
The RV System
Tutorial

Patrick Meredith and Grigore Rosu
joint work with

Feng Chen, Dongyun Jin, Dennis
Gri!th, Michael Ilseman
Runtime VeriÞcation, Inc.

University of Illinois

Wednesday, November 10, 2010

The RV System

¥ Combines Runtime Monitoring and
Predictive Analysis

2

from a given Vector in Java is not used after theVector is updated. In this case
the parameters will be aVector and an Enumeration, and the property will be
checked for every pair ofVector and Enumerationobjects.

Predictive analysis allows one to check safety properties against all theviable
inferred executions of a program that can be generated by creating a causal
model from one run of the program. This is especially useful for checking safety
properties that rely on the behavior of concurrent code, such as Þnding races
and atomicity violations.

The remainder of this paper is as follows: Section 2 discusses a high level
overview of the RV system. Section 3 provides an explanation of runtime moni-
toring, including an explanation of parametric slicing and several examples of
how to use the monitoring portion of the RV system (referred to as RV-Monitor).
Additionally, some performance results are given. Section 4 discusses the concepts
necessary to understanding the predictive analysis of the RV system (RV-Predict),
as well as explaining, at a high level, several of the algorithms used in prediction.
As with monitoring, several examples and results are given.

2 System Overview

!"#$%&'(%) !"#*)+,'-(

.(%/'-'(01
"'%23('%&1
4+(+-('%&

5+&+)'-1*)%6+)(0
4+(+-('%&

!3-+14+(+-('%&7&8()9/+&(3('%&

:398321;2'-'&<=%<<'&<

!9&('/+
$%&'(%)'&<1

*)+,'-('%&1
=%<<'&<1.86+-(

*)+,'-('%&1
$%&'(%)1='>)3)0

1*)%<)3/1
?&,+)1@+8(

*3)3/+()'-
;2'-'&<1

Fig. 1. System Overview

Fig. 1 shows the dependency diagram for the RV System. The RV System
consists of two components, RV-Monitor and RV-Predict, which are further
divided into sub-components. The arrows represent the direction of data ßow.
In the case of components that generate code, the generated code is treated as
synonymous with the component that generates it in order to simplify the diagram.

1. RV-Monitor
(a) Runtime Monitoring performs actual monitoring on a program under

test. This is achieved by generating an AspectJ aspect that is weaved into
the program under test, which is then run to collect monitoring results.
This is discussed in detail in Section 3.

(b) Prediction Logging Aspect generates an aspect that is weaved into
the program under test that causes the program to generate logging
info for use in prediction of arbitrary properties. This is orthogonal to
the Instrumentation component ofRV-Predict described below, and

New Version of JavaMOP New Version of jPredictor

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Why Monitoring

¥ Monitoring is well -adopted in many
engineering disciplines
ÐFuses, watchdogs, Þre-alarms, etc.

¥ Monitoring adds redundancy
ÐIncreases reliability, robustness and

conÞdence in correct behavior, reduces
risk

¥ Provably correct systems can fail , too
ÐUnexpected environment, wrong/strong

assumptions, hardware or OS errors, etc.

Wednesday, November 10, 2010

Applications of Monitoring

¥ Debugging
Ð Development
Ð Error messages

¥ Testing
Ð Development
Ð Error messages

¥ Security/Reliability/Robustness/É
Ð Production
Ð Recovery mechanisms

¥ Programming Paradigm
Ð Production
Ð General actions

Wednesday, November 10, 2010

Runtime Monitoring Systems
(a few of them)

¥ " 2001
Ð MAC (UPenn), PAX (NASA), TimeRover

(commercial)

¥ 2002-2004
Ð HAWK/Eagle (NASA), MOP (UIUC), POTA (UTA)

¥ # 2005:
Ð PQL (Stanford)
Ð Tracematches (Oxford)
Ð PTQL (Berkeley/Stanford/Novell)
Ð Pal (UPenn)
Ð RuleR (Manchester)
Ð É many others

Wednesday, November 10, 2010

FailFast Iterator

Vector v = new Vector();
Iterator i = v.iterator();
v.add(new Integer(2));
while (i.hasNext()) …

¥ Following code throws exception in Java (FailFast):

¥ FailFast: if the underlying vector is changed when an iterator
is used for enumerating elements, the iterator fails.

¥ However É

Wednesday, November 10, 2010

MOP Example: Safe Enumeration

¥ No exception raised if one uses
Enumeration instead of Iterator
ÐJava language decision, showing that

SafeEnum(Vector v, Enumeration+ e) {
 event create after(Vector v) returning(Enumeration e): ...
 event updatesource after(Vector v) : ...
 event next before(Enumeration e) : ...

 ere : create next* updatesource+ next
 @match { System.out.println(ÒFailed Enumeration!"); }
}

> 250 AspectJ LOC generated É
Wednesday, November 10, 2010

Complexity of SafeEnum

¥ Tricky to check SafeEnum manually
Ð Two counters needed, one in the vector (the

current timestamp) and the other in the
enumeration (the vectorÕs timestamp when
creating the enumeration).

