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Abstract Recent developments in runtime verification and monitoring show
that parametric regular and temporal logic specifications can be efficiently
monitored against large programs. However, these logics reduce to ordinary
finite automata, limiting their expressivity. For example, neither can spec-
ify structured properties that refer to the call stack of the program. While
context-free grammars (CFGs) are expressive and well-understood, existing
techniques for monitoring CFGs generate large runtime overhead in real-life
applications. This paper demonstrates that monitoring parametric CFGs is
practical (with overhead on the order of 12% or lower in most cases). We
present a monitor synthesis algorithm for CFGs based on an LR(1) parsing
algorithm, modified to account for good prefix matching. In addition, a logic-
independent mechanism is introduced to support matching against the suffixes
of execution traces.

1 Introduction

Runtime verification (RV) is a relatively new formal analysis approach in
which specifications of requirements are given together with the code to check,
as in traditional formal verification, but the code is checked against its re-
quirements at runtime, as in testing. A large number of runtime verification
approaches and systems, including TemporalRover (Drusinsky, 1997–2009),
JPaX (Havelund and Roşu, 2001), JavaMaC (Kim et al, 2004), Hawk/Eagle
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(d’Amorim and Havelund, 2005), Tracematches (Allan et al, 2005; Avgustinov
et al, 2007), J-Lo (Bodden, 2005), PQL (Martin et al, 2005), PTQL (Gold-
smith et al, 2005), MOP (Chen and Roşu, 2007, 2003), Pal (Chaudhuri and
Alur, 2007), RuleR (Barringer et al, 2008), etc., have been developed recently.
In a runtime verification system, monitoring code is generated from the spec-
ified properties and integrated with the system one wishes to monitor. There-
fore, a runtime verification approach consists of at least three interrelated
aspects: (1) a specification formalism, used to state properties to monitor, (2)
a monitor synthesis algorithm, and (3) a program instrumentor. The chosen
specification formalism determines the expressivity of the runtime verification
approach and/or system.

Monitoring safety properties is arbitrarily complex (Schneider, 2000). Re-
cent developments in runtime verification, however, show that regular and
temporal-logic-based formal specifications can be efficiently monitored against
large programs. As shown by a series of experiments in the context of Trace-
matches (Avgustinov et al, 2007) and JavaMOP (Chen and Roşu, 2007), para-
metric regular and temporal logic specifications can be monitored against large
programs with little runtime overhead, on the order of 12% or lower. However,
both regular expressions and temporal logics reduce to ordinary finite au-
tomata when monitored, so they have inherently limited expressivity. More
specifically, most runtime verification approaches and systems consider only
flat execution traces, or execution traces without any structure. Consequently,
users of such runtime verification systems are prevented from specifying and
checking structured properties, those properties referring to the program struc-
ture such as properties with requirements on the contents of the program call
stack. Examples of such structured safety properties include “a resource should
be released in the same method which acquired it” or “a resource cannot be
accessed if the unsafe method foo is in the current call stack”.

+ +
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+
+ + ++

+
++

First violation:
No release before end

Second violation:
Unmatched release+ = acquire

= releaseRelevant trace
starts here

Fig. 1 Example trace for structured acquire and release of locks.
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1.1 Example

An important and desirable category of properties that cannot be expressed
using regular patterns is one in which pairs of events need to match each other,
potentially in a nested way. For example, suppose that one prefers to use one’s
own locking mechanism for thread synchronization. As usual, for multiple rea-
sons including the allowance of re-entrant synchronized methods (in particular
to support recursion), locks are allowed to be acquired and released multiple
times by any given thread. However, the lock is effectively released, so that
other threads can acquire it, only when the lock releases match the lock ac-
quires. One may want to impose an even stronger locking safety policy: the
lock releases should match the lock acquires within the boundaries of each
method call. This property is vacuously satisfied when locks are acquired and
released in a structured manner using synchronized blocks or methods, like in
Java 4+, but it may be easily violated when one implements one’s own locking
mechanism or uses the semaphores available in Java 5. For example, Figure 1
shows an execution violating this basic safety policy twice (each deeper level
symbolizes a nested method invocation). First, the policy is violated when one
returns from the last (nested) method invocation because one does not release
the acquired lock. Second, the policy is also violated immediately after the
return from the last method invocation because the lock is released twice by
its caller, but acquired only once.

Supposing that the system is instrumented to emit events begin and end
when methods of interest are started and terminated, and that the events
acquire and release are triggered when the lock of interest is acquired and
released, respectively, then here is an initial, straightforward way to express
this safety policy as a context-free grammar:

S → ε | S begin S end | S acquire S release

Because of the production S → ε, the pattern is able to terminate (ε
is the empty trace). This pattern will match any trace with begin events in
balance with end events because these two events occur only in the production
S → S begin S end1, where they are matched. The S at the beginning of
the production allows an unbounded number of these balanced groupings in
a row, e.g., begin begin end end begin end is a valid trace with two balanced
groupings in a row. The production S → S acquire S release is similar to that
with begin and end events, allowing balanced groupings of acquire and release
events. Because all the productions have the same recursive symbol, S, it is
possible for begin/end pairs to nest within acquire/release pairs, and vice versa.
Thus a valid trace would be begin acquire begin end release end begin acquire
acquire release release end.

This pattern is simple and works, however, it has a deficiency in that it
must monitor every begin of every method in a given program, even those
which do not perform any thread synchronization. Next, we present a more

1 Note that S → a | b is shorthand for S → a, S → b.
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efficient grammar that ignores begin events that happen before the first acquire
event in a trace 2. The next grammar looks complicated, but we must stress
that it is only complicated to improve monitoring efficiency.

S → ε | S acquire M release A
M → ε |M begin M end |M acquire M release
A → ε | A begin | A end

perthread SafeLock(Lock l) {

event acquire before(Lock l) : call(* Lock.acquire()) && target(l) {}

event release after(Lock l) : call(* Lock.release()) && target(l) {}

event begin before() : execution(* *.*(..)) && !within(Lock) {}

event end after() : execution(* *.*(..)) && !within(Lock) {}

lr_lazy : S -> epsilon | S acquire M release A,

M -> epsilon | M begin M end | M acquire M release,

A -> epsilon | A begin | A end

@fail { System.out.println("Unsafe lock operation found!"); } }

Fig. 2 JavaMOP specification for the safe lock safety property using the CFG plug-in.

Again, the productions begin with recursive references to S to allow for
repetition of balanced groupings. This time, however, the S productions only
allow for acquire and release, not begin and end. This ensures that only begins
and ends occurring after the first acquire are monitored. The non-terminal M
stands for “matched” sub-traces, i.e., traces in which all the pairs begin/end
and acquire/release are properly matched, and A stands for sequences of (not
necessarily matched) begin and end events. The A productions are necessary
because failures would be reported for end events at the end of a trace due to
the lack of a matching begin that occurred before the acquire creation event.
The A productions also allow for more begin events after the last release be-
cause we do not want method calls after the last release to cause the invocation
of the failure handler.

Any (finished or unfinished) execution trace that is not a prefix of a word
in the language of S in the context-free grammar (CFG) above is an execution
that violates the safety policy. The CFG runtime verification technique pre-
sented in this paper and implemented as a logic-plug-in in JavaMOP is able to
monitor safety properties expressed as CFGs like above3. Monitoring-Oriented
Programming (MOP) and JavaMOP (the Java implementation of MOP) are
discussed in Section 3.

2 Events that occur before the first event in a valid trace are ignored by the monitoring
algorithm. Events which begin a valid trace are known as creation events (Chen and Roşu,
2007).

3 Our CFG plug-in actually supports only the LR(1) and LALR(1) languages; when we
use the term context-free we actually mean LR(1)/LALR(1), unless explicitly mentioned
otherwise.
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Figure 2 shows this SafeLock property expressed as a JavaMOP specifica-
tion, using the CFG logic plug-in. The modifier perthread tells JavaMOP to
consider events from separate threads as separate traces. This is particularly
important as we do not wish begins and ends of separate threads to cause
the pattern to fail. SafeLock denotes the name of the specification, while the
list after SafeLock is the list of parameters to the specification (see below).
SafeLock is parametric in the Lock because we do not wish the releases and
acquires of separate Locks to interfere. The keyword event introduces an event;
the event is first given a name, and then its trigger is defined using an As-
pectJ (Kiczales et al, 2001) advice (before the colon) and a pointcut (after the
colon). Of particular note, however, is !within(Lock), used so that we do not
monitor the begins and ends of the acquire and release methods, which would
cause the pattern to fail. JavaMOP’s generic approach to parametric specifica-
tions is described in Chen and Roşu (2009) and Chen et al (2009). Because of
this generic approach, the logical formalisms in which properties are expressed
need not be aware of the parameters; parameters are added automatically and
generically by the JavaMOP framework.

