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Abstract
Matching logic allows to specify structural properties about pro-
gram configurations by means of special formulae, called patterns,
and to reason about them by means of pattern matching. This pa-
per proposes rewriting over matching logic formulae, which gen-
eralizes both term rewriting and Hoare triples, as a unified frame-
work for operational semantics and for program verification. A pro-
gramming language is formally defined as a set of rewrite rules. A
language-independent nine-rule proof system then can be used ei-
ther to derive any operational program behavior, or to verify pro-
grams against arbitrary properties specified also as rewrite rules,
thus reducing the gap between operational semantics and axiomatic
semantics to zero. The proof system is proved both sound and com-
plete for operational semantics and partially correct for program
verification. All these proofs are language-independent. A match-
ing logic verifier for a fragment of C, called MatchC, has been im-
plemented and evaluated with encouraging results on a series of
non-trivial programs, attesting to the practicality of the approach.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verification

General Terms Languages, Semantics, Verification, Theory

Keywords Matching logic, operational semantics, axiomatic se-
mantics, term rewriting

1. Introduction
An operational semantics defines an execution model of a language
typically in terms of a transition relation cfg ⇒ cfg′ between pro-
gram configurations, and can serve as a formal basis for language
understanding, design, implementation, and so on. On the other
hand, an axiomatic semantics defines a proof system typically in
terms of Hoare triples {ψ} code {ψ′}, and can serve as a basis for
program verification. To increase confidence in program verifiers,
the programming language community has developed many tech-
niques and tools for bridging the gap between operational and ax-
iomatic semantics. Despite these, language designers still perceive
the two kinds of semantics as two distinct endeavors, and proving
their formal relationship as a burden. With very few notable excep-
tions (e.g., [1]), real languages are rarely given both semantics.
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One of the reasons for the disconnection between the two se-
mantics is that operational semantics strongly rely on a notion of
program configuration, saying how and where each piece of seman-
tic information is structured and located, while axiomatic semantics
deliberately attempt to avoid the program configurations, which are
considered low-level, and instead capture their properties, includ-
ing their structural properties, by means of logical formulae. This
strong reliance on vs. deliberate abstraction of configurations put a
30-year-old wall between the two important semantic approaches.

Matching logic [47] is a logic designed to state and reason about
structural properties over arbitrary program configurations. Syn-
tactically, it introduces a new formula construct, called a pattern,
which is a configuration term possibly containing variables. Se-
mantically, its models are concrete/ground configurations, where
a configuration satisfies a pattern iff it matches it. Considering a
particular configuration structure with a top-level cell 〈...〉cfg hold-
ing, in any order, other cells with semantic data such as the code
〈...〉k, an environment 〈...〉env, a heap 〈...〉heap, an input buffer 〈...〉in,
an output buffer 〈...〉out, etc., configurations then have the structure:

〈〈...〉k 〈...〉env 〈...〉heap 〈...〉in 〈...〉out ...〉cfg

The contents of the cells can be various semantic data, such as trees,
lists, sets, maps, etc. Here are two particular configurations (in the
interest of space, we use “...” for the irrelevant parts of them):

〈〈x=*y; y=x; ...〉k 〈x 7→ 7, y 7→ 3, ...〉env 〈3 7→ 5〉heap ...〉cfg
〈〈x 7→ 3〉env 〈3 7→ 5, 2 7→ 7〉heap 〈1, 2, 3, ...〉in 〈..., 7, 8, 9〉out ...〉cfg

Different languages may have different configuration structures.
For example, languages whose semantics are intended to be purely
syntactic and based on substitution, e.g., λ-calculi, may contain
only one cell, holding the program itself. Other languages may con-
tain dozens of cells in their configurations; for example, the C se-
mantics in [17] has more than 60 nested cells. However, no matter
how complex a language is, its configurations can be defined as
ground terms over an algebraic signature, using conventional alge-
braic techniques. Matching logic takes an arbitrary algebraic defini-
tion of configurations as parameter and allows configuration terms
with variables as particular formulae. For example, the formula

∃c :Cells, e :Env, p :Nat, i : Int, σ :Heap
〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p , i

is satisfied by all configurations where program variable x points to
a location p holding a different positive integer. The variables e, σ,
and c are structural frames. If we want to additionally state that p
is the only location allocated, then we can just remove σ:

∃c :Cells, e :Env, p :Nat, i : Int
〈〈x 7→ p, e〉env 〈p 7→ i〉heap c〉cfg ∧ i > 0 ∧ p , i
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Matching logic allows to reason about configurations, e.g., to show:

|= ∀c :Cells, e :Env, p :Nat
〈〈x 7→ p, e〉env 〈p 7→ 9〉heap c〉cfg ∧ p > 10
→ ∃i : Int, σ :Heap

〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p , i

In this paper we propose the novel concept of a

rewrite rule over matching logic formulae

and hereby matching logic rewriting. The semantics of a matching
logic rewrite rule

ϕ⇒ ϕ′

is that any configuration satisfying ϕ transits (in zero or more steps,
depending on the context) into a configuration satisfying ϕ′. Such
rewrite rules are quite expressive, subsuming the main elements of
both operational and axiomatic semantics, namely both the usual
rewrite (or reduction) rule and the Hoare triple, as explained next.

There is overwhelming evidence that languages and calculi can
be given operational semantics based on rewrite (or reduction) rules
of the form “l⇒ r if b”, where l and r are configuration terms with
variables constrained by boolean condition b. Tools, techniques and
methodologies supporting such operational semantics, like Redex
[19] and K [44] among others, as well as large languages defined
using these (e.g., the C semantics [17] exceeds 1,000 such rules),
stand as proof that this is not only possible, but also practical.
Such rules can be expressed as matching logic rewrite rules l ∧
b ⇒ r, allowing to regard operational semantics following these
approaches as matching logic rewrite systems.

On the other hand, a Hoare triple of the form {ψ} code {ψ′} can
be regarded as a matching logic rewrite rule 〈code〉k∧ψ⇒ 〈〉k∧ψ′
between formulae over minimal configurations holding only the
code. Here, 〈〉k is the configuration holding the empty code, so the
rule asserts that ψ′ holds when/if code terminates.

Therefore, both operational semantics rules and axiomatic se-
mantics Hoare triples are instances of matching logic rules. Could
we then use matching logic rewriting as a unifying framework for
operational and axiomatic semantics? Or, more specifically, could
it be possible to start with an operational semantics of a program-
ming language defined as a matching logic rewrite system, and then
derive program properties also expressed as matching logic rules
without a need to give the language another semantics?

The main contribution of our paper is the nine-rule language-
independent proof system for matching logic rewriting in Figure 1.
Reflexivity and Transitivity are inspired by rewriting logic [35].
Case analysis, Logic framing, Consequence and Abstraction are
inspired by Hoare logic [25]. Axiom and Substitution by both.
The Circularity proof rule is new. It deductively and language-
independently captures the various circular behaviors that appear
in languages, due to loops, recursion, jumps, etc. A ` ϕ ⇒ ϕ′

means that the matching logic rule ϕ ⇒ ϕ′ is derivable from a
set of matching logic rules A using all nine proof rules, while
A ` ϕ ⇒+ ϕ′ means that ϕ ⇒ ϕ′ is derivable from A using
all proof rules but Reflexivity, indicating that at least one proper
semantic step is taking place.

A programming language operational semantics is given as a
set of rewrite rules, which is the original A. Indeed, any matching
logic rewrite systemA yields a transition system over ground con-
figurations, with transitions between two ground configurations γ
and γ′ if and only if there is some rule ϕ ⇒ ϕ′ in A such that γ
matches ϕ and γ′ matches ϕ′, respectively. This transition system
therefore captures all the concrete operational behaviors of the tar-
get programming languages. Our proof system in Figure 1 can be
then used either to generate such concrete, operational program be-
haviors (the first eight proof rules), or to prove program properties
specified as matching logic rules. During the proof derivation, one

Rules of operational nature

Reflexivity:
·

A ` ϕ⇒ ϕ

Axiom:
ϕ⇒ ϕ′ ∈ A

A ` ϕ⇒ ϕ′

Substitution:
A ` ϕ⇒ ϕ′ θ : Var→ TΣ(Var)

A ` θ(ϕ)⇒ θ(ϕ′)

Transitivity:
A ` ϕ1 ⇒ ϕ2 A ` ϕ2 ⇒ ϕ3

A ` ϕ1 ⇒ ϕ3

Rules of deductive nature

Case analysis:
A ` ϕ1 ⇒ ϕ A ` ϕ2 ⇒ ϕ

A ` ϕ1 ∨ ϕ2 ⇒ ϕ

Logic framing:
A ` ϕ⇒ ϕ′ ψ is a FOL= formula

A ` ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Consequence:
|= ϕ1 → ϕ′1 A ` ϕ′1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A ` ϕ1 ⇒ ϕ2

Abstraction:
A ` ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅

A ` ∃X ϕ⇒ ϕ′

Rule for circular behavior

Circularity:
A ` ϕ⇒+ ϕ′′ A∪ {ϕ⇒ ϕ′} ` ϕ′′ ⇒ ϕ′

A ` ϕ⇒ ϕ′

Figure 1. Matching logic rewriting proof system

may add new rules to A by means of Circularity, which are thus
allowed to be used in their own derivation! The correctness of this
proof circularity is given by the fact that progress is required to be
made (indicated by⇒+ inA ` ϕ ⇒+ ϕ′) before a circular reason-
ing step is allowed.

We prove the first eight rules of the proof system sound and
complete for operational deduction, in the sense that any ground
rewrite property derived with these eight rules corresponds indeed
to an operational behavior, and that any operational behavior can
be derived also using these eight rules (Theorem 1). Then the entire
nine-rule proof system is proved partially correct (Theorem 2), in
the sense that any derived property of an operationally terminating
ground configuration corresponds to an operational behavior.

To our knowledge, this is the first proof system of its kind. A
language designer now only has to define one rewriting semantics
of the target programming language, which is well-understood,
tool-supported and comparatively easier than defining an axiomatic
semantics. Moreover, the rewriting semantics is executable and
thus testable using existing rewrite engines (some quite efficient) or
functional languages incorporating term rewriting (e.g., Haskell).
For example, one can test it by executing program benchmarks that
compiler testers use. Then, one can take this semantics and use it as
is for program verification. Not only that one can now completely
skip the tedious step of having to prove the equivalence between an
operational and an axiomatic semantics of the same language, but
one can also change the language at will (or fix it when semantic
bugs are found), without having to worry about doing that in two
different places and maintaining the equivalence proofs.

The main concern to a verification framework based on opera-
tional semantics is that it may not be practical, due to the amount
of required user involvement or to the amount of low-level details
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struct listNode { int val; struct listNode *next; };

int main()
{
struct listNode *x;
x = (struct listNode*) malloc(sizeof(struct listNode));
printf("%p\n", x->next);

}

Figure 2. C program exhibiting undefined behaviour.

that needs to be provided in specifications. To test the practical
effectiveness of matching logic rewriting, we implemented a new
version of the MatchC program verifier for a fragment of C. Pre-
viously, MatchC followed a Hoare-style approach using matching
logic formulae for invariants and for pre- and post-conditions [45].
The new MatchC uses matching logic rewrite rules for program
specifications and its implementation is directly based on the proof
system in Figure 1. It uses the rewrite semantics of the fragment of
C completely unchanged for program verification. The Matching
Logic web page, http://fsl.cs.uiuc.edu/ml, contains an on-
line interface to run MatchC. The online interface includes all the
examples mentioned in this paper, among others, allowing users to
modify and verify them or to type in new programs.

Specific contributions:
• A more foundational and general formulation of matching logic;
• Matching logic rewriting, with the sound, complete and partially

correct language-independent proof system Figure 1;
• Implementation and evaluation of the new MatchC.

Paper structure: Section 2 discusses several programs verified
using MatchC. Section 3 gives a more thorough and general formal-
ization of matching logic than in previous work. Section 4 presents
our main theoretical results, and Section 5 discusses our implemen-
tation. Section 6 discusses related work. Section 7 concludes and
discusses future work. The proofs are all exiled in Appendix A.

2. Motivating Examples using MatchC
Here we discuss a few C examples that illustrate the expressiveness
and practicality of matching logic rewriting. Figure 2 shows an
undefined program. Figure 3 a function that reverses a singly linked
list. Figure 4 a function that reads a sequence of integers from the
standard input into a singly-linked list. Figure 5 a program that
respects a stack inspection property, where some functions can only
be called directly or indirectly by certain other functions, and only
under certain conditions. Figure 6 shows a function that flattens a
tree into a list, traversing the tree in infix order and in the process
printing the list to the standard output in reverse order. MatchC
automatically verifies all these programs in ∼1s in total (Section 5).

The unannotated/unspecified program in Figure 2 is undefined
according to the C standard, because it attempts to print the value of
the uninitialized list member next. Our rewriting semantics of the
C fragment correctly captures undefinedness, in that undefined pro-
grams get stuck during their execution using the semantics. MatchC
verifies programs by executing them using the semantic rewrite
rules. If a fragment of code is given a specification, then that spec-
ification is verified and subsequently used as a replacement for the
corresponding fragment. This is possible in matching logic because
both the language semantics and the specifications are uniformly
given as rewrite rules. Since this program is unannotated, its match-
ing logic verification reduces to executing it in the semantics, so it
gets stuck when reading x->next. C compilers happily compile
this program and the generated code even does what one (wrongly)
expects it to do, namely prints the residual value of x->next.

struct listNode { int val; struct listNode *next; };

struct listNode* reverseList(struct listNode *x)

rule 〈$⇒ return ?p; ···〉k 〈··· list(x)(A)⇒ list(?p)(rev(A)) ···〉heap

{
struct listNode *p, *y;
p = NULL;

inv 〈··· list(p)(?B), list(x)(?C) ···〉heap ∧ A = rev(?B)@?C

while(x != NULL) {
y = x->next;
x->next = p;
p = x;
x = y;

}
return p;

}

Figure 3. C function reversing a singly-linked list.

Some MatchC notations. Each rule or invariant user annotation
(grayed area in the figures in this section) corresponds to a match-
ing logic rule, also called a specification, that needs to be derived
using the proof system in Figure 1 from the rewriting semantics of
the language. To facilitate understanding the next specifications, we
briefly discuss some MatchC notations that help avoid verbosity:

• While all specifications are rewrite rules ϕ ⇒ ϕ′ between
matching logic formulae, often ϕ and ϕ′ share configuration
context; we only mention the context once and distribute the
“⇒” arrow through the context where the changes take place.
• To avoid writing existential quantifiers, logical variables start-

ing with “?” are assumed existentially quantified.
• To avoid writing environment cells containing only bindings of

the form x 7→ ?x in almost all specifications, we automatically
assume them when not explicitly mentioned and allow users to
write the identifier x (which is a syntactic constant) instead of
the logical variable ?x.
• MatchC desugars invariants inv ϕ loop into matching logic

proof obligation rules ϕ[loop...] ⇒ ϕ[...] ∧ ¬ cond(loop),
where ϕ[code] is the pattern obtained from ϕ by replacing the
contents of the 〈...〉k cell with code.

