
Improved Multithreaded Unit Testing

Vilas Jagannath, Milos Gligoric, Dongyun Jin,
Qingzhou Luo, Grigore Roşu, Darko Marinov

Department of Computer Science, University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{vbangal2, gliga, djin3, qluo2, grosu, marinov}@illinois.edu

ABSTRACT
Multithreaded code is notoriously hard to develop and test.
A multithreaded test exercises the code under test with two
or more threads. Each test execution follows some sched-
ule/interleaving of the multiple threads, and different sched-
ules can give different results. Developers often want to en-
force a particular schedule for test execution, and to do so,
they use time delays (Thread.sleep in Java). Unfortunately,
this approach can produce false positives or negatives, and
can result in unnecessarily long testing time.

This paper presents IMUnit, a novel approach to speci-
fying and executing schedules for multithreaded tests. We
introduce a new language that allows explicit specification of
schedules as orderings on events encountered during test ex-
ecution. We present a tool that automatically instruments
the code to control test execution to follow the specified
schedule, and a tool that helps developers migrate their
legacy, sleep-based tests into event-based tests in IMUnit.
The migration tool uses novel techniques for inferring events
and schedules from the executions of sleep-based tests. We
describe our experience in migrating over 200 tests. The
inference techniques have high precision and recall of over
75%, and IMUnit reduces testing time compared to sleep-
based tests on average 3.39x.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Verification, Reliability

Keywords
IMUnit, Unit Testing, Multithreaded Code

1. INTRODUCTION
Multicore processors are here to stay. To extract greater

performance from multicore processors, developers need to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

write parallel code. The predominant paradigm for paral-
lel code is that of shared memory where multiple threads of
control communicate by reading and writing shared data ob-
jects. Shared-memory multithreaded code is often afflicted
by concurrency bugs, which are hard to detect because mul-
tithreaded code can demonstrate different behavior based on
the scheduling of threads, and the bugs may only be trig-
gered by a small specific set of schedules.

To validate their multithreaded code, developers write
multithreaded unit tests. A multithreaded test creates and
executes two or more threads (and/or invokes code under
test that itself creates and executes two or more threads).
Each test execution follows some schedule/interleaving of
the multiple threads, and different schedules can give differ-
ent results. Developers often want to enforce a particular
schedule for a test. For example, consider two threads, one
executing a method m and the other executing a method
m′. Developers may want to ensure in one test that m fin-
ishes before m′ starts and in another test that m′ finishes
before m starts (and in more tests that m and m′ inter-
leave in certain ways). Without controlling the schedule, it
is impossible to write precise assertions about the execution
because the results can differ in the two scenarios, and it is
impossible to guarantee which scenarios were covered during
testing, even if multiple runs are performed.

To control the schedule of multithreaded tests, develop-
ers mostly use a combination of timed delays in the vari-
ous test threads. In Java, the delay is performed with the
Thread.sleep method, so we call this approach sleep-based.
A sleep pauses a thread while other threads continue exe-
cution. Using a combination of sleeps, developers attempt
to enforce the desired schedule during the execution of a
multithreaded test, and then assert the intended result for
the desired schedule. A sleep-based test can fail when an
undesired schedule gets executed even if the code under test
has no bug (false positive). Dually, a sleep-based test can
pass when an unintended schedule gets executed even if the
code under test has a bug (false negative). Indeed, sleeps are
an unreliable and inefficient mechanism for enforcing sched-
ules. To use sleeps, one has to estimate the real-time du-
ration for which to delay a thread while the other threads
perform their work. This is usually estimated by trial and
error, starting from a small duration and increasing it un-
til the test passes consistently on the developer’s machine.
The estimated duration depends on the execution environ-
ment (hardware/software configuration and the load on the
machine). Therefore, when the same test is executed in a
different environment, the intended schedule may not be en-

FSE'11, ACM, pp 223-233. 2011

http://www.vilasjagannath.com/
http://mir.cs.illinois.edu/~gliga/
http://fsl.cs.uiuc.edu/index.php/Dongyun_Jin
http://fsl.cs.uiuc.edu/index.php/Qingzhou_Luo
http://fsl.cs.uiuc.edu/~grosu/
http://mir.cs.illinois.edu/~marinov/

forced, leading to false positives/negatives. Moreover, sleep
can be very inaccurate even on a single machine [20]. In an
attempt to mitigate the unreliability of sleep, developers of-
ten end up over-estimating the duration, which in turn leads
to slow running multithreaded tests.

Researchers have previously noted the numerous prob-
lems with using sleeps to specify schedules in multithreaded
tests and have developed frameworks such as ConAn [22,
23], ConcJUnit [27], MultithreadedTC [26], and ThreadCon-
trol [13] to tackle some problems in specifying and enforc-
ing schedules in multithreaded unit tests. However, despite
these frameworks, multithreaded unit testing still has many
issues that could be categorized as follows:

Readability: Most current frameworks force developers
to reason about the execution of threads relative to a global
clock. This is unintuitive since developers usually reason
about the execution of their multithreaded code in terms
of event relationships (such as m finishing before m′ starts).
Some frameworks require users to write schedules in external
scripts, which makes it even more difficult to reason about
schedules. In other frameworks the schedule is implicit, as a
part of the unit test code, and hence it is difficult to focus on
the schedule and reason about it separately at a higher level.

Modularity: In some current frameworks, the intended
schedule is intermixed with the test code and effectively
hard-coded into a multithreaded unit test. This makes it
difficult to specify multiple schedules for a particular unit
test and/or to reuse test code among different tests.

Reliability: Some current frameworks, as well as the
legacy sleep-based tests, rely on real time. As explained,
this makes them very fragile, leading to false positives/neg-
atives and/or slow testing time.

Migration Costs: Most current frameworks are very dif-
ferent from the traditional sleep-based tests. This makes it
costly to migrate the existing sleep-based tests.

We present a new framework, called IMUnit (pronounced
“immunity”), which aims to address these issues with mul-
tithreaded unit testing. Specifically, we make the following
contributions:

Schedule Language: IMUnit introduces a novel lan-
guage that enables natural and explicit specification of sch-
edules for multithreaded unit tests. Semantically, the basic
entity in an IMUnit schedule is an event that an execution
can produce at various points (e.g., a thread starting/finish-
ing the execution of a method, or a thread getting blocked).
We call the IMUnit approach event-based. An IMUnit sched-
ule itself is a (monitorable) property [10,24] on the sequence
of events. More precisely, each schedule is expressed as a
set of desirable event orderings, where each event ordering
specifies the order between a pair of events (note that an
IMUnit schedule need not specify a total order between all
events but only the necessary partial order).

While the ideas of IMUnit can be embodied in any lan-
guage, we have developed an implementation for Java. Syn-
tactically, the IMUnit constructs are represented using Java
annotations. A developer can use @Event and @Schedule an-
notations to describe the events and intended schedules, re-
spectively, for a multithreaded unit test.

Automated Migration: We have developed two infer-
ence techniques and a tool to ease migration of legacy, sleep-
based tests to IMUnit, event-based tests. Our inference
techniques can automatically infer likely relevant events and
schedules from the execution traces of existing sleep-based

tests. We implemented our migration tool as an Eclipse
plugin which uses the results of inference to automatically
refactor a given multithreaded test into an IMUnit test.

Execution and Checking: We have implemented a tool
for execution of IMUnit multithreaded unit tests. The tool
can work in two modes. In the active mode, it controls the
thread scheduler to enforce a given IMUnit schedule dur-
ing test execution. In the passive mode, it checks whether
an arbitrary test execution, controlled by the regular JVM
thread scheduler, follows a given IMUnit schedule. To en-
force/check the schedules, our tool uses the JavaMOP mon-
itoring framework [10,24]. We also include a new runner for
the standard JUnit testing framework to enable execution
of IMUnit tests with our enforcement/checking tool.

Evaluation: To guide and refine our design of the IMUnit
language, we have been inspecting over 200 sleep-based tests
from several open-source projects. We manually translated
198 of those tests into IMUnit, adding events and sched-
ules, and removing sleeps. As a result, the current version
of IMUnit is highly expressive, and we were able to remove
all sleeps from all but 4 tests.