Ð Accesses to vector / enumerator can be
scattered all over the code, both in program
and in libraries

Ð Accesses to vectorÕs counter must be
synchronized

Ð Every implementation of the Enumeration
interface should repeat the above work

Wednesday, November 10, 2010

¥ Bug found in jHotDraw

¥ The underlying vector should not be
changed when one of its enumerations is
being used!

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

Example of Unsafe Enumeration

Wednesday, November 10, 2010

¥ Bug found in jHotDraw

¥ The underlying vector should not be
changed when one of its enumerations is
being used!

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

Example of Unsafe Enumeration

May cause unexpected
behaviors, e.g., a
NoSuchElement Exception
or some errors later.

Wednesday, November 10, 2010

RV-Monitor
(Based on Monitoring Oriented

Programming - MOP)
http://fsl.cs.uiuc.edu/mop

A generic runtime veriÞcation
framework

- proposed in 2003 Ð
RVÕ03, ICFEMÕ04, RVÕ05, CAVÕ05,

TACASÕ05, CAVÕ06,
CAVÕ07, OOPSLAÕ07, ASEÕ08, RTSSÕ08,

AOSDÕ08,TACASÕ09, É
Wednesday, November 10, 2010

What RV-Monitor Supports

¥ Observe a run of a system
Ð Requires instrumentation
Ð Can be o$ine or online

¥ Check it against desired properties
Ð SpeciÞed using patterns or in a logical formalism

¥ React/Report (if needed)
Ð Error messages
Ð Recovery mechanisms
Ð General code

Wednesday, November 10, 2010

RV-Monitor Model
Program Execution

Wednesday, November 10, 2010

RV-Monitor Model
Program Execution

Abstract Trace

Observation/Abstraction

Wednesday, November 10, 2010

RV-Monitor Model
Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Wednesday, November 10, 2010

RV-Monitor Model
Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Action

Action

Wednesday, November 10, 2010

RV-Monitor Model
Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Action

Action

Monitors verify abstract traces against desired properties;
can be dynamically created or destroyed

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Monitor Synthesis

Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Action

Action

Wednesday, November 10, 2010

Monitor Synthesis

Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Action

Action

How do we generate e!cient
monitors?

Wednesday, November 10, 2010

MOP: Extensible Logic
Framework

¥ Generic in speciÞcation formalisms
¥ Logic plugin : plugable monitor synthesis

components for di%erent logics
¥ Already provides plugins for many logics

Ð FSM (Finite State Machine), ERE (extended regular
expressions), PTLTL (Past-time LTL), FTLTL
(Future-time LTL), ATL (Allen temporal logic), JML
(Java modeling language), PtCaRet (Past-time
Call/Return), CFG (Context-free grammars), É

¥ The desired property can be arbitrarily
complex: Raw speciÞcations

Wednesday, November 10, 2010

FSM Plugin
Finite State Machine

¥ Easy to use, yet powerful
¥ Many approaches/users encode

important properties directly in Þnite
state machines, e.g., Typestates

¥ Monitoring FSM
ÐDirect translation from an FSM

speciÞcation to a monitor

Wednesday, November 10, 2010

ERE Plugin
Extended Regular Expressions
¥ Regular expressions

ÐWidely used in programming, easy to
master for ordinary programmers

ÐExisting monitor synthesis algorithm

¥ Extended regular expressions
ÐExtend regular exps with complement

(negation)
ÐSpecify properties non-elementarily more

compactly
ÐMore complicated to monitor

Wednesday, November 10, 2010

LTL Plugins
Linear Temporal Logic

¥ MOP includes both a past-time plugin
(PTLTL) and an over-all LTL plugin for
LTL

¥ PTLTL uses a dynamic programming
algorithm, low resources, suitable for
hardware

¥ LTL uses a translation through
alternating automata. Semantics of
past is di%erent than PTLTL

Wednesday, November 10, 2010

¥ Most systems support Þnite state
monitors
ÐRegular languages
ÐLinear temporal logics

¥ These cannot monitor structured
properties:

21

CFG Plugins
Context-Free Grammar

Wednesday, November 10, 2010

¥ Most systems support Þnite state
monitors
ÐRegular languages
ÐLinear temporal logics

¥ These cannot monitor structured
properties:

21

CFG Plugins
Context-Free Grammar

Wednesday, November 10, 2010

22

GLR Parsing Yields CFG
Monitors

¥ Reads input Left to right, produces Right-
most derivation; table driven

¥ Bottom-up parsing
Ðkeeps stack with the current, and previous

states
¥ E!cient
¥ Handles all context-free grammars, even

those with ambiguity
¥ Makes it a good candidate for CFG monitor

synthesis!