Function reverseList in Figure 3 reverses a singly-linked list.
The matching logic rule specifying its behavior says that it returns
a pointer ?p (here and in the rest of the paper, $ stands for the body
of the function). The rule also specifies that, when the function
is called, the heap contains a list starting at x with contents the
sequence A. By the time the function returns, the initial list is
replaced by a list starting at ?p with contents the reversed sequence,
rev(A). The ··· in the heap cell stands for the rest of the heap
content (the heap frame) which is not touched by the function and
thus stays unchanged. Similarly, all the parts of the configuration
that are not explicitly mentioned (the configuration frame) do not
change. The loop invariant asserts that the heap contains two lists,
one starting at p and containing the part of the sequence that is
already reversed, ?B, and one starting at x and containing the part
of the sequence that is yet to be reversed, ?C. The initial sequence
A equals rev(?B) followed by ?C. Again, the rest of the heap and of
the configuration stay unchanged. In matching logic, list, rev, etc.,
are ordinary operation symbols in the signature and constrained
through axioms (see Section 3). Like in OCaml, @ concatenates
sequences. Variables without ?, like A, are free. Hence, A refers
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struct listNode { int val; struct listNode *next; };

struct listNode *readList(int n)

rule 〈$⇒ return ?x; ···〉k 〈A⇒ · ···〉in 〈··· · ⇒ list(?x)(A) ···〉heap
if n = len(A)

{
int i;
struct listNode *x, *p;
if (n == 0) return NULL;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = NULL;
i = 1; p = x;

inv 〈?C ···〉in 〈··· lseg(x, p)(?B), p 7→ [?v, NULL] ···〉heap
∧ i ≤ n ∧ len(?C) = n − i ∧ A = ?B@[?v]@?C

while (i < n) {
p->next = (struct listNode*)

malloc(sizeof(struct listNode));
p = p->next;
scanf("%d", &(p->val));
p->next = NULL;
i += 1;

}
return x;

}

Figure 4. C function reading a sequence of integers from the
standard input into a singly-linked list.

to the same sequence in the function rule and in the loop invariant,
while ?B can refer to different sequences in different loop instances.

Function readList in Figure 4 reads n integers from standard
input and stores them in a singly-linked list. The matching logic
specification says that the function: (1) returns a pointer ?x; (2)
reads from the standard input a sequence of integers A of length n
(matches A and replaces it by the empty sequence ·); (3) allocates
a list starting at ?x with contents the read sequence A (replaces the
empty heap ·). As before, the rest of the input buffer, the heap, and
the configuration stay unchanged. The loop invariant states that the
sequence ?C is yet to be read, x points to a list segment ending at p
with contents ?B, p points to a nodeList structure with the value
field ?v and the next field NULL, the loop index i is not greater
than n, the size of ?C is n − i, and the initial sequence A equals
the concatenation of ?B, ?v, and ?C. The list segment lseg(x, p)
includes x but excludes p. The notation p 7→ [?v, NULL] stands for
the term (and not formula) “p 7→ ?v, p + 1 7→ NULL”.

Figure 5 shows a C program that respects the following se-
curity policy: trusted must always be called directly with the
argument n’s value less than 10 only from main, or from trusted
(suppose that n represents some priority or clearance level), while
untrusted must always be called directly or indirectly from
trusted (suppose that trusted is the only function whose code
is completely trusted, so in particular it is even allowed to call
untrusted functions). The matching logic specification rule of
trusted matches the call stack, and requires that either the value
of n is at least 10, or that the function id of the head of the call
stack is one of main or trusted. The rest of the configuration
stays unchanged. The rule for untrusted matches the same parts
of the configuration as the rule for trusted, but requires instead
that somewhere in the call stack there exists a frame for trusted.
Function any does not have a rule, so its body is executed at each
call. Note that if the call to trusted in any were not guarded by
the if statement, the line any(5); in main would violate the secu-

void trusted(int n);
void untrusted(int n);
void any(int n);

void trusted(int n)

rule 〈$⇒ return; ···〉k 〈S〉stack
if n ≥ 10 ∨ in(hd(ids(S)), [main, trusted])

{
untrusted(n); any(n);
if (n) trusted(n - 1);

}

void untrusted(int n)

rule 〈$⇒ return; ···〉k〈S〉stack
if in(trusted, ids(S))

{
if (n) any(n - 1);

}

void any(int n)
{
// possible security policy violation
// (when any is called) if n <= 10
if(n > 10) trusted(n - 1);

}

int main() { trusted(5); any(5); }

Figure 5. C program respecting a stack inspection security policy.

rity policy. Just constructing the call graph and performing value
analysis is not enough to verify these stack properties.

Function treeToList in Figure 6 flattens a binary tree into a
list, by traversing the tree in infix order, and in the process prints
the list to the standard output in reverse order. Each node of the
initial tree (structure treeNode) has three fields: the value, and
two pointers, for the left and the right subtrees. Each node of
the final list (structure listNode) has two fields: the value and
a pointer to the next node of the list. The program makes use of
an auxiliary structure (stackNode) to represent a stack of trees.
For demonstration purposes (to highlight the invariant capability of
matching logic), we prefer an iterative version of this program. We
need a stack to keep track of our position in the tree. Initially, that
stack contains the tree passed as argument (as a pointer). The loop
repeatedly pops a tree from the stack, and it either pushes back the
left tree, the root, and the right tree onto the stack, or if the right
tree is empty it pushes back the left subtree, appends the value in
the root node at the beginning of the list of tree elements, and prints
the respective value to the standard output. As the loop processes
the tree, it frees the tree nodes and it allocates the corresponding list
nodes. Because the values are printed when they are popped from
the stack, they appear in the output in reverse infix order.

The treeToList rule specifies that it returns a pointer ?l. It
matches in the heap a tree rooted at t holding the contents T, and
replaces it with a list starting at ?l with the contents tree2list(T)
(the infix traversal sequence of T). Finally, it specifies that the
function outputs the traversal sequence in reverse order. The rest of
the heap, output buffer and the configuration stay unchanged. The
invariant says that the heap contains a stack of trees (represented
as a list of trees) with contents ?TS and a list with contents ?A,
the loop has printed so far the sequence rev(?A), and that the infix
traversal sequence of T, tree2list(T), is equal to the concatenation in
reverse order of the infix traversal sequences of the trees in the stack
concatenated with the contents of the list. Nothing else changes.
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struct treeNode {
int val;
struct treeNode *left, *right;

};
struct listNode {
int val;
struct listNode *next;

};
struct stackNode {
struct treeNode *val;
struct stackNode *next;

};

struct listNode *treeToList(struct treeNode *t)

rule 〈$⇒ return ?l; ···〉k 〈··· tree(x)(T)⇒ list(?l)(tree2list(T)) ···〉heap
〈··· · ⇒ rev(tree2list(T))〉out

{
struct listNode *l; struct stackNode *s;
if (t == NULL) return NULL;

l = NULL;
s = (struct stackNode *)

malloc(sizeof(struct stackNode));
s->val = t;
s->next = NULL;

inv 〈··· tree(s)(?TS), list(l)(?A) ···〉heap 〈··· rev(?A)〉out
∧ tree2list(T) = treeList2list(rev(?TS))@?A

while (s != NULL) {
struct treeNode *tn; struct listNode *ln;
struct stackNode *sn;
sn = s;
s = s->next;
tn = sn->val;
free(sn) ;
if (tn->left != NULL) {
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn->left;
sn->next = s;
s = sn;

}
if (tn->right != NULL) {
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn;
sn->next = s;
s = sn;
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn->right;
sn->next = s;
s = sn;
tn->left = tn->right = NULL;

}
else {
ln = (struct listNode *)

malloc(sizeof(struct listNode));
ln->val = tn->val;
ln->next = l;
l = ln;
printf("%d ", ln->val);
free(tn);

}
}
return l;

}

Figure 6. Iterative C program flattening a tree into a list and
printing its values in the process.

3. Matching Logic: A Logic of Configurations
Matching logic was introduced in [47], although the focus there
was more on presenting an axiomatic semantic framework based
on matching logic, and less on presenting matching logic itself
as a logic for reasoning about configurations. Since here we need
matching logic for both axiomatic and operational semantics, in a
style quite different from that in [47] requiring a more fundamental
understanding of matching logic, we use this as an opportunity to
give a thorough and self-contained presentation of matching logic,
which also slightly generalizes the one in [47]. Specifically, we
allow more matching logic specifications than the patterns of [47].

3.1 Algebraic and Logical Background
We remind the reader of basic concepts of algebraic specification
and first-order logic. The role of this section is also to establish our
notation used later in the paper. We refer the reader to [12, 37] and
references there for a thorough and practical introduction to these
concepts in the context of systems like CASL and Maude.

An algebraic signature (S,Σ) is a finite set of sorts S and a fi-
nite set of operation symbols Σ over sorts in S. We may write Σ
instead of (S,Σ). A Σ-algebra is an S-indexed set together with
functions corresponding to operation symbols. TΣ denotes the ini-
tial Σ-algebra of ground terms (i.e., terms without variables).TΣ(X)
denotes the free Σ-algebra of terms with variables in X, where X is
an S-indexed set of variables. TΣ,s(X) denotes the set of Σ-terms of
sort s ∈ S. A Σ-equation1 is a triple ∀X(t = t′), where t, t′ ∈ TΣ,s(X)
and s ∈ S. Σ-algebra M satisfies Σ-equation ∀X(t = t′), written
M |= ∀X(t = t′), iff θ(t) = θ(t′) for any θ : X → M (we write also
θ for its homomorphic extension). If E is a set of equations, M |= E
means M |= e for each e ∈ E. E |= e means that M |= E implies
M |= e for any Σ-algebra M. An algebraic specification (S,Σ,E) is
an algebraic signature (S,Σ) together with a set of Σ-equations E.

For example, S may include sorts Exp for expressions and Stmt
for statements, and Σ may include operation symbols like

{} :→ Stmt (empty block)
if( ) : Exp × Stmt → Stmt
if( ) else : Exp × Stmt × Stmt → Stmt

We used the mixfix notation above, with underscores as argument
placeholders, which is equivalent to the context-free or BNF no-
tation. Since the latter is more common for defining program-
ming language syntax, we prefer it from here on; so we write
“Stmt F {} | if (Exp) Stmt | if (Exp) Stmt else Stmt”. An exam-
ple of a Σ-equation is the desugaring of if( ) into if( ) else :

∀E :Exp, S :Stmt (if (E) S = if (E) S else {})

Thanks to the completeness of equational and of first-oder log-
ics, E |= e is equivalent to saying that e can be derived from E
using equational or first-order deduction. We do not recall these
deduction systems here. The notions of initial and free algebras ex-
tend to algebraic specifications, through factorization by the equiv-
alence classes of terms generated by the equations. Given algebraic
specification (S,Σ,E), we let TΣ/E be its initial algebra of ground
terms and let TΣ/E(X) be its free algebra of terms with variables in
X. TΣ,E captures all the ground equational properties of E, in that
for any ground Σ-equation e, TΣ,E |= e iff E |= e. This implies
that ground equational satisfaction in the initial model is semi-
decidable. Note that this is not true for equations with variables
[33]. One of the most fundamental results in algebraic specifica-
tion is due to Bergstra and Tucker [7] and essentially says that any
semi-decidable domain is isomorphic to an initial algebra of a finite
algebraic specification.

1 In the interest of space, we only show unconditional equations here.
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There is a plethora of algebraic specification variants (order-
sorted, membership, partial, etc.) as well as a vast literature show-
ing how to define almost every known mathematical or comput-
ing structure as a Σ-algebra over an appropriate algebraic specifica-
tion, including boolean algebras, natural/integer/rational numbers,
monoids, groups, rings, lists, sets, bags (or multisets), mappings,
trees, queues, stacks, and so on, as well as combinations of them.
Systems like CASL [37] and Maude [12] use algebraic specifica-
tions as their underlying semantic infrastructure; we refer the reader
to their manuals for state of the art and examples.

From here on we take the freedom to use common structures
like lists, sets, bags, and maps over any sorts, including other lists,
sets, etc., by simply mentioning their sorts as parameters. Also,
if S and S ′ are sorts, we write S × S ′ for their product sort. For
example, MapBagNat ,Int×Int is the sort corresponding to maps taking
bags of naturals to pairs of integers. For notational simplicity, we
(ambiguously) use a central dot “·”, read “nothing”, for the units
of all lists, sets, bags, maps, etc., a comma “,” or a whitespace “ ”
for their concatenation, and an infix “ 7→” for building maps. We
also use parentheses for grouping. For example, “3 7→ (−1, 1), · 7→
(7,−3), 3 5 3 7→ (−7,−2)” is a term of sort MapBagNat ,Int×Int, which
is equal to “3 5 3 7→ (−7,−2), 3 7→ (−1, 1), · 7→ (7,−3)”.

We next briefly recall first-order logic with equality (FOL=),
which extends algebraic specifications. A first-order signature
(S,Σ,Π) extends an algebraic signature (S,Σ) with a finite set of
predicate symbols Π. FOL= formulae have the syntax

ψF t = t′ | pred(t1, ..., tn) | ∀X ψ | ψ1 ∧ ψ2 | ¬ψ

plus the usual derived constructs ψ1 ∨ ψ2, ψ1 → ψ2, ∃X ψ, etc.,
where t, t′, t1, ..., tn range over Σ-terms of appropriate sorts, pred ∈
Π over atomic predicates, and X over finite S-indexed sets of vari-
ables. Σ-terms can have variables; all variables are chosen from
a fixed sort-wise infinite S-indexed set of variables, Var. A FOL=

specification (S,Σ,Π,F ) is a FOL= signature (S,Σ,Π) plus a set of
closed (i.e., no free variables) formulae F . A FOL= model M is a
Σ algebra together with relations for the predicate symbols in Π.
Given any closed formula ψ and any model M, we write M |= ψ iff
M satisfies ψ. If ψ has free variables and ρ : Var→ M , also called
an M-valuation, we let ρ |= ψ denote the fact that ρ satisfies ψ.

3.2 Configurations
Matching logic is parametric in configurations, more precisely in a
model for configurations. In this section we discuss such a model,
noting that different programming languages or calculi typically
have different configurations. The same machinery works for all.

Figure 7 shows the configuration syntax of the C fragment dis-
cussed in this paper; our C fragment here is almost identical to the
KernelC language formally defined in [46]. The maps, bags and
lists over the various sorts can be defined using conventional al-
gebraic specification techniques, as discussed in Section 3.1. Sorts
Nat and Int come with various domain operations on them, which
can be used for reasoning. We only consider integer, structure and
pointer types in our fragment. The sort K is a generic sort for
“code” and comprises the entire syntax of the programming lan-
guage; thus, terms of sort K correspond to fragments of program.
Environments are terms of sort Env and are maps from identifiers
to integers. Type environments in TEnv map identifiers to types.