The keyword lr lazy introduces the CFG pattern. Three other possible key-
words can be used : lr, lalr, and lalr lazy. The two lazy keywords mean that
when an event is encountered that causes a pattern match failure, the failure
handler is invoked, but the event itself is not kept in the monitor state so
that more failures can be found. If the error causing event were kept, as in
the non-lazy keywords, each following event would cause an error, regardless
of whether it should. The lazy method is how most programming language
parsers work, allowing multiple syntax errors to be caught in one parse. lr and
lalr determine which table generation algorithm is used (see Section 5 for more
information on the two table generation algorithms). The first nonterminal in
the pattern is assumed to be the start symbol of the grammar (see Section
5.1). Lastly, @fail introduces a pattern failure handler. The code within the
braces following @fail runs whenever the pattern fails to match because an
invalid event for a given point in a trace is seen. As an alternative, JavaMOP
allows @match handlers. This gives extra power to our CFG plug-in because
context-free languages are not closed under complementation.

The code generated automatically from the JavaMOP specification in Fig-
ure 2, following the technique described in the rest of the paper, has more than
700 lines of (human unreadable) AspectJ code. We ran this property against a
hand-crafted program, which generated the sequence of events seen in Figure
1. Both pattern failures were successfully caught in a single run because the
CFG plug-in does not add failure inducing events to the monitor state when
lr lazy is used. If the keyword lr is used instead of lr lazy, only the first failure
is caught by the generated monitor.
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1.2 Contributions

Several approaches have been proposed to monitor context-free properties. For
example, Program Query Language (PQL) (Martin et al, 2005) is based on
a description language that encompasses the intersection of context-free lan-
guages. Hawk/Eagle (d’Amorim and Havelund, 2005) uses a fix-point logic and
RuleR (Barringer et al, 2008) uses a rule based logic that can specify context-
free properties. These approaches propose what we feel are rather complex
solutions for monitoring parametric context-free patterns. They generate in-
efficient monitoring code in many cases, thus preventing practical parametric
context-free property monitoring with these systems. The inefficiency of PQL
in comparison to JavaMOP with context-free patterns is discussed in Sec-
tion 6. This paper shows that monitoring (the LR(1) and LALR(1) subsets
of) parametric context-free patterns is practical. We generate non-parametric
monitors instead of parsers for the defined context-free pattern. Parameters
are handled separately, using the algorithm in (Chen and Roşu, 2009; Chen
et al, 2009). This way, we provide an efficient system for monitoring parametric
context-free properties. Our algorithm is totally different from the monitor-
ing algorithm used by the PQL system (Martin et al, 2005), which mixes the
handling of parameters and monitoring of context-free patterns.

When monitoring pattern languages, such as extended regular expressions
(ERE) or CFG, we wish to report a match anytime a trace at a given point
in program execution matches the pattern. For example, if we have a pattern
that is looking for writes to a closed file, we might use the ERE close write
write*. We wish to report a match on every write, so that we can locate all of
the trouble spots in the program. We call this matching every good prefix of
the trace because close write is a prefix of close write write which is a prefix
of close write write write, and we wish for a match to be reported on each
of these prefix traces. We provide two methods to deal with the problem of
monitoring good prefixes. One is to modify the LR(1) parsing algorithm with
a stack copying process. The second method, called guaranteed acceptance, was
discovered after our work in Meredith et al (2008).

Additionally, we extended JavaMOP with suffix matching. Suffix matching
is, informally, matching against every suffix of a given trace, and is the mode of
matching used in Tracematches (Avgustinov et al, 2007). A definition of suffix
matching can be found in Section 4. We also describe optimizations particular
to the JavaMOP suffix matching algorithm that improve the efficiency of suffix
matching in JavaMOP.

We also performed an extensive evaluation of the CFG monitoring algo-
rithm using the DaCapo (Blackburn et al, 2006) benchmark suite and proper-
ties used previously to evaluate runtime verification systems (Chen and Roşu,
2007; Bodden et al, 2007). The properties are expressed as CFGs in this
evaluation rather than regular expressions for use in JavaMOP. Even when
monitored using the CFG plug-in, however, these regular pattern based spec-
ifications still use constant space. We thus performed an evaluation of three
strictly context-free properties – which use theoretically unbounded space – to
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show that, even with such properties, the overhead is reasonable, and to show
the usefulness of context-free properties. The results of this analysis compare
favorably with PQL and Tracematches, two state-of-the-art runtime monitor-
ing systems. One of these properties (ImprovedLeakingSync) is expressible in
neither PQL nor Tracematches, for reasons explained in Section 6. Another of
the properties (SafeFileWriter), while expressible in PQL, is not expressible in
Tracematches because Tracematches has limited ability to express structured
properties, rather than the full generality of the LR(1) languages.

Over both the adapted regular properties and the new strictly context-free
properties, the overhead of JavaMOP with CFGs is, on average, over 8 times
less than Tracematches on properties that Tracematches is able to express,
and over 12 times less than PQL on properties that can be expressed in PQL.
On all but 9 of the 45 benchmark/property pairs that generated events4, the
overhead is less than 5% in JavaMOP with CFGs.

Beyond the work of Meredith et al (2008), we have implemented three more
versions of the original LR(1)-based cfg plug-in. We now support LALR(1)
and a version of both LR(1) and LALR(1) that stay in an error state when an
error token is encountered (using la/lalr instead of lr/lalr lazy). We discovered
and proved the concept of guaranteed acceptance (see Section 5.2.4). We also
provide more a comprehensive analysis of the experiments as presented in
Meredith et al (2008).

1.3 Paper Outline

The remainder of the paper is as follows: Section 2 illustrates related work;
Section 3 gives a brief overview of MOP and JavaMOP; Section 4 describes
suffix matching together with its novel, optimized implementation in Java-
MOP; Section 5 explains our CFG monitor synthesis technique in JavaMOP,
including considerations for suffix matching; Section 6 explains our experimen-
tal setup and the results of our experiments; Section 7 concludes the paper
and describes some future work.

2 Related Work

2.1 Runtime Monitoring

Many approaches have been proposed to monitor program execution against
formally specified properties. Interested readers can refer to Chen and Roşu
(2007) for an extensive discussion on existing runtime monitoring approaches.
Briefly, all runtime monitoring approaches except MOP (Chen and Roşu, 2003;
Chen et al, 2004; Chen and Roşu, 2007) have their specification formalisms
hardwired and only two of them share the same logic (LTL). MOP will be

4 Overall there are 66 benchmark/property pairs, but 21 of them generate no events, and
are removed to more fairly represent the overhead of runtime monitoring.
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Approach Logic Scope Mode Handler

JPaX (Havelund and Roşu, 2001) LTL class offline violation
TemporalRover (Drusinsky, 1997–2009) MiTL class inline violation

JavaMaC (Kim et al, 2004) PastLTL class outline violation
Hawk (d’Amorim and Havelund, 2005) Eagle global inline violation

RuleR (Barringer et al, 2008) RuleR global inline violation
Tracematches (Avgustinov et al, 2007) Reg. Exp. global inline validation

J-Lo (Bodden, 2005) LTL global inline violation
Pal (Chaudhuri and Alur, 2007) modified Blast global inline validation

PQL (Martin et al, 2005) PQL global inline validation
PTQL (Goldsmith et al, 2005) SQL global outline validation

Table 1 Runtime Verification Breakdown.

discussed in Section 3. This observation strengthens our belief underlying MOP
— there probably is no silver-bullet specification formalism for all purposes.
Also, most approaches focus on detecting either violations (pattern failures in
CFG) or validations (pattern matches in CFG) of the desired property and
support only fixed types of monitors, e.g., online monitors that run together
with the monitored program or offline monitors that check the logged execution
trace after program termination.

Specifically, there are four orthogonal attributes of a runtime monitoring
system: logic, scope, running mode, and handlers. The logic specifies which
formalism is used to specify the property. The scope determines where to
check the property; it can be class invariant, global, interface, etc. The run-
ning mode denotes where the monitoring code runs; it can be inline (weaved
into the code), online (operating at the same time as the program), outline
(receiving events from the program remotely, e.g., over a socket), or offline
(checking logged event traces)5. The handlers specify what actions to perform
under exceptional conditions; there can be violation and validation handlers.
It is worth noting that for many logics, violation and validation are not com-
plementary to each other, i.e., the violation of a formula does not always imply
the validation of the negation of the formula.

Most runtime monitoring approaches can be framed in terms of these at-
tributes, as illustrated in Table 1. For example, JPaX can be regarded as an
approach that uses linear temporal logic (LTL) to specify class-scoped proper-
ties, whose monitors work in offline mode and only detect violation. In general,
JavaMOP has proven to be the most efficient of the runtime monitoring sys-
tems despite being generic in logical formalism.