We evaluated our inference techniques by automatically
inferring events/schedules for the original tests that we man-
ually translated (the subprojects on manual translation and
automatic inference were performed by different authors to
reduce the direct bias of manual translation on automatic
inference). Computing the precision and recall of the auto-
matically inferred events/schedules with respect to the man-
ually translated events/schedules, we find our techniques to
be highly effective, with over 75% precision and recall.

We also compared the execution time of the original tests
and our translated tests. Because the main goal of IMUnit
is to make tests more readable, modular, and reliable, we
did not expect IMUnit to run faster. However, IMUnit did
reduce the testing time, on average 3.39x, compared to the
sleep-based tests, with the sleep duration that the original
tests had in the code. As mentioned earlier, these duration
values are often over-estimated, especially in older tests that
were written for slower machines. In summary, IMUnit not
only makes multithreaded unit tests more readable, modu-
lar, and reliable than the traditional sleep-based approach,
but IMUnit can also make test execution faster.

This paper makes progress on our vision for improving
multithreaded unit testing; our position paper [15] proposed
the idea of event-based specification of schedules, but the
IMUnit language and algorithms/tools for inference and ex-
ecution are completely new.

2. EXAMPLE
We now illustrate IMUnit with the help of an example

multithreaded unit test for the ArrayBlockingQueue class in
java.util.concurrent (JSR-166) [17]. ArrayBlockingQueue
is an array-backed implementation of a bounded blocking
queue. One operation provided by ArrayBlockingQueue is
add, which performs a non-blocking insertion of the given el-
ement at the tail of the queue. If add is performed on a full
queue, it throws an exception. Another operation provided
by ArrayBlockingQueue is take, which removes and returns
the object at the head of the queue. If take is performed on
an empty queue, it blocks until an element is inserted into
the queue. These operations could have bugs that get trig-
gered when the add and take operations execute on different
threads. Consider testing some scenarios for these opera-

FSE'11, ACM, pp 223-233. 2011

1 @Test
2 public void testTakeWithAdd() {
3 ArrayBlockingQueue<Integer> q;
4 q = new ArrayBlockingQueue<Integer>(1);
5 new Thread(
6 new CheckedRunnable() {
7 public void realRun() {
8 q.add(1);
9 Thread.sleep(100);

10 q.add(2);
11 }
12 }, ”addThread”).start();
13 Thread.sleep(50);
14 Integer taken = q.take();
15 assertTrue(taken == 1 && q.isEmpty());
16 taken = q.take();
17 assertTrue(taken == 2 && q.isEmpty());
18 addThread.join();
19 }

(a) JUnit

1 public class TestTakeWithAdd
2 extends MultithreadedTest {
3 ArrayBlockingQueue<Integer> q;
4 @Override
5 public void initialize() {
6 q = new ArrayBlockingQueue<Integer>(1);
7 }
8 public void addThread() {
9 q.add(1);

10 waitForTick(2);
11 q.add(2);
12 }
13 public void takeThread() {
14 waitForTick(1);
15 Integer taken = q.take();
16 assertTrue(taken == 1 && q.isEmpty());
17 taken = q.take();
18 assertTick(2);
19 assertTrue(taken == 2 && q.isEmpty());
20 }
21 }

(b) MultithreadedTC

1 @Test
2 @Schedule(”finishedAdd1->startingTake1,
3 [startingTake2]->startingAdd2”)
4 public void testTakeWithAdd() {
5 ArrayBlockingQueue<Integer> q;
6 q = new ArrayBlockingQueue<Integer>(1);
7 new Thread(
8 new CheckedRunnable() {
9 public void realRun() {

10 q.add(1);
11 @Event(”finishedAdd1”)
12 @Event(”startingAdd2”)
13 q.add(2);
14 }
15 }, ”addThread”).start();
16 @Event(”startingTake1”)
17 Integer taken = q.take();
18 assertTrue(taken == 1 && q.isEmpty());
19 @Event(”startingTake2”)
20 taken = q.take();
21 assertTrue(taken == 2 && q.isEmpty());
22 addThread.join();
23 }

(c) IMUnit

Figure 1: Example multithreaded unit test for ArrayBlockingQueue

tions (in fact, the JSR-166 TCK provides over 100 tests for
various scenarios for similar classes).

Figure 1 shows a multithreaded unit test that ArrayBlock-
ingQueue exercises add and take in two scenarios. In particu-
lar, Figure 1(a) shows the test written as a regular JUnit test
method, with sleeps used to specify the required schedule.
We invite the reader to consider what scenarios are specified
with that test (without looking at the other figures). It is
likely to be difficult to understand which schedule is being
exercised by reading the code of this unit test. While the
sleeps provide hints as to which thread is waiting for another
thread to perform operations, it is unclear which operations
are intended to be performed by the other thread before the
sleep finishes.

The test actually checks that take performs correctly both
with and without blocking, when used with add from another
thread. To check both scenarios, the test exercises a sched-
ule where the first add finishes before the first take starts,
and the second take blocks before the second add starts.
Line 13 shows the first sleep that is intended to pause the
main thread1 while the addThread finishes the first add. Line 9
shows the second sleep which is intended to pause the add-

Thread while the main thread finishes the first take and then
proceeds to block while performing the second take. If the
specified schedule is not enforced during the execution, there
may be a false positive/negative. For example, if both add

operations execute before a take is performed, the test will
throw an exception and fail even if the code has no bug, and
if both take operations finish without blocking, the test will
not fail, even if the blocking take code had a bug.

Figure 1(b) shows the same test written using Multithre-
adedTC [26]. Note that it departs greatly from traditional
JUnit where each test is a method. In MultithreadedTC,
each test has to be written as a class, and each method in
the test class contains the code executed by a thread in the

1JVM names the thread that starts the execution main by
default, although the name can be changed later.

test. The intended schedule is specified with respect to a
global, logical clock. Since this clock measures time in ticks,
we call the approach tick-based. When a thread executes a
waitForTick, it is blocked until the global clock reaches the
required tick. The clock advances implicitly when all threads
are blocked (and at least one thread is blocked in a wait-

ForTick). While a MultithreadedTC test does not rely on
real time, and is thus more reliable than a sleep-based test,
the intended schedule is still not immediately clear upon
reading the test code. It is especially not clear when wait-

ForTick operations are blocked/unblocked, because ticks are
advanced implicitly when all the threads are blocked.

Figure 1(c) shows the same test written using IMUnit.
The interesting events encountered during test execution are
marked with @Event annotations2, and the intended sched-
ule is specified with a @Schedule annotation that contains a
comma-separated set of orderings among events. An order-
ing is specified using the operator ->, where the left event is
intended to execute before the right event. An event speci-
fied within square brackets denotes that the thread execut-
ing that event is intended to block after that event. It should
be clear from reading the schedule that the addThread should
finish the first add before the main thread starts the first take,
and that the main thread should block while performing the
second take before the addThread starts the second add.

We now revisit, in the context of this example, the issues
with multithreaded tests listed in the introduction. In terms
of readability, we believe that making the schedules explicit,
as in IMUnit, allows easier understanding and maintenance
of schedules and code for both testing and debugging. In
terms of modularity, IMUnit allows extracting the addThread

as a helper thread (with its events) that can be reused in

2Note that @Event annotations appear on statements. The
current version of Java (ver. 6) does not support annotations
on statements, but the upcoming version of Java (ver. 7)
will add such support. For now, @Event annotations can
be written as comments, e.g., /* @Event("finishedAdd1") */,
which IMUnit translates into code for test execution.

