A Semantic Approach to Interpolation

Andrei Popescu, Traian Florin Şerbănuță and Grigore Roşu

University of Illinois at Urbana-Champaign, USA

Craig interpolation and Computer Science

- Interpolation [Craig, 1957] is a landmark result in FOL: If Γ₁ ⊢ Γ₂, then there is an *interpolant* Γ such that:
 - \circ $\Gamma_1 \vdash \Gamma$, $\Gamma \vdash \Gamma_2$
 - \circ All symbols of Γ occur in *both* Γ_1 and Γ_2
- Computer Science applications:
 - SAT-based model checking [McMillan, CAV'03], theorem proving

If $\Gamma_1 \wedge \Gamma_2$ unsat then there exists Γ on their common symbols such that $\Gamma_1 \implies \Gamma$ and $\Gamma \wedge \Gamma_2$ unsat

Theorem proving

Split proof in two by finding an interpolant

Specification theory

Existence of interpolants ensures soundness of structured module flattening

Approaches to proving interpolation

- Syntactical
 - Always constructs an interpolant in FOL
 - Does not usually give specialized answers for sublogics
- Our (semantical) approach:
 - General technique for proving interpolation, via Birkhoff-like axiomatizability results
 - Captures the type of the interpolant more precisely
 - Model theoretical (non-constructive) approach
 - Applicable to amalgamations of FOL sub-logics
- Previous work using semantic techniques [Rodenburg, 1991], [Roşu&Goguen, 2000], [Diaconescu, 2004]

Craig interpolation - diagrammatically

If $\Gamma_1 \vdash \Gamma_2$, then there is an *interpolant* Γ such that:

- $\Gamma_1 \vdash \Gamma, \Gamma \vdash \Gamma_2$
- All symbols of Γ occur in *both* Γ_1 and Γ_2

Craig interpolation - diagrammatically

If $\Gamma_1 \vdash \Gamma_2$, then there is an *interpolant* Γ such that:

- $\Gamma_1 \vdash \Gamma, \Gamma \vdash \Gamma_2$
- All symbols of Γ occur in *both* Γ_1 and Γ_2

Craig interpolation - a semantic point of view

 $\Gamma_1 \vdash \Gamma_2$ iff each model of Γ_1 is also a model for Γ_2 Syntactically Semantically

Craig interpolation - a semantic point of view

 $\Gamma_1 \vdash \Gamma_2$ iff each model of Γ_1 is also a model for Γ_2

Concept stated in terms of inclusions between (axiomatizable) classes of models

Abstracting away the logic

Birkhoff like axiomatizability results characterize axiomatizability by means of closure properties

- *Birkhoff:* A class is equational iff it is closed under subobjects, homomorphic images, and products
- *Keisler-Shelah:* A class is elementary iff it is closed under ultraproducts and ultraradicals

Abstracting away the logic

Birkhoff like axiomatizability results characterize axiomatizability by means of closure properties

- *Birkhoff:* A class is equational iff it is closed under subobjects, homomorphic images, and products
- *Keisler-Shelah:* A class is elementary iff it is closed under ultraproducts and ultraradicals

Our approach: Divide&Conquer

1. Identify the candidates for interpolants by solving the abstract problem

$$\mathcal{I}(\mathcal{M},\mathcal{N})=[\mathcal{U}(\mathcal{M}),\mathcal{V}(\overline{\mathcal{N}})]$$

2. Give general conditions under which closure properties of the original classes are preserved by \mathcal{U} and \mathcal{V} , thus validating the candidate

Main theorem

In any weak amalgamation square such that

- $F_{\mathcal{A}}$, $F_{\mathcal{B}}$ are arbitrary operators
- $G_{\mathcal{A}}, G_{\mathcal{B}}$ are closure operators
- $F_{\mathcal{A}}; G_{\mathcal{A}}; F_{\mathcal{A}} = F_{\mathcal{A}}; G_{\mathcal{A}}$
- \mathcal{U} preserves fixed points of F
- \mathcal{V} lifts G, that is, for all \mathcal{X} , $\mathcal{V}^{-1}(G_{\mathcal{A}}(\mathcal{X})) \subseteq G_{\mathcal{C}}(\mathcal{V}^{-1}(\mathcal{X}))$

if \mathcal{M} is a fixed point of $F_{\mathcal{B}}$ and \mathcal{N} one of $G_{\mathcal{C}}$, then K is a fixed point of both $F_{\mathcal{A}}$ and $G_{\mathcal{A}}$.

Important: Since closure properties are lifted from both sizes, sometimes the interpolant is found in the intersection logic.

