ) are closed under the feasibility axioms.
Since τ belongs to both of them, and feasible(τ) is the smallest set closed under
the same axioms, it follows that it must be included in both. �

The intuition for τ ∈ feasible(σ) is that if a run of any program executed
on S can produce σ, then there is also some run of the same program executed
also on S that can produce τ . Since feasible(σ) was chosen to be the smallest
set of traces closed under the axioms above, it follows, also intuitively, that if
τ 6∈ feasible(σ) then there is some program that yields σ but which cannot yield
τ . This maximality claim will be formalized and proved in Section 7.

Therefore, observing an execution trace τ , feasible(τ) comprises all traces
that can be obtained by all programs which can produce τ .

As shown later, Proposition 1 can be further strengthened using the character-
ization of the feasibility closure, in the sense that if τ is a consistent interleaving
of σ then feasible(σ) = feasible(τ) (Corollary 1). This basically means that the
feasibility closure does not depend on the representative legal trace chosen for
an observed sequentially consistent trace σ in Definition 1, and thus it can be
rightfully called the legal feasibility closure of the sequentially consistent trace σ.

4 Formal Definitions for Causal Properties

In this section we revisit some definitions of causal properties for traces, namely
dataraces and atomicity, and claim that the proposed model make those uni-
form and consistent for models. Indeed, having a maximal model compris-
ing all possible sound models allows for unique semantical definitions which
can be shared among all such models.

4.1 Dataraces

Two events have a data conflict if they belong to different threads, both access the
same memory location, and at least one access is a write. In our notation, events
e1 and e2 have a data conflict if thread(e1) 6= thread(e2), target(e1)= target(e2),
and write ∈ {op(e1), op(e2)}. A datarace occurs when an execution contains
two events having a data-conflict, without proper synchronization between them
[22]. An obvious datarace between events e1 and e2 in a consistent trace τ can
be observed when the two data-conflicting events (e1 and e2) are consecutively
generated (i.e., τ=τ1e1e2τ2), so the second part of the definition above is trivially
satisfied. However, this definition, although “model independent”, is rather
restrictive, since the chances of noticing the two accesses occurring consecutively

8

Technical Report http://hdl.handle.net/2142/27708, October 2011

are really low. For this reason, the notion of causal datarace is more appropriate.
Informally, an execution admits a causal datarace between two memory accesses
if the two accesses could have been executed concurrently under an alternative
scheduling, inferable from the observed execution.

As previously discussed in Section 1.1, many techniques have been proposed
for finding causal dataraces. However, the formal definition of a datarace for
an execution in such a model is typically operational, that is, constrained by
the model itself. For example, in the techniques based on happens-before, the
datarace is defined as two events having a data conflict which are not ordered
by the happens-before causal order induced by the observed execution [22]; if
considering happens before with locksets [18], the happens-before ordering is
relaxed to only order memory location accesses, with the additional requirement
that the lock-protected blocks be maintained atomic. Therefore, each causal
model encountered in the literature defines its own model-dependent definition
for a causal datarace, to take full advantage of its particularities.

Since, as shown in Section 7, our causal model is maximal, we can precisely
give a definition of causal datarace which only depends on the observed execution:

Definition 4 A trace τ = τ1e1τ2e2 admits a causal datarace on data-conflicting
events e1 and e2 if and only if there exists a τ -feasible trace σ such that
σ�thread(e1) = τ1�thread(e1) and σ�thread(e2) = (τ1e1τ2)�thread(e2).

The above definition states that we can predict a datarace from an observed
trace τ if there exists a τ -feasible trace which makes the datarace apparent.
We chose as a witness a trace stopped at the moment when both threads are
about to execute the events in a race. This is indeed a clear witness for the
race, since, by the local determinism axiom, the execution of the conflicting
operations is allowed to proceed in any order from this point; moreover this
saves us the trouble of specifying that the value of an event involved in the trace
might change if it corresponds to a read operation. Nevertheless, one should note
that, unlike in other causal models, the witness traces containing the events in
an observable race, in both orderings, are also part of the feasibility closure of τ .

With our causal datarace definition, the race in Figure 1(b) is finally captured,
having (1, acquire, l) (1,write, x, 1) (1, release, l) (2, acquire, l) (2, read, x, 1) as a
witness belonging to the feasibility closure of the observed execution.

4.2 Atomicity

Assume the existence of an additional concurrent object, named transaction
monitor, with two operations begin and end and the serial specification requiring
that for each thread the first transaction monitor operation is a begin and, for
each thread, there are no two transaction begin operations without a transaction
end between them. That is, transaction monitors are similar to but weaker
than locks, in the sense that the mutual exclusion is not enforced, although
desired. A transaction of a consistent trace τ is then a subsequence of events
σ of τ having the same thread, starting with a transaction begin operation and
ending with the next transaction end operation.

9

Technical Report http://hdl.handle.net/2142/27708, October 2011

Within this framework, one can either define global atomicity, which amounts
to serializability of transactions [25], or local atomicity [8], which requires each
transaction be serializable, but not necessarily the entire execution.

Definition 5 A transaction σ of τ is atomic for consistent trace τ if there
exists a τ -feasible trace τ1στ2. τ is locally atomic if each of its transactions
are atomic for τ . τ is (globally) atomic, or serializable, if there exists a
τ -feasible trace τ ′ such that each transaction σ of τ is a contiguous subsequence
of τ ′.

Although these definitions are similar to those found in the above mentioned
papers, they are now model-independent. Being defined using the maximal causal
model, they become universal, applicable to all conceivable sound causal models.

5 Relationship with Existing Models

In this section we analyze the relationships between our model and other existing
(sound) models for (consistent) multithreaded computations. Proving that
existing models are faithfully captured by our model shows that these rather ad
hoc (from a theoretical perspective) models are indeed sound. We start with the
following result, which can be regarded as a sufficient criterion for feasibility:

Theorem 1 Any consistent prefix σ1 of an interleaving σ1σ2 of τ is τ -feasible.

proof. Induction on the length of the interleaving prefix. The base case is
trivial. Let τ ′e be a consistent interleaving prefix of τ , and assume that τ ′ is
τ -feasible. Let t = thread(e), and let τ1, τ2 be such that τ = τ1eτ2. By prefix
closedness, it follows that τ1e is feasible. Moreover, since (τ ′e)�t= τ ′�t e is a
prefix of τ�t, it follows that τ ′�t= τ1�t. Using the local determinism for τ1e and
τ ′, we obtain that τ ′e is τ -feasible (since it is consistent). �

The remainder of this section shows that existing sound causal models are
captured by the feasibility closure as simple instances of Theorem 1.