Of the systems mentioned in Table 1, only PQL (Martin et al, 2005),
Hawk/Eagle (d’Amorim and Havelund, 2005), and RuleR (Barringer et al,
2008) can handle arbitrary context-free properties. Hawk/Eagle adopts a fix-
point logic and uses term rewriting during the monitoring, making it rather in-
efficient. It also has problems with large programs because it does not garbage
collect the objects used in monitoring. In addition, Hawk/Eagle is not pub-

5 Offline implies outline, and inline implies online.
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licly available6. Because of this and the fact that Hawk/Eagle has not been
run on DaCapo (Blackburn et al, 2006) with the same properties, we can-
not compare our CFG plug-in with Hawk/Eagle. RulerR is a simplification of
Eagle that is rule based rather than µ-calculus based, but it still has the abil-
ity to specify context-free properties. The current implementation is not built
for efficiency or ease of expression with regards to context-free properties. In
addition to PQL, we decided to perform comparisons with Tracematches (Av-
gustinov et al, 2007), as it is able to monitor a very limited set of context-free
properties using compiler-specific support provided by their special AspectJ
compiler, ABC (Avgustinov et al, 2005), and because it is a very efficient sys-
tem. Pal (Chaudhuri and Alur, 2007) is able to monitor properties that take
calls and returns into account, giving a limited context-free ability for this one
case. Pal is implemented for C, rather than Java, and the implementation is
not publicly available.

2.2 Context-free Grammars in Testing and Verification

Context-free grammars have seen use in several areas of testing and verification
not immediately related to runtime monitoring.

Attributed context-free grammars were used as a means to generated test
input and output pairs by Duncan and Hutchison (1981). The generated test
inputs and outputs could be used both the test the specification from which
the test grammar was designed, as well as the final implementation of a spec-
ification, using automatic test drivers. Their test case generator was capable
of generating test cases from the grammar both randomly and systematically.
The attributes of the context-free test generation grammars allow a user to
attach context sensitive information to parts of the grammar, and allow for re-
finement of test case generation in order to avoid redundant test cases. Earlier
attempts of test case generation via grammars (Purdom, 1972; Hanford, 1970;
Houssais, 1977) were employed to generate test input only for compilers and
parsers rather than programs and their specifications (though, Duncan (1978)
used grammars to generate test cases in much the same way, it could not gen-
erate outputs, and it generated far too many similar test cases). In Maurer
(1990) context-free grammars were used to generate test data for VLSI (very
large scale integration) circuits. Sirer and Bershad (1999) applied the concept
of test case generation using context-free grammars to Java virtual machine
implementations.

All of these approaches differ quite a bit from runtime monitoring. The
overhead of these approaches is not nearly so important because they are used
to generate test cases in an offline manner, rather than running at the same

6 (Avgustinov et al, 2007) makes an argument for the inefficiency of Hawk/Eagle. Since
Hawk/Eagle is not publicly available (only its rewrite based algorithm is public (d’Amorim
and Havelund, 2005)), the authors of Hawk/Eagle kindly agreed to monitor some of the
simple properties from (Bodden et al, 2007). We have confirmed the inefficiency claims of
(Avgustinov et al, 2007) with the authors of Hawk/Eagle.
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time as a program that is under testing or a production system, situations
for which runtime monitoring is intended. Additionally, runtime monitoring
attempts to monitor behavior of a system rather than to generate test cases.

Hughes and Bultan (2007) used context-free grammars for an entirely dif-
ferent purpose that is more related to runtime monitoring than is test case
generation. They created an interface specification language that uses context-
free grammars to provide stub code for model checking. The grammar specifies
the sequence of method invocations allowed by the component. The stubs are
called by the code under model checking, providing a means of modular model
checking. T The grammar generated stubs execute during the model checking
process to ensure that the non-stub portions of code always follow the spec-
ification of method calls given by the grammar. In this way it is similar to
runtime monitoring with context-free grammars, as the grammar is used to
specify intended behavior, and flag errors when the behavior is not followed
at runtime. Our work differs primarily in that it is designed to enforce behav-
ior in a running system rather than to abstract a coponent, and in that it is
parametric, whereas the interface grammars are not.

3 MOP Revisited

MOP is an extensible runtime verification framework that provides efficient,
logic-independent support for parametric specifications. JavaMOP is an imple-
mentation of MOP for the Java programming language. By encapsulating our
monitor synthesis algorithm for non-parametric CFG patterns in a JavaMOP
logic plug-in, we have achieved an efficient monitoring tool for universally
quantified parametric CFG specifications.

Additionally, we have implemented a novel extension of MOP, in JavaMOP,
to support suffix matching independent of the language used for pattern spec-
ification. We define suffix matching as matching against every suffix of a given
event trace, while total matching, also supported by JavaMOP, attempts to
match the entire trace seen at a particular point7. Because Tracematches sup-
ports only suffix matching, and PQL supports a skip semantics more akin to
suffix matching than total, we use suffix matching in our experiments.

3.1 MOP in a Nutshell

MOP (Chen and Roşu, 2003; Chen et al, 2004; Chen and Roşu, 2007) is a for-
mal framework for software development and analysis, in which the developer
specifies desired properties using formal specification languages, along with
code to execute when properties are matched or fail to match. Monitoring

7 At a given point in program execution the trace of events seen at that point is evaluated
as a complete trace in both total and suffix matching. This means if one is monitoring the
pattern e∗, a match must be reported every time the e event occurs.
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code is then automatically generated from the specified properties and inte-
grated together with the user-provided code into the original system. MOP is a
highly extensible and configurable runtime verification framework. The user is
allowed to extend the MOP framework with his/her own logics via logic plug-
ins which encapsulate the monitor synthesis algorithms. This extensibility of
MOP is supported by an especially designed layered architecture (Chen and
Roşu, 2003), which separates monitor generation and monitor integration. By
standardizing the protocols between layers, modules can be added and reused
easily and independently.

In addition to choosing the formalism for a specification, one can also
configure the behaviors of the generated monitor through different attributes
(Chen et al, 2004). Depending upon configuration, the monitors can be sepa-
rate programs reading events from a log file, from a socket, or from a buffer, or
can be inlined within the program at the event observation points; monitors
can verify the observed execution trace as a whole or check fragments of the
trace. All these configurations are independent of the formalism used to spec-
ify the property. MOP also provides efficient and logic-independent support
for universally quantified parameters (Chen et al, 2009), which is useful for
specifying properties related to more than one object. This extension allows
associating parameters with MOP specifications and generating efficient mon-
itoring code from parametric specifications with monitor synthesis algorithms
for non-parametric specifications. MOP’s generic support for universally quan-
tified patterns simplified our CFG plug-in’s implementation.

The JavaMOP implementation provides several interfaces, including a web-
based interface, a command-line interface, and an Eclipse-based GUI, provid-
ing the developer with different means to manage and process MOP specifica-
tions. JavaMOP follows a client-server architecture to flexibly support these
various interfaces, as well as for portability reasons (Chen et al, 2006). As-
pectJ (Kiczales et al, 2001) is employed for monitor integration: JavaMOP
translates outputs of logic-plug-ins into AspectJ code, which is then merged
within the original program by the AspectJ compiler. Five logic-plug-ins are
currently provided with JavaMOP: Java Modeling Language (JML) (Leavens
et al, 2000), Extended Regular Expressions (ERE), Past-Time and Future-
time Linear Temporal Logics (LTL) (see (Chen et al, 2006) for more details),
and Context-Free Grammar (CFG) that is introduced in this paper. Note that
these plug-ins can be supported by any implementation of MOP.

One might expect some loss of efficiency for MOP’s genericity of logics.
However, the JavaMOP-generated monitors yield very reasonable runtime
overhead in practice, even for properties requiring intensive runtime check-
ing (on the order of 12% or lower). In most cases it is as efficient as hand
optimized monitoring code (Chen and Roşu, 2007).
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4 Suffix Matching in JavaMOP

According to application requirements, one may want to check a property
against either the whole execution trace or every suffix of a trace. Total match-
ing has been adopted by many runtime verification approaches to detect pat-
tern failures of properties, e.g., JPaX (Havelund and Roşu, 2001) and JavaMaC
(Kim et al, 2004). Suffix matching has been used mainly by monitoring ap-
proaches that aim to find pattern matches of properties, e.g., Tracematches
(Avgustinov et al, 2007). PQL has a skip semantics, wherein a specification is
matched against the trace, but events may be skipped. A precise explanation
of PQL’s semantics is available in (Martin et al, 2005). To define suffix and
total matching, we first must define traces and properties:

Definition 1 Let E be a set of events. An E-trace, or simply a trace when E
is understood from context, is any finite sequence of events in E, that is, an
element in E∗.

In the context of monitoring, an execution trace is a sequence of events
observed up to the current moment, thus execution traces are always finite.

Definition 2 An E-property P, or simply a property, is a pair of disjoint
sets (P+, P−) where P+ ⊆ E∗ and P− ⊆ E∗; P+ is the set of pattern matching
traces and P− is its set of pattern failing traces8.

