
A Semantic Approach to Interpolation

Andrei Popescu? and Traian Florin Şerbănuţă?? and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign.
{popescu2,tserban2,grosu}@cs.uiuc.edu

Abstract. Interpolation results are investigated for various types of for-
mulae. By shifting the focus from syntactic to semantic interpolation, we
generate, prove and classify more than twenty interpolation results for
first-order logic and some for richer logics. A few of these results non-
trivially generalize known interpolation results. All the others are new.

1 Introduction

Craig interpolation is a landmark result in first-order logic [7]. In its original
formulation, it says that given sentences Γ1 and Γ2 such that Γ1 ` Γ2, there is
some sentence Γ whose non-logical symbols occur in both Γ1 and Γ2, called an
interpolant, such that Γ1 ` Γ and Γ ` Γ2. This well-known result can also be
rephrased as follows: given first-order signatures Σ1 and Σ2, a Σ1-sentence Γ1

and a Σ2-sentence Γ2 such that Γ1 |=Σ1∪Σ2 Γ2, there is some (Σ1∩Σ2)-sentence
Γ such that Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2.

One naturally looks for this property in logical systems others than first-order
logic. The conclusion of studying various extensions of first-order logic was that
”interpolation is indeed [a] rare [property in logical systems]” ([2], page 68).
We are going to show in this paper that the situation is totally different when
one looks in the opposite direction, at restrictions of first-order logic. There are
simple logics, such as equational logic, where the interpolation result does not
hold for sentences, but it holds for sets of sentences [28]. For this reason, as well
as for reasons coming from theoretical software engineering, in particular from
specification theory and modularization [3, 13, 14, 9], it is quite common today
to state interpolation more generally, in terms of sets of sentences Γ1, Γ2, and
Γ . This is also the approach that we follow in this paper.

We call our approach to interpolation “semantic” because we shift the prob-
lem of finding syntactic interpolants Γ to a problem of finding appropriate classes
of models, which we call semantic interpolants. We present a precise character-
ization for all the semantic interpolants of a given instance Γ1 |=Σ1∪Σ2 Γ2, as

? Also: Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
Bucharest; and Fundamentals of Computer Science, Faculty of Mathematics, Uni-
versity of Bucharest.

?? Also: Fundamentals of Computer Science, Faculty of Mathematics, University of
Bucharest.

FOSSACS'06, LNCS 3921, pp 307-321. 2006

well as a general theorem ensuring the existence of semantic interpolants closed
under generic closure operators. Not all semantic interpolants correspond to sets
of sentences. However, when semantic interpolants are closed under certain oper-
ators, they become axiomatizable, thus corresponding to some sets of sentences.
Following the nice idea of using Birkhoff-like axiomatizability to prove the Craig
interpolation for equational logics in [28], a similar semantic approach was in-
vestigated in [27], but it was only applied there to obtain Craig interpolation
results for categorical generalizations of equational logics. A similar idea is ex-
ploited in [9], where interpolation results are presented in an institutional [17]
setting. While the institution-independent interpolation results in [9] can poten-
tially be applied to various particular logics, their instances still refer to just one
type of sentence: the one the particular logic comes with.

The conceptual novelty of our semantic approach to interpolation in this
paper is to keep the restrictions on Γ1, Γ2, and Γ , or more precisely the ones
on their corresponding classes of models, independent. This way, surprising and
interesting results can be obtained with respect to the three types of sentences
involved. By considering several combinations of closure operators allowed by
our parametric semantic interpolation theorem, we provide more than twenty
different interpolation results;1 some of them generalize known results, but most
of them are new. For example, we show that if the sentences in Γ1 are first-order
while the ones in Γ2 are universally quantified Horn clauses (UHC’s), then those
in the interpolant Γ can be chosen to be UHC’s too. Surprisingly, sometimes the
interpolant is strictly simpler than Γ1 and Γ2. For example, we show that the
following choices of the type of sentences in the interpolant Γ are possible (see
also table 1, rows 6, 13 and 20):
- Γ1-universal and Γ2-positive imply Γ consists only of universally quantified
disjunction of atoms;
- Γ1-UHC’s and Γ2-positive (i.e., contains only formulae without negations) im-
ply that Γ consists only of universally quantified atoms;
- Γ1- finitary formulae and Γ2- infinitary universally quantified disjunctions of
atoms imply Γ - (finitary) universally quantified disjunctions of atoms
Some Motivation. Craig interpolation has applications in various areas of com-
puter science. Such an area is formal specification theory (see [20, 14]). For struc-
tured specifications [3, 30], interpolation ensures a good, compositional, behavior
of their semantics [3, 5, 27]. In choosing a logical framework for specifications, one
has to find the right balance between expressive power and amenable computa-
tional aspects. Therefore, an intermediate choice between the “extremes”, full
first-order logic and equational logic, might be desirable. We enable (at least par-
tially) such intermediate logics (e.g., the positive- or (∀∨)- logic) as specification
frameworks, by showing that they have the interpolation property. Moreover, the
very general nature of our results w.r.t. signature morphisms sometimes allows
one to enrich the class of morphisms used for renaming usually up to arbitrary
morphisms, freeing specifications from unnatural constraints, like injectivity of