5.1 Happens Before Relation on Mazurkiewicz Traces

One elegant way to capture the happens-before trace equivalence is the Mazurkiewicz
trace associated to the dependence given by the happens-before relation [11].

The happens-before dependence is a set T ∪D, where T =
⋃
t{(e1, e2) : τ�t=

τ1e1e2τ2} is the intra-thread sequential dependence relation and D=
⋃
x{(e1, e2) :

τ�x = τ1e1e2τ2 such that e1 or e2 is a write of x} is the sequential memory
dependence relation. Given this happens-before dependence, the Mazurkiewicz
trace associated with τ is defined as the least set [τ] of traces containing τ
and being closed under permutation of consecutive independent events [15]: if
τ1e1e2τ2 ∈ [τ] and (e1, e2) 6∈ T ∪ D, then τ1e2e1τ2 ∈ [τ].

The following result shows that the feasibility closure is closed under the
equivalence relation generated by happens-before, that is, happens-before is
captured by our model, and thus re-shown sound for consistent executions:

10

Technical Report http://hdl.handle.net/2142/27708, October 2011

Proposition 2 If τ1e1e2τ2 is τ -feasible and (e1, e2) 6∈T∪D, then τ1e2e1τ2 is τ -
feasible. Given any τ -feasible trace τ ′, [τ ′] ⊆ feasible(τ). Hence, [τ] ⊆ feasible(τ).

proof. Let τ1e1e2τ2 be a τ -feasible trace such that (e1, e2) 6∈ T ∪D. We will
show that τ1e2e1τ2 is also τ -feasible. First, all prefixes of τ1e1e2τ2, including τ1,
τ1e1, τ1e1e2, τ1e1e2τ

′
2e
′
2 (for any prefix τ ′2e

′
2 of τ2), are τ -feasible, since feasible(τ)

is prefix closed. Now, we can iteratively use closedness under local determinism
(1) for τ1e1e2 and τ1, to derive that τ1e2 is τ -feasible; (2) for τ1e1 and τ1e2 to
derive that τ1e2e1 is also τ -feasible; (3) by finitary induction for each prefix τ ′2e

′
2

of τ2, for τ1e1e2τ
′
2e
′
2 and τ1e2e1τ

′
2 to derive that τ1e2e1τ

′
2e
′
2 is also τ -feasible.

Therefore, for any τ -feasible trace τ ′, feasible(τ ′) is closed under permutation
of consecutive independent events; hence, [τ ′] ⊆ feasible(τ ′) ⊆ feasible(τ). �

5.2 Weak Happens Before

Several more recent trace analysis techniques [23, 25] argue that the happens-
before model can be further relaxed, noticing that the only purpose of the
write-after-read happens-before order is to guarantee that a read event always
reads the same write event as before in any feasible interleaving of the original
trace. Therefore, one only needs to preserve the read-after-write dependence:

Definition 6 Suppose τ=τ1e1τ2e2τ3. Then e2 write-read depends on e1 in
τ , written e1 <

wr
τ e2, if target(e1)= target(e2), op(e1)=write, op(e2)=read, and

for all e ∈ Eτ2 , either target(e) 6= target(e1), or op(e) 6= write.

That is, e1 <
wr
τ e2 iff the value read by e2 is the value written by e1.

Sen et al. [23] introduce the notion of atomic sets associated to each write
event, containing itself and all read events which write-read depend on it,
accepting as feasible executions all linearizations of the transitive closure of
the combined <wr

τ and thread ordering, satisfying the additional requirement
that the atomic sets are preserved. However, as noticed by Wang and Stoller
[25], this can be simply restated as follows:

Definition 7 τ ∼ σ if τ is an interleaving of σ and <wr
τ =<wr

σ .

That is, the ∼-equivalence class of τ contains all interleavings of τ which have
exactly the same write-read dependence relation. Next result shows that this
model is also captured by our model.

Proposition 3 If σ1 is τ -feasible, and σ1 ∼ σ2, then σ2 is also τ -feasible.

proof. We show that we are in the conditions of Theorem 1: Since σ1 is
consistent, and <wr

σ2
=<wr

σ1
, it follows that σ2 must also be consistent, since all

read events follow the same write events as in the σ1, which, by the consistency
of σ1, precisely implies that each read event returns the value of the previous
write event. �

11

Technical Report http://hdl.handle.net/2142/27708, October 2011

5.3 Happens-Before with synchronization

A conservative, sound, and requiring no implementation changes approach to
handling locks in happens-before-based trace analysis techniques is to assume
that acquire and release operations on the same lock yield the same happens-
before dependence as if they were particular write and read operations (on
the lock variable) [22]. However, this prevents synchronized blocks from being
permuted, and thus imposes coverage limitations. The lock-set approaches, also
called hybrid happens-before [18], propose to handle locks separately, associating
to each event the set of locks [21] protecting them, hereby not enforcing any
particular order between synchronized blocks.

We here group the events protected by locks in atomic blocks. Events e1
and e2 from a consistent trace τ , both generated by thread t, are l-atomic in τ ,
written e1 mτl e2, if and only if there is some acquire event e on lock l generated
by t before both e1 and e2, and there is no release event e′ on l generated by
t between e and either of e1, e2. For each lock l, let [e]l denote the l-atomic
equivalence class of e. A trace τ ′ is consistent with the lock atomicity of τ if
there exists no lock l and decomposition τ1e1τ2e2τ3e3τ4e4τ5 such that e1 mτl e3
and e2 mτl e4 and [e1]l 6= [e2]l. Let ≺τhb be the transitive closure of the union
between happens-before and thread orderings of τ . The following holds:

Proposition 4 Let σ be a τ -feasible trace. Any linearization of ≺σhb consistent
with the lock atomicity of σ is τ -feasible.

proof. Again, we reduce our proof to Theorem 1. First, any linearization
of ≺σhb is an interleaving of σ. Moreover, since σ is consistent, preservation of
happens-before ensures that the serial specification of the memory locations
is satisfied. Finally, consistency with lock atomicity implies that the serial
specification for mutexes is also satisfied. Therefore, any linearization of ≺σhb
consistent with the lock atomicity of σ, is a consistent interleaving of σ, thus
σ-feasible. �

5.4 Weak-Happens-Before with synchronization

We next present two approaches to handling synchronization in weak-happens-
before models and show they are both embeddable in our model.