A program configuration for our particular language is a term of
sort Cfg of the form 〈...〉cfg containing a bag of semantic cells. In ad-
dition to 〈...〉k, 〈...〉env and 〈...〉tenv holding a fragment of a program,
an environment and a type environment, respectively, 〈...〉cfg also
holds the following cells: 〈...〉struct holding the available data struc-
tures as a map from structure names to lists of typed fields; 〈...〉funs
holding the available functions as a map from function names to
their arguments and body; 〈...〉fname holding the name of the current

Id F C identifiers
Nat F domain of natural numbers (including operations)
Int F domain of integer numbers (including operations)

Type F int | struct Id | Type *
K F the entire remaining syntax of the C fragment

Env F MapId,Int
TEnv F MapId,Type
Cell F 〈MapId,ListType×Id

〉struct

| 〈MapId,ListType×Id×K〉funs

| 〈K〉k
| 〈Env〉env
| 〈TEnv〉tenv
| 〈Id〉fname
| 〈ListId×K×Env×TEnv〉stack
| 〈MapNat,Int〉heap
| 〈ListInt〉in
| 〈ListInt〉out

Cfg F 〈BagCell〉cfg

Figure 7. Sample configuration

function; 〈...〉stack holding the function stack as a list of frames, each
frame containing a function name and its execution context (the re-
maining code, the environment and the type environment); 〈...〉heap
holding the heap as a map from natural numbers (pointers) to in-
tegers (values); 〈...〉in holding the input buffer as a list of integers;
and 〈...〉out holding the output buffer also as a list of integers.

Our only reason for choosing the particular configuration struc-
ture in Figure 7 is because it turned out to be good enough to de-
fine a formal executable semantics for our language (this is further
discussed in Section 4.1). While matching logic can be used for
program verification without a formal semantics of the language,
but only with an axiomatic Hoare-style semantics [47], as seen in
Section 4 one of its major advantages is that it can also be used
in combination with a formal semantics of the language, without
a need to redefine the language semantics axiomatically. We there-
fore strongly advocate having a formal semantics of the language
in order to do matching logic verification. That not only gives us an
immediate definition of configurations, like in Figure 7, but it can
also be used as is for program verification, as shown in Section 4.3.

Let Σ be the algebraic signature associated to some desired con-
figuration syntax. Then a Σ-algebra gives us a configuration model,
namely a universe of concrete language configurations. Moreover,
Bergstra and Tucker’s result [7] tells us that no matter what model
of configurations one prefers for a language in order to give that
language a formal semantics, there is some finite algebraic spec-
ification (Σ,E) whose initial model is isomorphic to that model.
In practice, however, one may prefer different means to define a
model for configurations, for example using first-order or higher-
order logics, or even directly, using informal mathematics.

From here on we simply assume that T is a given configuration
model, that is, a Σ-algebra, where Σ is the algebraic signature of
configurations. We do not impose any particular means to define
T . In practice, one will likely choose a reasonable model as well as
a background logical theory that allows one to reason about it. For
example, with the configurations in Figure 7, one may want to be
able to infer that any two locations in the heap are distinct:

T |= ∀cfg :Cfg, c :BagCell, n :Nat,m :Nat, i : Int, j : Int, σ :MapNat,Int
(cfg = 〈c 〈n 7→ i, m 7→ j, σ〉heap〉cfg)→ n , m

or even more compactly

T |= ∀n :Nat,m :Nat, i : Int, j : Int, σ :MapNat,Int
(σ = n 7→ i, m 7→ j)→ n , m
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Similarly, in order to state properties like the ones in Section 2,
one has to ensure that Σ contains operator symbols corresponding
to lists of integer numbers and append and reverse on them, for
membership testing of integers to such lists, for binary trees of
integer numbers and for flattening such trees into lists, as well as for
lists of trees and their flattening into lists, etc. Moreover, in order to
verify the programs in Section 2, MatchC needed all the equational
properties below, so the configuration model T underlying MatchC
satisfies all of them. To avoid notational clutter, we assume that all
the variables in the equations below are universally quantified:

rev(nil) = nil
rev([a]) = [a]

rev(A1@A2) = rev(A2)@rev(A1)
in(a, nil) = false
in(a, [b]) = (a == b)

in(a,A1@A2) = in(a,A2) ∨ in(a,A1)
tree2list(empty) = nil

tree2list(tree(a, τl, τr)) = tree2list(τl)@[a]@tree2list(τr)
treeList2list(nil) = nil
treeList2list([τ]) = tree2list(τ)

treeList2list(A1@A2) = treeList2list(A1)@treeList2list(A2)

3.3 Matching Logic
Traditionally, program logics are deliberately not concerned with
low-level details pertaining to program configurations, those de-
tails being almost entirely deferred to operational semantics. This
is a lost opportunity, since configurations contain very precious in-
formation about the structure of the various data in a program’s
state, such as the heap, the stack, the input, the output, etc. Without
direct access to this information, program logics end up having to
either encode it by means of sometimes hard to define predicates,
or extend themselves in non-conventional ways, or sometimes both.
In contrast, matching logic takes program configurations at its core.
We follow a first-order approach here since we found it sufficient
until now in our experiments, but it can be adapted to any logical
formalism that provides support for signatures and terms.

As discussed in Section 3.2, we assume given a syntax and a
model for configurations. More precisely, let Σ be an algebraic sig-
nature (configuration syntax) and let T be a Σ-algebra (configura-
tion model). Σ includes, in particular, the entire abstract language
syntax and the abstract syntax of all the data-structures that one
may need in order to give the language an operational semantics
over the given configurations. To simplify the presentation, let us
assume Σ has a distinguished sort Cfg (for configurations).

We next present matching logic as an extension of FOL= over Σ,
but then we show that it easily translates back into FOL=. In other
words, syntactically speaking, matching logic is a methodological
fragment of FOL=. Semantically, its satisfaction is defined in terms
of the chosen configuration model, T , so in theory one can prove
more properties in matching logic than in FOL=. In practice, it is
expected that sufficiently many properties/axioms of T are avail-
able so that one can identify T with its properties. Nevertheless,
since T is likely to be an initial model, or close to one, one should
not expect complete FOL= axiomatizations of T in general [33].

3.3.1 Syntax
Syntactically, matching logic extends the formulae of FOL= over
Σ with special formulae, called patterns, which are nothing but Σ-
terms of sort Cfg which can contain variables. One can make it
more general and allow patterns of any sort, but for simplicity here
we limit ourselves to just Cfg patterns. Let Var be a sort-wise infi-
nite set of variables. Unlike in Hoare logic, in matching logic there
is no relationship between program variables and logical variables;
with the particular configuration in Section 3.2, the former are ac-
tually constants of sort Id. Recall from Section 3.1 that TΣ is the
set of ground (i.e., no variables) Σ-terms and that TΣ(Var) is the

Σ-algebra of terms with variables in Var, and from Section 3.2 that
there is no enforced relationship between T and TΣ (or TΣ(Var)).

Definition 1. Matching logic extends the syntax of FOL= by adding
Σ-terms with variables, called basic patterns, as formulae:

ϕ F ... conventional FOL= syntax | TΣ,Cfg(Var)

Matching logic formulae of the form π ∧ ψ with π a basic pattern
and ψ a standard FOL= formula (with no patterns) are called
constrained patterns, ones of the form ∃Xπ with X ⊂ Var and π
a constrained pattern are called existential patterns, and ones of
the form π1 ∨ ... ∨ πn with each πi an existential pattern are called
disjunctive patterns. We call all the above generically patterns.

We let ψ, ψ1, ψ′, etc., range over FOL= formulae (containing
no patterns), π, π1, π′, etc., over patterns, and ϕ, ϕ1, ϕ′, etc., over
arbitrary matching logic formulae (typically containing patterns).

Patterns are the most common matching logic formulae. We
next give some examples of patterns. For concreteness, unless oth-
erwise specified, from here on in the paper we work with the par-
ticular signature and model T of configurations in Section 3.2.

Given program variable x (i.e., a constant of sort Id), the pattern

∃c :BagCell, e :Env 〈〈x 7→ 5, e〉env c〉cfg

specifies (the exact semantics of matching logic will be given
shortly) those program configurations in which x is bound to 5 in
the environment. Similarly, the pattern

∃c :BagCell, e :Env, i : Int (〈〈x 7→ i, e〉env c〉cfg ∧ i ≥ 0)

specifies the configurations where x is bound to a positive number.
The following pattern states that x points to an existing location:

∃c :BagCell, e :Env, p :Nat, i : Int, σ :MapNat,Int
〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg

while the pattern

∃c :BagCell, e :Env, p :Nat, i : Int 〈〈x 7→ p, e〉env 〈p 7→ i〉heap c〉cfg

states also that the location x points to is the only one allocated.
Matching logic allows us to write specifications referring to

data located arbitrarily deep in the configuration, at the same time
allowing us to use existential variables to abstract away irrelevant
parts of the configuration. To simplify writing, unless otherwise
specified we adopt the following default notational conventions,
mentioning that other configurations may benefit from other, or
from more, similar notations.

Notation 1. Variables starting with a “?” are assumed existentially
quantified over the largest pattern of the formula containing them
and thus need not be declared. Unless otherwise specified, the sorts
of variables are inferred from their use context. Pattern existentially
quantified variables which appear only once in the pattern can be
replaced by an underscore (anonymous variable) “ ” or by “...”.
Cells mentioned only for structural matching can be omitted when
their presence is understood; e.g., if e is an environment and ψ a
FOL= formula, we may write 〈e〉env ∧ψ instead of 〈〈e〉env ...〉cfg ∧ψ.

Only the last notation is specific to matching logic; the others
are common in the literature and often tacitly used. With these
notational conventions, the patterns above become:

〈x 7→ 5 ...〉env
〈x 7→?i ...〉env ∧ ?i ≥ 0
〈x 7→?p ...〉env 〈?p 7→ ...〉heap
〈x 7→?p ...〉env 〈?p 7→ 〉heap

Now that patterns can be written more compactly, let us further
illustrate the expressiveness of matching logic by discussing a few
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more examples. The following pattern states that program variables
x and y are aliased and point to an existing location:

〈x 7→?p, y 7→?p ...〉env 〈?p 7→ ...〉heap

The following patterns specify configurations in which the pro-
gram variable x is bound to the last integer that has been output
(the most recently output elements are to the right of the output
cell), and configurations in which only one integer has been output
and no program variable is bound to that integer, respectively:

〈x 7→?i ...〉env 〈... ?i〉out
〈e〉env 〈?i〉out ∧ ?i < Codom(e)

The following pattern states that the current function is f and
that it has been called directly by g (stack’s top is to the left):

〈f〉fname 〈(g, , , ) ...〉stack

The following pattern is more complex:

〈x 7→?p ...〉env 〈f〉fname 〈... (g, , x 7→?p ..., x 7→ * ...) ...〉stack

It states that the current function is f, that it has been called
directly or indirectly by function g, and that when g was stacked the
program variable x had a pointer type and was bound to the same
location (?p) to which it is also bound now in f’s environment.

3.3.2 Semantics
Informally, satisfaction in matching logic is defined in terms of
(pattern) matching within the configuration model T . More pre-
cisely, the satisfaction of the FOL= constructs is standard, while
the satisfaction of basic patterns is defined by matching within T .
This intuition works best when T is thought of as an initial algebra
(as it is in our MatchC instance of it), or at least as a term model,
whose elements of sort Cfg are actually ground terms of sort Cfg.
We first give matching logic a direct semantics and then we show
that it reduces to conventional FOL= satisfaction in the fixed con-
figuration model T . Recall (see Section 3.1) that FOL= satisfaction
in model T is defined in terms of T -valuations and their associated
satisfaction relation, that is, in terms of functions ρ : Var→ T and
of a relation ρ |= ψ. Since the syntax of matching logic extends that
of FOL= with basic patterns, which need their semantic counter-
part, we extend FOL=’s valuations to also include a configuration
of T , to be used for matching the basic patterns in the formula.

Definition 2. We define the relation (γ, ρ) |= ϕ over configurations
γ ∈ TCfg, valuations ρ : Var→ T and matching logic formulae ϕ as
follows (for completeness, we also consider the FOL= constructs):

(γ, ρ) |= t = t′ iff ρ(t) = ρ(t′)
(γ, ρ) |= ∀X ϕ iff (γ, ρ′) |= ϕ for all ρ′ : Var→ T with

ρ′(y) = ρ(y) for all y ∈ Var\X
(γ, ρ) |= ϕ ∧ ϕ′ iff (γ, ρ) |= ϕ and (γ, ρ) |= ϕ′

(γ, ρ) |= ¬ϕ iff (γ, ρ) 6|= ϕ

(γ, ρ) |= π iff γ = ρ(π) , where π ∈ TΣ,Cfg(Var)

We write γ |= ϕ whenever (γ, ρ) |= ϕ for all ρ : Var → T , write
ρ |= ϕ whenever (γ, ρ) |= ϕ for all γ ∈ TCfg, and write |= ϕ whenever
(γ, ρ) |= ϕ for all γ ∈ TCfg and all ρ : Var→ T .

Assuming that T is a (ground) term model and γ is a config-
uration of the form 〈〈x 7→ 5, y 7→ 5〉env 〈5 7→ 7〉heap 〈3, 5〉out ...〉cfg
where “...” stands for irrelevant parts of the configuration, then γ
satisfies all the following patterns:

π1 ≡ 〈x 7→ 5 ...〉env
π2 ≡ 〈x 7→?i ...〉env ∧ ?i ≥ 0
π3 ≡ 〈x 7→?p ...〉env 〈?p 7→ ...〉heap
π4 ≡ 〈x 7→?p ...〉env 〈?p 7→ 〉heap
π5 ≡ 〈x 7→?p, y 7→?p ...〉env 〈?p 7→ ...〉heap
π6 ≡ 〈x 7→?i ...〉env 〈... ?i〉out

Moreover, |= π1 → π2, |= π3 → π2, |= π4 → π3, |= π5 → π3,
and, assuming that T correctly defines the claimed maps, lists, etc.,
|= π1 ∧ π5 ∧ π6 → 〈y 7→ 5 ...〉env 〈5 7→ ...〉heap 〈... 5〉out.

We next show how matching logic formulae can be translated
into FOL= formulae, so that its satisfaction becomes FOL= satis-
faction in the model of configurations, T .

Definition 3. Let � be a fresh variable of sort Cfg. If ϕ is a match-
ing logic formula, then let ϕ� be the FOL= formula replacing each
basic pattern π ∈ TΣ,Cfg(Var) in ϕ by the equality � = π. If
ρ : Var → T and γ ∈ TCfg then let ργ : Var ∪ {�} → T be the
mapping defined as ργ(x) = ρ(x) for all x ∈ Var and ργ(�) = γ.

Proposition 1. If ϕ is a matching logic formula, ρ : Var → T and
γ ∈ TCfg, then (γ, ρ) |= ϕ iff ργ |=FOL= ϕ

�. Also, |= ϕ iff T |=FOL= ϕ
�.

Proposition 1 thus tells us that matching logic can be framed as
a methodological fragment of FOL= for a particular model. This
fact may appear disappointing to some readers, so it deserve some
explanations. First, it is actually a strong point in matching logic’s
favor. Indeed, in spite of its descriptive power, we can actually use
conventional theorem provers for matching logic reasoning, pro-
vided that we have a good FOL= formalization of the configura-
tion model T ; the performance and complexity of our experiments
with the MatchC verifier (see Section 5) may serve as an argu-
ment in this direction. Second, one should not under-estimate the
expressive power of particular models, particularly initial models.
While FOL= is complete and thus its satisfaction problem is semi-
decidable, the satisfaction (of FOL= sentences) problem in partic-
ular models can be anywhere in the arithmetic hierarchy (e.g., the
equational satisfaction problem in initial models is Π0

2-complete).
The above being said, we have found that it is hard to work

with a model in practice. Instead, in our implementation, we simply
identify T with the properties that we have accumulated for it in
our background theory, i.e., properties about lists, sets, bags, maps,
etc. (e.g., the associativity and commutativity of constructs for sets,
bags, maps, uniqueness of bindings in maps, etc.). From here on in
this paper we take a similar approach, but more theoretical.