Therefore, our notation of property is quite general; for each particular
specification formalism, one needs to associate an appropriate property to
each formula or pattern in that formalism. For example, for a CFG G, we let
PG = (P+, P−) be defined as expected: P+ is L(G) (the language of G, see
Section 5.1) and w ∈ P− iff w is not the prefix of any w′ ∈ L(G)

Definition 3 The total matching semantics of P is a function

JP Ktotal : E∗ → {match, fail, ?}

defined as follows for each w ∈ E∗:

JP Ktotal(w) =

 match if w ∈ P+

fail if w ∈ P−
? otherwise

The suffix matching semantics of P is a function

JP Ksuffix : E∗ → {match, ?}

defined as follows for each w ∈ E∗:

JP Ksuffix(w) =


match if there are w1, w2 such that w = w1w2 and

JP Ktotal(w2) = match

? otherwise

8 More recently we have generalized this concept to generic categories beyond just match
and fail (Chen and Roşu, 2009; Chen et al, 2009). However, match and fail are sufficient for
context-free patterns.
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As an example of where suffix matching is useful, consider the HasNext
property. This property specifies that the Java API method hasNext must be
called before every call of next for an Iterator. If we use total matching and
a match handler, we must define the pattern as (using a regular expression)
“(hasNext + (hasNext next))* next next”, to allow for all of the hasNext events,
or correct uses of next that may occur before the two temporally adjacent calls
to next. If we use suffix matching, because all suffixes of the trace are tried, the
pattern “next next” is sufficient, so long as the hasNext event is still defined.

The previous design of JavaMOP supported only total matching. We have
implemented a logic-independent extension of JavaMOP to also support suf-
fix matching. This extension is based on the observation that, although total
matching and suffix matching have inherently different semantics, it is not dif-
ficult to support suffix matching in a total matching setting, if one maintains
a set of monitor states during monitoring and creates a new monitor instance
at each event (this amounts to checking the property on each suffix incre-
mentally). However, the situation becomes more complicated when one wants
to develop a logic-independent solution, since different logical formalisms can
have different state representations. For example, the monitor state can be
an integer when the monitor is based on a state machine, a vector like the
past-time LTL monitor, or a stack such as the CFG monitor discussed below.
Hence, our solution is to treat every monitor as a blackbox without assump-
tions on its internal state. Also, instead of maintaining a set of monitor states
in the monitor, we use a wrapper monitor that keeps a set of total matching
monitors as its state for suffix matching. For simplicity, from now on, when
we say “monitor” without specific constraints, we mean the monitor generated
for total matching. When an event is received, the wrapper monitor for suffix
matching operates as follows:

1. create a new monitor and add it to the “suffix matching” monitor set;
2. invoke every monitor in the monitor set to handle the received event;
3. if a monitor enters its “pattern fail” state, remove it from the monitor set;
4. if a monitor enters its “pattern match” state, report the pattern match.

The third step is used to keep the “suffix matching” monitor set small by
removing unnecessary monitors. Indeed, this implements suffix matching se-
mantics because each total monitor is monitoring a suffix of the current trace,
and “pattern match” is only reported if one of the suffixes is valid.

Using our current implementation of suffix matching in JavaMOP, one may
further improve the monitoring efficiency if the monitor provides an equals
method that compares two monitors with regard to their internal states, and a
hashCode method used to reduce the amount of calls to equals. This interface is
used to populate a Java HashSet: the combination of the definition of hashCode
and equals ensures the monitors in the HashSet are declared duplicates, and
removed, based on monitor state rather than memory location. This interface
can be easily generated by each JavaMOP logic plug-in because it has full
knowledge of the monitor semantics. It is important to note that our approach
does not depend on the underlying specification formalism.
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JavaMOP requires that the logic plug-in designate creation events that
are the starting events of a validating trace, in order avoid creating unnec-
essary monitors. A new monitor instance needs to be created only when cre-
ation events occur. This feature is especially useful when combined with suffix
matching, which otherwise requires creating a new monitor at every event.

5 Context-Free Patterns in JavaMOP

We support the LR(1) subset of context-free grammars (CFGs), as well as
LALR(1) which is a subset of LR(1). LR(1) is so named because it parses input
Left to right and produces a Right-most derivation. The 1 denotes that one
token of look-ahead is used. The LA in LALR stands for look-ahead, because,
under certain conditions,states in the LR(1) table with different look-aheads
may be merged in the LALR(1) table (see Section 5.2.3).

LR(1) can only recognize a subset of the deterministic context-free lan-
guages, which are themselves a strict subset of the context-free languages
(CFLs) (Aho et al, 1986; Hopcroft et al, 2001). LR(1), however, is an ex-
pressive subset, able to define the syntaxes of most modern programming lan-
guages. We chose LR rather than LL because LR recognizes a larger number
of grammars without translation. We base our implementation on the Knuth
algorithm (Knuth, 1965) for LR(1) parser table generation as presented in
(Aho et al, 1986). While the “action” and “goto” tables generated are nor-
mal LR(1) “action” and “goto” tables, the algorithm used to parse has been
modified to work in the context of monitoring, explained in detail below. We
added a plug-in, which generates LALR(1) using the algorithm presented in
(Aho et al, 1986), because LALR(1) generates smaller tables in some cases.
The LALR(1) tables are, at worst, identical to the LR(1) tables; they are
never larger. The downside of LALR(1), however, is that it is a strict subset
of LR(1). Comparisons between the table size of LR(1) and LALR(1) for the
properties we tested can be found in Section 6, and an explanation of the
LALR(1) optimization can be found in Section 5.2.3. Sections 5.1–5.2.3 cover
standard issues related to LR parsing from a monitoring context, while the
remainder of Section 5 covers new issues specific to adapting LR parsing to
monitoring.

5.1 Preliminaries

A CFG G is defined as a tuple of the form, G = (NT,Σ, P, S). Σ, the alphabet
of the CFG, is often referred to as the set of terminals. A very special terminal,
$, represents the end of the input. NT is the set of nonterminals. P is the set
of productions, which define what strings nonterminals derive. NT ∪Σ is often
called the set of symbols. Productions have the form A → γ, where A ∈ NT
and γ is a string that either consists of symbols, or is the empty string, ε, i.e.
γ ∈ (Σ∪NT )∗. We use the conventional alternation operator, “|”: a production

J. of ASE, Volume 17(2), pp 149-180. 2010



of the form A → γ0|γ1 can be equivalently represented as two productions
A → γ0 and A → γ1. S is the start symbol – that non-terminal from which
all strings in the language are derived. For example, G = ({A}, {a, b}, P0, A)
where P0 = {A → aAb|ε} is a simple CFG for the language {anbn|n ∈ N}.
The non-terminal A can derive aAb an indeterminate amount of times before
deriving ε, allowing anbn for any n ∈ N.

Two important sets are defined for every non-terminal in a grammar: the
first and follow sets. These are used in “action” table construction. The first
set will be used to decide which terminals in the given grammar define monitor
creation events (we shall be more specific about this below). The follow set
will be useful in illustrating the fundamental challenge of monitoring CFGs.
The first set of a non-terminal A, denoted first(A), is the set of all terminals
t such that the sub-strings which reduce to A may possibly begin with t. The
follow set, denoted follow(A), is the set of terminals which follow the strings
which reduce to A. These terminals signify a reduction by A.

A reduction is the step whereby a right hand side of a production, γ, is
replaced by the left hand side non-terminal in the production. For example, if
we have the string aaabbb, and we are using our example grammar, G , we can
perform a reduction with γ = ε resulting in aaaAbbb. We can then perform
another reduction with γ = aAb resulting in aaAbb, eventually we reach aAb,
which reduces to A (and because A is the start symbol, aaabbb must be in
L(G), where L(G) represents the language derived by G).

5.2 CFG Monitoring Algorithms

We developed the CFG monitoring algorithms based on existing parsing al-
gorithms. Action and goto tables are generated from the given CFG pattern
and used to advance the monitor at runtime according to the observed events.
Moreover, the CFG monitor is unaware of relevant parameters since they are
handled by the underlying MOP framework. This greatly simplifies the moni-
toring algorithm. We next introduce the monitor algorithms in more detail.

5.2.1 CFG Simplification

The CFG plug-in first applies some standard simplifications to the given gram-
mar (Hopcroft et al, 2001). The first step of simplification is the removal of
non-generating nonterminals (A is non-generating if ∀s ∈ Σ∗, s cannot be
reduced to A in one or more reductions). The next step in the simplification
process is the removal of nonterminals which are unreachable from the start
symbol (A is unreachable from the start symbol if there is no string γ that
contains A and reduces to the start symbol in any number of steps). The last
step removes ε-productions from the grammar. After ε-productions have been
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1 globals action table, goto table
2 initialize stack.push(initial state)
3 procedure monitor(event, stack)
4 locals state, state’, stack’, A
5 state ← stack.top()
6 while (true) {
7 switch (action table[state,event].action type) {
8 case shift :
9 state’ ← action table[state, event].next state
10 if (state’ = error) {
11 pattern failure
12 break while
13 }
14 stack.push(state’)
15 if (action table[state’, $].action type = reduce) {
16 stack’ ← stack.copy()
17 monitor($, stack’)
18 }
19 break while
20 case reduce :
21 stack.pop(action table[state, event].pop)
22 A ← action table[state, event].non terminal
23 state’ ← stack.top()
24 stack.push(goto table[state’, A])
25 break switch
26 case accept :
27 pattern match
28 break while
29 }
30 }

Fig. 3 CFG Monitoring Algorithm with Stack Copying.

removed from G, resulting in G′, L(G′) = L(G)− ε.9 A monitor matching the
empty event trace has little utility, so we feel this is a fair compromise.