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

MOP Monitoring Model
Program Execution

Abstract Trace

M1 M2 M3 ÉMonitors

Observation/Abstraction

Verification

Action

Action

Monitors can be dynamically created or destroyed
Parametric monitoring

Wednesday, November 10, 2010

Parametric Properties

Needed, but hard to monitor e!ciently

SafeEnum(Vector v, Enumeration+ e) {
 event create after(Vector v) returning(Enumeration e): ...
 event updatesource after(Vector v) : ...
 event next before(Enumeration e) : ...

 ere : create next* updatesource+ next
 @match { System.out.println(ÒFailed Enumeration!"); }
}

Parameters

Wednesday, November 10, 2010

Safe Enumeration as Parametric
Property

Usage pattern (using regular expressions) of three
events
updatesource(v) : change vector v
create(v,e) : create enumeration e from vector v
next(e) : use enumeration e

1 2
create updatesource

updatesourcenext

next
30

Violation state

Monitor

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

next

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Monitoring Safe Enum
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

next

É

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Lack of Parameters Leads to False
Alarms

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

É

Wednesday, November 10, 2010

Lack of Parameters Leads to False
Alarms

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

É

v2.remove(0);

Wednesday, November 10, 2010

Lack of Parameters Leads to False
Alarms

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

next

É

v2.remove(0);

Wednesday, November 10, 2010

Lack of Parameters Leads to False
Alarms

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v.remove(0);

É

create

updatesource

next

É

Appear to be a violation but it is not; false alarm!

v2.remove(0);

Wednesday, November 10, 2010

Adding Parameters to Events
Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v2.remove(0);

É

Wednesday, November 10, 2010

Adding Parameters to Events

create(v, e)

update(v2)

next(e)

É

É

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v2.remove(0);

É

Wednesday, November 10, 2010

Adding Parameters to Events

create(v, e)

update(v2)

next(e)

É

É

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v2.remove(0);

É

update(v)

v.remove(0);

Wednesday, November 10, 2010

Adding Parameters to Events

create(v, e)

update(v2)

next(e)

É

É

Parametric traces: traces containing events with parameters;
Abundant in practice, especially in object-oriented programs

Main Thread:

Vector v = //initialization;

É
Enumeration e = v.elements();

É
Object obj = e.nextElement();

É

Task Thread:

É
v2.remove(0);

É

update(v)

v.remove(0);

Wednesday, November 10, 2010

Checking Parametric Traces

Wednesday, November 10, 2010

Checking Parametric Traces

updatesource(v1)

create (v1,e1)

updatesource(v2)

next(e1)

create(v1,e2)

updatesource(v1)

next(e1)

parametric trace

Wednesday, November 10, 2010

Checking Parametric Traces

updatesource(v1)

create (v1,e1)

updatesource(v2)

next(e1)

create(v1,e2)

updatesource(v1)

next(e1)

parametric trace

1

2

create

updatesource

updatesource

next

next

3

0

non-parametric monitor

Wednesday, November 10, 2010

Checking Parametric Traces

updatesource(v1)

create (v1,e1)

updatesource(v2)

next(e1)

create(v1,e2)

updatesource(v1)

next(e1)

parametric trace

1

2

create

updatesource

updatesource

next

next

3

0

non-parametric monitor

Wednesday, November 10, 2010

Checking Parametric Traces

updatesource(v1)

create (v1,e1)

updatesource(v2)

next(e1)

create(v1,e2)

updatesource(v1)

next(e1)

parametric trace

1

2

create

updatesource

updatesource

next

next

3

0

parametric monitor

Wednesday, November 10, 2010

Parametric Monitors
¥ Other approaches: Monolithic (centralized)

monitors
Ð Tracematches [Oxford], Program Query Language

(PQL) [Stanford], Eagle [NASA], etc.
Ð Bound to speciÞc formalisms/checking mechanisms
Ð Limited expressiveness, speciÞc to application

domains

¥ Our solution: decentralized monitors
Ð Formalism-independent, works with any formalism

¥ More expressive, adaptive to di%erent domains

Ð Facilitates optimization (separation of concerns)
¥ Evaluation shows better performance

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

create (v1,e1)

 next(e1)

For given parameters (v, e)

updatesource(v1)

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

v1, e1 v1, e2 v2, e1 v2, e2

create (v1,e1)

 next(e1)

For given parameters (v, e)

updatesource(v1)