Definition 4. Let T ∗ = {ψ | T |=FOL= ψ} be the FOL= theory of T .

T ∗ is not expected to be decidable or semi-decidable in general.
In practice, however, we typically work with a convenient subset of
it, say F ⊂ T ∗. How such a subset F can be found is interesting,
challenging and very useful, but we are not concerned with it here.
Then Proposition 1 essentially reduces, in practice, the problem
of matching logic reasoning to ordinary FOL= reasoning: |= ϕ in
matching logic if F |=FOL= ϕ�. Notice that one is free to manually
prove theorems of T ∗, possibly with the help of a proof assistant.

3.4 Abstractions
Since matching logic can be framed within FOL=, conventional ab-
straction mechanisms can be used. In this section, however, we pro-
pose an abstraction approach motivated by particularities of match-
ing logic, which turned out to be quite effective in practical experi-
ments with MatchC. The basic idea is to introduce and axiomatize
situations of interest as operations rather than as predicates.

Suppose that one is only interested in the fact that two program
variables are aliased and their location is alive, but what is the
particular location to which they point is irrelevant. Then we can
add to Σ an abstraction operation for configurations together with
an axiom for it as follows (we quantify all variables and give their
types to avoid notational confusion):

CfgF aliased(Id, Id)

∀x : Id, y : Id aliased(x, y)↔
∃p :Nat, ρ :Env, i : Int, σ :MapNat,Int, c :BagCell
〈〈x 7→ p, y 7→ p, ρ〉env 〈p 7→ i, σ〉heap c〉cfg
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We can now use aliased in matching logic specifications and rea-
soning. For example, implications like the one below can be easily
proved (using FOL=; “...” stands for irrelevant subterms):

|= 〈〈x 7→ 3, y 7→ 3 ...〉env 〈3 7→ 5 ...〉heap ...〉cfg → aliased(x, y)

We next show the list heap abstraction which is part of the
library of MatchC and which was used, together with other similar
abstractions, to verify the programs in Section 2. It abstracts heap
subterms into list terms and captures two cases, one in which the
list is empty and the other in which it has at least one element. We
borrowed the notation p 7→ [a, q] from separation logic, but in our
case it stands for a two-binding heap subterm, “p 7→ a, p+1 7→ q”.

〈〈list(p)(α), σ〉heap c〉cfg
↔ 〈〈σ〉heap c〉cfg ∧ p = 0 ∧ α = []
∨ ∃a, q, β (〈〈p 7→ [a, q], list(q)(β), σ〉heap c〉cfg ∧ α = [a]@β)

One can now use this axiom to perform FOL= reasoning like below:

〈〈1 7→ 5, 2 7→ 0, 7 7→ 9, 8 7→ 1, σ〉heap c〉config
↔ 〈〈1 7→ 5, 2 7→ 0, list(0)([]), 7 7→ 9, 8 7→ 1, σ〉heap c〉config
↔ 〈〈list(1)([5]), 7 7→ 9, 8 7→ 1, σ〉heap c〉config
→ 〈〈list(7)([9, 5]), σ〉heap c〉config
↔ ∃q 〈〈7 7→ 9, 8 7→ q, q 7→ 5, q+1 7→ 0, σ〉heap c〉config

Note that by defining configuration abstractions as operations
instead of predicates, we avoid having to define recursive predicates
in matching logic. The axiom above simply constrains terms and
thus is like any other FOL axiom, using no new predicates or logical
connectives. However, note that we can still not avoid difficult
inconsistency aspects due to wrong abstractions, that is, we still
have to check that for a given set of axioms F , it is not the case that
T ∗ ∪F |= false. We currently do not check consistency in MatchC.

4. Matching Logic Rewriting
Matching logic has been introduced in [47] as a vehicle to give
better axiomatic semantics. The main result of [47] says that with
matching logic one can give axiomatic semantics which are for-
wards (like the Floyd rule for assignment) and do not introduce new
quantifiers (like the Hoare rule for assignment); moreover, the re-
sulting semantics is equivalent to Hoare logic, so it shares the same
good properties (modularity, partial correctness, relative complete-
ness). Unfortunately, the approach in [47] shares a major disadvan-
tage with other axiomatic approaches: the target language needs to
be given a new, axiomatic semantics. Axiomatic semantics are less
intuitive than operational semantics, are not easily executable, and
are hard to test. What we want is one formal semantics of a pro-
gramming language, which should be both executable and suitable
for program verification. This is what we do in this section.

4.1 Matching Logic Rewriting and Language Semantics
Operational semantics are typically given in terms of program
configurations. Since matching logic has configurations at its core,
it has been used in a straightforward manner to define operational
semantics by leveraging the wealth of techniques, methodologies
and tools developed by the term rewriting and reduction semantics
communities. In this section we show how the basic notion of a
rewrite (or reduction) rule is smoothly captured by a more general
notion of rewriting, between matching logic formulae. Before that,
we first motivate our choice.

As mentioned in Section 1, there are various tool-supported op-
erational semantics approaches in which a language is defined as a
set of rewrite or reduction rules “l⇒ r if b”, where l and r are con-
figuration terms with variables constrained by boolean condition b.
One of the most popular approaches is reduction semantics with
evaluation contexts [18, 19], with rules “c[t] ⇒ c[t′] if b”, where c
is an evaluation context, t is the redex which reduces to t′, and b a

side condition. Another approach is the chemical abstract machine
[8], where l is a chemical solution that reacts into r under condition
b. The rewriting logic semantics framework K [44] is yet another
approach, based on plain (no evaluation contexts) rewrite rules of
the form “l⇒ r if b”. Finally, higher-order logic is also a successful
framework for defining operational semantics [9, 26, 50], and it is
technically the most powerful of all the above, in that any opera-
tional semantic approach can also be done in higher-order logic.

Any of the above can be used for defining operational semantics
based on rewrite rules of the form “l⇒ r if b”. In our current imple-
mentation (see Section 5), we picked the rewriting logic semantics
approach for a series of (admittedly subjective) reasons:

• First, rewriting logic gives us symbolic execution at no addi-
tional effort, in that rewrite rules which were conceived to work
with concrete domain values apply to symbolic values as well;
e.g., adding a constant n of sort Nat gives us symbolic natu-
ral numbers thanks to its initial model semantics, and rules like
(∀x) 0∗x⇒ 0 apply also to symbolic terms like 0∗(n+1) rewrit-
ing them to 0. This symbolic nature of rewriting logic facilitates
significantly the implementation of matching logic verifiers.
• Second, rewriting logic has good tool support. Maude [12] is

a high-performance rewriting logic engine, with support for ef-
ficient execution of rewrite systems, for exhaustive state-space
analyses (including an LTL model checker), as well as for con-
sistency analysis of rewrite systems. The use of Maude was a
critical factor in the development of MatchC, both w.r.t. speed
of development and w.r.t. performance of verification.
• Third, it is the simplest logical framework among the above,

requiring no evaluation contexts (whose semantics and imple-
mentation are nontrivial [29]) or expensive “airlock” operations
[8]. There is no doubt that rewriting logic semantics can be em-
bedded in higher-order logic, as rewriting is so basic, while it is
not clear that one can go the other way around.
• Finally, a large community of researchers are actively involved

in the rewriting logic semantics project [36], whose aim is to
use rewriting logic and Maude as a framework for programming
language semantics. One of the results of this project is K [44],
which we use in our implementation and briefly discuss next.

Let us briefly discuss how we can define operational semantics inK
ultimately (after its syntactic desugaring) using only rewrite rules
of the form “l ⇒ r if b”, where l, r ∈ TΣ,Cfg(X) are configuration
terms with variables in set X and b is a boolean condition only
constraining the variables in l and r but involving no rewrite rule
premises. K borrows from abstract state machines and from tech-
niques like refocusing [14] the idea of flattening syntax into a list/s-
tack of computational tasks, thus allowing to systematically pull out
from context parts that need to be evaluated and plug back into con-
text their results. For example, the evaluation strategy of the condi-
tional statement in our fragment of C is given by the following pair
of complementary K rules:

〈〈if(e) s else s′ ⇒ ey if(�) s else s′ ...〉k ...〉cfg if e< Int
〈〈ey if(�) s else s′ ⇒ if(e) s else s′ ...〉k ...〉cfg if e ∈ Int

The “�” is a new syntactic constant with the meaning “plug here”
and “y” is a special syntactic list construct with the meaning
“plugged into”. K provides a series of notations allowing quite
compact rewriting logic semantic definitions. For example, the
two rules above are automatically generated from a compact
“strict(1)” attribute associated to the conditional, stating that it
is strict in its first argument. Perhaps the most important notation of
K, which we also adopted in MatchC and can be seen in the exam-
ples in Section 2, is its in-place rewriting: cxt[t1 ⇒ t′1, ..., tn ⇒ t′n]
instead of cxt[t1, ..., tn] ⇒ cxt[t′1, ..., t

′
n]. This allows not only for a
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more compact and less error-prone notation since one needs not
repeat the identical context cxt (which can be large) in both sides
of the rule, but more importantly it highlights the structural frame,
that is, the parts of the term which do not change. Notation 1 is
taken over from K, which uses “...” for structural framing.

Rules like above eventually bring the redex to the top of the 〈...〉k
cell, which can then be matched and rewritten with rules like

〈〈 x⇒ i ...〉k 〈x 7→ i ...〉env ...〉cfg
〈〈if(0) else s⇒ s ...〉k ...〉cfg
〈〈if(i) s else ⇒ s ...〉k ...〉cfg if i , 0
〈〈while(e) s⇒ if(e) { s; while(e) s } else {} ...〉k ...〉cfg

The first rule above gives the semantics of variable lookup, the next
two the semantics of the conditional, and the fourth the unrolling
semantics of the while loop. The K semantics of the C fragment
considered so far in MatchC consists of 41 syntactic constructs
(Σ) and 91 rules like the ones above, excluding the automatically
generated ones corresponding to strictness attributes; most of these
are discussed in [46]. Due to its cell-based configurations and its
rewriting and framing philosophy, each rule matching only what it
needs, K scales well. Several complete languages have been given
formal executableK semantics so far, including an almost complete
semantics of C [17] (it passes 99.2% of GCC’s implementation-
independent torture test suite; for a comparison, GCC itself only
passes 99%, ICC passes 99.4%, and Clang 98.3%; see http:
//c-semantics.googlecode.com). To avoid discussing K in
depth here (see [44] and http://k-framework.org), we wrote
the rules above more verbosely than needed in K.

To summarize the discussion above, there is enough practical
evidence that the fragment of rewriting logic consisting of only
rules (∀X) l ⇒ r if b, where l, r ∈ TΣ,Cfg(X) and b is a boolean
condition involving no rewrite rule premises, is powerful enough to
support realistic operational semantics. Consequently, we currently
focus on capturing only this fragment in our matching logic setting.

Definition 5. A (matching logic) rewrite rule is a pair ϕ ⇒ ϕ′,
where ϕ and ϕ′ are matching logic formulae (not necessarily
closed). A (matching logic) rewrite system is a set of rewrite rules.

As usual with rewrite rules, we call ϕ the left-hand side (LHS)
and ϕ′ the right-hand side (RHS) of the rule ϕ ⇒ ϕ′. Note that
conventional rewrite rules over terms of sort Cfg are just special
matching logic rewrite rules. Indeed, a Cfg unconditional rewrite
rule (∀X) l⇒ r is nothing but a matching logic rewrite rule ϕ⇒ ϕ′

where ϕ and ϕ′ are the basic patterns l and r, respectively, with
the variables in X left free in both ϕ and ϕ′. The same holds true for
conditional rules with boolean conditions: a conditional rewrite rule
“(∀X) l⇒ r if b” is equivalent to any of the matching logic rewrite
rules over constrained patterns l∧b⇒ r or l∧b⇒ r∧b. Therefore,
an operational semantics defined using any of the approaches above
can be regarded as a matching logic rewrite system.

From now on, by a rewrite rule we mean a matching logic
rewrite rule and by a rewrite system we mean a matching logic
rewrite system. As a notational convenience, we write A when we
mean a generic rewrite system, and S when we mean a rewrite
system corresponding to the semantics of a programing language.

Definition 6. A rewrite system S induces a transition system
(T ,⇒T

S
) on the configuration model: γ ⇒T

S
γ′ for some γ, γ′ ∈ TCfg

iff there is some rule ϕ ⇒ ϕ′ in S and some ρ : Var → T such
that (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′. Configuration γ ∈ TCfg terminates
in (T ,⇒T

S
) iff there is no infinite ⇒T

S
-sequence (T ,⇒T

S
) starting

with γ. A rewrite rule ϕ ⇒ ϕ′ is well-defined iff for any γ ∈ TCfg
and ρ : Var → T with (γ, ρ) |= ϕ, there is some γ′ ∈ TCfg with
(γ′, ρ) |= ϕ′. Rewrite system S is well-defined iff each rule of it is
well-defined, and is deterministic iff (T ,⇒T

S
) is deterministic.

Based on the discussion above, it is expected that any program-
ming language is given operational semantics as a rewrite system
S, which generates a transition system on the configuration model,
(T ,⇒T

S
), telling precisely how the language in question operates.

Note that well-definedness does not come for granted: e.g., a rule
l ⇒ false is not well-defined. Nevertheless, rewrite systems cor-
responding to operational semantics like above contain only rules
l ∧ b⇒ r with l and r basic patterns, which are well-defined.

We next define semantic validity in matching logic rewriting.
Recall from Section 1 that a Hoare triple {ψ} code {ψ′} can be re-
garded as a rewrite rule whose left-hand-side embeds code in its
configuration and adds ψ as additional constraints, and whose right-
hand-side contains an empty code in its configuration and only
adds ψ′. In conventional axiomatic semantics, a (partial correct-
ness) Hoare triple is semantically valid, written |= {ψ} code {ψ′}, iff
for any state s |= ψ, if code executed in state s terminates with
state s′ then s′ |= ψ′. This elegant definition of semantic validity
has the luxury of relying on another formal semantics of the lan-
guage, which provides the notions of “execution”, “termination”,
and “state”. Since in matching logic rewriting all these happen in
the same semantics which is given as a matching logic rewrite sys-
tem, and since the closest matching logic element to a “state” is a
ground configuration in TCfg including both the state and the code,
and since the transition system (T ,⇒T

S
) gives all the operational

behaviors of the defined language, we introduce the following:

Definition 7. Let S be a rewrite system and ϕ⇒ ϕ′ a rewrite rule.
Then S |= ϕ ⇒ ϕ′ iff for all γ ∈ TCfg such that γ terminates in
(T ,⇒T

S
) and for all ρ : Var → T such that (γ, ρ) |= ϕ, there exists

some γ′ ∈ TCfg such that γ ⇒?T
S
γ′ and (γ′, ρ) |= ϕ′.