5.2.2 Tables and Monitoring

After simplification, the tables are generated for a deterministic push-down
automaton (DPDA), that is, a deterministic finite automaton with a stack,
which is to be used as a monitor. The algorithm first adds a production to

9 The remaining productions are restructured to account for the removal of ε-productions
without changing the recognized language, other than as mentioned.
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Table 2 LALR(1) Tables for SafeLock

introduce $. If the start symbol of the original grammar was S, it adds a
production S′ → S$. The next step is generating the canonical LR(1) (or
LALR(1)) collection. The collection consists of collection items; each item rep-
resents a state in the automaton. A collection item is a set of productions with
a marker, *, for the current position in the right hand side, augmented with
a look-ahead. For example, a possible collection item for the simple HasNext
pattern S → next next is [{S′ → ∗ S $, $}, {S → ∗ next next , $}], another is
[{S → next ∗ next , $}]. In both of these collection items, the look-ahead is $.
The collection item is first created for the start production, S′ → S$. All pro-
ductions for S are added to the state with * at the beginning of the right hand
side, as can be seen in our example collection item. If there is a production
for S such that the first symbol is a nonterminal, A, all the productions of A
will also be added, with * at the beginning. This process is transitively closed.
The next collection items are generated by advancing * in the production, and
then taking the transitive closure for any nonterminals immediately following
*. Once the collection is created, the tables are generated by treating each
item as a state. The productions in the item are considered for each alphabet
symbol (including $). If the marker appears in front of said terminal, a shift
action is generated. The algorithm decides which collection item to shift to by
looking for the collection item where there is a production with the same right
hand side as the production that caused the shift action, but with * advanced
one position. For example, the next collection from [{S → next ∗ next , $}]
would be [{S → next next ∗, $}]. Shift actions can never be generated for $;
the algorithm disallows it. The handling of shift actions by the parsing algo-
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rithm can be seen below. If, however, there is a production in the item such
as [{S → next next ∗, $}], where the marker appears at the end, and the
terminal in question is the look-ahead, a reduction action is generated. More
explanation of this algorithm can be found in (Aho et al, 1986).

When a new event arrives, the monitoring algorithm must decide how to
modify the stack. The tables are given in a generic intermediate form, which
is converted by the Java shell into two Java arrays.

Pseudo-code for our monitoring algorithm is given in Figure 3. The sig-
nificance of lines 15-18 is explained Section 5.2.4. An entry in action table
specifies, via the action type, the type of action: shift, reduce, or accept. Each
type of action also requires additional information in order for the algorithm to
process said action. An entry in goto table simply identifies the next state for
the DPDA. Table 2 shows a parse table as it would be used by the algorithm.
This is the LALR(1) table for the first SafeLock grammar given in Section 1.
We show the LALR(1) table because the LR(1) table has 50 states, and the
tables can be used interchangeably by the algorithm.

The shift action entry contains the next state for the DPDA in the next state
field (in parentheses in the shift actions in Table 2). A shift action simply
pushes the next state on the stack, if the next state is not the error state (lines
10-14). If, however, the table indicates that the next state is the error state, the
algorithm reports a pattern fail and breaks without touching the stack (lines
11-12). This allows the algorithm to continue to find more pattern failures.
After a successful shift action, the while loop is broken, allowing execution of
the monitored program to continue until the next relevant event (line 19).

The reduce action is more complicated. The field non terminal describes
which non-terminal (A) the production A→ γ reduces to (the first field in the
reduce actions Table 2), while the field pop denotes how many states to pop
from the stack (|γ|) (the second field in the reduce actions in Table 2). The
reduction proceeds by popping the specified number of states from the stack
and consulting goto table to decide the next state (lines 20-25). The state used
for indexing goto table is not the current state, but rather the state at the
top of the stack after the specified number of states has been popped (line
21). An indeterminate number of reductions can happen in a row, but there
must be shift at the end of the reduction sequence before the algorithm can
terminate for a given event. The reductions happen before the shift to simulate
the look-ahead of one token specified by the 1 in LR(1).

The accept action, which directs the DPDA to signal a pattern match, has
no special fields, as no more information is necessary (lines 26-28).

5.2.3 The LALR(1) Optimization

LALR(1) table generation is a standard modification of the LR(1) table gen-
eration algorithm (Aho et al, 1986). LALR(1) tables are constructed the same
way as LR(1) tables, save that states corresponding to collection items with
the same core are merged as they are discovered. The core of a collection item
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is that item with the look-aheads removed. This means that LALR(1) tables
can be no larger than LR(1) tables, but may be considerably smaller.

However, this process may result in reduce-reduce conflicts (states where a
reduction to two or more different nonterminals with the same look-ahead may
occur) that do not exist when the LR(1) construction method is used. Shift-
reduce conflicts (states where a shift with a given token, a, and a reduction with
a as the look-ahead are possible) cannot be introduced because they require
that there be two productions in a given collection item such that one has the
position marker in front of a terminal t (meaning that t should be shifted),
while another production has the marker at the end of the production, with t
as the look-ahead (meaning that we should reduce to the left hand side when t
is seen). Obviously the conflict must occur before merging, because if the shift
inducing production were in a state s0, while the reduce inducing production
where in s1, s0 and s1 would have different cores, and not be merged. To
see how reduce-reduce actions may be introduced, consider the two collection
items: [{A → a, $}, {B → a, a}] and [{A → a, a}, {B → a, $}] Before merger,
no conflict exists. Looking at the first collection item, there is no conflict
between the two productions because it says to reduce to A only when the
look-ahead is $, and B only when the look-ahead is a. The collection item after
merger, however, is: [{A → a, $}, {B → a, a}, {A → a, a}, {B → a, $}], which
contains two reduce-reduce conflicts (one on look-ahead a, the other on $).
The only way to check if such a conflict is introduced by the LALR(1) merger
is to generate LR(1) tables to see if there is still a reduce-reduce conflict.

5.2.4 Handling the End of Trace

The (LA)LR(1) algorithm assumes that the string of terminals to be evaluated
is completely known ahead of time. Thus, it knows where the end of the string
(denoted as $) is. This is important because some reductions happen with the
$ symbol as the look-ahead, and the accept action can only be recognized when
the next input is $. To be consistent with our notion of monitoring, it must
be possible to consider the trace prefix at a given point in a run of a program
as an entire trace. The algorithm must then assume $ after every event.

Our implementation of the algorithm attempts to reduce with $ as the
look-ahead after every valid shift (lines 15-18). The problem with reducing
with $ as the look-ahead where possible is that all state of the current trace
evaluation is lost. This means that the monitor could only accept the minimal
trace that matches the CFG pattern if no special care were taken.

Since our notion of monitoring reports pattern matches for every current
trace that matches the pattern10, one possible option is to copy the stack
before we perform any reductions with $ as the look-ahead.

This copying ensures that the stack is intact for the next, and subsequent
events, allowing for multiple pattern matches. For example, consider the lan-
guage denoted by the regular expression ab∗. While we would suggest using the

10 This is irrespective of suffix matching which actually generates multiple monitors.
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ERE plug-in for such a language, it is a clear example to illustrate the effect
of copying. With no copying the algorithm would accept for only a. Because
it popped during the pattern match phase, if it sees a b it will report failure.
With copying it will report success for a, and then success again on the input
of b, and for any subsequent input of b. An important optimization to copy-
ing is to only copy the stack if there is a reduction with $ as the look-ahead,
rather than blindly for every shift operation. This optimization will not help
ab∗, but it will help for many other languages. In fact, for {anbn|n ∈ N}, only
one copy is necessary no matter how long the input. Any grammar accepting
unbounded repetition at the end of the pattern (like ab∗), will require copying
on each input of the repeated character.

Our experience with stack copying led us to an important observation:
when there is a reduction with $ as the look-ahead, acceptance is guaranteed.
That is to say, there is never a situation in which there is a reduction with
$ as the look-ahead that results in a parse failure. This is a consequence of
the parse table generation algorithm, and Section 5.4 covers the correctness
of this notion, which we refer to as guaranteed acceptance. Using guaranteed
acceptance to accept whenever a reduction with $ as the look-ahead is possible
is another alternative for matching all good prefixes of a pattern. Guaranteed
acceptance is always correct. We maintain the discussion on stack copying
because the proof of the stack copying algorithm is easier to understand, and
because it is an interesting, though less practical, alternative to guaranteed
acceptance.