Lock atomicity via write-read atomicity [23]. Since the notion of write-
read atomicity already allows atomic sets to be permuted, it seems reasonable
to use the conservative idea from standard happens-before methods, and treat
acquire as a write event and release as a read event. Formally, given the consistent
trace τ , one could additionally introduce an atomic dependence relation <a

τ

given by e1 <
a
τ e2 if τ = τ1e2τ2e2τ3, target(e1) = target(e2), op(e1) = acquire,

op(e2) = release, and there is no event e in τ2 such that target(e) = target(e1),
and op(e) = acquire. With this definition, equivalent traces to an observed trace τ
are those interleavings of τ having the same write-read and atomic dependencies.

12

Technical Report http://hdl.handle.net/2142/27708, October 2011

However, this definition needs a careful approach. Consider the example
in Figure 1(b), and suppose that we observe a similar execution, but that the
program is stopped after the read of x in Thread 2. Since no release event has
been generated, the acquire in Thread 2 has no event depending on it, and thus it
can be permuted (without the read event on x it was supposed to protect) before
the last lock-block of Thread 1. Then, the final read of x itself can be permuted
past the final release of l in Thread 1, exhibiting a spurious causal datarace.

Nevertheless, these models are sound for synchronization complete traces,
that is, traces in which each acquired lock is eventually released.

Proposition 5 Let σ be a synchronization complete τ -feasible trace. Any inter-
leaving σ′ of σ satisfying that <wr

σ′ =<wr
σ and <a

σ′=<a
σ is τ -feasible.

proof. Since we already shown that <wr
sigma′=<

wr
σ implies that the serial

specification of memory locations is verified, we only need to show that <a
σ′=<a

σ

implies the satisfaction of the mutex specification for synchronization complete
traces, that is, that any prefix of σ′ has at most one more acquire operations than
release operations, and all consecutive pairs of acquire-release have the same
thread. The second part is easily guaranteed by the fact that <a

σ′=<a
σ, since <a

enforces the acquire-release in relation are consecutive, and, since σ is consistent,
this definition additionally implies that they have the same thread. The first
part comes from the fact that, since σ is synchronization complete, every acquire
has a corresponding release, with whom it is in the <a

σ relation. �

Lock atomicity via locksets. Wang and Stoller [25] propose a weak-happens-
before model based on write-read dependence, while using locksets to handle locks
as individual objects. In this model, a trace τ ′ is equivalent with a consistent
trace τ if τ ′ is an interleaving of τ having the same write-read dependence
relation and being consistent with the lock atomicity of τ .

Proposition 6 Let σ be a τ -feasible trace. Any interleaving σ′ of σ, consistent
with the lock atomicity of σ and satisfying that <wr

σ′ =<wr
σ is τ -feasible.

proof. From the proof of Proposition 3, <wr
σ′ =<wr

σ implies the serial speci-
fication of memory locations is obeyed in σ′. Additionally, from the proof of
Proposition 4, consistency with the lock atomicity of a consistent trace implies
that the serial specification of mutexes is obeyed. We can therefore apply Theo-
rem 1. �

6 Characterizing the Feasibility Closure

Section 3 showed how our causal model can be naturally defined by charac-
terizing feasibility axiomatically rather than constructively. Closure axioms
guarantee that all equivalent traces which can be derived based on the con-
sistency axioms are considered. This section presents a constructive charac-
terization of the feasibility closure.

13

Technical Report http://hdl.handle.net/2142/27708, October 2011

As might have been suggested by Theorem 1, consistent interleaving prefixes
cover all possibilities of generating τ -feasible traces using only the events in
τ . However, the definition of interleaving (prefix) overlooks the final part of
the local determinism axiom, that is, the one regarding operations which might
receive different values from their objects. To achieve a complete constructive
characterization of the feasibility closure, we have to go beyond prefixes of
interleavings, more exactly, one read operation per thread beyond. This is
because, as guaranteed by local determinism, whenever all events before an
event have been generated in a thread, the operation on the concurrent object
specified in that event can also take place, but its data attribute might now
retrieve a value different from the one it had in the observed trace. However,
once such an event whose data is different from the one in the original trace is
derived, the execution cannot be continued for that thread, because that event
might influence/prevent the generation of the following events. An extended
interleaving prefix is a (partial) trace which behaves similarly to the observed
trace up to its final event for each thread, which might have a different value:

Definition 8 Trace τ ′ = τ1e
′ is an extended prefix of τ = τ1eτ2 if either e =

e′, or op(e) = read and e = e′[data(e)/data]. τ ′ is an extended interleaving
prefix of τ if τ ′�t is an extended prefix of τ�t for any thread t.

We can now give a complete constructive characterization for τ -feasible traces:

Theorem 2 Given τ consistent, a trace τ ′ is τ -feasible iff it is a consistent
extended interleaving prefix of τ .

proof. Proving that any consistent extended interleaving prefix of τ is τ -
feasible proceeds similarly to the proof of Theorem 1. For the reverse, one needs
to show that the set of consistent extended interleaving prefixes of τ contains
τ , is prefix closed, and closed under local determinism. First two are obvious:
τ is an interleaving prefix of itself, and any prefix of an extended interleaving
prefix of τ is an extended interleaving prefix of τ by the definition. Now let
τ1e and τ2 be consistent interleaving prefixes of τ such that thread(e) = t, and
τ1�t= τ2�t. Since (τ1e)�t is an extended prefix of τ �t, then either (τ1e)�t is
a prefix of τ , or op(e) = read, and there exists e′, such that thread(e′) = n,
op(e′) = read, target(e′) = target(e), and τ1�t e′ is a prefix of τ �t.

Let e′′ be e, if op(e) 6= read, or e′′ = e[data(ew)/data], if ew = latestwrite(τ2�target(e)
). Then τ2e

′′ is an extended interleaving prefix. If op(e) 6= read, and τ2e is con-
sistent, then it also is a consistent extended interleaving prefix. If op(e) = read,
then, since τ2e

′′ is consistent (by the choice of e′′), the property follows. �
An important corollary of Theorem 2 is that the feasibility closure does not

depend on the legal trace chosen to represent a sequentially consistent trace,
as it contains all the representative legal traces.

Corollary 1 If τ is a consistent interleaving of consistent trace σ then feasible(τ) =
feasible(σ).