FSE'11, ACM, pp 223-233. 2011

<Schedu le> : := { <Order ing> [” , ”] } <Order ing>
<Order ing> : := <Cond i t i on> ”->” <Bas i c Event>
<Cond i t i on> : := <Bas i c Event> | <Block Event>

| <Cond i t i on> ”| | ” <Cond i t i on>
| <Cond i t i on> ”&&” <Cond i t i on>
| ”(” <Cond i t i on> ”) ”

<Bas i c Event> : := <Event Name> [”@” <Thread Name>]
| ”s t a r t ” ”@” <Thread Name>
| ”end ” ”@” <Thread Name>

<Block Event> : := ”[” <Bas i c Event> ”] ”
<Event Name> : := { <Id> ”. ” } <Id>
<Thread Name> : := <Id>

Figure 2: Syntax of the IMUnit schedule language

other tests (in fact, many tests in the JSR-166 TCK [17] use
such helper threads). In contrast, reusing thread methods
from the MultithreadedTC test class is more involved, re-
quiring subclassing, parametrizing tick values, and providing
appropriate parameter values. Also, IMUnit allows specify-
ing multiple schedules for the same test code (Section 4.3).
In terms of reliability, IMUnit does not rely on real time and
hence has no false positives/negatives due to unintended sch-
edules. In terms of migration costs, IMUnit tests resemble
legacy JUnit tests more than MultithreadedTC tests. This
similarity eases the transition of legacy tests into IMUnit:
in brief, add @Event annotations, add @Schedule annotation,
and remove sleep calls. Section 4 presents our techniques
and tool that automate this transition.

3. SCHEDULE LANGUAGE
We now describe the syntax and semantics of the language

used in IMUnit’s schedules.

3.1 Concrete Syntax
Figure 2 shows the concrete syntax of the implemented

IMUnit schedule language. An IMUnit schedule is a comma-
separated set of orderings. Each ordering defines a condi-
tion that must hold before a basic event can take place. A
basic event is an event name possibly tagged with its is-
suing thread name when that is not understood from the
context. An event name is any identifier, possibly prefixed
with a qualified class name. There are two implicit event
names for each thread, start and end, indicating when the
thread starts and terminates. Any other event must be ex-
plicitly introduced by the user with the @Event annotation
(see Figure 1(c)). A condition is a conjunctive/disjunctive
combination of basic and block events, where block events
are written as basic events in square brackets. A block event
[e′] in the condition c of an ordering c → e states that e′

must precede e and, additionally, the thread of e′ is blocked
when e takes place.

3.2 Schedule Logic
It is more convenient to define a richer logic than what

is currently supported by our IMUnit implementation; the
additional features are natural and thus may also be imple-
mented in the future. The semantics of our logic is given in
Section 3.3; here is its syntax:

a ∶∶= start ∣ end ∣ block ∣ unblock ∣ event names
t ∶∶= thread names
e ∶∶= a@t
ϕ ∶∶= [t] ∣ ϕ→ ϕ ∣ usual propositional connectives

The intuition for [t] is “thread t is blocked”and for ϕ→ ψ “if
ψ held in the past, then ϕ must have held at some moment
before ψ”. We call these two temporal operators the block
and the ordering operators, respectively. For uniformity, all
events are tagged with their thread. There are four im-
plicit events: start@t and end@t were discussed above, and
block@t and unblock@t correspond to when t gets blocked
and unblocked3.

For example, the following formula in our logic

(a1@t1 ∧ ([t2] ∨ (¬(start(t2)→ a1@t1))))→ a2@t2
∧ (a2@t2 ∧ ([t1] ∨ (end(t1) → a2@t2)))→ a2@t2

says that if event a2 is generated by thread t2 then: (1)
event a1 must have been generated before that and, when a1
was generated, t2 was either blocked or not started yet; and
(2) when a2 is generated by t2, t1 is either blocked or termi-
nated. As explained shortly, every event except for block and
unblock is restricted to appear at most once in any execution
trace. Above we assumed that a1, a2 ∉ {block ,unblock}.

Before we present the precise semantics, we explain how
our current IMUnit language shown in Figure 2 (whose de-
sign was driven exclusively by practical needs) is a smaller
fragment of the richer logic. An IMUnit schedule is a con-
junction (we use comma instead of ∧) of orderings, and
schedules cannot be nested. Since generating block and un-
block events is expensive, IMUnit currently disallows their
explicit use in schedules. Moreover, to reduce their implicit
use to a fast check of whether a thread is blocked or not,
IMUnit also disallows the explicit use of [t] formulas. In-
stead, it allows block events of the form [a@t] (note the
square brackets) in conditions. Since negations are not al-
lowed in IMUnit, and since we can show (after we discuss the
semantics) that (ϕ1 ∨ϕ2) → ψ equals (ϕ1 → ψ) ∨ (ϕ2 → ψ),
we can reduce any IMUnit schedule to a Boolean combina-
tion of orderings ϕ → e, where ϕ is a conjunction of ba-
sic events or block events. All that is left to show is how
block events are desugared. Consider an IMUnit schedule
(ϕ ∧ [a1@t1]) → a2@t2, saying that a1@t1 and ϕ must pre-
cede a2@t2 and t1 is blocked when a2@t2 occurs. This can
be expressed as ((ϕ ∧ a1@t1) → a2@t2) ∧ ((a2@t2 ∧ [t1]) →
a2@t2), relying on a2@t2 happening at most once.

3.3 Semantics
Our schedule logic is a carefully chosen fragment of past-

time linear temporal logic (PTLTL) over special well-formed
multithreaded system execution traces.

Program executions are abstracted as finite traces of eve-
nts τ = e1e2 . . . en. Unlike in conventional LTL, our traces
are finite because unit tests always terminate. Traces must
satisfy the obvious condition that events corresponding to
thread t can only appear while the thread is alive, that is,
between start@t and end@t. Using PTLTL, this require-
ment states that for any trace τ and any event a@t with
a ∉ {start , end}, the following holds:

τ ⊧ ¬⟐ (a@t ∧ (⟐end@t ∨ ¬⟐ start@t))

where ⟐ stands for “eventually in the past”. Moreover, ex-
cept for block@t and unblock@t events, we assume that each

3It is expensive to explicitly generate block/unblock events in
Java precisely when they occur, because it requires polling
the status of each thread; our currently implemented frag-
ment only needs, through its restricted syntax, to check if a
given thread is currently blocked or not, which is fast.

FSE'11, ACM, pp 223-233. 2011

event appears at most once in a trace. With PTLTL, this
says that the following must hold (� is “previously”):

τ ⊧ ¬⟐ (a@t ∧�⟐ a@t)

for any trace τ and any a@t with a ∉ {block ,unblock}.
The semantics of our logic is defined as follows:
e1e2 . . . en ⊧ e iff e = en
τ ⊧ ϕ ∧/∨ ψ iff τ ⊧ ϕ and/or τ ⊧ ψ
e1e2 . . . en ⊧ [t] iff (∃1 ≤ i ≤ n) (ei = block@t and

(∀i < j ≤ n) ej ≠ unblock@t)
e1e2 . . . en ⊧ ϕ→ ψ iff (∀1 ≤ i ≤ n) e1e2 . . . ei /⊧ ψ or

(∃1 ≤ i ≤ n) (e1e2 . . . ei ⊧ ψ and
(∃1 ≤ j ≤ i) e1e2...ej ⊧ ϕ)

It is not hard to see that the two new operators [t] and
ϕ→ ψ can be expressed in terms of PTLTL as

[t] ≡ ¬unblock@t S block@t
ϕ→ ψ ≡ �¬ψ ∨ ⟐(ψ ∧⟐ϕ)

where S stands for “since” and � for “always in the past”.

4. MIGRATION
We now describe the process of migrating legacy, sleep-

based tests to IMUnit, event-based tests. First we present
the steps that are typically performed during manual migra-
tion and then we describe the automated support that we
have developed for key steps of the migration.

4.1 Manual Migration
Based on our experience of manually migrating over 200

tests, the migration process typically follows these steps:

Step 1: Optionally add explicit names for threads in the
test code (by using a thread constructor with a name or by
adding a call to setName). This step is required if events are
tagged with their thread name (e.g. finishedAdd1@addThread)
in the schedule, because by default the JVM automatically
assigns a name (e.g. Thread-5) for each thread created with-
out an explicit name, and the automatic name may differ
between JVMs or between different runs on the same JVM.

Step 2: Introduce @Event annotations for the events relevant
for the intended schedule. Some of these annotations will be
used for block events and some for basic events.

Step 3: Introduce a @Schedule annotation for the intended
schedule. Steps 2 and 3 are the hardest to perform as they
require understanding of the intended behavior of the sleep-
based test. Note that a schedule with too few orderings can
lead to failing tests that are false positives. On the other
hand, a schedule with too many orderings may lead to false
negatives whereby a bug is missed because the schedule is
over-constraining the test execution.