5.3 CFG-plug-in Implementation

The CFG plug-in allows the user to specify a number of events and a CFG
specifying allowable event traces. The events become the terminals of the CFG,
i.e., Σ. The translation steps from specification to working Java code gradually
transform the specification into AspectJ join points (the events) and aspects
(the synthesized monitors), which are then woven into the original application
using any off-the-shelf AspectJ compiler.

5.3.1 Suffix Matching with CFGs

As described in Section 4, several features are needed for monitors to support
optimized suffix matching.

The first is identification of monitor creation events11. As already men-
tioned, monitor creation events are events which, when encountered as the
first event in a trace, would not lead to an immediate failure. For CFGs this
would imply an event that can begin a sub-string which reduces to the start
symbol. This is the same as the definition of first set as given earlier. Thus,
the monitor creation events for the CFG plug-in are those events which are in
first(S), where S is the start symbol for the grammar.

11 Though, as mentioned, this is also necessary for total matching.
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Additionally, it is necessary to define a hash encoding for CFG based mon-
itors because our suffix matching algorithm uses a HashSet to find monitors
with potentially equivalent states quickly. We decided that two simple defining
aspects of CFG based monitors are stack depth and the current state of the
monitor (the top of the stack). We chose to xor them together (a broadly used
operation for combining two binary quantities into one quantity representative
of the two in the same number of bits) because the hashCode method must
return an integer. Lastly, we need an equality method (to resolve collisions)
defining when two CFG based monitors have actually equivalent states. Two
CFG monitors can only be equal iff they have the same stack contents. It will
be fairly rare for two proper CFG monitors to be equivalent, as they do not
have finite state like the other logic plug-ins of MOP. Thus, it is important for
failed equality testing to be fast. Because of this, we check to see if two moni-
tors have the same stack depth before beginning element-wise comparisons.

5.4 Proofs of Correctness

We next prove the correctness of the proposed CFG monitoring algorithms.
First, we prove the online monitoring algorithm for CFG using stack copy-

ing correct. We achieve this by showing that our algorithm detects pattern
failures and pattern matches of the observed trace in the same way as the
ASU parsing algorithm(Aho et al, 1986), as given in Figure 4.

Theorem: For every finite prefix of a (possibly infinite) program trace12

and a CFG pattern, the MOP algorithm will notify a failure of the pattern if
the ASU algorithm would notify a parse failure due to a bad token, and pattern
match if ASU would notify success, given that prefix as total input.

Proof: First, we construct a new parsing algorithm, as shown in Figure 5.
This new algorithm can be proved equivalent to the one in Figure 4 as follows.
The major difference between these two algorithms is that the pointer (ip)
increment is moved to the outer loop in Figure 5. This change does not affect
the behavior of the algorithm:

1. For a shift action, both algorithms carry out the same operation except
that Figure 4 increases the pointer and continues to the next action, while
Figure 5 breaks the inner loop, increases the pointer in the outer loop, and
then continues to the next action. Both are equivalent.

2. For reduction, Figure 5 chooses to stay in the inner loop, which is identical
to Figure 4, and continues the loop without increasing the pointer.

3. For acceptance (pattern match in monitors), both algorithms are identical.

Now we can prove the correctness of the monitoring algorithm in Figure 3
by comparing it with the modified parsing algorithm in Figure 5.

The major difference distinguishing the monitoring algorithm from ASU is
that the former has to wait for the next event extracted from the execution of

12 Each prefix is an E-trace at a given point in a program as per Definition 1.
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1 globals stack, ip, action table, goto table
2 initialize stack.push(initial state), ip ← 0
3 procedure parse()
4 locals state, state’, a, A
5 while (true) {
6 state ← stack.top()
7 a ← get token at(ip)
8 switch (at[state, a].action type) {
9 case shift :

10 state’ ← action table[state, a].next state
11 if (state’ = error) {
12 report error
13 advance ip
14 continue while
15 }
16 stack.push(state’)
17 advance ip
18 continue while
19 case reduce :
20 stack.pop(action table[state, a].pop)
21 A ← action table[state, a].non nonterminal
22 state’ ← stack.top()
23 stack.push(goto table[state’, A])
24 continue while
25 case accept :
26 accept
27 return
28 }
29 }

Fig. 4 ASU Algorithm.

the monitored program while the latter can actively retrieve the next token,
which is handled in the outer loop in Figure 5. Therefore, we only need to
prove that the monitor procedure in Figure 3 produces the same result as the
inner loop in Figure 5, given the same state and event to process.

It is straightforward to compare both pieces of code: the only difference
between them is the stack copying (lines 14-17) in Figure 3. It is needed because
we wish to continue parsing after an accept, and because we can never actually
see $ as an event. We copy the stack after a shift and check for actions with
$ as the input. The only actions possible on this recursive call are reduce
and accept because $ can never be shifted13. Due to this, the recursion is

13 This is a property of the CFG parsing table generation algorithm, which we use without
proof. It is obvious, however, because $ is not a part of the original grammar.
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1 globals stack, ip, action table, goto table
2 initialize stack.push(initial state), ip ← 0
3 procedure parse()
4 locals state, state’, a, A
5 while (true) {
6 a ← get token at(ip)
7 while (true) {
8 state ← stack.top()
9 switch (at[state, a].action type) {

10 case shift :
11 state’ ← action table[state, a].next state
12 if (state’ = error) {
13 report error
14 break while
15 }
16 stack.push(state’)
17 break while
18 case reduce :
19 stack.pop(action table[state, a].pop)
20 A ← action table[state, a].non nonterminal
21 state’ ← stack.top()
22 stack.push(goto table[state’, A])
23 continue while
24 case accept :
25 accept
26 return
27 }
28 }
29 advance ip
30 }

Fig. 5 Modified ASU Algorithm.

always bounded at depth one. This is the major difference between the MOP
and ASU algorithms. Because $ can never be an event, we must speculatively
guess the end of input after every symbol seen. The recursive call must happen
iff there is a valid reduction with $ as the look-ahead. Because the algorithm
repeats until a shift action, error, or accept happens, we ensure that, if the
recursive call happens, it must happen after the processing of each input14.
Cloning the stack allows us to reduce and accept, while still maintaining the
original stack to continue monitoring events as if the end of input had not

14 Accept need not be considered because it can only happen when the input is $, which
only occurs during a recursive call.
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1 globals action table, goto table
2 initialize stack.push(initial state)
3 procedure monitor(event, stack)
4 locals state, state’, stack’, A
5 state ← stack.top()
6 while (true) {
7 switch (action table[state,event].action type) {
8 case shift :
9 state’ ← action table[state, event].next state
10 if (state’ = error) {
11 pattern failure
12 break while
13 }
14 stack.push(state’)
15 if (action table[state’, $].action type = reduce) {
16 pattern match
17 }
18 break while
19 case reduce :
20 stack.pop(action table[state, event].pop)
21 A ← action table[state, event].non terminal
22 state’ ← stack.top()
23 stack.push(goto table[state’, A])
24 break switch
25 }

Fig. 6 CFG Monitoring Algorithm with Guaranteed Acceptance.

been seen. Thus, this change is equivalent to the ASU algorithm in terms of
language recognition because both possibilities (the arrival or non-arrival of $)
are explored. That is, the MOP algorithm will report accept for a given prefix
if ASU would, given that prefix as its total input, and it, additionally, retains
enough state to continue parsing future (longer) traces. Violation is handled
identically in both algorithms. ut

We next prove the correctness of our online monitoring algorithm for CFG
using the notion of guaranteed acceptance. It is achieved by showing that a
reduction with $ as the look-ahead must result in accept with $ as look-ahead15

in one or more reductions. Figure 6 shows the algorithm modified to take
advantage of guaranteed acceptance. Note that there is no longer an accept
case because accept is discovered in the shift case, on lines 15-16.

15 Note that this is the only look-ahead ever possible for accept.
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Theorem: If the action table entry for a given state specifies reduction
with $ as look-ahead, the stack copying processes must lead to an acceptance.
That is to say, in one or more reductions with $ as the look-ahead, an accept
action must occur with $ as the look-ahead.

Proof: From the canonical LR(1) construction algorithm (Aho et al, 1986),
we know that a given non-terminal B can only be reduced to with look-ahead
terminal a, if there exists some production C → γ0Baγ1 or a sequence of
productions C → γ0B0aγ1, B0 → γ2B1, B1 → γ3B2, ... Bn → γn+2B. Note
that the sequence may contain cycles of one or more production, such as a
production C → bC, but there must be a finite amount of “cycle reductions”
because there is a finite amount of input, and the CFG simplification we
perform removes non-generating nonterminals16.

In the algorithm, $ is treated as a special terminal that exists in only
one production, the start production S′ → S$, where S is the original start
symbol of the grammar. This production is added by the algorithm and is the
only existence of $ in the grammar. Intuitively, when the contents of the parse
stack correspond to S, the algorithm accepts. This means that if we can reach a
stack containing only state corresponding to S through one or more reductions
with $ as the look-ahead, we can accept. The original ASU algorithm and our
version of the algorithm with stack copying perform all of these reductions.