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

v1, e1 v1, e2 v2, e1

create (v1,e1)

 next(e1)

For given parameters (v, e)

updatesource(v1)

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

v1, e1 v1, e2 v2, e1

create (v1,e1)

 next(e1)

For given parameters (v, e)

updatesource(v1)

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

v1, e1 v1, e2 v2, e1

create (v1,e1)

 next(e1)

For given parameters (v, e)

trace slice

updatesource(v1)

Wednesday, November 10, 2010

next

Parametric Trace Slicing

updatesourceupdatesource(v1)

create

updatesource(v2)

next

create(v1,e2)

updatesource

next(e1)

v1, e1 v1, e2 v2, e1

create (v1,e1)

 next(e1)

updatesource

create

updatesource

next

next

For given parameters (v, e)

trace slice

updatesource(v1)

Wednesday, November 10, 2010

Naive monitoring of Parametric
Traces

¥ Every parametric trace contains multiple non-
parametric trace slices, each corresponding
to a particular parameter binding

1 2
create updatesource

updatesourcenext

next
30

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Naive monitoring of Parametric
Traces

¥ Every parametric trace contains multiple non-
parametric trace slices, each corresponding
to a particular parameter binding

v1, e1

v1, e2

1 2
create updatesource

updatesourcenext

next
30

1 2
create updatesource

updatesourcenext

next
30

Wednesday, November 10, 2010

Parametric Trace Slicing -
Challenges

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

update(v1)

useEnum(e1)

v1, e1 v1, e2 v2, e1

update(v1)

createEnum(v1,e1)

useEnum(e1)

update(v1)

useEnum(e1)

update

createEnum

useEnum

update

useEnum

update

createEnum

update

useEnum

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Parametric Trace Slicing -
Challenges

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

update(v1)

useEnum(e1)

v1, e1 v1, e2 v2, e1

update(v1)

createEnum(v1,e1)

useEnum(e1)

update(v1)

useEnum(e1)

update

createEnum

useEnum

update

useEnum

update

createEnum

update

useEnum

useEnum

How to do it efficiently?

For given parameters (v, e)

Wednesday, November 10, 2010

Parametric Trace Slicing -
Challenges

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

update(v1)

useEnum(e1)

v1, e1 v1, e2 v2, e1

update(v1)

createEnum(v1,e1)

useEnum(e1)

update(v1)

useEnum(e1)

update

createEnum

useEnum

update

useEnum

update

createEnum

update

useEnum

useEnum

How to do it efficiently?

For given parameters (v, e)

What if the trace is not complete?

Wednesday, November 10, 2010

¥ Online: process events as receiving
them and do not look back for the
previous events

¥ E!cient
Ð Scan the trace once
Ð Events discarded immediately after being

processed

¥ What information should be kept for
the unknown future?

Online Parametric Trace
Slicing

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Slicing Example

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

v1

updateupdate

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

v1 v1, e1

updateupdate

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

v1 v1, e1

update update

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

v1 v1, e1

update update

createEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

v1 v1, e1 v2

update update

createEnum

update

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

v1 v1, e1 v2

update update

createEnum

updateupdate

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

v1 v1, e1 v2

update update

createEnum

updateupdate

useEnum

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

v2, e1v1 v1, e1 v2

update update

createEnum

updateupdate

useEnum

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

v2, e1v1 v1, e1 v2

update update

createEnum

update update

useEnumuseEnum

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

v2, e1v1 v1, e1 v1, e2v2

update update

createEnum

update update

update

createEnum

useEnumuseEnum

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

v2, e1v1 v1, e1 v1, e2v2

update update

createEnum

update update

update

createEnum

useEnumuseEnum

e1

useEnum

For given parameters (v, e)

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

v2, e1v1 v1, e1 v1, e2v2

update update

createEnum

update update

update

createEnum

useEnumuseEnum

e1

useEnum

For given parameters (v, e)

Optimization: based on static property analysis, generate
specialized slicing code for the given specification

Wednesday, November 10, 2010

Slicing Example

update(v1)

createEnum(v1,e1)

update(v2)

useEnum(e1)

createEnum(v1,e2)

v1 v1, e1 v1, e2v2

update update

createEnum

update

update

createEnum

useEnum

For given parameters (v, e)

Optimization: based on static property analysis, generate
specialized slicing code for the given specification

Wednesday, November 10, 2010

RV-Monitor Performance

38

Comparison of Tracematches (TM), JavaMOP (MOP), and RV: Average percent runtime overhead