Step 4: Check that the orderings in the introduced sched-
ule are actually satisfied when running the test with sleeps
(Section 5 describes the passive, checking mode).

Step 5: Remove sleeps.

Step 6: Optionally merge multiple tests with different sched-
ules (but similar test code) into one test with multiple sched-
ules, potentially adding schedule-specific code (Section 4.3).

4.2 Automated Migration
We have developed automated tool support to enable eas-

ier migration of sleep-based tests to IMUnit. In particular,
we have developed inference techniques that can compute

enum EntryType { SLEEP CALL, SLEEP RETURN, BLOCK CALL,
BLOCK RETURN, OTHER CALL, OTHER RETURN, TH START,
TH END, EVENT }

class LogEntry { EntryType type; ThreadID tid; String info; StmtID sid; }

Figure 3: Log Entries

likely relevant events and schedules for sleep-based tests by
inspecting the execution logs obtained from test runs. We
next describe the common infrastructure for logging the test
runs. We then present the techniques for inferring events
and schedules.

4.2.1 Lightweight Logging
Our inference of events and schedules from sleep-based

tests is dynamic: it first instruments the test code (using As-
pectJ [19]) to emit entries potentially relevant for inference,
then runs the instrumented code (several times, as explained
below) to collect logs of entries from the test executions, and
finally analyzes the logs to perform the inference.

Figure 3 shows the generic representation for log entries,
although event and schedule inference require slightly differ-
ent representations. Each log entry has a type, name/ID of
the thread that emits the entry, potential info/parameters
for the entry, and the ID of the statement that creates the
entry (which is used only for event inference). The types of
log entries and their corresponding info are as follows:

SLEEP_CALL: Invocation of Thread.sleep method. (Only used
for inferring events.)

SLEEP_RETURN: Return from Thread.sleep method.

BLOCK_CALL: Invocation of a thread blocking method (Lock-
Support.park or Object.wait).

BLOCK_RETURN: Return from a thread blocking method.

OTHER_CALL: Invocation of a method (other than those listed
above) in the test class. The info is the method name. (Only
used for inferring events .)

OTHER_RETURN: Return from a method executed from the test
class.

TH_START: Invocation of Thread.start. The info is the ID of
the started thread. (Only used for inferring schedules.)

TH_END: End of thread execution.

EVENT: Execution of an IMUnit event. The info is the name
of the event. (Only available while inferring schedules.)

Note that any logging can affect timing of test execution.
Because sleep-based tests are especially sensitive to timing,
care must be taken to avoid false positives. We address this
in three ways. First, our logging is lightweight. The instru-
mented code only collects log entries (and their parameters)
relevant to the inference. For example, OTHER_CALL is not col-
lected for schedule inference. Also, the entries are buffered
in memory during test execution, and they are converted to
strings and logged to file only at the end of test execution.
While keeping entries in memory would not work well for
very long logs, it works quite well for the relatively short
logs produced by test executions. Second, our instrumenta-
tion automatically scales the duration of sleeps by a given
constant N to compensate for the logging overhead. For ex-
ample, for N = 3 it increases all sleep times 3x. Increasing
all the durations almost never makes a passing test fail, but
it does make the test run slower. Third, we perform multiple

FSE'11, ACM, pp 223-233. 2011

runs of each test and only collect logs for passing runs. This
increases the confidence that the logs indeed correspond to
the intended schedules specified with sleeps.

4.2.2 Inferring Events
Figure 4 presents the algorithm for inferring IMUnit events

from a sleep-based test. The input to the algorithm consists
of a set of logs (as described in Section 4.2.1) and a con-

fidenceThreshold. The output is a set of inferred events.
Each event includes the code location where @Event anno-
tation should be added and the name of the event. The
intuition behind the algorithm is that SLEEP_CALL log entries
are indicative of code locations for events. More precisely, a
thread t calls sleep to wait for one or more events to happen
on other threads (those will be “finished” events) before an
event happens on t (that will be a “starting” event). Recall
our example from Section 2. When the main thread calls
sleep, it waits for add to finish before take starts, and thus
finishedAdd1 executes before startingTake1.

For each log, the algorithm first computes a set of regions,
each of which is a sequence of log entries between SLEEP_CALL

and the matching SLEEP_RETURN executed by the same thread.
The log entries executed by other threads within a region are
potential points for the “finished” events. Regions from dif-
ferent threads can be partially or completely overlapping,
but regions from the same thread are disjoint (i.e., each
SLEEP_CALL is followed directly by SLEEP_RETURN before any
other statement is executed by the thread). Figure 5 shows
two regions for a simplified log produced by our running ex-
ample. In pseudo-code, each region is represented as a pair
of ints that point to the beginning and end of the region
in the list of log entries. For each region, the algorithm
first calls addFinishedEvents to potentially add some “fin-
ished” events for threads other than the region’s thread. If
an event is added, the algorithm calls addStartingEvent to
add the matching “starting” event.

The procedure addFinishedEvents potentially adds an in-
ferred event for each thread that executes at least one state-
ment in the region. For each such thread, the procedure first
discovers a relevant statement, which is one of SLEEP_CALL,
BLOCK_CALL, and TH_END. Only threads that have exactly one
relevant statement in the region are considered. The intu-
ition is that sleeps usually wait for exactly one event in each
other thread. If a thread executes none or multiple rele-
vant statements, it is most likely independent of the thread
that started the region and therefore can be ignored. Fig-
ure 5 shows the relevant statements for each region. The
procedure then finds the OTHER_RETURN statement immedi-
ately before the relevant statement for each thread. This
statement determines the name for the new“finished” Stat-
icEvent, whereas the relevant statement determines the lo-
cation. Note that logging only method calls would not be
enough to properly determine the previous statement since
the call can come from a helper method in the test class. For
our example, these before log entries are OTHER_RETURN(add),

addThread, 326 and OTHER_RETURN(take), main, 336 (Fig. 5).
The procedure addStartingEvent adds an event for the

thread that starts the region. The event is placed just before
the first statement that follows the end of the region. The
type of the statement can be any, including OTHER_CALL. The
same statement is used for naming the event. In Figure 5,
OTHER_CALL(take), main, 336 and OTHER_CALL(add), addThr-

ead, 330 are found following the algorithm.

1 // Input
2 Set⟨List⟨LogEntry⟩⟩ logs;
3 float confidenceThreshold;
4 // Output
5 class StaticEvent { StmtID sid; String name; }
6 Set⟨StaticEvent⟩ events;
7 // State
8 Bag⟨StaticEvent⟩ inferred := ∅;
9

10 class Region { int start; int end; }
11

12 void inferEvents() {
13 foreach (List⟨LogEntry⟩ log in logs) {
14 foreach (Region r in computeRegions(log)) {
15 boolean addedFinished := addFinishedEvents(r, log);
16 if (addedFinished) { addStartingEvent(r, log); }
17 }
18 }
19 filterOutLowConfidence(confidenceThreshold);
20 events := inferred.toSet();
21 }
22 Set⟨Region⟩ computeRegions(List⟨LogEntry⟩ log) {
23 return { new Region(i, j) | log(i).type = SLEEP CALL ∧
24 j := min{ k | log(i).tid = log(k).tid ∧
25 log(k).type = SLEEP RETURN } }
26 }
27 boolean addFinishedEvents(Region r, List⟨LogEntry⟩ log) {
28 boolean result ∶= false;
29 foreach (ThreadID t in { log(i).tid | i ∈ r } − { log(r.start).tid }) {
30 Set⟨int⟩ relevant := { i ∈ r | log(i).tid = t ∧
31 log(i).type ∈ { SLEEP CALL, BLOCK CALL, TH END } ∧
32 ¬(∃ j ∈ r | log(j).tid = t ∧
33 log(j).type ∈ { SLEEP RETURN, BLOCK RETURN }) }
34 if (relevant.size() /= 1) continue;
35 int starting := max{ j < relevant | log(j).tid = t ∧
36 log(j).type = OTHER RETURN }
37 addEvent(relevant, ”finished”, starting);
38 result := true;
39 }
40 return result;
41 }
42 void addStartingEvent(Region r, List⟨LogEntry⟩ log) {
43 int finished := min{ j > r.start | log(j).tid = log(r.start).tid ∧
44 log(j).type ∈ { OTHER CALL, TH END } }
45 addEvent(finished, ”starting”, finished);
46 }
47 void addEvent(int location, String namePrefix, int suffixIdx) {
48 StmtID sid = log(location).sid;
49 events ∪= new StaticEvent(sid, namePrefix +
50 log(suffixIdx).info + sid);
51 }