14

Technical Report http://hdl.handle.net/2142/27708, October 2011

Input: Trace τ0 of size n over k threads.
Maps: thread : {1, . . . , k} → Stack

σ : Locations→ Int

Initial: σ[x]←⊥, for all variables and mutexes
thread[t]← τ0�t, for all threads
Advanceable← {1, . . . , k}

1 τ ← ε; t← 0;
2 while t < k do
3 t← t+ 1;
4 if t ∈ Advanceable then
5 e← top(thread[t]);
6 if (op(e) 6= acquire ∨ σ[target(e)] = ⊥) ∧ (op(e) 6= read ∨

σ[target(e)] 6= ⊥) then // advance

7 l← target(e);
8 if op(e)=read ∧ data(e) 6=σ[l] then // extended prefix

9 Advanceable← Advanceable \ {t} ;
10 data(e)← σ[l];

11 else // update state

12 pop(thread[t]);
13 if op(e)=write then σ[l]←data(e);
14 if op(e)=acquire then σ[l]←σ[l]− 1;
15 if op(e)=release then σ[l]←σ[l] + 1;

16 end
17 push(τ ,e); check τ against ϕ;
18 t← 0;

19 end

20 end
21 while t=k ∧ τ 6= ε do // backtrack

22 e←pop(τ); t← thread(e); l← target(e);
23 if t 6∈ Advanceable then // extended prefix

24 Advanceable← Advanceable ∪ {t};
25 else // restore state

26 push(thread[t],e);
27 if op(e)=write then σ[l]← data(latest(τ�l));
28 if op(e)=acquire then σ[l]← t;
29 if op(e)=release then σ[l]←⊥;

30 end

31 end

32 end

Algorithm 1: Model checking the feasibility closure

15

Technical Report http://hdl.handle.net/2142/27708, October 2011

Model checking the feasibility closure. Algorithm 1 can be used to explore
(and check properties against) the feasibility closure of a given trace. It takes
as input a trace τ0 and a procedure ϕ saying whether a property is satisfied
by a (partial) trace (and state), and checks whether all traces in the feasibility
closure of τ0 (and their corresponding states) satisfy the property of ϕ.
In the initialization phase, the original trace is split into threads and each thread
projection is loaded into a stack, with first events in the thread at top of the
stack, and the store initialized with ⊥ for both variables and mutexes. We
additionally maintain a set of enabled threads (Advanceable), that is, threads
for which all events generated had the same state as in the original execution,
therefore they can still be advanced. The trace created, τ , is also maintained
as a stack, but with first events at bottom of the stack; it is initially empty.
Variable t keeps track of the index of the thread which should be advanced next.
The main loop is a backtracking loop, exiting only when the entire space has
been explored. Inside the loop, the first part (lines 3–6) checks whether the next
thread can be advanced. If a thread is found, the state is modified accordingly
(lines 12–15), disabling further advances to the thread if the state of the added
event differs from the one in the observed trace (lines 8–10); note that in the
latter case, the top event in the corresponding thread needs not be removed,
since the thread is disabled. Then, τ is advanced and added to the result set,
property ϕ is checked (line 17), and the search for the next advance-able thread
is restarted (line 18). If no additional thread can be advanced from this state,
the algorithm backtracks, undoing the effects of previous advances (lines 21–31).

A simple amortized analysis of Algorithm 1 shows that, without any additional
knowledge about the property to check ϕ, it essentially performs a minimal
amount of work: it generates and checks against ϕ each consistent extended
interleaving prefix of τ0, searching for each next event through the tops of at most
k thread stacks. Supposing that ϕ is a simple safety property taking constant
time and memory to evaluate in any given state σ, which is frequently the case
in many situations, the time complexity of our algorithm is O(|feasible(τ0)| × k)
and its memory complexity is O(|τ0|); recall that feasible(τ0) is prefix-closed.

Happens-before based model checkers can exploit the property being checked
or the structure of the program to gain efficiency (but not coverage). We envision
similar techniques could potentially be applied to our models. However, here
we are not trying to propose an optimal model checker but rather to show that
the maximum model is algorithmically analyzable, not just an existential entity,
and it can be the basis on which other analysis techniques can be built.

7 Maximality

Proposition 1 showed that our causal model is sound in the sense that the same
program which generated a trace can also generate its entire feasibility closure.
Section 5 further showed that the causal model is quite comprehensive, being
able to capture the existing sound causal models.

In this section we show that the model is also maximal among sound models,

16

Technical Report http://hdl.handle.net/2142/27708, October 2011

Proc ::= Proc || Proc
〈p1, σ, δ, ρ〉

τ−→ 〈p′1, σ′, δ′, ρ′〉
〈p1 || p2, σ, δ, ρ〉

τ−→ 〈p′1 || p2, σ′, δ′, ρ′〉
(Par1)

〈p2, σ, δ, ρ〉
τ−→ 〈p′2, σ′, δ′, ρ′〉

〈p1 || p2, σ, δ, ρ〉
τ−→ 〈p1 || p′2, σ′, δ′, ρ′〉

(Par2)

| Int : Stmt
〈s, σ, δ, ρ, t〉 τ−→ 〈s′, σ′, δ′, ρ′, t〉
〈t : s, σ, δ, ρ〉 τ−→ 〈t : s′, σ′, δ′, ρ′〉

(Thread)

Stmt ::= Stmt ; Stmt
〈s1, σ′, δ′, ρ′, t〉

τ−→ 〈s′1, σ′, δ′, ρ′, t〉
〈s1 ; s2, σ, δ, ρ, t〉

τ−→ 〈s′1 ; s2, σ
′, δ′, ρ′, t〉

(Seq)

| nop ·
〈nop ; s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

(Nop)

| if Int then Stmt ·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

if ρ(t) = i (If true)

·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈nop, σ, δ, ρ, t〉

if ρ(t) 6= i (If false)

| load Loc ·
〈load x, σ, δ, ρ, t〉 (t,read,x,i)−−−−−−−→ 〈nop, σ, δ, ρ[t← i], t〉

where i = σ(x) (Read)

| Loc := Int ·
〈x := i, σ, δ, ρ, t〉 (t,write,x,i)−−−−−−−→ 〈nop, σ[x← i], δ, ρ, t〉

(Write)

| acquire Loc ·
〈acquire x, σ, δ, ρ, t〉 (t,acquire,x)−−−−−−−−→ 〈nop, σ, δ[x← t], ρ, t〉

if δ(x) =⊥ (Acq)

| release Loc ·
〈release x, σ, δ, ρ, t〉 (t,release,x)−−−−−−−→ 〈nop, σ, δ[x←⊥], ρ, t〉

if δ(x) = t (Rel)

Figure 3: Syntax and SOS semantics for the CONC language

17

Technical Report http://hdl.handle.net/2142/27708, October 2011

in the sense that any extension to it is done at the expense of soundness. We
will prove therefore that given a trace τ ′ which is not in the feasibility closure of
a trace τ , there exists a program p which can generate τ but not τ ′; therefore, if
the model were extended to include τ ′ and used τ ′ as a witness that a property
is satisfied/invalidated by a program generating τ , this would be a false witness
if the program which generated τ was p.