The matching logic rewrite rules are more expressive than the
Hoare triples, since ϕ′ needs not have an empty code cell as im-
plicitly assumed in Hoare triples. If ϕ′ has an empty code cell then
so does γ′ in the definition above, and we get the Hoare validity.

4.2 Matching Logic Operational Deduction
Let us first consider only the first eight proof rules in Figure 1.
We here show that these language-independent rules are sound and
complete for the operational behaviors of the language defined by
S, that is, for (T ,⇒T

S
). That means that these rules can be safely

used to derive correct computations within the operational seman-
tics (soundness), and that any correct computation using the oper-
ational semantics can also be derived using these rules (complete-
ness). Only the first four rules are needed for completeness; the
role of the others becomes more visible in Section 4.3. For the re-
minder of the paper, whenever we write “A ` ϕ⇒1-8 ϕ′” we mean
“A ` ϕ⇒ ϕ′ is derivable with the first eight rules of the proof sys-
tem in Figure 1”, and when we write “A ` ϕ ⇒1-4 ϕ′” we mean
“A ` ϕ⇒ ϕ′ is derivable with the first four proof rules.

Before formalizing and proving the operational soundness and
completeness of these eight rules, let us first discuss an example.

Example 1. Consider the while loop in function reverseList
discussed earlier (Figure 3), modified to only iterate at most once,
that is, modified into a conditional, and let us show that it satis-
fies the claimed invariant. More precisely, let us prove the rewrite
rule in Figure 8, say ∃Xϕ ⇒ ∃Xϕ′, where X = {?x, ?p, ?p, ?B, ?C}.
Recall that, by convention, the “?” variables are existentially quan-
tified over their corresponding patterns. The matching logic rule
in Figure 8 looks different from the invariant in Figure 3 be-
cause of two MatchC notations: first, MatchC desugars invari-
ants inv ϕ loop into matching logic rules ϕ[loop...] ⇒ ϕ[...] ∧
¬ cond(loop) (see Section 5) , where ϕ[code] is the pattern ob-
tained from ϕ by making the contents of its 〈...〉k cell code; second,
as explained in Section 1, MatchC allows the user to refer directly
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〈

〈··· x 7→ ?x, p 7→ ?p, y 7→ y ···〉env
〈··· list(?p)(?B), list(?x)(?C) ···〉heap
〈 if(x != NULL) {

y = x->next;
x->next = p;
p = x;
x = y;

} ···〉k
···

〉cfg ∧ A = rev(?B)@?C
⇒

〈

〈··· x 7→ ?x, p 7→ ?p, y 7→ y ···〉env
〈··· list(?p)(?B), list(?x)(?C) ···〉heap
〈···〉k
···

〉cfg ∧ A = rev(?B)@?C

Figure 8. Matching logic rewrite rule derivable with the first eight
rules of the proof system in Figure 1 with S the executable seman-
tics of the considered fragment of C (see Section 4.1 and [46]). The
ellipses in each pattern stand for distinct free variables, assumed
the same on the corresponding positions in the LHS and the RHS.
The “?” variables are existentially quantified over each pattern.

to program variable x instead of logical variable ?x, generating au-
tomatically the environment cell containing bindings of the form
x 7→ ?x. Since here we want to illustrate a formal proof, we com-
pletely desugar the MatchC notation in Figure 3. We first derive
ϕ ⇒ ∃Xϕ′ and then the desired rule follows by Abstraction. To
derive ϕ ⇒ ∃Xϕ′, it suffices to derive ϕ ∧ ?x = 0 ⇒ ∃Xϕ′ and
ϕ ∧ ?x , 0 ⇒ ∃Xϕ′, since we can then use Case analysis and
Consequence:

• For the former, we iteratively use the executable semantic rules
in S of the considered fragment of C via Axiom, Substitution
and Logical Framing, together with FOL= reasoning via Con-
sequence and with the Transitivity rule, until the condition of
if evaluates to 0 and then the if statement dissolves (its else
branch is empty), thus obtaining ϕ ∧ ?x = 0⇒ ϕ′∧?x = 0. The
derivation of ϕ ∧ ?x = 0 ⇒ ∃Xϕ′ follows via Consequence,
since |= ϕ′ ∧ ?x = 0→ ∃Xϕ′.
• For the latter, like above we also use Axiom, Substitution,

Logical Framing, Consequence and Transitivity until the
condition of if evaluates to ?x , 0, then we apply the se-
mantics of if and take the then branch. To continue with the
execution of the other statements, we need to apply the list
axiom in Section 3.4 from left-to-right; FOL= reasoning elim-
inates the case when the list is empty (since ?x , 0). Then
Abstraction allows us to assume fresh variables a, q and β like
in the axiom of lists in Section 3.4 and thus we can continue
with the execution. After the block terminates, we have:

〈

〈··· x 7→ q, p 7→ ?x, y 7→ q ···〉env
〈··· list(?p)(?B), ?x 7→ [a, ?p], list(q)(β) ···〉heap
〈···〉k
···

〉cfg ∧ ?C = [a]@β ∧ A = rev(?B)@?C

Let ϕ′′ denote this pattern. We can now again use FOL= reason-
ing, this time applying the list axiom from right-to-left and us-
ing properties of the configuration model T (like those in Sec-
tion 3.2), and eventually derive ϕ′′ ⇒ ∃Xϕ′.

If we had not modified the while loop into an if conditional
in the ϕ pattern above, then the second case above would have
started by first applying the rewriting semantics of the while loop
(see Section 4.1), namely unrolling into an if, and then the proof
would have followed similarly until a pattern like the ϕ′′ above was
reached, but one where the 〈...〉k cell contains the original while
loop. Next one can either continue to unroll the loop or one can
conclude, similarly to the above, that ϕ′′ ⇒ ∃Xϕ. Unfortunately,
none of these would prove the original goal, ∃Xϕ⇒ ∃Xϕ′.

We will show how the last rule of the proof system in Figure 1
can be used to deal with circular behaviors in Section 4.3.

In the reminder of this section we prove the soundness and com-
pleteness of the first eight rules for deriving operational behaviors.

Proposition 2. (operational soundness) If S is well-defined, S `
ϕ⇒1-8 ϕ′, and (γ, ρ) |= ϕ for some γ ∈ TCfg and ρ : Var→ T , then
there is some γ′ ∈ TCfg with γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ′.

The following simple result says that if the configuration model
is chosen to be a term model, then transitions in it can also be mim-
icked with the proof system (only the first four rules are needed).

Proposition 3. (operational completeness) If all the rewrite rules
in S only use conjunctive patterns, T is chosen to be a term model,
and γ ⇒?T

S
γ′ for some γ, γ′ ∈ TCfg, then S ` γ ⇒1-4 γ′.

As seen in Section 4.1, rewrite systems corresponding to
rewrite-based operational semantics only use conjunctive patterns.
We need this hypothesis to guarantee that⇒T

S
can be derived using

the Substitution rule with ground substitutions θ : X → TΣ.

Theorem 1. (operational soundness and completeness) If S is
well-defined, its rules only use conjunctive patterns, and T is a
term model, then γ ⇒?T

S
γ′ iff S ` γ ⇒1-8 γ′ for any γ, γ′ ∈ TCfg.

4.3 Matching Logic Program Verification
The results in Section 4.2 tell us that, under reasonable conditions,
the first eight rules of the proof system in Figure 1 faithfully capture
the operational semantics of the language defined using a set of
rewrite rules S. Moreover, they can also be used to derive some
rewriting properties of the language. However, one cannot expect
them to be too powerful as a program verification foundation,
because, as seen in the Example in Section 4.2, they cannot cope
with circular behaviors. In this section we show how the ninth rule
in Figure 1, Circularity, can deal with circular behaviors.

Definition 8. LetA ` ϕ⇒+ ϕ′ be the derivation relation obtained
by dropping the Reflexivity rule from the proof system in Figure 1.

The intuition forA ` ϕ⇒+ ϕ′ is that a configuration satisfying
ϕ needs at least one semantic step to transit to one satisfying ϕ′. All
results in Section 4.2 also hold when we replace⇒ by⇒+ and⇒?T

S

by ⇒+T
S

. Let us now consider the Circularity rule in Figure 1. It
says that we can derive the sequentA ` ϕ ⇒ ϕ′ whenever we can
derive the rule ϕ ⇒ ϕ′ by starting with one or more rewrite steps
in A and continuing with steps which can involve both rules from
A and the rule to be proved itself, ϕ ⇒ ϕ′. The first step can for
example be a loop unrolling step in the case of loops, or a function
invocation step in the case of recursive functions, etc.

Example 2. We show how the Circularity rule can be used to ver-
ify the while loop in function reverseList in Figure 3. In Ex-
ample 1, we showed how the first eight rules of the proof system
in Figure 1 can be used to verify that the claimed loop invariant
holds after the execution of the code obtained by modifying the
while loop into an if conditional, and we argued that they can-
not derive the desired property about the while loop, essentially
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Set circularity:

C is the set { ϕ1 ⇒ ϕ′1, ... , ϕn ⇒ ϕ′n }
A ` { ϕ1 ⇒

+ ϕ′′1 , ... , ϕn ⇒
+ ϕ′′n }

A ∪ C ` { ϕ′′1 ⇒ ϕ′1, ... , ϕ
′′
n ⇒ ϕ′n }

A ` C

Figure 9. Derived circularity rule schema

because of their lack of reasoning support for circular behaviors.
Let ∃Xϕ ⇒ ∃Xϕ′ be the desired property, that is, the matching
logic rewrite rule in Figure 8 with if modified into while. Since
ϕ contains the while loop in its 〈...〉k cell, we can use the loop
unrolling rewrite rule in S and rewrite ϕ into a pattern that re-
sembles the LHS of the rule in Figure 8, except that the then
branch of the if is followed by the while loop. Let us call this
pattern ϕif. Using Consequence and Abstraction, we can thus de-
rive A ` ∃Xϕ⇒+ ∃Xϕif. Thanks to the Circularity rule, it suf-
fices to derive A∪ {∃Xϕ⇒ ∃Xϕ′} ` ∃Xϕif ⇒ ∃Xϕ′. Using a
reasoning sequence similar to the one in Example 1, we can first
derive ϕif ∧ ?x = 0 ⇒ ∃Xϕ′ and then ϕif ∧ ?x , 0 ⇒ ∃Xϕ. We
can now use Transitivity and the rule in ∃Xϕ ⇒ ∃Xϕ′ to derive
A∪ {∃Xϕ⇒ ∃Xϕ′} ` ϕif ∧ ?x , 0⇒ ∃Xϕ′, then Case analysis
to derive A∪ {∃Xϕ⇒ ∃Xϕ′} ` ϕif ⇒ ∃Xϕ′, and then Abstrac-
tion to finally derive A∪ {∃Xϕ⇒ ∃Xϕ′} ` ∃Xϕif ⇒ ∃Xϕ′. For
a formal detailed proof see Section B of the Appendix.

The use of the claimed properties in their own proofs in the rule
Circularity is reminiscent of circular coinduction [43]. However,
like in circular coinduction, where the claimed properties can only
be used in some special contexts, the Circularity rule also disal-
lows their unrestricted use: it only allows them to be used after a
step using the original semantics has been performed. We believe
that our current restriction can be weaken a bit (e.g., by allowing a
Case analysis as last step, instead of an implicit transitivity, where
each case starts with its own rule inA), but note that one cannot al-
low arbitrary use of the claimed rules in their proofs. For example,
if A contains ϕ1 ⇒ ϕ2 then ϕ2 ⇒ ϕ1 can be “proved” in a two-
step transitivity, using itself, the rule in A and then itself again.
We therefore have to restrict the use of the rules of C in their own
proofs. In all our experiments so far, it was always possible to give
the candidate rules proofs which start with a rule inA.

We next state our main result. If a language is deterministic
then its transition system is deterministic (see Definition 6). Note,
however, that program specifications tend to be non-deterministic
in practice, because they typically over-approximate the program
behavior. If a rewrite system is well-defined and deterministic, then
each γ ∈ TCfg admits a unique rewrite sequence.

Theorem 2. (partial correctness) Let S be a well-defined and de-
terministic set of rewrite rules, and S ` ϕ ⇒ ϕ′ a sequent derived
with the proof system in Figure 1. Then S |= ϕ⇒ ϕ′.

The Circularity proof rule in Figure 1 allows only for circularly
deriving one rewrite rule at a time. However, we sometimes want
to circularly derive several rewrite rules at the same time. This hap-
pens, for example, when we verify mutually recursive functions or
fragments of code. It turns out that our Circularity rule in Figure 1
is powerful enough to handle such mutually circular proofs. In what
follows we first propose a more general rule deriving mutual circu-
larities and then we show that it is unnecessary.

Figure 9 shows the Set circularity proof rule schema. Note that
it uses sets of rewrite rules in the right-hand sides of the sequents;
it actually is syntactic sugar for saying that each of the rules is
derivable. That is, if C = { ϕ1 ⇒ ϕ′1, . . . , ϕn ⇒ ϕ′n } is a finite set
of rules and A is a rewrite system, then A ` C is a notation for
the fact that each of the sequents A ` ϕ1 ⇒ ϕ′1, ..., A ` ϕn ⇒ ϕ′n

is derivable. Thus, the rule schema contains one proof rule instance
for each of the rules in C. For example, if C = {ϕ1 ⇒ ϕ′1, ϕ2 ⇒ ϕ′2},
the Set circularity proof rule schema comprises of two proof rules,
one with the conclusion A ` ϕ1 ⇒ ϕ′1 and the other with the
conclusion A ` ϕ2 ⇒ ϕ′2, both of them having the same four
premises, namely:

A ` ϕ1 ⇒
+ ϕ′′1 A∪ {ϕ1 ⇒ ϕ′1, ϕ2 ⇒ ϕ′2} ` ϕ

′′
1 ⇒ ϕ′1

A ` ϕ2 ⇒
+ ϕ′′2 A∪ {ϕ1 ⇒ ϕ′1, ϕ2 ⇒ ϕ′2} ` ϕ

′′
2 ⇒ ϕ′2

Therefore, Set circularity allows us to derive several rewrite
rules at once, which is particularly useful when we want to verify
mutually circular properties. It also allows us to derive all the
desired properties at once, by simply enforcing the left-hand side of
each to rewrite one step with the original language semantics and
then adding all of them to the semantics for the remaining proof
obligations (this is, for example, how MatchC is implemented—
see Section 5). Proposition 4 states that Set circularity does not
increase the expressiveness of our proof system, that is, every
sequent that can be proved using Set circularity can also be proved
with the original proof system in Figure 1.

Proposition 4. Let A be a rewrite system and C be a finite set
of rewrite rules. Then A ` C with the proof systems in Fig-
ures 1 and 9 iffA ` C with the proof system in Figure 1.