1 Some of our results, such as those for second-order and higher-order logic, were exiled
into the appendix, Section D - see also the technical report [26].

2

FOSSACS'06, LNCS 3921, pp 307-321. 2006

renaming/translation. Some technical details about the applications of our re-
sults to formal specifications may be found in Section 5.

Automatic reasoning is another area where interpolation is important and
where our results contribute. There, putting theories together while still taking
advantage, inside their union language, of their available decision procedures [23,
25], relies on interpolation in a crucial way. Moreover, interpolation provides a
heuristic to “divide and conquer” a proving task: in order to show Γ1 |=Σ1∪Σ2

Γ2, find some Γ over the syntax Σ1 ∩ Σ2 and prove the two “simpler” tasks
Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2. For some simpler sub-logics of first-order logic, such
as propositional calculus, where there is a finite set of semantically different
sentences over any given signature, one can use interpolation also as a disproof
technique: if for each (Σ1 ∩ Σ2)-sentence Γ (there is only a finite number of
them) at least one of Γ1 |=Σ1 Γ or Γ |=Σ2 Γ2 fails, then Γ1 |=Σ1∪Σ2 Γ2 fails. The
results of the present paper, although not effectively constructing interpolants,
provide information about the existence of interpolants of a certain type, helping
reducing the space of search. For instance, according to one of the cases of our
main result, Theorem 2, the existence of a positive interpolant Γ is ensured by
the fact that either one of Γ1 or Γ2 is positive.
Technical Preliminaries. For simplifying the exposition, set-theoretical foun-
dational issues are ignored in this paper.2 Given a class D, let P(D) denote the
collection of all subclasses of D. For any C ∈ P(D), let C denote D \ C, that is,
the class of all elements in D which are not in C. Also, given C1, C2 ∈ P(D) let
[C1, C2] denote all classes C which include C1 and are included in C2.

An operator on D is a mapping F : P(D) → P(D). Let IdD denote the
identity operator. For any operator F on D, let Fixed(F) denote the collection
of all fixed points of F , that is, C ∈ Fixed(F) iff F (C) = C. An operator F on
D is a closure operator iff it is extensive (C ⊆ F (C)), monotone (if C1 ⊆ C2 then
F (C1) ⊆ F (C2)) and idempotent (F (F (C)) = F (C)).

Given a relation R on D, let R also denote the operator on D associated
with R, assigning to each C ∈ P(D) the class of all elements from D in relation
with elements in C, that is, R(C) = {c′ ∈ D | (∃c ∈ C) c R c′}. Notice that the
operator associated to a reflexive and transitive relation is a closure operator.

Given two classes C and D and a mapping U : C → D, we let U also denote
the mapping U : P(C) → P(D) defined by U(C′) = {U(c) | c ∈ C′} for any
C′ ∈ P(C). Also, we let U−1 : P(D) → P(C) denote the mapping defined by
U−1(D′) = {c ∈ C | U(c) ∈ D′} for any D′ ∈ P(D). Given two mappings
U, V : P(C) → P(D), we say that U is included in V , written U v V , iff
U(C′) ⊆ V (C′) for any C′ ∈ P(C).