HasNext UnsafeIter
Unsafe-
MapIter

Unsafe-
SyncColl

Unsafe-
SyncMap

All
Prop

TM MOP RV TM MOP RV TM MOP RV TM MOP RV TM MOP RV RV

antlr 1 4 -2 0 3 -2 3 3 1 -1 -1 -1 0 -2 0 0

bloat 2119 448 116 19194 569 251 OOM 1203 178 1359 746 212 1942 716 130 982

chart 1 0 -2 15 2 -1 1 0 -2 -2 -2 -1 -2 -2 -2 0

eclipse 1 -4 -2 1 -5 -4 0 -5 -3 -5 -4 -5 -5 -2 -3 -3

fop 2 4 -2 4 7 -1 9 7 -2 1 -2 -2 -1 -3 -1 1

hsqldb 15 0 -3 13 -1 -3 13 1 -3 9 -4 -2 7 -3 -3 -3

jython 13 0 0 11 0 1 150 18 3 11 1 1 10 0 0 4

luindex -7 1 -1 4 -2 -1 3 -1 0 -1 2 0 -1 2 0 12

lusearch 3 -1 -2 22 1 2 7 0 -7 3 0 -6 5 4 0 3

pmd 70 26 -1 207 12 5 OOM 181 56 40 13 2 58 17 -1 69

xalan 5 1 -1 16 4 0 5 5 0 7 -1 -2 7 0 -1 1

Fig. 6. Comparison of Tracematches (TM), JavaMOP (MOP), and RV:

(A) average percent runtime overhead; (B) total peak memory usage in MB.

(convergence within 3%, OOM means out of memory after about 40 hours running)

5 Evaluation of the RV System

For our experiments, we used a Pentium 4 2.66GHz / 2GB RAM / Ubuntu 9.10
machine and version 2006-10 of the DaCapo [5] benchmark suite. While a new
version of DaCapo is available, it does not provide the bloat benchmark, which we
favor due to the extreme overhead of monitoring Itarator -based properties. The
UnsafeIter specification with bloat causes 19194% runtime overhead (i.e., 192
times slower) and uses 7.6MB of heap memory in Tracematches, and causes 569%
runtime overhead and uses 147MB in JavaMOP, while the original program uses
only 4.9MB [12]. The default data input for DaCapo was used and the -converge

option to obtain the numbers after convergence within ± 3%. AspectJ instrumen-
tation introduces a different garbage collection behavior in DaCapo, sometimes
causing the benchmark to slightly outperform the original program; this accounts
for the negative overheads seen in both runtime and memory. We used the AspectJ
compiler 1.6.4 (AJC) and Sun’s JVM 1.6.0 for the evaluation. For Tracematches,
we used the most recent release version, 1.3.0, from [1]. The properties HasNext ,
UnsafeIter , UnsafeMapIter , UnsafeSyncColl , UnsafeSyncMap found
in [6, 7] were tested on Tracematches, JavaMOP, and RV for comparison. We also
monitored all five properties at the same time in RV.

Figures 6 and 7 summarize the results of the evaluation. While other bench-
mark examples, except pmd with UnsafeMapIter , show low overheads less
than 30% in JavaMOP, bloat shows prohibitive overhead in both runtime and
memory performance. This is because bloat generates many iterators and all
properties in this evaluation are intended to monitor iterators. Bloat creates
1,625,770 collections and 941,466 iterators in total while 19,605 iterators coexist
at the same time at peak, in an execution. Also, bloat calls hasNext() 78,451,585
times and next() 77,666,243 times. Therefore, we mainly discuss bloat in this
section, although RV shows improvements for other examples as well.

Figure 6 (A) shows the percent runtime overhead of Tracematches, JavaMOP,
and RV. Overall, RV has over an order of magnitude less runtime overhead
than Tracematches, and it is, on average, almost four times faster than JavaMOP

13

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Why Prediction

¥ Concurrent programs are hard to
analyze
ÐModel checking: number of interleavings

is prohibitively large
ÐTesting: interleavings depend on

environment

¥ Combine dynamic and static methods
to Þnd bad behaviors near correct
executions

40

Wednesday, November 10, 2010

Our Solution

¥ Sliced Causality
ÐGeneral purpose technique to predict

(bad) behaviors from correct runs
ÐSound : No false alarms

¥ RV-Predict
ÐTool implementing Sliced Causality
ÐAllows for prediction of any property for

which an algorithm exists
ÐBetter than tools specialized simply for

data race or atomicity violations
41

Wednesday, November 10, 2010

Prediction Example

42
/18

Predicting Concurrency Errors

Task Thread:

…

…

s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

…

Main Thread:

s1: resource.authenticate();

s2: flag.value = true;

…

Observed execution: … s1 s2 s3 s4 …

Property: “authenticate before access”

while (! flag.value)