As a result of the two facts above, a reduction with $ as look-ahead, for non-
terminal A, can only occur in the table if there is some sequence of productions
S → A0$, A0 → γ0A1, A1 → γ1A2, ... An → γnA, or the production S → A$.
If we have S → A$, then we can obviously accept on the reduction to A because
this will result in a stack with only contents corresponding to A (A = S from
above), which is the accept condition, or there will be some finite number of
cycles with non-terminal A that eventually leads to a stack containing only
contents corresponding to A because there must be a finite amount of cycle
reductions. If, however, we have the sequence of productions, we can still
accept because there is a sequence of reductions from A to S → A0$ given
by the sequence of productions. Again, even if the sequence contains cycles,
eventually acceptance must be reached because there must be a finite amount
of cycle reductions. ut

6 Evaluation

We evaluated the JavaMOP CFG plug-in and compared its performance to
PQL and Tracematches on the DaCapo benchmark suite (Blackburn et al,
2006). We used the LR(1) tables, with the lazy algorithm, and suffix matching.
We feel this gives a worst case. LR(1) tables are of greater or equal size, so they
cannot be faster than the LALR(1) tables. The lazy mode has the potential
to be slower because it continues to modify the stack after a failure, while the
normal mode does not. Suffix matching is obviously slower than total trace

16 It is clear that only non-generating nonterminals could have infinite cycles, because the
table generation algorithm works bottom up, and chooses shift over reduce on conflict.
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matching because it creates one total match monitor for every suffix of the
trace.

6.1 Experimental Settings

Our experiments were carried out on a machine with 1.5GB RAM and Pentium
4 2.66GHz processor. The operating system used was Ubuntu Linux 7.10. We
used the DaCapo benchmark version 2006-10; it contains eleven open source
programs (Blackburn et al, 2006): antlr, bloat, chart, eclipse, fop, hsqldb, jython,
luindex, lusearch, pmd, and xalan. The provided default input was used together
with the -converge option to execute the benchmark multiple times until the
execution time falls within a coefficient of variation of 3%. The average exe-
cution time of six iterations after convergence are then used to compute the
runtime overhead. Therefore, Table 3 percentages should be read “±3” (mean-
ing negative numbers are possible).

6.2 Properties

The following general properties borrowed from (Bodden et al, 2007) were
checked in the evaluation:

– HashMap: An object’s hash code should not be changed when the object
is a key in a HashMap;

– HasNext: For a given iterator, the hasNext() method should be called be-
tween all calls to next();

– SafeIterator: Do not update a Collection when using the Iterator interface
to iterate its elements.

We also defined three new properties to showcase the power of the CFG
plug-in; they are all properly context-free:

– ImprovedLeakingSync: The original LeakingSync specified in (Bodden et al,
2007) only allows synchronized accesses to synchronized collections. This
causes spurious failures because the synchronized methods call the unsyn-
chronized versions. Our improved version allows calls to the unsynchronized
methods so long as they happen within synchronized calls.

– SafeFileInputStream: SafeFileInputStream is a modification of our SafeLock
property from Figure 2. It ensures that a FileInputStream is closed in the
same method in which it is created.

– SafeFileWriter: SafeFileWriter ensures that all writes to a FileWriter happen
between creation and close of the FileWriter, and that the creation and
close events are matched pairs.

More properties have been checked in our experiments; we chose the first
three regular-language-based properties (HashMap, HasNext, and SafeIterator)
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to include in this paper because they generate a comparatively larger run-
time overhead. We excluded those with little overhead in JavaMOP. For ev-
ery property, we provide overhead percentages for JavaMOP, as well as PQL
and Tracematches where possible. We run the JavaMOP monitors in suffix
matching mode; the decentralized indexing of monitors was used in all the
experiments (see (Chen and Roşu, 2007)). We chose the AspectJ compiler
1.5.3 (AJC) in the evaluation to compile the JavaMOP generated monitor-
ing AspectJ code. Guaranteed acceptance and stack copying have the same
performance on each of these patterns because none of the properties is able
to generate more than one pattern match from a given parameter instance,
meaning that the number of stack copies is very minimal. Additionally, the
properties have been written in a method that ensures minimal stack size (such
as using left recursion instead of right recursion). For Tracematches we used
the most recent published version from (Bodden et al, 2008).

HashMap HasNext SafeIterator
MOP PQL TM MOP PQL TM MOP PQL TM

antlr 3 6 0 1 2 3 2 82 0
bloat 14 9 -2 1112 5929 2452 627 8694 11258
chart -1 1 -1 -1 3 0 2 50 11
eclipse 0 1 1 0 2 -1 -2 1 2

fop 3 2 0 0 2 -1 -1 24 5
hsqldb 0 3 15 0 6 15 0 78 17
jython 0 23 15 0 0 13 0 12 16
luindex 1 8 1 -2 93 2 3 181 9
lusearch 1 1 8 -1 59 9 4 132 34

pmd -1 0 3 191 1870 52 178 1334 175
xalan 0 5 1 0 0 2 1 53 10

ImprovedLeakingSync SafeFileInputStream SafeFileWriter
MOP PQL TM MOP PQL TM MOP PQL TM

antlr 1 N/E N/E 3 113 -1 2 22 N/E
bloat 13 N/E N/E 1 128 0 27 97 N/E
chart 4 N/E N/E 0 29 1 0 37 N/E
eclipse 1 N/E N/E -2 3 0 -2 1 N/E

fop 1 N/E N/E -2 58 -1 -2 47 N/E
hsqldb 1 N/E N/E 1 280 21 2 95 N/E
jython 41 N/E N/E 0 937 12 1 crashes N/E
luindex 1 N/E N/E -1 233 6 0 33 N/E
lusearch 2 N/E N/E -1 137 7 0 49 N/E

pmd 36 N/E N/E -1 547 1 -2 658 N/E
xalan 3 N/E N/E -1 90 3 -2 164 N/E

Table 3 Average percent runtime overhead for JavaMOP CFG (MOP), PQL, and Trace-
matches (TM) (convergence within 3%); N/E means “not expressible”.
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Property HashMap HasNext SafeIterator ImprovedLeakingSync SafeFileInputStream SafeFileWriter
antlr 0 0 1990 8472 0 0
bloat 361519 143103032 75944328 5587905 259 385
chart 8773 6819 569345 634260 0 0
eclipse 20888 3252 32759 74630 930 0

fop 17265 281 49959 182407 12 0
hsqldb 0 0 0 0 0 0
jython 443 106 177554 23969673 544 0
luindex 9615 28140 82162 1559386 1114 0
lusearch 416 0 405428 1291992 0 0

pmd 11354 33294563 25476563 26291289 10 32
xalan 124155 0 1009649 5146036 13604 0

Table 4 Number of events handled by JavaMOP

6.3 Results

Table 3 shows the percent overheads of JavaMOP using the CFG plug-in,
PQL, and Tracematches. N/E refers to specifications that were not express-
ible. Negative numbers can be attributed both to the 3% noise in the mea-
surements and instruction cache layout changes due to the weaving process.
Tracematches is unable to support ImprovedLeakingSync because the property
is truly context-free. PQL is also unable to support it because it requires
events corresponding to the beginning and end of synchronized method calls,
and PQL can only trigger events on the end of method calls. Tracematches
cannot support SafeFileWriter because it is a pure context-free specification.
However, Tracematches can support SafeFileInputStream because it has the
ability to access call stack depth via the cflowdepth pointcut term, which is
provided only by the ABC compiler for AspectJ.

Over one run of the entire DaCapo benchmark suite, more than 355 million
events (Table 4) were triggered. Tracematches has the same number of events
throughout the tests because it uses the same instrumentation technique as
JavaMOP. We had no good method to obtain the number of events generated
in PQL; we assume it was less because PQL performs a static optimization
which removes unnecessary optimization points. It is interesting to note that
in the cases of HasNext with antlr, lusearch, and xalan that there are no events,
despite the fact that these three benchmarks have events for SafeIterator. The
reason for this is that the SafeIterator instruments Collection.remove, so it is
possible for SafeIterator to have events in programs with no actual Iterators.