We write the composition of mappings in “diagrammatic order”: if f : A→ B
and g : B → C then f ; g denotes their composition, regardless of whether f and g
are mappings between sets, classes, or collections of classes.

A>>U
||| `` V

AAAA

B ``

V′
AAA C>>

U ′}}}

A′

Definition 1. We say mappings (between classes) U , V, U ′, V ′
(see diagram) form a commutative square iff V ′ ;U = U ′ ;V.
A commutative square is a weak amalgamation square iff
2 Yet, it is easy to see that references to collections of classes could be easily avoided.

3

FOSSACS'06, LNCS 3921, pp 307-321. 2006

for any b ∈ B and c ∈ C such that U(b) = V(c), there exists some a′ ∈ A′ such
that V ′(a′) = b and U ′(a′) = c.

We call this amalgamation square “weak” because a′ is not required to be unique.

2 First-Order Logic and Classical Interpolation Revisited

First-Order Logic. A (many-sorted) first-order signature is a triple (S, F, P)
consisting of a set S of sort symbols, a set F of function symbols, and a set
P of relation symbols. Each function or relation symbol comes with a string
of argument sorts, called arity, and for functions symbols, a result sort. Fw→s
denotes the set of function symbols with arity w and result sort s, and Pw the
set of relation symbols with arity w. Given a signature Σ, the class of Σ-models,
Mod(Σ) consists of all first-order structures A interpreting each sort symbol s
as a non-empty3 set As, each function symbol σ as a function Aσ from the
product of the interpretations of the argument sorts to the interpretation of the
result sort, and each relation symbol π as a subset Aπ of the product of the
interpretations of the argument sorts.

The set of Σ-sentences, Sen(Σ), consists of the usual first-order sentences
built from equational and relational atoms by iterative application of logical
connectives and quantifiers. The satisfaction of sentences by models (A |= γ)
is the usual Tarskian satisfaction defined inductively on the structure of the
sentences. The satisfaction relation can be extended to a relation |= between
classes of models M ⊆ Mod(Σ) and sets of sentences Γ ⊆ Sen(Σ): M |= Γ
iff A |= γ for all A ∈ M and γ ∈ Γ . This further induces two operators ∗ :
P(Sen(Σ)) → P(Mod(Σ)) and ∗ : P(Mod(Σ)) → P(Sen(Σ)), defined by Γ ∗ =
{A | {A} |= Γ} and M∗ = {γ | M |= {γ}} for each Γ ⊆ Sen(Σ) and M ⊆
Mod(Σ). The two operators ∗ form a Galois connection between (P(Sen(Σ)),⊆)
and (P(Mod(Σ)),⊆). The two composition operators ∗ ; ∗ are denoted • and
are called deduction closure (the one on sets of sentences) and axiomatizable hull
(the one on classes of models). The classes of models closed under • are called
elementary classes and the sets of sentences closed under • are called theories.
If Γ, Γ ′ ⊆ Sen(Σ), we say that Γ semantically deduces Γ ′, written Γ |= Γ ′, iff
Γ ∗ ⊆ Γ ′∗.

Given two signatures Σ = (S, F, P) and Σ′ = (S′, F ′, P ′), a signature mor-
phism φ : Σ → Σ′ is a triple (φst, φop, φrl) mapping the three components
in a compatible way. Sentence translations rename the sorts, function-, and
relation- symbols. (When there is no danger of confusion, we denote each of
the mappings φst, φop, φrl by φ.) For each signature morphism φ : Σ → Σ′, the
reduct A′�φ of a Σ′-model A′ is the Σ-model defined by (A′�φ)α = A′φ(α) for
each α sort, function, or relation symbol from the domain signature of φ. Let
Mod(φ) : Mod(Σ′)→ Mod(Σ) denote the mapping A′ 7→ A′�φ. Satisfaction rela-
tion has the important property that it is “invariant under change of notation”
[17], i.e., for each γ ∈ Sen(Σ) and A′ ∈ Mod(Σ′), A′ |= φ(γ) iff A′�φ |= γ.
3 Birkhoff-style axiomatizability, which will be used intensively in this paper, depends

on the non-emptiness of carriers [28].

4

FOSSACS'06, LNCS 3921, pp 307-321. 2006