Figure 4: Events-Inference Algorithm

R
e
g
i
o
n

1

R
e
g
i
o
n

0

// calls/returns if add is a helper method

TH_START, main, 333
SLEEP_CALL, main, 334

SLEEP_CALL, addThread, 328 // relevant in 0
SLEEP_RETURN, main, 334

BLOCK_CALL, main, 155 // relevant in 1

BLOCK_RETURN, main, 155
OTHER_RETURN(take), main, 339

OTHER_CALL(add), addThread, 326

SLEEP_RETURN, addThread, 328
OTHER_CALL(add), addThread, 330
OTHER_RETURN(add), addThread, 330

OTHER_RETURN(add), addThread, 326

OTHER_CALL(take), main, 336

OTHER_CALL(take), main, 339
OTHER_RETURN(take), main, 336

Figure 5: Snippet from a Log for Inferring Events

FSE'11, ACM, pp 223-233. 2011

4.2.3 Inferring Schedules
Figure 6 presents the algorithm to infer an IMUnit sch-

edule for a sleep-based multithreaded unit test that already
contains IMUnit event annotations. These annotations can
be automatically produced by our event inference or manu-
ally provided by the user. The input to the algorithm is a
set of logs obtained from the passing executions of the sleep-
based test. Figure 7 shows a snippet from one such log for
our running example sleep-based test shown in Figure 1(a).
The input also contains a confidenceThreshold which will be
described later. The output is an inferred schedule, i.e., a
set of orderings that encodes the intended schedule for the
test. The main part of the algorithm is the addSleepIn-

ducedOrderings procedure. It captures the intuition that a
thread normally executes a sleep to wait for the other active
threads to perform events. Recall line 13 from our example
in Figure 1(a) where the main thread sleeps to wait for the
thread addThread to perform an add operation, and line 9
where addThread sleeps to wait for the main thread to first
perform one take operation and then block while performing
the second take operation.

For each log, the procedure scans for SLEEP_RETURN entries
(line 31). As shown in Figure 7, the log for our example con-
tains two SLEEP_RETURN entries, one each in the main thread
and addThread. For each SLEEP_RETURN that is found, the pro-
cedure does the following:

1) Retrieves the next EVENT entry for the same thread
(line 33). This event will be used as the after event in Or-

derings induced by the SLEEP_RETURN. In the example log, the
two after events are startingTake1 for the first SLEEP_RETURN
and startingAdd2 for the second SLEEP_RETURN.

2) Computes the other threads that were active between
the SLEEP_RETURN and the after event (line 34). In the exam-
ple, for the first SLEEP_RETURN, the only other active thread
is addThread and for the second SLEEP_RETURN, the only other
active thread is main.

3) Finds for each active thread the last EVENT entry that
is before the after event. This event will be the before

event in the Ordering induced by the SLEEP_RETURN with the
corresponding active thread (line 38). Note that this before
event on another thread can be even before the SLEEP_RETURN.
Effectively, this event is the current last entry and not the
last entry at the time of the sleep. In the example, the two
before events are finishedAdd1 and startingTake2 for the
first and second SLEEP_RETURNs, respectively.

4) Creates an Ordering for each before and after event
pair and inserts it into the inferred bag. If a before event
is followed immediately by a BLOCK_CALL (within entries for
the same thread), a BlockingOrdering is created; otherwise,
a NonBlockingOrdering is created (line 41). In the exam-
ple, since startingTake2 is followed by a BLOCK_CALL, the
ordering between startingTake2 and startingAdd2 will be
a BlockingOrdering, while the other ordering between fin-

ishedAdd1 and startingTake1 will be a NonBlockingOrdering.
Before the addSleepInducedOrderings procedure is invoked,

each log is modified by the preprocessLogs procedure. This
procedure looks for SLEEP_RETURN entries followed immedi-
ately by TH_START entries for the same thread. For every such
instance, it swaps the SLEEP_RETURN and TH_START entries and
sets the tid of the SLEEP_RETURN entry to be the ID of the
thread that is started by the TH_START event. The intuition
is that a SLEEP_RETURN followed by a TH_START signifies that
the started thread, rather than the starting thread perform-

1 class Event { String eventName; ThreadID tid; }
2 abstract class Ordering { Event before; Event after; }
3 class NonBlockingOrdering extends Ordering {};
4 class BlockingOrdering extends Ordering {};
5 // Input
6 Set⟨List⟨LogEntry⟩⟩ logs;
7 float confidenceThreshold;
8 // Output
9 Set⟨Ordering⟩ orderings;

10 // State
11 Bag⟨Ordering⟩ inferred := ∅;
12

13 void inferSchedules() {
14 foreach (List⟨LogEntry⟩ log in logs) {
15 List⟨LogEntry⟩ preprocessed := preprocessLog(log);
16 addSleepInducedOrderings(preprocessed);
17 }
18 minimize();
19 }
20 List⟨LogEntry⟩ preprocessLog(List⟨LogEntry⟩ log) {
21 List⟨LogEntry⟩ result := log.clone();
22 foreach ({ i | log(i).type = SLEEP RETURN }) {
23 int j := min{j > i | log(j).tid = log(i).tid };
24 if (log(j).type = TH START) {
25 result(j) := new LogEntry(SLEEP RETURN, , log(j).info);
26 result(i) := log(j);
27 } }
28 return result;
29 }
30 void addSleepInducedOrderings(List⟨LogEntry⟩ log) {
31 foreach ({ i ∈ log.indexes() | log(i).type = SLEEP RETURN }) {
32 ThreadID t := log(i).tid;
33 int j := min{ n > i | log(n).tid = t ∧ log(n).type = EVENT };
34 Set⟨ThreadID⟩ active := { t’ | (∃ n < j |
35 log(n).tid = t’ ∧ log(n).type = EVENT) ∧
36 (∃ n > i | log(n).tid = t’ ∧ log(n).type = TH END

) };
37 foreach (ThreadID t’ in active − { t }) {
38 int j’ := max{ n < j | log(n).tid = t’ ∧ log(n).type = EVENT };
39 Event before := new Event(log(j’).info, t’);
40 Event after := new Event(log(j).info, t);
41 if (log(min{ n > j’ | log(n).tid = t’ }).type /= BLOCK CALL) {
42 inferred ∪= new NonblockingOrdering(before, after);
43 } else { // before.type = BLOCK CALL
44 inferred ∪= new BlockingOrdering(before, after);
45 } } } }
46 void minimize(List⟨LogEntry⟩ log) {
47 Set⟨Ordering⟩ graph := inferred.toSet() ∪ computeSeqOrderings(log);
48 removeCyclicOrderings(graph);
49 performTransitiveReduction(graph);
50 inferred.onlyRetainOrderingsIn(graph);
51 filterOutLowConfidence(confidenceThreshold);
52 orderings := inferred.toSet();
53 }
54 void Set⟨Ordering⟩ computeSeqOrderings(List⟨LogEntry⟩ log) {
55 return { new NonblockingOrdering(log(i), log(j)) |
56 i < j ∧ log(i).tid = log(j).tid ∧
57 log(i).type = log(j).type = EVENT ∧
58 ¬(∃ k | i < k < j ∧ log(j).tid = log(k).tid
59 ∧ log(k).type = EVENT) };
60 }

Figure 6: Schedule-Inference Algorithm

O
r
d
e
r
i
n
g
1

O
r
d
e
r
i
n
g
0

BLOCK_CALL, main

SLEEP_RETURN, main

TH_START(addThread), main

SLEEP_RETURN, addThread

EVENT(startingTake1), main

EVENT(finishedAdd1), addThread

EVENT(startingTake2), main

EVENT(startingAdd2), addThread

Figure 7: Snippet from a Log for Inferring Schedules

FSE'11, ACM, pp 223-233. 2011

ing the TH_START, should wait for the other active threads
to perform events. Many of the sleep-based tests that we
migrated included instances of this pattern. Effectively, this
swap makes it appear as if the sleep was at the beginning
of the run method for the started thread, although the sleep
was actually before the start method.