4

Wednesday, November 10, 2010

Prediction Example

¥ Buggy S4 can be executed before S 1

¥ Low possibility to hit error in testing
43

/18

Predicting Concurrency Errors

Task Thread:

…

…

s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

…

Main Thread:

s1: resource.authenticate();

s2: flag.value = true;

…

Observed execution: … s1 s2 s3 s4 …

! Buggy: s4 can be executed before s1

! Low possibility to hit the error in testing

Property: Òauthenticate before accessÓ

4

Wednesday, November 10, 2010

Prediction Example

¥ Buggy S4 can be executed before S 1

¥ Low possibility to hit error in testing
43

/18

Predicting Concurrency Errors

Task Thread:

…

…

s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

…

Main Thread:

s1: resource.authenticate();

s2: flag.value = true;

…

Observed execution: … s1 s2 s3 s4 …

! Buggy: s4 can be executed before s1

! Low possibility to hit the error in testing

Property: Òauthenticate before accessÓ

4

Can we predict the error even when the above
execution is observed?

Yes! But not in the traditional way

Wednesday, November 10, 2010

Special Case: Data Races

¥ Our techniques work for any
behavioral property

¥ One of the simplest properties is
race detection
ÐTwo accesses to a shared variable can

take place concurrently
ÐAt least one of the accesses is a write

44

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Predictive Runtime Analysis

47
/18

Predictive Runtime Analysis

5

Search space

Wednesday, November 10, 2010

/18

Predictive Runtime Analysis

5

Search space

Observed execution

Predictive Runtime Analysis

48

Wednesday, November 10, 2010

/18

Predictive Runtime Analysis

5

Search space

Observed execution

Causal model

Predictive Runtime Analysis

49

Wednesday, November 10, 2010

/18

Predictive Runtime Analysis

5

Search space

Observed execution

Causal model

Inferred
executions

Bug

Predictive Runtime Analysis

50

Wednesday, November 10, 2010

/18

Predictive Runtime Analysis

5

Search space

Observed execution

Causal model

Inferred
executions

Bug

Predictive Runtime Analysis

50

More relaxed causal
model yields more inferred

executions

Wednesday, November 10, 2010

¥ Originally for distributed systems
[Lamport-78]
Ð Applied to shared memory systems by several authors

¥ Causal model = non-permutable pairs of
events
Ð a

Ð Causal dependency: if two events access the same location and one
writes it, then their execution order matters

¥ Inferred executions = extending the
causal model

Traditional Predictive Runtime
Analysis: Happens-Before

51
/18

Traditional Predictive Runtime Analysis:
Happens-Before

! Originally for distributed systems [Lamport-78]
" Applied to shared-memory systems by many authors

! Causal model = non-permutable pairs of events
" = {intra-thread total orders} U {causal dependencies}
" Causal dependency: if two events access same location

and one writes it, then their execution order matters

! Inferred executions = extending the causal model

6

Wednesday, November 10, 2010

Happens-Before Works... If
Lucky

52

/18

Happens-Before Works ... If Lucky

7

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

Observed execution: s3 s1 s2 s4

Property: Òauthenticate before accessÓ

Wednesday, November 10, 2010

/18

Happens-Before Works ... If Lucky

7

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:
s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

Causal dependency: s3 < s2Observed execution: s3 s1 s2 s4

Property: “authenticate before access”

Bad execution inferred: s3 s4 s1 s2. Bug detected!

Chances of observing this execution are very low

Happens-Before Works... If
Lucky

53

Wednesday, November 10, 2010

Happens-Before Limitations

54

/18

Happens-Before: Limitations

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: if (! flag.value)

 Thread.yield() ;
s4: resource.access();

Causal dependency: s2 < s3. No bug found …

Observed execution: s1 s2 s3 s4

Property: “authenticate before access”

8

Too constrained: access will be performed regardless of the flag

Wednesday, November 10, 2010

Sliced Causality

¥ Relaxes the Happens-Before causal model
ÐFormally proved in [chen-rosu-07]

¥ How? Focus on the property
¥ Use static information about the program
¥ Remove events and causalities irrelevant

to the property
ÐSmaller and more relaxed causal model
Ð(Exponentially) more inferred executions
ÐBetter predictive capability

55

Wednesday, November 10, 2010

Sliced Causality

¥ Start with those events relevant to the
property

¥ Add events on which they are control
dependent (transitively, intrathread)

¥ Add events on which they are data
dependent (transitively, interthread)

56

Wednesday, November 10, 2010

Static Information: Control Scope

¥ S2 is in the control scope of S 1 if its
execution depends on a choice at S 1

¥ Extends to other control statements
Ðbreak/continue, return, exceptions

57

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {

s3: ...

 }

s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }

s4: ...

s1: while (!flag) {

s2: ...

 }

s3: ...