E.g.: Universal Horn clauses and positive sentences yield universal quantified atoms

Known results as instances of the theorem (I)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

[Craig 1957]

- Γ_1 First order sentence
- Γ_2 First order sentence
- Γ First order sentence

Known results as instances of the theorem (II)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

[Rodenburg 1991]

- Γ_1 Equations (conditional or not)
- Γ_2 Equations (conditional or not)
- Γ Equations (conditional or not)

New results as instances of the theorem (I)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

Non-trivial generalization of [Rodenburg 1991]:

- Γ_1 First order sentences
- Γ_2 Equations (with or without conditions)
- Γ Equations (with or without conditions)

New results as instances of the theorem (II)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

In relational first order logic:

- Γ_1 Universal Horn clauses
- Γ_2 Positive $(\land,\lor,\exists,\forall)$ sentences
- Γ Universal atoms

The interpolant's type refines both the original sentences' types.

New results as instances of the theorem (II)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

In relational first order logic:

• Γ_1 - Universal Horn clauses

conditional equations

- Γ_2 Positive $(\land,\lor,\exists,\forall)$ sentences
- Γ Universal atoms

equations

Open question: What if we allow functional symbols?

New results as instances of the theorem (III)

For $\Gamma_1 \vdash \Gamma_2$, find Γ such that $\Gamma_1 \vdash \Gamma$ and $\Gamma \vdash \Gamma_2$. Γ should only have symbols common to Γ_1 and Γ_2 .

In an infinitary extension of first order logic:

- Γ_1 First order sentences
- Γ_2 Universally quantified infinitary disjunctions of atoms *Note:* Can express accessibility properties, e.g., $(\forall x)x = 0 \lor x = s(0) \lor \cdots \lor x = s^n(0) \lor \cdots$
- Γ Universally quantified finitary disjunctions of atoms

The interpolant inherits the finitary character of Γ_1 and the structure of Γ_2 .

New interpolation results for FOL (I)

Γ_1	Γ_2	Γ	Types of sentences
\mathcal{FO}	$\mathcal{P}os$	$\mathcal{P}os$	\mathcal{FO} - first order sentences
$\mathcal{P}os^*$	\mathcal{FO}	$\mathcal{P}os$	$\mathcal{P}os$ - positive sentences (i.e.,built with $\land,\lor,\forall,\exists$)
\mathcal{FO}	\forall	\forall	$orall$ - universal sentences (also known as Π^0_0)
∀*	\mathcal{FO}	\forall	
∀*	$\mathcal{P}os$	$\forall \lor$	$\forall \lor$ - universally quantified disjunctions of atoms
\mathcal{FO}]**	Э	\exists - existential sentences (also known as Σ_0^0)
Ξ	\mathcal{FO}	Е	
\mathcal{UH}^*	\mathcal{FO}	UΗ	\mathcal{UH} - universal Horn sentences
\mathcal{FO}	\mathcal{UH}	UΗ	

- * All function symbols of Γ_1 also occur in Γ_2
- ** The symmetrical of *

New interpolation results for FOL (II)

Γ_1	Γ_2	Γ	Types of sentences
UH	\mathcal{UA}	\mathcal{UA}	UH- universal Horn sentences
\mathcal{UA}^*	\mathcal{FO}	\mathcal{UA}	\mathcal{UA} - universally quantified atoms
\mathcal{UH}^*	$\mathcal{P}os$	\mathcal{UA}	$\mathcal{P}os$ - positive (negation-free) sentences
\mathcal{FO}	$\forall \lor$	$\forall \lor$	$\forall \lor$ - universally quantified disjunctions of atoms
$\forall \lor^*$	\mathcal{FO}	$\forall \lor$	
\mathcal{UH}_∞	UA	UA	
$\mathcal{UH}_^*$	\mathcal{FO}_∞	\mathcal{UH}_∞	
\mathcal{FO}_∞	$\forall \lor_{\infty}$	$\forall \lor_{\infty}$	
$\forall \lor_{\infty}^{*}$	\mathcal{FO}_∞	$\forall \lor_{\infty}$	
\mathcal{FO}	$\forall \lor_{\infty}$	$\forall \lor$	

* All function symbols of Γ_1 also occur in Γ_2

Generalized Craig Interpolation Property

Framework: algebraic specification, with language translations (signature morphisms) that might identify items

Generalized Craig Interpolation Property

- Our results are formulated in this more general framework
- Relax requirements on types of signature morphisms
- Example (many-sorted FOL):
 - [Borzyszkowski, 2000] FOL Interpolation holds if both signature morphisms are injective on sorts
 - Instance of our result: it is enough that (either) one of them be injective on sorts

Conclusions

- Shifted the focus from the syntactic, to a semantic view of interpolation
- Axiomatizability results yield interpolation results
- New interpolation results for various sub-FOL logics
- Combined-logic interpolation: the interpolant takes advantage of the particular form of each side
- Further insight into the issue of signature squares having the interpolation property
- Future work:
 - Extend our technique to other, less conventional logics
 - Try to combine our semantic approach, which provides plenty of information of the interpolant's type, with more constructive approaches