A rigorous proof is given in Appendix A. Intuitively, this holds
because one can iteratively apply the Circularity rule for each of
the rewrite rule proof obligations in C. For example, if C consists
of two rules like above, then we can first derive A∪ {ϕ1 ⇒ ϕ′1} `
ϕ2 ⇒ ϕ′2 using the following instance of Circularity

A∪ {ϕ1⇒ϕ′1} ` ϕ2⇒
+ϕ′′2 A∪ {ϕ1⇒ϕ′1, ϕ2⇒ϕ′2} ` ϕ

′′
2 ⇒ϕ′2

A∪ {ϕ1 ⇒ ϕ′1} ` ϕ2 ⇒ ϕ′2

and then use it to transform any proof derivation for

A∪ {ϕ1 ⇒ ϕ′1, ϕ2 ⇒ ϕ′2} ` ϕ
′′
1 ⇒ ϕ′1

into a proof derivation for A∪ {ϕ1 ⇒ ϕ′1} ` ϕ
′′
1 ⇒ ϕ′1. Then we

can deriveA ` ϕ1 ⇒ ϕ′1 using another instance of Circularity,

A ` ϕ1 ⇒
+ϕ′′1 A∪ {ϕ1 ⇒ ϕ′1} ` ϕ

′′
1 ⇒ϕ′1

A ` ϕ1 ⇒ ϕ′1

and similarly forA ` ϕ2 ⇒ ϕ′2.

5. Implementation and Evaluation
Here we discuss our MatchC implementation of the proof system
in Figure 1. While the proof system can be easily implemented in
most theorem proving environments, we preferred an implementa-
tion that emphasizes automated reasoning. Our results demonstrate
that matching logic rewriting is practical in a more common sense,
that is, that it can be used for relatively efficient and highly auto-
mated verification of expressive properties about challenging pro-
grams (like AVL trees and Schorr-Waite).

As discussed in Section 4, general matching logic specifications
are rewrite rules between formulae. As seen in Section 2, our tool
handles specifications of the form:

〈code ···〉k ∧ π⇒ 〈 ···〉k ∧ π
′

where π and π′ are existential patterns. For now, MatchC only
supports (partial correctness) rules summarizing the behavior of
functions or loops. An invariant π for while(C)S is just syntactic
sugar for a rewrite rule. For clarity, let us consider the case when the
condition C checks if a program variable x is non-zero (the general
case is similar). Then, if the environment of π maps x into vx, we
associate with the loop the following rule:

〈while(x)S ···〉k ∧ π⇒ 〈 ···〉k ∧ π ∧ (vx = 0)
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Program Cells Time (s) # paths SMT?
Example programs
undefined — 0.01 1 no
list reverse heap 0.06 2 no
list read in, heap 0.14 7 no
stack inspection call stack 0.24 8 no
tree to list (iterative) heap, out 0.24 11 no
Undefined programs
division by zero — 0.01 1 no
uninitialized variable — 0.01 1 no
unallocated location — 0.01 1 no
Simple programs that need only the environment cell
average — 0.02 1 no
min — 0.04 2 no
max — 0.04 2 no
mul by add — 0.13 3 yes
sum (recursive) — 0.06 2 yes
sum (iterative) — 0.08 2 yes
assoc comm — 0.03 1 no
Lists
list head heap 0.02 2 no
list tail heap 0.02 1 no
list add heap 0.02 1 no
list swap heap 0.03 3 no
list deallocate heap 0.04 2 no
list length (recursive) heap 0.05 2 no
list length (iterative) heap 0.07 2 no
list sum (recursive) heap 0.05 2 no
list sum (iterative) heap 0.07 2 no
list append heap 0.1 3 no
list copy heap 0.13 3 no
list filter heap 0.22 5 no
Input and output
read write in, out 0.12 4 no
list write heap, out 0.06 2 no
list read write heap, in, out 0.15 5 no
Trees
tree height heap 0.1 4 no
tree size heap 0.07 3 no
tree find heap 0.12 5 no
tree mirror heap 0.7 3 no
tree in-order heap 0.7 3 no
tree pre-order heap 0.7 3 no
tree post-order heap 0.7 3 no
tree deallocate heap 0.14 7 no
tree to list (recursive) heap, out 0.1 4 no
Call stack
only g calls f call stack 0.04 2 no
h in stack when f call stack 0.04 2 no
Sorting algorithms
insert heap 0.35 5 no
insertion sort heap 0.41 6 no
bubble sort heap 0.30 6 no
quicksort heap 0.47 8 no
merge sort heap 1.97 16 yes
Search trees
BST find heap 0.15 5 yes
BST insert heap 0.13 4 yes
BST delete heap 0.38 10 yes
AVL find heap 0.15 5 yes
AVL insert heap 43.5 23 yes
AVL delete heap 133.58 36 yes
Schorr-Waite
tree Schorr Waite heap 0.28 6 no
graph Schorr Waite heap 1.73 8 no

Figure 10. Results of MatchC program verification

Therefore, the above rule summarizes the behavior of the loop
when it terminates. Section 4.3 discusses the rewrite rule associated
to the loop invariant of reverseList in Figure 3.

Let S be the rewrite system associated to the C fragment con-
sidered in this paper, and let C be the set of rewrite rules specifying
all the user specified program properties (i.e., properties that one
wants to verify). C contains one candidate rule for each function
and one candidate rule for each loop. MatchC derives the sequent
S ` C using the proof system in Figures 1 and 9. It begins by
applying Set Circularity for C and reduces the task to deriving in-
dividual sequents of the form S ∪ C ` π⇒ π′. To prove each such
rule, the tool rewrites the formula π using rules from S∪C search-
ing for a formula that implies π′. Whenever the semantics rule for
if in S cannot apply because the condition evaluates to a symbolic
value, the verifier performs case analysis and splits the formula into
a disjunction of two formulae, and continues to rewrite both of them
(sound according to the Case Analysis proof rule). Similarly, when
no rule can be applied, it tries to use abstraction axioms (like the
one for lists in Section 3.4), and performs case analysis to continue
the rewriting. As an optimisation, when a formula can be rewritten
with rules from both S and C, the verifier only uses the rules from
C. In particular, only a loop without a specified invariant is unrolled,
and only a function without a rule specification is invoked. Also, if
the current formula implies that application of an abstraction axiom
would result into a more concrete formula, the verifier applies the
respective axiom (for instance, knowing the head of a linked list is
not null results in an automatic list unrolling).

The semantics of the C fragment is given in K [44] as a set of
rewrite rules S over the configuration in Figure 7. The deduction
of rewrite rules is also implemented in K, as a set of rewrite rules
which are added to the original set of semantic rules. Checking of
matching logic formulae implication (required for Consequence) is
implemented in Maude [12]. Proving such an implication consists
of two parts: matching the structure of the configuration, and check-
ing the constraints. The structure matching is done modulo both
pattern axioms and mathematical domain axioms. If all the struc-
ture is successfully matched, and the remaining constraint does not
simplify to true, it is passed to CVC3 [3] and Z3 [15]. MatchC is
sound w.r.t. the matching logic proof system, but is incomplete.

Figure 10 summarises the results of our experiments. Two fac-
tors guided us: proving functional correctness (as opposed to just
memory safety) and doing so automatically (the user only provides
the specifications). The undefined behavior is detected by execu-
tion based on the semantics. The functional behavior of the pro-
grams manipulating lists and trees and performing arithmetic and
I/O operations is algebraically defined, and is similar to that of the
examples in Figures 3 , 4 and 6. For the sorting algorithms, MatchC
checks that the sequence is sorted and has the expected multiset of
elements, and for the search trees, it checks that the tree respects the
data structure invariant and has the expected multiset of elements.

The Schorr-Waite graph marking algorithm [49] computes all
the nodes in a graph that are reachable from a set of starting nodes.
To achieve that, it visits the graph nodes in depth-first search order,
by reversing pointers on the way down, and then restoring them on
the way up. Its main application is in garbage collection. Schorr-
Waite algorithm presents considerable verification challenges [27,
32]. We analyzed the algorithm itself as originally given for graphs,
and a simplified version in which the graph is a tree. For both cases
we proved that a node is marked if and only if it is reachable from
the set of initial nodes, and that the graph does not change.

Most of these examples are proved in milliseconds and do not
require SMT support. We mention that the AVL insert and delete
programs take approximately 3 minutes together because some of
the auxiliary functions (like balance) are not given specifications
and thus their bodies are being executed, resulting in a larger
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number of paths to analyze. The experiments were conducted on a
quad-code, 2.2GHz, 4GB machine running Linux. The source code
of MatchC, as well as an online interface allowing one to verify
and experiment with all C programs discussed here, or to introduce
new ones, is publicly available from the matching logic web page
at http://fsl.cs.uiuc.edu/ml.

6. Related Work
The idea of regarding a program (fragment) as a specification
transformer to analyze programs in a forwards-style is very old.
Floyd did it in his seminal 1967 paper [22]. However, Floyd’s rules
are not concerned with program structural configurations, are not
meant to be operational, and introduce quantifiers.

Equational algebraic specifications have been used to express
pre- and post-conditions and then verify programs forwards using
term rewriting [23]. Evolving specifications [41] adapt and extend
this basic idea to compositional systems, refinement and behavioral
specifications. What distinguishes the various specification trans-
forming approaches is the formalism and style used for specifica-
tions. What distinguishes matching logic is its apparently low-level
formalism, which drops no detail from the program configuration.
The other approaches attempt to do the opposite, to use formalisms
which are as abstract as possible. Matching logic builds upon the
belief that there are advantages in working with explicit configura-
tion patterns, and that the use of variables in configurations offers
a comfortable level of abstraction by only mentioning in each rule
those configuration components which are necessary.

The state of the art in mechanized program verification [1, 39]
is to define both an operational and an axiomatic semantics in a
higher-order logic framework, where the two semantics share the
definition of a “state”, and to prove the axiomatic semantics sound
w.r.t. the operational semantics. Then one can deduce theorems
about programs using rules from both semantics. While libraries
of tactics are developed to partially automate the process, it still
needs to be done for each language independently. The nine-rule
proof system proposed in this paper is language-independent and it
should be easy to mechanize in a higher-order framework.

Separation logic [40, 42] is an extension of Hoare logic. There is
a major difference between separation and matching logic rewrit-
ing: the former enhances Hoare logic to work better with heaps,
while the latter provides an alternative to Hoare logics in which the
configuration structure is explicit in the specifications, so heaps are
treated uniformly just like any other structures in the configuration.

Bedrock [11] is a framework which uses computational higher-
order separation logic and supports mostly-automated proofs about
low-level programs. Unlike MatchC, Bedrock requires the user
to annotate the source code with hints for lemma applications
(like list rolling and unrolling). Specifications use operators defined
in a pure functional language, similarly to the operators defined
algebraically in matching logic. It is likely that the tactics employed
by Bedrock could be adapted for higher-order matching logic.

Shape analysis [48] allows one to examine and verify properties
of heap structures. It has been shown to be quite powerful when
reasoning about heaps. The ideas of shape analysis have also been
combined with those of separation logic [16] to quickly infer in-
variants for programs operating on lists. They can likely be also
combined with matching logic in order to infer patterns.

Dynamic logic (DL) [24] extends FOL with modal operators to
embed program fragments within program specifications. For ex-
ample, the formula ϕ → [s]ϕ′ has the meaning “after executing s
in a state satisfying ϕ, a state may be reached which satisfies ϕ′”.
Like in matching logic, programs and specifications also coexits in
the same logic in dynamic logic. However, matching logic achieves
that by staying within FOL and making use of FOL’s algebraic sig-
natures and term models. The dynamic logic based KeY project

[4] has many common goals and similarities with matching logic;
specifically they both attempt to serve as alternatives, rather than
extend, conventional axiomatic semantics, and their current imple-
mentations are both based on dynamic language semantics.

There are many Hoare-logic-based verification frameworks,
such as ESC/Java [21], VCC [13], Spec# [2], HAVOC [30] and
Dafny [31]. Frama-C/Why [20, 27] proved many properties re-
lating to the Schorr-Waite algorithm. However, their proofs were
not entirely automated. The weakness of traditional Hoare-like ap-
proaches is that reasoning about non-inductively defined data-types
and about heap structures tend to be difficult, requiring extensive
manual intervention in the proof process. Jahob [51] is another veri-
fication framework that mixes automated and interactive reasoning.
Among the separation-logic-based tools, we mention SLAyer [6],
Xisa [10] and Thor [34], which automatically check memory safety,
shape and/or arithmetic properties, and Smallfoot [5], Hip [38] and
Verifast [28], which can prove functional correctness.

7. Conclusion and Future Work
Matching logic rewriting is a semantic framework based on rewrite
rules between matching logic formulae. It smoothly integrates op-
erational and axiomatic semantics, allowing designers to define
programming language semantics operationally, using state of the
art term rewriting techniques and tools, and then to turn these for-
mal executable semantics into program verification logics. A proof
system was introduced and shown sound and complete for opera-
tional semantics, and partially correct for program verification. A
prototype verifier for a fragment of C has been implemented and
evaluated with encouraging results.

We have only scratched the surface, much is left to be done.
First, matching logic itself is new, so we need to develop powerful
reasoning engines for it. Concurrency and non-determinism were
purposely left out; these are big topics which deserve full attention;
rewriting logic was designed specifically to deal with concurrency
and non-determinism, so we are optimistic, though. Relative com-
pleteness and total correctness also need to be addressed. Matching
logic makes formal language semantics useful for verification, so
we expect that many real languages will be given rewriting seman-
tics. Some of these languages have already been given complete
semantics, others were just started. Like other formal semantics,
matching logic can also be embedded into higher-level formalisms
and theorem provers, so that proofs of relationships to other seman-
tics can be mechanized, or even programs verified.
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A. Proofs
A.1 Proof Proposition 1
Proposition 1. If ϕ is a matching logic formula, ρ : Var → T and
γ ∈ TCfg, then (γ, ρ) |= ϕ iff ργ |=FOL= ϕ

�. Also, |= ϕ iff T |=FOL= ϕ
�.

Proof: We prove the first part of Proposition 1 by induction on the
structure of the formula ϕ. We distinguish the following cases:

• ϕ is t = t′. Then (γ, ρ) |= ϕ iff ρ(t) = ρ(t′) iff ργ(t) = ργ(t′) iff
ργ |=FOL= ϕ

� (we use the fact that t and t′ are terms and thus do
not contain �).
• ϕ is ∀Xϕ′. By the induction hypothesis, for all substitutions
ρ′ that agree with ρ on Var \ X, we have that (γ, ρ′) |= ϕ′ iff
ρ′γ |=FOL= ϕ′�, hence (γ, ρ) |= ϕ iff ργ |=FOL= ϕ�, and we are
done.
• ϕ is ϕ1 ∧ ϕ2. By the induction hypothesis, (γ, ρ) |= ϕ1 iff
ργ |=FOL= ϕ

�
1 and (γ, ρ) |= ϕ2 iff ργ |=FOL= ϕ

�
2 . Then, (γ, ρ) |= ϕ iff

(γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2 iff ργ |=FOL= ϕ
�
1 and ργ |=FOL= ϕ

�
2 iff

ργ |=FOL= ϕ
�, and we are done.

• ϕ is ¬ϕ′. By the induction hypothesis, (γ, ρ) |= ϕ′ iff ργ |=FOL=

ϕ′�. Then we have that (γ, ρ) |= ϕ iff (γ, ρ) 6|= ϕ′ iff ργ 6|=FOL= ϕ
′�

iff ργ |=FOL= ϕ
�, and we are done.

• ϕ is π. Then (γ, ρ) |= ϕ iff γ = ρ(π) iff ργ(�) = ργ(π) iff
ργ |=FOL= � = π, and we are done.