To prove our claim, we propose CONC, a very simple (not even Turing
complete) concurrent language which can conceivably be simulated in any real
language. Figure 3 presents the grammar and SOS semantics of CONC. The
grammar specifies a parallel composition of named threads. Each thread is a
succession of statements and uses one internal register to load data from the
shared memory. load x loads the value at location x into the internal register
of the thread, x := i stores integer i at location x, acquire and release have the
straight-forward semantics, and if i then s executes s only if the internal register
has value i. A running configuration of CONC is a tuple 〈p, σ, δ, ρ〉 where p
is the remainder of the program being executed, σ maps variables to values, δ
maps each lock to the id of the thread holding it, and ρ gives for each thread the
value of its internal register. Assuming p has n threads, the initial configuration
of the system is START(p) = 〈p, σε, δε, ρε〉 where σε, δε, and ρnε , initialize all
locations, locks, and registers for the n threads with ⊥, respectively.

We have chosen this minimal language both because it is sufficiently expressive
to generate all (finite) legal traces and because it is quite easy to simulate in
any other language. In Java, for example, each thread would be modeled by a
thread object, and all threads could be started in a loop by the main thread.
Since beginning of threads do not generate events, this is as-if all threads start
together in parallel. The running method of each Java thread object would
declare a local variable r to stand for the register, and then the two CONC
instructions dealing with the register translate as follows: load l becomes r = l,
and if i then s becomes if (r == i) s.

It is straightforward to associate to each event an instruction producing it.
Let code be the mapping defined on events as follows:

code(e) =

load x if e = (t, read, x, i)
x := i if e = (t,write, x, i)

acquire x if e = (t, acquire, x)
release x if e = (t, release, x)

Given a program p, let p�t be its projection on thread t, that is, the statement
labeled by t in the parallel composition.

The following result shows that, except for the code, the running configuration
is completely determined by the trace generated up to that point, basically
allowing us to work just with code and traces in the sequel.

Proposition 7 (τ-configurations) Suppose that n is the number of threads of
p and

CONC ` START(p)
τ−→
∗
〈p′, στ , δτ , ρnτ 〉.

18

Technical Report http://hdl.handle.net/2142/27708, October 2011

Then (1) στ (x) = data(latestwrite(τ�x));

(2) δτ (x) =

{
thread(latest(τ�x)) if op(latest(τ�x)) = acquire
⊥ otherwise

;

and (3) ρnτ (t) = data(latestread(τ�t)).

proof. First note that ε-transitions only affect the code-part of configurations.
Therefore, the base case, when τ = ε, is trivial. Suppose now that

START(p)
τ−→
∗
〈p′, στ , δτ , ρnτ 〉

e−→ 〈p′′, σ, δ, ρ〉.

Suppose that thread(e) = ti. Then in order for e to be generated, p′ �ti
must be code(e) ; p′′′ and p′′ = nop ; p′′′.

The proof tree is built by applying in order i− 1 steps of Par2 and then a
step of (Par1) (or none, if i = n), then (Thread), (Seq), and finally one of the
(Read), (Write), (Acq), or (Rel); we therefore need to show that

〈code(e), στ , δτ , ρ
n
τ , ti〉

e−→ 〈nop, στe, δτe, ρnτe, ti〉

If e = (ti, read, x, i), then code(e) = load x so we can apply the (Read) rule,
which updates only ρnτ to ρnτ [r ← i] = ρnτe.

If e = (ti,write, x, i), then code(e) = x := i, and rule Write applies up-
dating only σ to στ [x ← i] = στe.

If e = (ti, acquire, x), then code(e) = acquire x and only δ is updated to δτ [x←
t] = δτe.

If e = (ti, release, x), then code(e) = release x and only δ is updated to
δτ [x→⊥] = δτe. �

Therefore, in the sequel we will use CONC ` p τ−→
∗
p′ instead of CONC `

START(p)
τ−→
∗
〈p′, στ , δτ , ρnτ 〉

Now, let us prove that the semantics of CONC does indeed satisfy the
sequential consistency axioms. Let p be a CONC program and let feasible(p)
be the set of all p-feasible traces; that is τ is p-feasible if there exists a pro-

gram p′ such that CONC ` p τ−→
∗
p′. We sill show that feasible(p) satisfies

the strong local determinism property, namely, not only that an enabled event
can be generated at any point by its thread, but that it also must be the next
event generated by that thread (ignoring the data attribute for read events).
Formally, feasible(p) satisfies strong local determinism if it satisfies local de-
terminism and if τ1e1 and τ2e2 are p-feasible, thread(e1) = thread(e2) = t,
and τ1�t= τ2�t, then op(e1) = op(e2), target(e1) = target(e2); if additionally
op(ei) = write, then also data(e1) = data(e2).

The restriction of a derivation CONC ` p0
τ1−→ p1

τ2−→ · · · τn−→ pn to thread
t is the maximal subsequence of statements p0�t, p1�t, . . . , pn�t such that any
two consecutive statements in the sequence are distinct, and we’ll denote it

by
[
CONC ` p0

τ1···τn−−−−→
∗
pn

]
�t.

The following result shows that every CONC program p is a consistent
system in the sense of Definition 2.

19

Technical Report http://hdl.handle.net/2142/27708, October 2011

Proposition 8 (CONC consistency) feasible(p) satisfies prefix closedness and
strong local determinism.

proof. Prefix closedness is obvious, since the semantics can emit at most
one event for each execution step.

Now, notice that every transition in CONC modifies the code for precisely
one of the threads. Let us prove the following stronger local result which
basically shows that the evolution of a thread does not depend on events
which are not directly related to it.