Wednesday, November 10, 2010

Static Information: Control Scope

¥ S2 is in the control scope of S 1 if its
execution depends on a choice at S 1

¥ Extends to other control statements
Ðbreak/continue, return, exceptions

57

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {

s3: ...

 }

s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }

s4: ...

s1: while (!flag) {

s2: ...

 }

s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {
s3: ...

 }
s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }
s4: ...

s1: while (!flag) {

s2: ...

 }
s3: ...

Wednesday, November 10, 2010

Static Information: Control Scope

¥ S2 is in the control scope of S 1 if its
execution depends on a choice at S 1

¥ Extends to other control statements
Ðbreak/continue, return, exceptions

57

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {

s3: ...

 }

s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }

s4: ...

s1: while (!flag) {

s2: ...

 }

s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {
s3: ...

 }
s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }
s4: ...

s1: while (!flag) {

s2: ...

 }
s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {
s3: ...

 }
s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }
s4: ...

s1: while (!flag) {

s2: ...

 }
s3: ...

Wednesday, November 10, 2010

Static Information: Control Scope

¥ S2 is in the control scope of S 1 if its
execution depends on a choice at S 1

¥ Extends to other control statements
Ðbreak/continue, return, exceptions

57

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {

s3: ...

 }

s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }

s4: ...

s1: while (!flag) {

s2: ...

 }

s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {
s3: ...

 }
s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }
s4: ...

s1: while (!flag) {

s2: ...

 }
s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {
s3: ...

 }
s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }
s4: ...

s1: while (!flag) {

s2: ...

 }
s3: ...

/18

Static Information: Control Scope
[chen-rosu-06]

! S2 is in the control scope of S1 if its
execution depends on a choice at S1

! Extends to other control statements
" break/continue, return, exceptions

s1: if (flag) {

s2: ...

 } else {

s3: ...

 }

s4: ...

10

s0: i=0;

s1: while (i<3) {

s2: ...

s3: i++

 }

s4: ...

s1: while (!flag) {

s2: ...

 }

s3: ...

Wednesday, November 10, 2010

Slice Causality Works!

58

/18

Sliced Causality Works!

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: if (! flag.value)

 Thread.yield() ;

s4: resource.access();

Observed execution: s1 s2 s3 s4

Property: “authenticate before access”

Only s1 and s4 directly relevant to the property

11Wednesday, November 10, 2010

Slice Causality Works!

59

/18

Sliced Causality Works!

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: if (! flag.value)

 Thread.yield() ;
s4: resource.access();

s4 s1 is a potential execution. Bug detected!

Observed execution: s1 s2 s3 s4

Sliced causality: s1 <> s4;

Execution of s4 not dependent of s3; ignore the causal dependency s2 < s3

Property: Òauthenticate before accessÓ

Only s1 and s4 directly relevant to the property

11Wednesday, November 10, 2010

/18

No False Alarms �•

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: while (! flag.value)

 Thread.yield();
s4: resource.access();

Observed execution: s1 s2 s3 s4

Property: “authenticate before access”

12

No False Alarms ¿½

60

Wednesday, November 10, 2010

/18

No False Alarms �•

Main Thread:

s1: resource.authenticate()

s2: flag.value = true;

Task Thread:

s3: while (! flag.value)

 Thread.yield();
s4: resource.access();

Sliced causality: s1 <s2 < s3 < s4, no false alarm!

Observed execution: s1 s2 s3 s4

Execution of s4 depends on flag.value being true at s3

causal dependency s2 < s3 matters

Property: “authenticate before access”

12

No False Alarms ¿½

61

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

RV-Predict Pipeline

63

/18

jPredictor: Filling the box
Original Program

Property

14

Predicted Violations:

Counter-Examples

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

Original Program

Property

14

Predicted Violations:
Counter-Examples

RV-Predict Pipeline

64

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

Original Program

Instrumented Program

Structural
Information

Property

14

Predicted Violations:

Counter-Examples

RV-Predict Pipeline

65

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

JVM

Preprocessor

Original Program

Instrumented Program

Recorded Trace
Structural

Information

Property

Complete Trace

14

Predicted Violations:

Counter-Examples

RV-Predict Pipeline

66

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

JVM

Preprocessor

Original Program

Instrumented Program

Recorded Trace
Structural

Information

Property

Trace Slicer

Complete Trace

Sliced Trace

14

Predicted Violations:
Counter-Examples

RV-Predict Pipeline

67

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

JVM

Preprocessor

Original Program

Instrumented Program

Recorded Trace
Structural

Information

Property

Trace Slicer

Vector Clock Calculator

Complete Trace

Sliced Trace

Causal Model

14

Predicted Violations:

Counter-Examples

RV-Predict Pipeline

68

Wednesday, November 10, 2010

/18

jPredictor: Filling the box

Static Analyzer

JVM

Preprocessor

Property Checker

Original Program

Instrumented Program

Recorded Trace
Structural

Information

Property

Trace Slicer

Vector Clock Calculator

Complete Trace

Sliced Trace

Causal Model

14

Predicted Violations:
Counter-Examples

RV-Predict Pipeline

69

Wednesday, November 10, 2010

Overview
¥ Monitoring

¥ RV-Monitor Demo
¥ RV-Monitor Techniques and Implementation

Ð Monitor Synthesis

Ð Parametric Monitoring

Ð Optimizations

¥ Prediction

¥ RV-Predict Demo
¥ RV-Predict Techniques and Implementation

Ð Sliced Causality

Ð Pipeline

Ð Race Prediction

Wednesday, November 10, 2010

Data Race Prediction
¥ Consider all pairs of accesses in the trace

ÐWe actually do something smarter

¥ Check if either access is a write
ÐWe are not worried about read-read races

¥ Check if they have incomparable VCs
ÐIncomparable VCs means accesses could be

reordered

¥ If they have di%erent lock sets then race
found

71

Wednesday, November 10, 2010

RV-Predict Performance

72

Runtime Verification
NNX10CC41P

A Runtime Verification System for Developing,
Analyzing and Controlling Complex Safety-Critical Software

jPredictor RV-Predict

Name Input Real Time Disk Usage Real Time Disk Usage

account - 0:02.57 236K 0:06.07 364K
elevator - 5:55.29 63M 1:20.31 864K
tsp map4 2 4:24.44 16M 1:45.22 744K
tsp map5 2 8:12.31 17M 2:45.28 868K
tsp map10 2 > 3 hours > 230M 33:45.32 2.8M
huge - crash crash 0:42.22 13M
medium - crash crash 0:06.12 840K
small - crash crash 0:05.99 292K
mixedlockshuge - > 2 hours > 250M 0:05.68 2.9M
mixedlocksbig - 4:39.08 25M 0:05.68 496K
mixedlocksmedium - 0:08.92 2.7M 0:07.25 308K
mixedlockssmall - 0:05.46 1.5M 0:05.67 296K

Figure 7.1: RV-Predict Vs. jPredictor

systems. Huge, medium, small, and the mixed locks examples are microbenchmarks that we designed to
test particularly difficult aspects of race detection, such as millions of accesses to the same shared variable.

Several changes in engineering have lead to this massive speedup of prediction.
First, we use the Racer algorithm [21] during logging to reduce the number of shared variables we

consider while checking for data races. Our version of the Racer algorithm, which is implemented as an
rv-monitor property and referred to as Macer, can also be used in a stand-alone fashion when a quick result is
more useful than an accurate result. Figure 7.2 shows the rv-monitor property that implements the majority
of the Racer algorithm. The call to ReportedRaces.checkRace(mv) refers to a class defined in an associated
Java file. The idea is to only log modifications to variables that are in the “shared modified” state. Before
a variable is shared there is no reason to track it, because there cannot be a race on a variable that is used
in only one thread. Before it is modified, there cannot be a race (of any importance), because it has not
been touched. Technically there can still be read-read races, but read-read races have no effect on program
output, so it is common practice to ignore them. After running Macer, we run our normal prediction race
detection on only those variables that are reported by running Macer. The version of Macer actually used
during logging is an inlined version of the rv-monitor specification above, but we provide this specification
for those who wish to use it for monitoring purposes.

One of the most major performance improvements came from our improved representation of traces.
Traces in rv-predict are stored in zipped archives. One of the biggest challenges of prediction is reversing
the trace so that slicing may be performed. The jPredictor implementation simple read through the file
backwards using unbuffered IO, which was incredibly slow. Not only is that slow, but it makes it impossible
to compress the traces. This lack of compression is not merely a waste of disk space, but also a source
of poor performance caused by spending more time blocking for disk writes. In order to reverse the trace
during logging, a buffer of some number of events is kept (we default to ten thousand). When the buffer
fills, the events in it are reversed and written to a zip file. Each new buffer is given its own zip file, and then
when the trace is read back in the zip files are read in opposite order of creation; this effectively reverses the

19

jPredictor vs. RV-Predict

Wednesday, November 10, 2010

Conclusion

¥ RV-Monitor is a generic yet e!cient
¥ monitoring system

ÐExtensible logic framework: FSM, ERE,
PTLTL, FTLTL, LTL, CFG, PTCaRet, É

¥ RV-Predict provides very e!cient
causal predict of generic properties
ÐRace detection, atomicity violations,

monitoring properties

Wednesday, November 10, 2010