For the second part of Proposition 1, we notice that proving |= ϕ iff
T |=FOL= ϕ� is equivalent to proving that, for all γ and ρ, it is the
case that (γ, ρ) |= ϕ iff ργ |=FOL= ϕ�, which follows from the first
part of Proposition 1, and we are done. �

A.2 Proof Proposition 2
Proposition 2. (operational soundness) If S is well-defined, S `
ϕLHS ⇒

1-8 ϕRHS, and (γ, ρ) |= ϕLHS for some γ ∈ TCfg and ρ : Var→
T , then there is some γ′ ∈ TCfg with γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕRHS.

Proof: Let P be a matching logic proof tree deriving the sequent
S ` ϕLHS ⇒ ϕRHS. We prove Proposition 2 by induction on the
structure of P. Let up pick γ ∈ TCfg and ρ : Var → T such that
(γ, ρ) |= ϕLHS. We distinguish the following cases:

• P is a Reflexivity step:
·

S ` ϕ⇒ ϕ

We pick γ′ to be γ. Trivially, we have that γ ⇒?T
S

γ′, and
(γ′, ρ) |= ϕ, so we are done.
• P is an Axiom step:

ϕ⇒ ϕ′ ∈ S

S ` ϕ⇒ ϕ′

Since S is well-defined, there exists a γ′ such that (γ′, ρ) |= ϕ′.
By the definition of the transition system (T ,⇒T

S
), we have that

γ ⇒T
S
γ′, which implies that γ ⇒?T

S
γ′, and we are done.

• The last step in P is a Substitution step:

S ` ϕ⇒ ϕ′ θ : Var→ TΣ(Var)
S ` θ(ϕ)⇒ θ(ϕ′)

Let ρ′ = θ(ρ). It follows that (γ, ρ′) |= ϕ. By the induction
hypothesis there exists a γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ′) |= ϕ′.

Then, we have that (γ′, ρ) |= θ(ϕ′), and we are done.
• The last step in P is a Transitivity step:

S ` ϕ1 ⇒ ϕ2 S ` ϕ2 ⇒ ϕ3

S ` ϕ1 ⇒ ϕ3

By the induction hypothesis, there exists some γ′′ such that
γ ⇒?T

S
γ′′ and (γ′′, ρ) |= ϕ2. Also by the induction hypothesis,

there exists a γ′ such that γ′′ ⇒?T
S
γ′ and (γ′, ρ) |= ϕ3. Due to the

transitivity of the transition relation ⇒?T
S

in T , it follows that
γ ⇒?T

S
γ′, and we are done.

• The last step in P is a Case analysis step:

S ` ϕ1 ⇒ ϕ S ` ϕ2 ⇒ ϕ

S ` ϕ1 ∨ ϕ2 ⇒ ϕ

By the definition of satisfaction for disjunction, (γ, ρ) |= ϕ1 ∨ ϕ2
implies (γ, ρ) |= ϕ1 or (γ, ρ) |= ϕ2. We can assume without loss
of generality that (γ, ρ) |= ϕ1. By the induction hypothesis there
exists a γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ, and we are done.

• The last step in P is a Logic framing step:

S ` ϕ⇒ ϕ′ ψ is a FOL= formula
S ` ϕ ∧ ψ⇒ ϕ′ ∧ ψ

By the definition of satisfaction for conjunction and FOL for-
mulae, (γ, ρ) |= ϕ ∧ ψ implies that (γ, ρ) |= ϕ and ρ |= ψ. By the
induction hypothesis, there exists a γ′ such that γ ⇒?T

S
γ′ and

(γ′, ρ) |= ϕ′. It follows that (γ′, ρ) |= ϕ′ ∧ ψ, and we are done.
• The last step in P is a Consequence step:

|= ϕ1 → ϕ′1 S ` ϕ′1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

S ` ϕ1 ⇒ ϕ2

Since |= ϕ1 → ϕ′1 and (γ, ρ) |= ϕ1, it follows that (γ, ρ) |= ϕ′1. By
the induction hypothesis, there exists a γ′ such that γ ⇒?T

S
γ′

and (γ′, ρ) |= ϕ′2. Since |= ϕ′2 → ϕ2, it follows that (γ′, ρ) |= ϕ2,
and we are done.
• the last step in P is an Abstraction step:

S ` ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅

S ` ∃X ϕ⇒ ϕ′

Since the variables in X do not appear free in ϕ′, and (γ, ρ) |=
∃Xϕ, by the definition of the satisfaction for existential quan-
tification, there exists a substitution ρ′ that agrees with ρ on the
free variables of ϕ′, such that (γ, ρ′) |= ϕ. By the induction hy-
pothesis, there exists γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ′) |= ϕ′.

Since ρ′ and ρ agree on the free variables of ϕ′, we can con-
clude that (γ′, ρ) |= ϕ′, and we are done.

�

A.3 Proof Proposition 3
Proposition 3. (operational completeness) If all the rewrite rules
in S only use conjunctive patterns, T is chosen to be a term model,
and γ ⇒?T

S
γ′ for some γ, γ′ ∈ TCfg, then S ` γ ⇒1-4 γ′.

Proof: We prove Proposition 3 by induction on the length n of the
rewrite sequence γ ⇒T

S
γ′. We mention that in doing so we only

need to use the first four matching logic proof rules.
Base Case n = 0. It follows that γ = γ′. By applying the Reflexiv-
ity proof rule for γ, it follows that S ` γ ⇒ γ.
Induction Step n > 0. We choose γ′′ such that γ ⇒T

S
γ′′, and

γ′′ ⇒?T
S
γ′. By the induction hypothesis we have that S ` γ′′ ⇒ γ′.

By the definition of the (T , ⇒T
S

) transition system, it follows that
there exists a rule ϕ⇒ ϕ′ inS and ρ : Var→ T such that (γ, ρ) |= ϕ,
and (γ′, ρ) |= ϕ′. Since T is a term model, and due to the fact that
rule ϕ ⇒ ϕ′ has only conjunctive patterns, we can pick a (ground)
substitution θ : Var → TΣ such that θ(ϕ) = γ and θ(ϕ′) = γ′′.
By using the Axiom and Substitution proof rules, we can derive
that S ` γ ⇒ γ′′. Finally, by Transitivity, we can derive that
S ` γ ⇒ γ′, and we are done. �
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A.4 Proof Theorem 2
Theorem 1. (partial correctness) Let S be a well-defined and de-
terministic set of rewrite rules, and S ` ϕLHS ⇒ ϕRHS a sequent
derived with the proof system in Figure 1. Then S |= ϕLHS ⇒ ϕRHS.

Proof: Recall that T is a fixed configuration model, and S a fixed
finite, well-defined and deterministic set of rewrite rules. We define
the relation (T , <S) as follows:

γ1 <
S γ2 iff γ1 and γ2 terminate in (T ,⇒T

S
) and γ2 ⇒

+T
S
γ1

We notice that <S has the following properties:
irreflexivity if γ ∈ T terminates in (T ,⇒T

S
), then

¬(γ ⇒+T
S
γ), hence ¬(γ <S γ);

asymmetry if γ1, γ2 ∈ T terminate in (T ⇒T
S

), and
γ1 <

S γ2, then γ2 ⇒
+T
S
γ1 and ¬(γ1 ⇒

+T
S
γ2),

hence ¬(γ2 <
S γ1);

transitivity if γ1, γ2, γ3 ∈ T terminate in (T ,⇒T
S

), and
γ1 <S γ2 and γ2 <S γ3, then γ2 ⇒

+T
S

γ1

and γ3 ⇒
+T
S
γ2; by the transitivity of ⇒+T

S
,

it follows that γ3 ⇒
+T
S
γ1, hence γ1 <

S γ3.
We can conclude that <S is a partial order relation. Moreover, since
any decreasing chain has associated a rewrite sequence containing
only terms which terminate in (T ,⇒T

S
), it follows that there are no

infinite decreasing chains, or equivalently, that <S is well-founded.
We consider the domainD of triples

(γ,A,P)

where γ ∈ T is a ground configuration that terminates in (T ,⇒T
S

),
A is a finite set of rewrite rules, and P is a matching logic proof
tree deriving a sequent of the form A ` ϕ ⇒ ϕ′. We define the
lexicographical order (D,≺) as follows:

(γ1,A1,P1) ≺ (γ2,A2,P2)
iff γ1 <

S γ2
or γ1 = γ2 andA1 ( A2
or γ1 = γ2 andA1 = A2 and P1 is a proper subtree of P2

We notice that ≺ is a lexicographic order based on three well-
founded partial order relations, namely (T , <S), strict inclusion of
finite sets of rules (() and proper subtree relation on proof trees.
It is known that the lexicographic ordering of sequences of fixed
length 2 based on well-founded orders for each component of the
sequence is itself well-founded, thus ≺ is well-founded.

Definition 9. If (γ,A,P) ∈ D is such that P derives the sequent
A ` ϕ ⇒ ϕ′, then let Prop(γ,A,P) be the following property:
for all ρ : Var → T such that (γ, ρ) |= ϕ, there exists a γ′ such
that γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ; moreover, if P does not use the

Reflexivity rule, or the last step in P is a Circularity step, then
γ ⇒+T

S
γ′ (that is, γ rewrites to γ′ in one or more steps).

Let Pfixed be a fixed matching logic proof tree deriving the
sequent S ` ϕLHS ⇒ ϕRHS. We defineDfixed as

Dfixed = {(γ,A,P) ∈ D | P is a subtree of Pfixed}

With these definitions, it is easy to see that Theorem 2 becomes a
corollary of the following result: for all γ ∈ T such that γ termi-
nates in (T ,⇒T

S
), the property Prop(γ,S,Pfixed) holds. Also, note

that the triple (γ,S,Pfixed) belongs to Dfixed for all the terminating
γ. These observations imply that it suffices to prove the following
more general result:

2 Note that this is not true for sequences or arbitrary lengths. For example,
the set of finite sequences of elements of ({0, 1}, <) is not well-founded,
even if < is well-founded on {0, 1}.

Lemma 1. Prop(γ,A,P) holds for all (γ,A,P) ∈ Dfixed.

We prove Lemma 1 by well-founded induction on the ≺ partial
order. Let us pick a (γ,A,P) ∈ Dfixed and let ρ : Var → T be such
that (γ, ρ) satisfy the left-hand-side formula of the rule derived by
P. We have the following cases based on the structure of P:

• P is a Reflexivity step:
·

A ` ϕ⇒ ϕ

We pick γ′ to be γ. Trivially, we have that γ ⇒?T
S

γ′, and
(γ′, ρ) |= ϕ, so we are done.
• P is an Axiom step:

ϕ⇒ ϕ′ ∈ A

A ` ϕ⇒ ϕ′

We distinguish two cases:

ϕ⇒ ϕ′ belongs to S. Since S is well-defined, there exists a
γ′ such that (γ′, ρ) |= ϕ′. By the definition of the transition
system (T ,⇒T

S
), we have that γ ⇒T

S
γ′, which implies that

γ ⇒+T
S
γ′, and we are done.

ϕ ⇒ ϕ′ belongs to A \ S. Since the only way to add rules
to the set of axioms is by using the Circularity rule, there
must be a set of axioms A′ and a proof tree P′ deriving
the sequent A′ ` ϕ ⇒ ϕ′, such that P′ is a subtree of
Pfixed, and P is a leaf of P′. Rules cannot be dropped from
the set of axioms as we traverse a matching logic proof
tree bottom-up, hence it must be the case that A′ ( A.
It follows that (γ,A′,P′) ≺ (γ,A,P). By the induction
hypothesis, Prop(γ,A′,P′) holds. The last step in P′ is a
Circularity step, hence there exists a γ′ such that γ ⇒+T

S
γ′

and (γ′, ρ) |= ϕ′, so we are done.
• The last step in P is a Substitution step:

A ` ϕ⇒ ϕ′ θ : Var→ TΣ(Var)
A ` θ(ϕ)⇒ θ(ϕ′)

Let ρ′ = θ(ρ). It follows that (γ, ρ′) |= ϕ. By the induction
hypothesis there exists a γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ′) |= ϕ′.

Then, we have that (γ′, ρ) |= θ(ϕ′). We notice that if P does
not use the Reflexivity rule, then γ ⇒+T

S
γ′ by the induction

hypothesis, and we are done.
• The last step in P is a Transitivity step:

A ` ϕ1 ⇒ ϕ2 A ` ϕ2 ⇒ ϕ3

A ` ϕ1 ⇒ ϕ3

Let P1 and P2 be the proof trees deriving A ` ϕ1 ⇒ ϕ2
and A ` ϕ2 ⇒ ϕ3. Notice that P1 is a subtree of P, hence
(γ,A,P1) ≺ (γ,A,P). By the induction hypothesis, there exists
a γ′′ such that γ ⇒?T

S
γ′′ and (γ′′, ρ) |= ϕ2. Since P2 is also

a subtree of P and either γ′′ <S γ or γ′′ = γ, it follows that
(γ′′,A,P2) ≺ (γ,A,P). Also by the induction hypothesis, there
exists a γ′ such that γ′′ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ3. Due to the

transitivity of the transition relation ⇒?T
S

in T , it follows that
γ ⇒?T

S
γ′. We notice that if P does not use the Reflexivity rule,

then γ ⇒+T
S
γ′′ and γ′′ ⇒+T

S
γ′ by the induction hypothesis. This

implies that γ ⇒+T
S
γ′, and we are done.

• The last step in P is a Case analysis step:
A ` ϕ1 ⇒ ϕ A ` ϕ2 ⇒ ϕ

A ` ϕ1 ∨ ϕ2 ⇒ ϕ

By the definition of satisfaction for disjunction, (γ, ρ) |= ϕ1 ∨ ϕ2
implies (γ, ρ) |= ϕ1 or (γ, ρ) |= ϕ2. We can assume without loss
of generality that (γ, ρ) |= ϕ1. By the induction hypothesis there
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exists a γ′ such that γ ⇒?T
S
γ′ and (γ′, ρ) |= ϕ. We notice that

if P does not use the Reflexivity rule, then γ ⇒+T
S
γ′ by the

induction hypothesis, and we are done.
• The last step in P is a Logic framing step:

A ` ϕ⇒ ϕ′ ψ is a FOL= formula
A ` ϕ ∧ ψ⇒ ϕ′ ∧ ψ

By the definition of satisfaction for conjunction and FOL for-
mulae, (γ, ρ) |= ϕ ∧ ψ implies that (γ, ρ) |= ϕ and ρ |= ψ. By
the induction hypothesis, there exists a γ′ such that γ ⇒?T

S
γ′

and (γ′, ρ) |= ϕ′. It follows that (γ′, ρ) |= ϕ′ ∧ ψ. We notice that
if P does not use the Reflexivity rule, then γ ⇒+T

S
γ′ by the

induction hypothesis, and we are done.
• The last step in P is a Consequence step:

|= ϕ1 → ϕ′1 A ` ϕ′1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A ` ϕ1 ⇒ ϕ2

Since |= ϕ1 → ϕ′1 and (γ, ρ) |= ϕ1, it follows that (γ, ρ) |= ϕ′1. By
the induction hypothesis, there exists a γ′ such that γ ⇒?T

S
γ′

and (γ′, ρ) |= ϕ′2. Since |= ϕ′2 → ϕ2, it follows that (γ′, ρ) |= ϕ2.
We notice that if P does not use the Reflexivity rule, then
γ ⇒+T

S
γ′by the induction hypothesis, and we are done.