Suppose CONC ` p τ1−→
∗
p1

τ ′
1−→ p′1 (where τ ′1 is either ε or an event)

and CONC ` p τ2−→
∗
p2, such that τ1�t= τ2�t, p1�t= p2�t, p′1�t 6= p1�t,

and either τ2τ
′
1 is consistent or τ ′1 is a read event. Then there exist

an unique p′2 such that p′2�t 6= p2�t and CONC ` p τ2−→
∗
p2

τ ′
2−→ p′2,

and, moreover p′1�t= p′2�t, and either τ ′1 = τ ′2 or both of them are
reading from the same target but with different values.

Note that uniqueness holds trivially, as once a thread was chosen, at most
one rule can apply. Now, for the existence part, if the transition for τ ′1 is

(Nop), then it can be applied on p2 with the same effect;

(Iftrue) or (Iffalse), then since ρnτ (t) = data(latestread(τ �t)) and τ1�t= τ2�t, it
follows that ρnτ1(t) = ρnτ2(t), therefore the exact same transition can be
applied on p2;

(Read), then τ ′1 = (t, read, x, i), which must be generated by an instruction
load x, whence the same rule can be applied on p2, generating event
(t, read, x, i′), where i′ = στ2(x).

(Write), then τ ′1 = (t,write, x, i), which must be generated by an instruction
x := i, whence and same rule can be applied on p2, generating the same
event;

(Acq), then τ ′1 = (t, acquire, x), which must be generated by acquire x; since
τ2τ
′
1 is consistent, it must be that δτ2(x) =⊥, hence the rule can be applied

on p2 generating the same event;

(Rel), then τ ′1 = (t, release, x), which must be generated by release x; since τ2τ
′
1

is consistent, it must be that δτ2(x) = t, hence the rule can be applied on
p2 generating the same event.

Let us now use the above lemma to prove the local determinism property.
Assume τ1e and τ2 are p-feasible traces such that thread(e) = t and τ1�t= τ2�t.
Let p1, p2 be such that CONC ` p τ1e−−→ p1 and CONC ` p τ2−→ p2. Then we can

use the lemma proved above to show that
[
CONC ` p τ2−→

∗
p2

]
�t is a prefix of[

CONC ` p τ1e−−→
∗
p2

]
�t, by induction on the length of

[
CONC ` p τ2−→

∗
p2

]
�t.

20

Technical Report http://hdl.handle.net/2142/27708, October 2011

Moreover, using the same lemma, we can (uniquely) continue the execution
of p2 on thread t using the same steps from the execution of p1 and the fact
that either τ2e is consistent or e is a read event.

For strong local determinism, if τ1e1 and τ2e2 are p-feasible, thread(e1) =
thread(e2) = t, and τ1�t= τ2�t, then we can use an argument similar to the one
above to match the statements corresponding to thread t from the beginning of
the execution and until e1 and e2 are generated, and for this step, applying the
part of the lemma referring to the generated events. �

Now, given a trace τ , let us build the canonical CONC program generating
it. code can be naturally extended on traces by code(eτ) = code(e) ; code(τ).
Let {t1, t2, . . . , tn} be the set of thread ids appearing in τ . Then the program
program(τ) associated to trace τ is defined by

program(τ) = t1 : code(τ�t1) || · · · || tn : code(τ�tn)

Let us also define the empty program with n threads as programn(ε) = t1 :
nop || · · · || tn : nop. The following result shows that the program corresponding
to a consistent trace can indeed generate that trace.

Proposition 9 If τ is a consistent trace with n threads, then CONC ` program(τ)
τ−→
∗

programn(ε).

proof. We prove by induction on the length of τ that CONC ` program(ττ ′)
τ−→
∗

programn(τ ′) where

programn(τ) = t1 : code(τ�t1) || · · · || tn : code(τ�tn), code(τ) =

{
code(τ) if τ 6= ε
nop otherwise

.

The base case, when τ = ε, is trivial: programn(τ ′) = program(τ). Suppose

now that CONC ` program(τeτ ′)
τ−→
∗

programn(eτ ′). We need to show that

〈programn(eτ ′), στ , δτ , ρ
n
τ 〉

e−→
∗
〈programn(τ ′), στe, δτe, ρ

n
τe〉.

Suppose that thread(e) = ti. Then:

programn(eτ ′)�tj=

{
programn(τ ′)�tj , if j 6= i
code(e) ; programn(τ ′)�ti ,otherwise

We can build a proof for the above assertion in two execution steps: one
generating the event and affecting the configuration by turning the instruction
code(e) into nop, and the other dissolving the nop and obtaining the desired
configuration. For the first step, the proof tree is build by applying in order
i− 1 steps of Par2 and then a step of (Par1) (or none, if i = n), then (Thread),
(Seq), and finally one of the (Read), (Write), (Acq), or (Rel) to deduce

〈code(e), στ , δτ , ρ
n
τ , t〉

e−→ 〈nop, στe, δτe, ρnτe, t〉

If e = (t, read, x, i), then code(e) = load x so we can apply the (Read)
rule, which updates the register for t of ρnτ to στ (x) = data(latestwrite(τ �x
)). However, due to consistency constraints, data(e) = data(latestwrite(τ �x)),

21

Technical Report http://hdl.handle.net/2142/27708, October 2011

whence ρnτ [r ← i] = ρnτe and the rule generates e. Moreover, στe = στ and
δτe = δτ , whence our claim is proven.

If e = (t,write, x, i), then code(e) = x := i, and rule Write applies generating
e; we have that στ [x ← i] = στe, δτe = δτ , and ρnτe = ρnτ .

If e = (t, acquire, x), then code(e) = acquire x and because of the consistency
requirements for mutexes (the difference between the number of acquire and
release operation is either 0 or 1 for each prefix), it must be that op(latest(τ�x
)) 6= acquire, whence δτ (x) =⊥ and rule Acq can apply generating e; we have
that δτ [x ← t] = δτe, στ = στe, and ρnτ = ρnτe.

If e = (t, release, x), then code(e) = release x and because of the consistency
requirements for mutexes, it must be that op(latest(τ �x)) = acquire, whence
δτ (x) = thread(latest(τ �x)). Again, from consistency requirements, since all
consecutive acquire-release pairs share the same thread, it follows that δτ (x) = t
and so the rule Rel can apply generating e; we have that δτ [x ←⊥] = δτe,
στ = στe, and ρnτ = ρnτe. �

The following theorem justifies the maximality claims for the proposed causal
model.