After each log is processed by the preprocessLogs and
addSleepInducedOrderings procedures, the inferred bag is
populated with all the inferred orderings. However, the in-
ferred orderings may contain cycles (e.g., a->b and b->a)
and transitively redundant orderings (e.g., a->b, b->c, and
a->c, where the last ordering is redundant). The minimize

procedure removes such orderings. It first creates an or-
dering graph by combining the edges from the inferred or-
derings with the edges implied by the sequential orderings
of events within each thread (the latter edges being com-
puted by the computeSeqOrderings procedure). It then re-
moves all the edges of the graph that participate in cycles.
It finally performs a transitive reduction on the acyclic graph

and updates the inferred bag by removing all orderings not
included in the reduced graph. We use an open-source im-
plementation [12] of the transitive reduction algorithm in-
troduced by Aho et al. [1]. Since the transitive reduction is
performed on an acyclic graph, we can use a simpler case of
the general algorithm.

The last step of the minimize procedure is to remove the
orderings that were inferred with low confidence. Recall that
the input to our inference is a set of logs from several (pass-
ing) runs of the test being migrated. The confidence of an
inferred ordering is the ratio of the count of that ordering
in the inferred bag and the number of logs/runs. For ex-
ample, an ordering may be inferred in only 60% of runs, say
3 out of 5. The confidenceThreshold defines the lowest ac-
ceptable confidence. All inferred orderings with confidence
lower than the specified threshold are discarded.

4.2.4 Eclipse Plugin
We have developed a refactoring plugin for Eclipse to en-

able automated migration of existing sleep-based unit tests
into event-based IMUnit tests. The plugin is implemented
using the generic refactoring API provided by Eclipse. The
refactoring automates the most important steps required to
migrate a sleep-based test into an IMUnit test: introduc-
tion of events and schedule (using inference techniques) and
checking of the introduced schedule. The refactoring can
also help the user name the threads in the test.

4.3 Multiple Schedules
As mentioned in Step 6 of Section 4.1, after converting

sleep-based tests to event-based IMUnit tests, developers
can merge several similar tests with different schedules into
one test with multiple IMUnit schedules. Recall our exam-
ple sleep-based test from Figure 1(a). Its intended schedule
is an add followed by a non-blocking take and a blocking take

followed by another add. Suppose that the same test class
contained another sleep-based test whose indented schedule
is an add followed by a non-blocking take and another add

followed by another non-blocking take. Although these two
sleep-based tests would be almost identical (with the sleep at
line 9 moved to before line 16), they cannot share the com-
mon code without using additional conditional statements
to enable the appropriate sleeps during execution. In con-
trast, after both tests are migrated to IMUnit tests, they can

be easily replaced by just one new test. This new test would
have the same code as in Figure 1(a), with two added anno-
tations: (1) @Event("finishedAdd2") added after the add(2)

call, and (2) @Schedule("finishedAdd1->startingTake1, fin-

ishedAdd2->startingTake2") added before the test method.

5. ENFORCING & CHECKING
We now describe the IMUnit Runner, our tool for enforc-

ing/checking schedules for IMUnit tests. It is implemented
as a custom test runner for the JUnit testing framework.
It executes each test for each IMUnit schedule and has two
operation modes. In the active mode, it controls the thread
scheduler to enforce an execution of the test to satisfy the
given schedule. Note that this mode avoids the main prob-
lem of sleep-based tests, that of false positives and negatives
due to the execution of unintended schedules. In the passive
mode, our tool observes and checks the execution provided
by the JVM against the given schedule.

Our runner is implemented using JavaMOP [10, 24], a
high-performance runtime monitoring framework for Java.
JavaMOP is generic in the property specification formalism
and provides several such formalisms as logic plugins, includ-
ing past-time linear temporal logic (PTLTL). Although our
schedule language is a semantic fragment of PTLTL (Sec-
tion 3), enforcing PTLTL specifications in their full gener-
ality on multithreaded programs is rather expensive.

Instead, we have developed a custom JavaMOP logic plu-
gin for our current IMUnit schedule language from Figure 2.
Since JavaMOP takes care of all the low-level instrumenta-
tion and monitor integration details (after a straightforward
mapping of IMUnit events into JavaMOP events), we here
only briefly discuss our new JavaMOP logic plugin. It takes
as input an IMUnit schedule and generates as output a mon-
itor written in pseudo-code; a Java shell for this language
then turns the monitor into AspectJ code [19], which is fur-
ther woven into the test program. In the active mode, the
resulting monitor enforces the schedule by blocking the vio-
lating thread until all the conditions from the schedule are
satisfied. In the passive mode, it simply prints an error when
its corresponding schedule is violated.

A generated monitor for an IMUnit schedule observes the
defined events. When an event e occurs, the monitor checks
all the conditions that the event should satisfy according to
the schedule, i.e., a Boolean combination of basic and block
events (Figure 2). The status of each basic event is main-
tained by a Boolean variable which is true iff the event oc-
curred in the past. The status of a block event is checked as
a conjunction of this variable and its thread’s blocked state.
In the active mode, the thread of e will be blocked until this
Boolean expression becomes true. If the condition contains
any block event, periodic polling is used for checking thread
states. Thus, IMUnit pauses threads only if their events are
getting out of order for the schedule. Note that the user
may have specified an infeasible schedule, which can cause a
deadlock where all threads are paused. Our runner includes
a low-overhead runtime deadlock detection that detects and
reports deadlocks.

As an example, Figure 8 shows the active-mode moni-
tor generated for the schedule in Figure 1(c). When events
finishedAdd1 and startingTake2 occur, the monitor just sets
the corresponding Boolean variables, as there is no condition
for those events. For event startingTake1, it checks if there
was an event finishedAdd1 in the past by checking the vari-

FSE'11, ACM, pp 223-233. 2011

1 sw i t c h (even t) {
2 case finishedAdd1 :
3 o c cu r r ed finishedAdd1 = t r ue ; n o t i f y A l l () ;
4 case startingTake2 :
5 t h r e a d startingTake2 = cu r r en tTh read () ;
6 o c cu r r ed startingTake2 = t r ue ; n o t i f y A l l () ;
7 case startingTake1 :
8 wh i l e (! o c cu r r ed finishedAdd1)
9 wa i t () ;

10 o c cu r r ed startingTake1 = t r ue ; n o t i f y A l l () ;
11 case startingAdd2 :
12 wh i l e (! (o c cu r r ed startingTake2 &&
13 i s B l o ck ed (t h r e a d startingTake2)))
14 wa i t () ;
15 o c cu r r ed startingAdd2 = t r ue ; n o t i f y A l l () ; }

Figure 8: Monitor for the schedule in Figure 1(c)

able occurred_finishedAdd1; if not, the thread will be blocked
until finishedAdd1 occurs. For event startingAdd2, in addi-
tion to checking the Boolean variable for startingTake2, it
also checks whether the thread of the event startingTake2 is
blocked; if not, the thread of the event startingAdd2 will be
blocked until both conditions are satisfied.

6. EVALUATION
To evaluate the IMUnit contributions—schedule language,

automated migration, and schedule execution—we analyzed
over 200 sleep-based tests from several open-source projects.
Table 1 lists the projects and the number of sleep-based tests
that we manually migrated to IMUnit. We first describe
our experience with the IMUnit language. We then present
results of our inference techniques for migration. We finally
discuss the test running time.

6.1 Schedule Language
It is hard to quantitatively evaluate and compare lan-

guages, be it implementation or specification languages, in-
cluding languages for specifying schedules. One metric we
use is how expressive the language is, i.e., how many sleep-
based tests can be expressed in IMUnit such that sleeps can
be removed altogether. Note that IMUnit conceptually sub-
sumes sleeps: sleeps and IMUnit events/schedules can co-
exist in the same test, and developers just need to make
sleeps long enough to account for the IMUnit schedule en-
forcement. While every sleep-based test is trivially an IMU-
nit test, we are interested only in those tests where IMUnit
allows removing sleeps altogether.