The average overhead of JavaMOP over 45 program/property pairs that
actually generate events is 50%. There are two considerations here, however:
(1) we chose specifically those properties that generated the largest overheads
(HasNext and SafeIterator in bloat), (2) when the two largest overheads are
removed, the average over the remaining 43 pairs drops to a very reason-
able 12%. Further, the average JavaMOP overhead for properties expressible
in PQL that generated events was 61% over 36 pairs, while PQL’s overhead
on these same properties was 583%. Similarly, for Tracematches expressible
properties that generated events, JavaMOP’s overhead was 64% over 33 pairs,
while Tracematches was 414%. Tracematches, PQL, and JavaMOP all feature
the same two pairs which have extremely large overhead compared to the me-
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Property Original HashMap HasNext SafeIterator
antlr 2.3 / 10.1 2.0 / 10.6 1.8 / 10.6 2.0 / 10.8
bloat 5.6 / 8.9 6.9 / 8.9 5.9 / 8.7 541.0 / 10.6
chart 20.1 / 11.3 20.8 / 11.4 17.0 / 11.3 20.7 / 11.5
eclipse 27.0 / 22.1 30.7 / 22.2 27.4 / 22.1 28.6 / 22.3

fop 12.3 / 9.1 13.2 / 9.2 10.9 / 9.0 10.2 / 9.1
hsqldb 80.8 / 7.6 80.2 / 7.6 76.4 / 7.5 77.5 / 7.6
jython 3.9 / 19.0 4.1 / 19.0 3.8 / 19.0 3.9 / 19.1
luindex 4.2 / 6.9 4.0 / 7.0 4.6 / 6.9 4.7 / 7.1
lusearch 5.2 / 6.2 5.2 / 6.3 5.7 / 6.2 5.3 / 6.3

pmd 22.0 / 8.6 22.3 / 8.7 24.0 / 8.6 888.1 / 8.9
xalan 21.7 / 10.2 23.8 / 10.5 26.2 / 10.2 29.1 / 10.3

Property Original ImprovedLeakingSync SafeFileInputStream SafeFileWriter
antlr 2.3 / 10.1 2.1 / 10.7 2.4 / 10.7 2.2 / 10.7
bloat 5.6 / 8.9 7.9 / 10.0 5.0 / 8.9 5.6 / 8.9
chart 20.1 / 11.3 17.0 / 11.3 17.8 / 11.3 16.4 / 11.3
eclipse 27.0 / 22.1 28.9 / 22.1 30.7 / 22.1 27.1 / 22.1

fop 12.3 / 9.1 14.6 / 9.2 11.9 / 9.0 12.0 / 9.0
hsqldb 80.8 / 7.6 87.2 / 7.5 78.2 / 7.5 79.3 / 7.5
jython 3.9 / 19.0 4.0 / 19.2 4.0 / 19.1 3.6 / 19.1
luindex 4.2 / 6.9 5.6 / 7.0 4.2 / 6.9 4.6 / 6.9
lusearch 5.2 / 6.2 5.8 / 6.4 5.6 / 6.3 5.7 / 6.3

pmd 22.0 / 8.6 22.2 / 8.8 24.2 / 8.6 22.9 / 8.6
xalan 21.7 / 10.2 24.4 / 10.3 22.0 / 10.3 26.5 / 10.2

Table 5 Maximum memory usage in MB (Maximum Heap Memory Usage) / (Maximum
Non-Heap Memory Usage).

dian (HasNext and SafeIterator in bloat). When these two pairs are removed
from the three averages, the average overhead for JavaMOP with respect to
PQL expressible properties is 12%, while PQL still weighs in at 199%. Trace-
matches is comparable to JavaMOP, with JavaMOP and Tracematches both at
12%. Since Tracematches does not support the full generality of (determinis-
tic) context-free grammars, we view comparable performance to Tracematches
as favorable to our approach, especially given that, in the overall data set, our
average overhead is over 8 times lower than Tracematches’ overhead.

The largest overheads seen, across all three systems, are for SafeIterator
and HasNext in bloat. This is due to bloat’s extensive use of iterators. Bloat
is a bytecode optimizer, which uses iterators to process bytecode. PQL and
Tracematches perform worse on SafeIterator than they do on HasNext, while our
performance is the opposite. The reason for this is that HasNext creates a far
larger number of monitors in JavaMOP because it creates a monitor for every
call to next, while SafeIterator only creates monitors on a call to create. The
pattern for SafeIterator, however, is more complex. This shows that JavaMOP
has, relatively speaking, more overhead in generating and handling the monitor
set for suffix matching than it does in matching the pattern, while PQL and
Tracematches overheads are more affected by the complexity of the pattern.
Note that JavaMOP with CFGs far outperforms both PQL and Tracematches
on these 2 program/property pairs.
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HashMap HasNext SafeIterator ImprovedLeakingSync SafeFileInputStream SafeFileWriter
LR(1) states 6 5 15 19 20 18

LALR(1) states 6 5 15 15 8 11

Table 6 Comparison of LR(1) and LALR(1) tables.

SafeFileInputStream is an interesting case: it is required to match the begin
and end of methods. Instrumenting the begin and end of every method would
be atrociously slow, however. We perform a static analysis which finds those
methods in which FileInputStream’s are actually used. Then, we instrument
only those methods for begin and end. Because Tracematches, also, is pointcut
based, we are able to perform the same optimization for Tracematches, so the
numbers shown are with the optimization enabled. PQL is not pointcut based
so the optimization cannot be applied; however, the PQL property does not
match begins and ends of methods (recall: PQL can only match the ends),
so this is not an issue. In PQL we specify SafeFileInputStream by using an
interesting PQL-specific feature called within. The idea of within is that a
property matches only within a given method or methods matching a particular
pattern (in the case of SafeFileInputStream we use the pattern . which specifies
all methods of all classes). Additionally, PQL will only instrument the same
methods that JavaMOP and Tracematches instrument because within only
instruments methods which can generate relevant events.

The memory overhead is reasonable in our experiments: overall, it is 33% on
average with a 4% median (see Table 5 for a pair-wise breakdown). There are
two extreme cases of memory overhead caused by JavaMOP monitors: bloat-
SafeIterator and pmd-SafeIterator. Our investigation shows that both programs,
bloat and pmd, make intensive use of vectors, and create numerous iterators
to do computation over the vectors throughout the execution. Note that every
creation of the iterator leads to the creation of a monitor instance for SafeIt-
erator using our technique. Hence, a huge number of monitor instances were
created in these two benchmarks. While the iterator object is usually used in a
small scope and then released, the vectors are not released until the end of the
execution, preventing the removal of the created monitor instances. In other
words, all the monitor instances created during the execution of bloat and pmd
were kept alive until the execution ended, resulting in the observed massive
memory usage. On the contrary, we can see that a large number of monitors
were also created for bloat-HasNext and pmd-HasNext but with much less mem-
ory overhead. HasNext has one monitor created for every iterator object, and
when the iterator is released, the corresponding monitor will also be removed.
Since most iterators were released shortly after creation, only a few monitors
existed at the same time during the execution resulting in much lower mem-
ory overhead. Compared with the results of Tracematches (Avgustinov et al,
2007), we believe there is still some room for improvement with regard to
memory usage in our approach. The memory overhead of our approach does
not cause unnecessary loss of performance during the evaluation, indicating
that it is not a bottleneck for the efficiency of monitoring.
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Table 6 shows a comparison of parse table size between LR(1) and LALR(1)
in terms of number of states. No reduce-reduce conflicts were introduced in
any of our properties, and the space savings can be significant. Although, in
either case, the tables are small enough that the size difference has no effect
on runtime. It is interesting to note that the three regular language properties
see no savings from LALR(1).

Our experiments with guaranteed acceptance found no benefit to the pat-
terns we tested because, as mentioned, each pattern can only accept once per
parameter instance, and the stack depth is kept to a minimum by using careful
grammar design. Not all properties, however, can or should be written in such
a way that only one acceptance can be generated per parameter instance. In
extreme cases, such as patterns that feature unbounded repetition at the end
of the pattern, such as a∗, guaranteed acceptance can provide a lower asymp-
totic complexity. Consider the grammar S → ε|aS which monitors a∗. For each
a that arrives, with guaranteed acceptance a constant time17 step of adding
a to the stack and accepting occurs. With stack copying, the stack must be
copied on each arrival of a. This copying, however, will take time linear in the
amount of times a has been previously seen. Thus, with guaranteed accep-
tance, the monitoring time is linear in the number of a events in the program
run while stack copying is quadratic.

7 Conclusions and Future Work

We implemented a CFG logic plug-in for JavaMOP using a modified LR(1)
parsing algorithm. We also implemented an optimization of table generation,
which uses the LALR(1) state merging technique, leading to smaller tables,
but may result in extra reduce-reduce conflicts. Our first modification to the
algorithm is based on the novel idea of copying the stack in order to “predict”
a possible reduction with $ (end of string) as a look-ahead without destroy-
ing the state of the monitor. An important optimization and simplification
possibility is guaranteed acceptance, wherein the algorithm accepts when a
reduction with $ as look-ahead is possible; this saves the copying operation,
which can take arbitrarily long to perform, since the stack is unbounded. We
showed, empirically, that our algorithm is efficient and faster than the state-of-
the-art for monitoring CFG properties. We also extended JavaMOP with suffix
matching in order to fairly compare JavaMOP with PQL and Tracematches.
Tracematches, however, cannot handle arbitrary context-free patterns.

We have also begun work on a logic called PtCaRet as another specification
formalism to support structured specifications. PtCaRet is past time linear
temporal logic (PTLTL) with calls and returns. It is a super set of PTLTL
that provides operators which apply only on a function/method local level.

17 It is constant except when the stack size must be grown.
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