Theorem 3 (Maximality) For any τ ′ consistent but not τ -feasible there exists
a program generating τ but not τ ′.

proof. We can assume, without loss of generality, that τ ′ = τ1e
′ such that

τ1 is τ -feasible (potentially empty).
Let t = thread(e′).
(1) Suppose τ1 �t is a prefix of τ �t. If τ �t= τ1 �t then τ ′ cannot be

program(τ)-feasible because that would mean there exists a derivation CONC `
program(τ)

τ1−→
∗
p1

e′−→ p′1; however since CONC ` program(τ)
τ−→
∗
p with

p = programn(ε), from the proof of Proposition 8, [CONC ` program(τ)
τ−→
∗
p]�t

must be a proper prefix of [CONC ` program(τ)
τ1−→
∗
p1

e′−→ p′1] �t, which
is not possible as p �t= nop.

Otherwise it must be that τ �t= τ1 �t eτ2, and we can apply the strong
local determinism to deduce that if τ ′ is program(τ)-feasible, then either e = e′

or their type is read and their states are different. But both these lead to
contradiction because they imply that τ1e

′ ∈ feasible(τ).
(2) If τ1 �t= τ0e

′
0 is not a prefix of τ �t, then, because τ1 is τ -feasible, it

must be that τ �t= τ0e0eτ2 such that op(e0) = op(e′0) = read, target(e0) =
target(e′0), and data(e0) 6= data(e′0).

Let us consider a special event ?t = (t, ?) (with the meaning that thread(?t) = t
and op(?t) =?) and for each statement s, an extension codes of code with
codes(?t) = s, and programs(τ) = codes(τ �t1) || · · · || codes(τ �tn).

Let x = target(e0), i = data(e0) and let

j =

{
data(e′)− 1, if data(e′) defined

0, otherwise

Let τl, τr be such that τ = τleτr and τl�t= τ0e0, and let p′ = programs(τl?
teτr),

obtained by inserting s = if i then x := j in the code for thread t, between

22

Technical Report http://hdl.handle.net/2142/27708, October 2011

the code for e0 and that for e. This new program can still generate τ , as the
state read by e0 is different than that read by e′0 and thus the conditional is
not executed, but it cannot generate τ ′, as the next event for thread t upon
generating τ0e

′
0 must be (t,write, x, j) which is guaranteed to be distinct from

e′. �

8 Conclusion and Future Work

We have shown that, by axiomatizing basic properties of (sequentially consistent)
concurrent systems, one can obtain maximally sound causal models for concurrent
executions, which can be naturally associated to each observed trace, capturing
all feasible traces which could be inferred from it. The maximality result has
two important theoretical implications. First, verifying the soundness claims for
any causal model is reduced to proving that it is a submodel of the maximal one.
Second, since the maximal model captures all causally equivalent traces, it allows
for universal, model-independent definitions for causal properties. Finally, the
model can be explored for finding concurrency anomalies either directly through
its axioms (as shown practical by Said et al. [20]) or through its constructive
characterization presented in this paper.

We strongly believe that the ideas developed here in the context of sequential
consistency can be generalized to more relaxed memory models. However, we
expect this task to be more complex, as the axiomatization of these memory
models is also more complex. For example, one of the simplest relaxed memory
models, the x86-TSO [19], has no less than nine axioms interrelating the behavior
of concurrent objects. To model it in our framework, one would have to adjust
both the consistency criteria—to account for the usage of write buffers—and the
local determinism axiom—to account for the fact that commits from the write
buffer to memory happen relatively independent of the thread execution. The
main difficulty introduced by this new paradigm is that a concurrent object’s
behavior is no longer independent, but constrained by other concurrent objects:
for example, committing a buffered write into memory now depends on the fact
that the previously buffered writes were already committed, while acquiring a lock
depends on the fact that the write buffer is empty. Nevertheless, we believe these
issues are not insurmountable, but rather promising avenues for further research.

References

[1] Anonymous. details omitted due to double-blind reviewing.

[2] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus lineariz-
ability. ACM Trans. Comput. Syst., 12:91–122, May 1994. ISSN 0734-2071.
doi: 10.1145/176575.176576. URL http://dx.doi.org/10.1145/176575.

176576.

[3] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and Paul Petersen. A theory of

23

Technical Report http://hdl.handle.net/2142/27708, October 2011

http://dx.doi.org/10.1145/176575.176576
http://dx.doi.org/10.1145/176575.176576

data race detection. In PADTAD ’06: Proceedings of the 2006 workshop on
Parallel and distributed systems: testing and debugging, pages 69–78, New
York, NY, USA, 2006. ACM. ISBN 1-59593-414-6. doi: 10.1145/1147403.
1147416. URL http://dx.doi.org/10.1145/1147403.1147416.

[4] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC:
bulk enforcement of sequential consistency. In Proceedings of the 34th
annual international symposium on Computer architecture, ISCA ’07, pages
278–289, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-706-3. doi:
10.1145/1250662.1250697. URL http://dx.doi.org/10.1145/1250662.

1250697.

[5] Feng Chen and Grigore Rosu. Parametric and sliced causality. In Proceedings
of the 19th international conference on Computer aided verification, CAV’07,
pages 240–253, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-
73367-6. doi: 10.1007/978-3-540-73368-3 27. URL http://dx.doi.org/

10.1007/978-3-540-73368-3_27.

[6] P. A. Emrath, S. Chosh, and D. A. Padua. Event synchronization analysis
for debugging parallel programs. In Supercomputing ’89: Proceedings of the
1989 ACM/IEEE conference on Supercomputing, pages 580–588, New York,
NY, USA, 1989. ACM. ISBN 0-89791-341-8. doi: 10.1145/76263.76329.
URL http://dx.doi.org/10.1145/76263.76329.

[7] Perry A. Emrath and David A. Padua. Automatic detection of nondeter-
minacy in parallel programs. In PADD ’88: Proceedings of the 1988 ACM
SIGPLAN and SIGOPS workshop on Parallel and distributed debugging,
pages 89–99, New York, NY, USA, 1988. ACM. ISBN 0-89791-296-9. doi:
10.1145/68210.69224. URL http://dx.doi.org/10.1145/68210.69224.

[8] Azadeh Farzan and Parthasarathy Madhusudan. Causal atomicity. In
Thomas Ball and Robert B. Jones, editors, CAV, volume 4144 of Lecture
Notes in Computer Science, pages 315–328. Springer, 2006. ISBN 3-540-
37406-X. doi: 10.1007/11817963 30. URL http://dx.doi.org/10.1007/

11817963_30.