We were able to remove sleeps from 198 tests, in fact all
sleeps from all but 4 tests. While the current version of
IMUnit is highly expressive, we have to point out that we
refined the IMUnit language based on the experience with
migrating the sleep-based tests. When we encountered a
case that could not be expressed in IMUnit, we considered
how frequent the case is, and how much IMUnit would need
to change to support it. For example, blocking events are
very frequent, and supporting them required a minimal syn-
tactic extension (adding events with square brackets) to the
initial version of our language. However, some cases would
require bigger changes but are not frequent enough to jus-
tify them. The primary example is events in a loop. IMUnit
currently does not support the occurrence of an event more
than once in a trace. We did find 4 tests that would require
multiple event occurrences, but changing the language to
support them (e.g., adding event counters or loop indices to
events) would add a layer of complexity that is not justified
by the small number of cases. However, as we apply IMUnit

Subject Tests Events Orderings

Collections [4] 18 51 32
JBoss-Cache [18] 27 105 47
Lucene [6] 2 3 4
Mina [7] 1 2 1
Pool [5] 2 8 3
Sysunit [11] 9 33 34
JSR-166 TCK [17] 139 577 277

∑ 198 779 398

Table 1: Subject Programs Statistics

to more projects, and gain more experience, we expect that
the language could grow in the future.

6.2 Inference of Events and Schedules
To measure the effectiveness of our migration tool in infer-

ring events/schedules, we calculated precision and recall of
automatically inferred events/schedules with respect to the
manually written events/schedules (i.e., the manual trans-
lations from sleep-based schedules). Calculating precision
and recall requires comparing the automatically inferred and
manually written events/schedules. For event inference, the
input is a sleep-based test, and the output is a set of events.
Our current comparison uses only the source-code location
(line number) of the static events and not their name. For
schedule inference, the input is a sleep-based test with man-
ually written (not automatically inferred) events, and the
output is a schedule. Our comparison considers all order-
ings from the automatically inferred and manually written
schedules; two orderings match only if they have exactly the
same both before and after events (including their name and
type that can be basic or block). We performed the com-
parisons for all but 14 (discussed below) of our 198 tests.
Table 2 shows for each project precision and recall values,
averaged over the tests from that project.

Columns two and three show the results for event infer-
ence. In most cases, precision and recall are fairly high.
We inspected the cases with lower precision and identified
two causes for it. The first cause is due to our evaluation
setup and not the algorithm itself. Namely, our current com-
parison requires the exact match of source-code locations. If
the locations differ, the inferred event counts as a false nega-
tive, even if it was only a few lines from the manually written
event, and even if those locations are equivalent with respect
to the code. In the future, we plan to improve the setup by
analyzing the code around the automatically inferred and
manually written events to determine if their locations are
equivalent. The second reason is that some tests use sleeps
that are not relevant for the thread schedule (e.g., JBoss-
Cache has such sleeps in the helper threads shared among
tests, and Lucene has similar sleeps while interacting with
the I/O library). These extra sleeps mislead our inference,
which assumes that every sleep is relevant for the schedule
and infers events for every sleep.

Columns four and five show the results for schedule infer-
ence. The results are even more impressive than for event
inference, with precision and recall of over 75% in all cases.
We identified two causes for misses. The first cause is that
some threads can be independent. The algorithm always
forms edges from all threads to the thread that invokes
sleep method, but this should not be done for independent
threads. In the future, we plan to consider an abstraction
similar to regions (Figure 4) as a mechanism to detect inde-

FSE'11, ACM, pp 223-233. 2011

Subject
Inferring Events Inferring Schedules

Precision Recall Precision Recall

Collections 0.75 0.82 0.96 0.97
JBoss-Cache 0.83 0.86 0.87 0.96
Lucene 0.75 1.00 1.00 0.75
Mina 0.22 1.00 1.00 1.00
Pool 0.90 1.00 1.00 1.00
Sysunit 0.76 0.87 0.89 0.89
JSR-166 TCK 0.67 0.74 0.98 0.98

Overall 0.75 0.79 0.96 0.94

Table 2: Precision and Recall for Inference

Subject Original CR TR LC

Collections 33 0 0 0
JBoss-Cache 39 2 3 0
Lucene 5 0 1 1
Mina 1 0 0 0
Pool 3 0 0 0
Sysunit 39 0 5 0
JSR-166 TCK 306 0 30 1

Table 3: Numbers of Removed Orderings

pendent threads. The second cause is the same as for event
inference, namely unnecessary sleeps.

A known issue in information retrieval is that some re-
sult sets may be empty, which corresponds to infinite pre-
cision and zero recall. For 14 of 198 tests, our inference
techniques returned empty sets of events/schedules because
these tests do not use sleeps to control schedules. Instead,
these tests use while (condition) { Thread.sleep/yield } or
wait/notify or CountDownLatch and other concurrent con-
structs to control schedules. We excluded these 14 tests
from the evaluation of our inference techniques.

Our inference algorithms use confidenceThreshold to se-
lect some of the events/schedules, with the default value of
0.5 (for Table 2). We performed a set of experiments to
evaluate how sensitive our inference is to the value of con-

fidenceThreshold. We found that the results are quite sta-
ble. For example, for schedule inference, when changing the
value from 0.5 to 0.1, only for Lucene the precision drops
from 1 to 0.75. When changing the value from 0.5 to 0.9,
only for JBoss-Cache the precision and recall drop from 0.87
and 0.96 to 0.86 and 0.93, respectively. For all other cases,
everything else is inferred exactly the same for the values
0.1 and 0.9 as for the default value 0.5.

The other input to our inference algorithms is the set of
logs obtained from passing runs of the legacy tests. By de-
fault, we collect 5 passing logs for each test (for Table 2).
Different runs of the legacy test can produce different logs
that can in turn result in different sets of events/schedules
being inferred. Therefore, depending on the number of logs,
inferred events/schedules could differ. So we evaluated how
sensitive our inference is to the number of logs. We found
that the logs are quite stable, and almost identical results
were obtained for 1, 5, and 10 logs. For instance, going from
5 to 10 logs only the recall for JBoss-Cache drops from 0.96
to 0.94, and everything else remains the same.

Lastly, our schedule-inference algorithm runs a minimiza-
tion phase after processing all the logs. Table 3 summarizes
the results of this phase. It tabulates, for each project, the
number of schedule orderings originally inferred before min-
imization (Original) and the numbers of orderings removed
by cycles removal (CR), by transitive reduction (TR), and

Subject
Original IMUnit [s] Speedup

[s] DDD DDE DDD DDE

Collections 4.96 1.06 1.67 4.68 2.97
JBoss-Cache 65.58 31.25 31.76 2.10 2.06
Lucene 11.02 3.57 6.12 3.09 1.80
Mina 0.26 0.17 0.20 1.53 1.30
Pool 1.43 1.04 1.04 1.38 1.38
Sysunit 17.67 0.35 0.45 50.49 39.27
JSR-166 TCK 15.20 9.56 9.56 1.59 1.59

GeometricMean 3.39 2.76

Table 4: Test execution time. DDD - deadlock de-
tection disabled; DDE - deadlock detection enabled

due to low confidence (LC). As it can be seen, the mini-
mization phase does not remove many orderings. However,
it is important to remove the orderings it does remove. For
example, without removing the cycle for JBoss-Cache, not
only would inference have a lower precision but it would also
produce a schedule that is unrealizable.

6.3 Performance
Table 4 shows the execution times of the 198 original,

sleep-based tests and the corresponding IMUnit tests (for
IMUnit, with deadlock detection both disabled and enabled).
We ran the experiments on an Intel i7 2.67GHz laptop with
4GB memory, using Sun JVM 1.6.0 06. Our goal for IMU-
nit is to improve readability, modularity, and reliability of
multithreaded unit tests, and we did not expect IMUnit ex-
ecution to be faster than sleep-based execution. In fact, one
could even expect IMUnit to be slower because of the addi-
tional code introduced by the instrumentation and the cost
of controlling schedules. It came as a surprise that IMUnit
is faster than sleep-based tests, on average 3.39x. Even with
deadlock detection enabled, IMUnit was on average 2.76x
faster. This result is with the sleep durations that the orig-
inal tests had in the code.