• the last step in P is an Abstraction step:

A ` ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅

A ` ∃X ϕ⇒ ϕ′

Since the variables in X do not appear free in ϕ′, and (γ, ρ) |=
∃Xϕ, by the definition of the satisfaction for existential quan-
tification, there exists a substitution ρ′ that agrees with ρ on
the free variables of ϕ′, such that (γ, ρ′) |= ϕ. By the induction
hypothesis, there exists γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ′) |= ϕ′.

Since ρ′ and ρ agree on the free variables of ϕ′, we can conclude
that (γ′, ρ) |= ϕ′. We notice that if P does not use the Reflexiv-
ity rule, then γ ⇒+T

S
γ′ by the induction hypothesis, and we are

done.
• the last step in P is a Circularity step:

A ` ϕ⇒+ ϕ′′ A∪ {ϕ⇒ ϕ′} ` ϕ′′ ⇒ ϕ′

A ` ϕ⇒ ϕ′

Let P+ and P′ be the proof trees for the sequentsA ` ϕ⇒+ ϕ′′

and A∪ {ϕ⇒ ϕ′} ` ϕ′′ ⇒ ϕ′. Notice that P+ is a subtree of
P, hence (γ,A,P+) ≺ (γ,A,P). By the induction hypothesis,
Prop(γ,A,P+) holds. Since P+ does not use the Reflexivity
rule, there exists a γ′′ such that γ ⇒+T

S
γ′′ and (γ′′, ρ) |= ϕ′′. It

follows that γ′′ <S γ, so (γ′′,A ∪ {ϕ′′ ⇒ ϕ′},P′) ≺ (γ,A,P).
Then Prop(γ′′,A ∪ {ϕ′′ ⇒ ϕ′},P′) holds by the induction
hypothesis. Hence, there exists γ′ such that γ′′ ⇒?T

S
γ′ and

(γ′, ρ) |= ϕ′. Due to the transitivity of the transition relation⇒?T
S

in T , it follows that γ ⇒+T
S
γ′′, and we are done.

�

A.5 Proof Prop 4
Proposition 4. Let A be a rewrite system and C be a finite set
of rewrite rules. Then A ` C with the proof systems in Fig-
ures 1 and 9 iffA ` C with the proof system in Figure 1.

Proof: For brevity, we useA ` C to mean that the combined proof
system in Figures 1 and 9 derives each rule in C, and use A `◦ C
to mean that the proof system in Figure 1 derives each rule in C.
We useA `◦ ϕ⇒ ϕ′ andA `◦ ϕ⇒+ ϕ′ in a similar way.

With the above notation, the direct implication becomes A `◦

C if A ` C. The proof proceeds by induction on the structure of
the proof forest deriving the sequents inA ` C (one proof tree per

sequent). We can assume without loss of generality that C can be
partitioned into rules (] stands for disjoint union):

C =
⊎

i

{ϕi ⇒ ϕ′i } ]
⊎

j

{ϕ j ⇒ ϕ′j}

such that eachA ` ϕi ⇒ ϕ′i and eachA ` ϕ j ⇒ ϕ′j is derivable, the
last step of eachA ` ϕi ⇒ ϕ′i is a step in Figure 1, and the last step
of each A ` ϕ j ⇒ ϕ′j is a Set circularity step. By the induction
hypothesis, all the prerequisites of eachA ` ϕi ⇒ ϕ′i are derivable
with the proof system in Figure 1, hence each A `◦ ϕi ⇒ ϕ′i is
derivable. Also by the induction hypothesis, all the prerequisites of
eachA ` ϕ j ⇒ ϕ′j are derivable with the proof system in Figure 1.
It follows from Lemma 3 (see below) that each A `◦ ϕ j ⇒ ϕ′j
is derivable, which means A `◦ C. The converse implication is
trivial, and we are done.

We therefore have to prove Lemma 3. For it, we need the
following natural deduction property:

Lemma 2. IfA ` ϕ⇒ ϕ′ andA ⊆ A′ thenA′ ` ϕ⇒ ϕ′

Lemma 2 follows trivially by induction on the structure of the proof
tree deriving the sequent.

Lemma 3. Let A be a rewrite system and C be a finite set of
rules {ϕ1 ⇒ ϕ′1, . . . , ϕn ⇒ ϕ′n} such that each sequent in A `◦

{ϕ1 ⇒
+ ϕ′′1 , . . . , ϕn ⇒

+ ϕ′′n } andA∪ C `◦ {ϕ′′1 ⇒ ϕ′1, ..., ϕ
′′
n ⇒ ϕ′n}

is derivable. ThenA∪ (C \ C′) `◦ C′ for any C′ ⊆ C.

In the proof of Proposition 4 we need the particular case when
C′ = C in order to prove that A `◦ ϕ j ⇒ ϕ′j is derivable, where
ϕ j ⇒ ϕ′j ∈ C. The proof of Lemma 3 proceeds by induction on |C′|.
Base Case |C′| = 0. Then there does not exist any ϕi ⇒ ϕ′i ∈ C′,
hence each sequent inA∪ (C \ C′) `◦ C′ is trivially derivable.
Induction Step |C′| , 0. Then there exists a rule ϕi ⇒ ϕ′i ∈ C

′.
Let C′′ = (C \ C′) ∪ {ϕi ⇒ ϕ′i }. Let P be a (possibly partial)
proof tree deriving the sequent A∪ C′′ `◦ ϕ′′i ⇒ ϕ′i obtained
from a proof tree deriving the sequent A∪ C `◦ ϕ′′i ⇒ ϕ′i . Note
that P can be partial because some of the proof tasks of the form
A′ `◦ ϕ ⇒ ϕ′ previously discharged by using the Axiom rule are
now pending if ϕ ⇒ ϕ′ < A′. Rules cannot be dropped from the
set of axioms as we traverse a tree bottom-up, henceA∪C′′ ⊆ A′.
It follows that ϕ ⇒ ϕ′ < A′ only if ϕ ⇒ ϕ′ ∈ C \ C′′, that is,
only if ϕ ⇒ ϕ′ ∈ C′ \ {ϕi ⇒ ϕ′i }. By the induction hypothesis,
we have that A∪ C′′ `◦ ϕ ⇒ ϕ′. By Lemma 2, it follows that
A′ `◦ ϕ ⇒ ϕ′, and we can discharge all the pending proof tasks
of P. Hence A∪ C′′ `◦ ϕ′′i ⇒ ϕ′i . Since A `◦ ϕi ⇒

+ ϕ′′i , by
Lemma 2, it follows thatA∪ (C \ C′) `◦ ϕi ⇒

+ ϕ′′i . We apply the
Circularity proof rule to derive A∪ (C \ C′) `◦ ϕi ⇒ ϕ′i . Since
ϕi ⇒ ϕ′i ∈ C

′ is arbitrarily chosen, it follows that each sequent in
A∪ (C \ C′) `◦ C′ is derivable, and we are done. �

B. Verification of the while loop in function
reverseList in Figure 3

Figure 11 gives a detailed formal proof of correctness for the while
loop in Figure 3. The left column introduces notation for a clear and
succinct proof. We use ϕ for a matching logic formulae, and ψ for a
FOL= formulae. The variables k, ρ, σ and c stand for the frames of
the k, env, heap and cfg cells. The right column contains the actual
proof. Each proof line consists of the derived sequent, the proof rule
applied and the prerequisites (if any). We use the acronym ASLF
to for the successive application of Axiom, Substitution and Logic
framing. Such a sequence is typical when taking one execution
step according to the semantics of the C fragment. Notice that step
10 of the proof uses the list axiom in Section 3.4 from left-to-right,
while step 20 uses the same axiom from right-to-left. The behaviour
specification of the loop is captured by the rule ∃X1ϕ1 ⇒ ∃X1ϕ19.
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while1 ≡ while(x != NULL) { y = p->next; x->next = p; p = x; x = y; }

stmt1 ≡ x = y; while1
stmt2 ≡ p = x; stmt1
stmt3 ≡ x->next = p; stmt2
stmt4 ≡ y = x->next; stmt3
env1 ≡ p 7→ ?p, x 7→ ?x, y 7→ ?y, ρ

heap1 ≡ list(?p)(?B), list(?x)(?C), σ
ψ1 ≡ A = rev(?B)@?C
ϕ1 ≡ 〈〈while1 y k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1
if 1 ≡ if(x != NULL) stmt4
ϕ2 ≡ 〈〈if 1 y k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1
if 2 ≡ if(?x != NULL) stmt4
ϕ3 ≡ 〈〈if 2 y k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1
ϕ4 ≡ ϕ3 ∧ ?x , 0
ϕ5 ≡ ϕ3 ∧ ?x = 0
if 3 ≡ if(1) stmt4
ϕ6 ≡ 〈〈if 3 y k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1 ∧ ?x , 0
if 4 ≡ if(0) stmt4
ϕ7 ≡ 〈〈if 4 y k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1 ∧ ?x = 0

heap2 ≡ list(?p)(?B), ?x 7→ [?v, ?n], list(?n)(?D), σ
ψ2 ≡ ψ1 ∧ ?x , 0 ∧ ?C = [?v]@?D
ϕ8 ≡ 〈〈if 3 y k〉k〈env1〉env〈heap2〉heap c〉cfg ∧ ψ2
ϕ9 ≡ 〈〈stmt4 y k〉k〈env1〉env〈heap2〉heap c〉cfg ∧ ψ2
ϕ10 ≡ 〈〈y = ?n; stmt3 y k〉k〈env1〉env〈heap2〉heap c〉cfg ∧ ψ2

env2 ≡ p 7→ ?p, x 7→ ?x, y 7→ ?n, ρ
ϕ11 ≡ 〈〈stmt3 y k〉k〈env2〉env〈heap2〉heap c〉cfg ∧ ψ2
ϕ12 ≡ 〈〈x->next = ?p; stmt2 y k〉k〈env2〉env〈heap2〉heap c〉cfg ∧ ψ2

heap3 ≡ list(?p)(?B), ?x 7→ [?v, ?p], list(?n)(?D), σ
ϕ13 ≡ 〈〈stmt2 y k〉k〈env2〉env〈heap3〉heap c〉cfg ∧ ψ2
ϕ14 ≡ 〈〈p = ?x; stmt1 y k〉k〈env2〉env〈heap3〉heap c〉cfg ∧ ψ2

env3 ≡ p 7→ ?x, x 7→ ?x, y 7→ ?n, ρ
ϕ15 ≡ 〈〈stmt1 y k〉k〈env3〉env〈heap3〉heap c〉cfg ∧ ψ2
ϕ16 ≡ 〈〈x = ?n; while1 y k〉k〈env3〉env〈heap3〉heap c〉cfg ∧ ψ2

env4 ≡ p 7→ ?x, x 7→ ?n, y 7→ ?n, ρ
ϕ17 ≡ 〈〈while1 y k〉k〈env4〉env〈heap3〉heap c〉cfg ∧ ψ2

heap4 ≡ list(?x)([?v]@?B), list(?n)(?D), σ
ψ3 ≡ A = rev([?v]@?B)@?D
ϕ18 ≡ 〈〈while1 y k〉k〈env4〉env〈heap4〉heap c〉cfg ∧ ψ3
ϕ19 ≡ 〈〈k〉k〈env1〉env〈heap1〉heap c〉cfg ∧ ψ1 ∧ ?x = 0
θ1 ≡ {?p 7→ ?x, ?x 7→ ?n, ?y 7→ ?n, ?B 7→ [?v]@?B, ?C 7→ ?D}
X1 ≡ {?p, ?x, ?y, ?B, ?C}
X2 ≡ {?v, ?n, ?D}
S1 ≡ semantics of the C fragment
S2 ≡ S1 ∪ {ϕ1 ⇒ ∃X1ϕ19}

1 S1 ` ϕ1 ⇒
+ ϕ2 ASLF

2 S2 ` ϕ2 ⇒ ϕ3 ASLF
3 |= ϕ3 → ϕ4 ∨ ϕ5 FOL=

4 S2 ` ϕ5 ⇒ ϕ7 ASLF
5 S2 ` ϕ7 ⇒ ϕ19 ASLF
6 |= ϕ19 → ∃X1ϕ19 FOL=

7 S2 ` ϕ7 ⇒ ∃X1ϕ19 Consequence 5, 6
8 S2 ` ϕ5 ⇒ ∃X1ϕ19 Transitivity 4, 7
9 S2 ` ϕ4 ⇒ ϕ6 ASLF

10 |= ϕ6 → ∃X2ϕ8 FOL= list
11 S2 ` ϕ8 ⇒ ϕ9 ASLF
12 S2 ` ϕ9 ⇒ ϕ10 ASLF
13 S2 ` ϕ10 ⇒ ϕ11 ASLF
14 S2 ` ϕ11 ⇒ ϕ12 ASLF
15 S2 ` ϕ12 ⇒ ϕ13 ASLF
16 S2 ` ϕ13 ⇒ ϕ14 ASLF
17 S2 ` ϕ14 ⇒ ϕ15 ASLF
18 S2 ` ϕ15 ⇒ ϕ16 ASLF
19 S2 ` ϕ16 ⇒ ϕ17 ASLF
20 |= ϕ17 → ϕ18 FOL= list
21 S2 ` ϕ1 ⇒ ∃X1ϕ19 Axiom
22 S2 ` ϕ18 ⇒ ∃X1ϕ19 Substitution 21, θ1
23 S2 ` ϕ17 ⇒ ∃X1ϕ19 Consequence 20, 22
24 S2 ` ϕ16 ⇒ ∃X1ϕ19 Transitivity 19, 23
25 S2 ` ϕ15 ⇒ ∃X1ϕ19 Transitivity 18, 24
26 S2 ` ϕ14 ⇒ ∃X1ϕ19 Transitivity 17, 25
27 S2 ` ϕ13 ⇒ ∃X1ϕ19 Transitivity 16, 26
28 S2 ` ϕ12 ⇒ ∃X1ϕ19 Transitivity 15, 27
29 S2 ` ϕ11 ⇒ ∃X1ϕ19 Transitivity 14, 28
30 S2 ` ϕ10 ⇒ ∃X1ϕ19 Transitivity 13, 29
31 S2 ` ϕ9 ⇒ ∃X1ϕ19 Transitivity 12, 30
32 S2 ` ϕ8 ⇒ ∃X1ϕ19 Transitivity 11, 31
33 S2 ` ∃X2ϕ8 ⇒ ∃X1ϕ19 Abstraction 32
34 S2 ` ϕ6 ⇒ ∃X1ϕ19 Consequence 10, 33
35 S2 ` ϕ4 ⇒ ∃X1ϕ19 Transitivity 9, 34
36 S2 ` ϕ4 ∨ ϕ5 ⇒ ∃X1ϕ19 CaseAnalysis 8, 35
37 S2 ` ϕ3 ⇒ ∃X1ϕ19 Consequence 3, 36
38 S2 ` ϕ2 ⇒ ∃X1ϕ19 Transitivity 2, 37
39 S1 ` ϕ1 ⇒ ∃X1ϕ19 Circularity 1, 38
40 S1 ` ∃X1ϕ1 ⇒ ∃X1ϕ19 Abstraction 39

Figure 11. Matching logic rewriting proof of the while loop in function reverseList in Figure 3
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