[9] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL ’04: Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 256–267, New York, NY, USA, 2004. ACM. ISBN 1-58113-
729-X. doi: 10.1145/964001.964023. URL http://dx.doi.org/10.1145/

964001.964023.

[10] Malay K. Ganai and Aarti Gupta. Efficient modeling of concurrent systems in
BMC. In Proceedings of the 15th international workshop on Model Checking
Software, SPIN ’08, pages 114–133, Berlin, Heidelberg, 2008. Springer-
Verlag. ISBN 978-3-540-85113-4. doi: 10.1007/978-3-540-85114-1 10. URL
http://dx.doi.org/10.1007/978-3-540-85114-1_10.

24

Technical Report http://hdl.handle.net/2142/27708, October 2011

http://dx.doi.org/10.1145/1147403.1147416
http://dx.doi.org/10.1145/1250662.1250697
http://dx.doi.org/10.1145/1250662.1250697
http://dx.doi.org/10.1007/978-3-540-73368-3_27
http://dx.doi.org/10.1007/978-3-540-73368-3_27
http://dx.doi.org/10.1145/76263.76329
http://dx.doi.org/10.1145/68210.69224
http://dx.doi.org/10.1007/11817963_30
http://dx.doi.org/10.1007/11817963_30
http://dx.doi.org/10.1145/964001.964023
http://dx.doi.org/10.1145/964001.964023
http://dx.doi.org/10.1007/978-3-540-85114-1_10

[11] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996. ISBN 3540607617.

[12] D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Determining possible
event orders by analyzing sequential traces. IEEE Trans. Parallel Distrib.
Syst., 4(7):827–840, 1993. ISSN 1045-9219. doi: 10.1109/71.238303. URL
http://dx.doi.org/10.1109/71.238303.

[13] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Trans. Program. Lang. Syst., 12:
463–492, July 1990. ISSN 0164-0925. doi: 10.1145/78969.78972. URL
http://dx.doi.org/10.1145/78969.78972.

[14] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess progranm. IEEE Trans. Comput., 28(9):690–691, 1979. ISSN
0018-9340. doi: 10.1109/TC.1979.1675439. URL http://dx.doi.org/10.

1109/TC.1979.1675439.

[15] A Mazurkiewicz. Trace theory. In Advances in Petri nets 1986, part II on
Petri nets: applications and relationships to other models of concurrency,
pages 279–324, New York, NY, USA, 1987. Springer-Verlag New York, Inc.
ISBN 0-387-17906-2.

[16] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection
for Java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference
on Programming language design and implementation, pages 308–319, New
York, NY, USA, 2006. ACM. ISBN 1-59593-320-4. doi: 10.1145/1133981.
1134018. URL http://dx.doi.org/10.1145/1133981.1134018.

[17] Robert H. B. Netzer and Barton P. Miller. Detecting data races in parallel
program executions. In David Gelernter, Alexandru Nicolau, and David
Padua, editors, Languages and Compilers for Parallel Computing, pages
109–129. MIT Press, 1990. ISBN 0-262-57080-7.

[18] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detec-
tion. SIGPLAN Not., 38(10):167–178, 2003. ISSN 0362-1340. doi: 10.1145/
966049.781528. URL http://dx.doi.org/10.1145/966049.781528.

[19] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. In Proceedings of the 22nd International Conference
on Theorem Proving in Higher Order Logics, TPHOLs ’09, pages 391–
407, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-03358-2.
doi: 10.1007/978-3-642-03359-9 27. URL http://dx.doi.org/10.1007/

978-3-642-03359-9_27.

[20] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem A. Sakallah. Gen-
erating data race witnesses by an SMT-based analysis. In Mihaela Ghe-
orghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,

25

Technical Report http://hdl.handle.net/2142/27708, October 2011

http://dx.doi.org/10.1109/71.238303
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/966049.781528
http://dx.doi.org/10.1007/978-3-642-03359-9_27
http://dx.doi.org/10.1007/978-3-642-03359-9_27

editors, NASA Formal Methods, volume 6617 of Lecture Notes in Com-
puter Science, pages 313–327. Springer, 2011. ISBN 978-3-642-20397-8.
doi: 10.1007/978-3-642-20398-5 23. URL http://dx.doi.org/10.1007/

978-3-642-20398-5_23.

[21] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4):391–411, 1997. ISSN 0734-2071.
doi: 10.1145/265924.265927. URL http://dx.doi.org/10.1145/265924.

265927.

[22] Edith Schonberg. On-the-fly detection of access anomalies. SIGPLAN Not.
– Best of PLDI 1979-1999, 39:313–327, April 2004. ISSN 0362-1340. doi: 10.
1145/989393.989426. URL http://dx.doi.org/10.1145/989393.989426.

[23] Koushik Sen, Grigore Rosu, and Gul Agha. Detecting errors in multithreaded
programs by generalized predictive analysis of executions. In FMOODS,
volume 3535 of LNCS, pages 211–226. Springer, 2005. ISBN 3-540-26181-8.
doi: 10.1007/11494881 14. URL http://dx.doi.org/10.1007/11494881_

14.

[24] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchroniza-
tion constraints with data in an object-oriented language. In POPL ’06:
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 334–345, New York, NY, USA,
2006. ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.1111067. URL
http://dx.doi.org/10.1145/1111037.1111067.

[25] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime de-
tection of atomicity errors in concurrent programs. In Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPoPP ’06, pages 137–146, New York, NY, USA,
2006. ACM. ISBN 1-59593-189-9. doi: 10.1145/1122971.1122993. URL
http://dx.doi.org/10.1145/1122971.1122993.

26

Technical Report http://hdl.handle.net/2142/27708, October 2011

http://dx.doi.org/10.1007/978-3-642-20398-5_23
http://dx.doi.org/10.1007/978-3-642-20398-5_23
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/989393.989426
http://dx.doi.org/10.1007/11494881_14
http://dx.doi.org/10.1007/11494881_14
http://dx.doi.org/10.1145/1111037.1111067
http://dx.doi.org/10.1145/1122971.1122993

	Introduction
	Motivating Examples

	Execution Model
	Concurrent Objects, Serial Specification
	Events and Traces

	Feasibility Model
	Formal Definitions for Causal Properties
	Dataraces
	Atomicity

	Relationship with Existing Models
	Happens Before Relation on Mazurkiewicz Traces
	Weak Happens Before
	Happens-Before with synchronization
	Weak-Happens-Before with synchronization

	Characterizing the Feasibility Closure
	Maximality
	Conclusion and Future Work