We also compared the running time of IMUnit with Multi-
threadedTC on a common subset of JSR-166 TCK tests that
the MultithreadedTC authors translated from sleep-based to
tick-based [25]. For these 129 tests, MultithreadedTC was
1.36x faster than IMUnit. Although MultithreadedTC is
somewhat faster, it has a much higher migration cost, and
in our view, produces test code that is harder to understand
and modify than the IMUnit test code. Moreover, we were
surprised to notice that running MultithreadedTC on these
tests, translated by the MultithreadedTC authors, can result
in some failures (albeit with a low probability), which means
that these MultithreadedTC tests can be unreliable and lead
to false positives in test runs.

7. RELATED WORK
Three areas of work are related to IMUnit: (1) unit test-

ing of multithreaded code, (2) enforcement of schedules,
and (3) automated inference of specifications. We briefly
discuss each of them. (1) ConAn [22, 23] and Multithre-
adedTC [26] introduce unit testing frameworks that allow
developers to specify schedules to be used during the exe-
cution of multithreaded unit tests. However, the schedules
in both frameworks are specified relative to a global clock
(real time for ConAn and logic time for MultithreadedTC),
which makes it difficult to reason about the schedules. Also,
neither framework supports automated migration of sleep-

FSE'11, ACM, pp 223-233. 2011

based tests. ConcJUnit [27] extends JUnit to propagate ex-
ceptions raised by child threads up to the main thread and
also checks whether all child threads have finished at the
end of a test method. ThreadControl [13] proposes a tool
to ensure that assertions are performed without interference
from other threads. (2) There has been some previous work
on using formally specified sequencing constraints to verify
multithreaded programs [28]. The specifications are over
sync events with LTL-like constraints, and the verification
ensures that the implementation is faithful to the specifica-
tion. In contrast, IMUnit schedule specifications are used
to enforce ordering between user-specified events while the
system is tested. Carver and Tai [9] use deterministic replay
for concurrent programs. LEAP [14] is a more recent sys-
tem using a similar record-and-replay approach to reproduce
bugs. In comparison, our enforcement and checking mecha-
nism targets ensuring the user-specified schedule rather than
replaying a previously observed execution. (3) Work on au-
tomated mining of specifications for programs [2, 3, 8, 21] is
related to our automated inference of events and schedules.
However, most existing work focuses on mining API usage
patterns/rules in a single threaded scenario, while our tech-
niques mine the intention of sleep-based tests i.e. interesting
events and event orderings across multiple threads.

8. CONCLUSIONS
Current approaches for unit testing of multithreaded code

have issues with readability, modularity, reliability, and/or
migration cost. We presented IMUnit, a novel approach that
addresses these issues. IMUnit includes a new language that
makes tests more readable and modular as it allows explic-
itly specifying schedules on the events during test execution.
We described inference techniques and a tool that can help
in migrating sleep-based tests to IMUnit. We also described
a tool that can reliably execute the specified schedule to
avoid false positives/negatives. The promising results with
IMUnit encourage us to further explore this approach, e.g.,
for automatic generation of multithreaded tests (both test
code and schedules) only from the code under test, or for
regression testing of code with IMUnit schedules [16].

Acknowledgements
We would like to thank Feng Chen, Steven Lauterburg and
Traian Şerbănuţă for initial discussion on this work. Also,
we would like to thank the participants of the IWMSE 2010
workshop for useful feedback. This work is partially sup-
ported by the National Science Foundation under Grant Nos.
CCF-1012759, CNS-0958199, CCF-0916893, CCF-0746856,
and CNS-0720512, by Intel and Microsoft via the Universal
Parallel Computing Research Center (UPCRC), by NASA
contract NNL08AA23C, by an NSA grant, by a UIUC Cam-
pus Research Board Award, and by a Samsung SAIT grant.

9. REFERENCES
[1] A. V. Aho, M. R. Garey, and J. D. Ullman. The

transitive reduction of a directed graph. SIAM
Journal on Computing, 1972.

[2] R. Alur, P. Cerný, M. Parthasarathy, and W. Nam.
Synthesis of interface specifications for Java classes. In
POPL, 2005.

[3] G. Ammons, R. Bod́ık, and J. R. Larus. Mining
specifications. In POPL, 2002.

[4] Apache Software Foundation. Apache Commons
Collections.
http://commons.apache.org/collections/.

[5] Apache Software Foundation. Apache Commons Pool.
http://commons.apache.org/pool/.

[6] Apache Software Foundation. Apache Lucene.
http://lucene.apache.org/.

[7] Apache Software Foundation. Apache MINA.
http://mina.apache.org/.

[8] J. Burnim and K. Sen. DETERMIN: Inferring likely
deterministic specifications of multithreaded
programs. In ICSE, 2010.

[9] R. H. Carver and K. Tai. Replay and testing for
concurrent programs. IEEE Software, 1991.

[10] F. Chen and G. Roşu. Mop: An efficient and generic
runtime verification framework. In OOPSLA, 2007.

[11] Codehaus. Sysunit.
http://docs.codehaus.org/display/SYSUNIT/Home .

[12] S. Cotton. graphlib.
http://www-verimag.imag.fr/~cotton/.

[13] A. Dantas, F. V. Brasileiro, and W. Cirne. Improving
automated testing of multi-threaded software. In
ICST, 2008.

[14] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight
deterministic multi-processor replay of concurrent
Java programs. In FSE, 2010.

[15] V. Jagannath, M. Gligoric, D. Jin, G. Rosu, and
D. Marinov. IMUnit: Improved multithreaded unit
testing (position statement). In IWMSE, 2010.

[16] V. Jagannath, Q. Luo, and D. Marinov. Change-aware
preemption prioritization. In ISSTA, 2011.

[17] Java Community Process. JSR 166: Concurrency
utilities.
http://g.oswego.edu/dl/concurrency-interest/ .

[18] JBoss Community. JBoss Cache.
http://www.jboss.org/jbosscache.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP, 2001.

[20] Lassi Project. Sleep testcase.
http://tinyurl.com/4hk9zdr.

[21] C. Lee, F. Chen, and G. Roşu. Mining parametric
specifications. In ICSE, 2011.

[22] B. Long, D. Hoffman, and P. A. Strooper. A
concurrency test tool for Java monitors. In ASE, 2001.

[23] B. Long, D. Hoffman, and P. A. Strooper. Tool
support for testing concurrent Java components. IEEE
TSE, 2003.

[24] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and
G. Roşu. An overview of the MOP runtime
verification framework. Springer STTT, 2011.

[25] W. Pugh and N. Ayewah. MultithreadedTC - A
framework for testing concurrent Java applications.
http://code.google.com/p/multithreadedtc/.

[26] W. Pugh and N. Ayewah. Unit testing concurrent
software. In ASE, 2007.

[27] M. Ricken and R. Cartwright. ConcJUnit: Unit
testing for concurrent programs. In PPPJ, 2009.

[28] K. Tai and R. H. Carver. Use of sequencing
constraints for specifying, testing, and debugging
concurrent programs. In ICPADS, 1994.

FSE'11, ACM, pp 223-233. 2011

http://commons.apache.org/collections/
http://commons.apache.org/pool/
http://lucene.apache.org/
http://mina.apache.org/
http://docs.codehaus.org/display/SYSUNIT/Home
http://www-verimag.imag.fr/~cotton/
http://g.oswego.edu/dl/concurrency-interest/
http://www.jboss.org/jbosscache
http://tinyurl.com/4hk9zdr
http://code.google.com/p/multithreadedtc/

	Introduction
	Example
	Schedule Language
	Concrete Syntax
	Schedule Logic
	Semantics

	Migration
	Manual Migration
	Automated Migration
	Lightweight Logging
	Inferring Events
	Inferring Schedules
	Eclipse Plugin

	Multiple Schedules

	Enforcing & Checking
	Evaluation
	Schedule Language
	Inference of Events and Schedules
	Performance

	Related Work
	Conclusions
	References

