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Abstract. The problem of testing whether a finite ex-
ecution trace of events generated by an executing pro-
gram violates a linear temporal logic (LTL) formula oc-
curs naturally in runtime analysis of software. Two ef-
ficient algorithms for this problem are presented in this
paper, both for checking safety formulae of the form “al-
ways P”, where P is a past time LTL formula. The first
algorithm is implemented by rewriting and the second
synthesizes efficient code from formulae. Further opti-
mizations of the second algorithm are suggested, reduc-
ing space and time consumption. Special operators suit-
able for writing succinct specifications are discussed and
shown equivalent to the standard past time operators.
This work is part of NASA’s PathExplorer project, the
objective of which is to construct a flexible framework for
efficient monitoring and analysis of program executions.

1 Introduction

The work presented in this paper is part of a project at
NASA Ames Research Center, called PathExplorer [19,
18,14,17,34], that aims at developing a practical testing
environment for NASA software developers. The basic
idea of the project is to analyze the execution trace of a
running program to detect errors. The errors that we are
considering at this stage are multi-threading errors such
as deadlocks and data races, and non-conformance with
linear temporal logic specifications, which is the main
focus of this paper.

Linear Temporal Logic (LTL) [33,27,28] is a logic for
specifying properties of reactive and concurrent systems.
The models of LTL are infinite execution traces, reflect-
ing the behavior of such systems as ideally always being
ready to respond to requests, operating systems being
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a typical example. LTL has been mainly used to spec-
ify properties of concurrent and interactive down-scaled
models of real systems, so that fully formal correctness
proofs could subsequently be carried out, for example us-
ing theorem provers or model checkers (see for example
[21,20,15]). However, formal proof techniques are usu-
ally not scalable to real sized systems without a sub-
stantial effort to abstract the system more or less manu-
ally to a model which can be analyzed. Model checking
of programs has received an increased attention from
the formal methods community within the last couple
of years, and several systems have emerged that can di-
rectly model check source code, such as Java and C [16,
37,9,22,8,3,32]. Stateless model checkers [12,36] try to
avoid the abstraction process by not storing states. Al-
though these systems provide high confidence, they scale
less well because most of their internal algorithms are
exponential or worse.

Testing scales well, and is by far the most used tech-
nique in practice to validate software systems. The merge
of testing and temporal logic specification is an attempt
to achieve the benefits of both approaches, while avoid-
ing some of the pitfalls of ad hoc testing and the com-
plexity of full-blown theorem proving and model check-
ing. Of course, there is a price to pay in order to obtain
a scalable technique: the loss of coverage. The suggested
framework can only be used to examine single execution
traces, and can therefore not be used to prove a system
correct. Our work is based on the belief that software en-
gineers are willing to trade coverage for scalability, so our
goal is to provide tools that are completely automatic,
implement very efficient algorithms and find many er-
rors in programs. A longer term goal is to explore the
use of conformance with a formal specification to achieve
fault tolerance. The idea is that the failure may trigger
a recovery action in the monitored program.

The idea of using LTL in program testing is not new.
It has already been pursued in commercial tools such as
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Temporal Rover (TR) [10], which stimulated our work us
in a major way. In TR, future and past time LTL prop-
erties are stated as formal comments within the program
at chosen program points, like assertions. These formal
comments are then, by a pre-processor, translated into
code, which is inserted at the position of the comments,
and executed whenever reached during program execu-
tion1. The MaC tool [26] is another example of a run-
time monitoring tool that has inspired this work. Here
Java bytecode is automatically instrumented to gener-
ate events of interest during the execution. Of special
interest is the temporal logic used in MaC, which can be
classified as a past time interval logic convenient for ex-
pressing monitoring properties in a succinct way. A the-
oretical contribution in this paper is Theorem 1, which
shows that the MaC temporal logic, together with 10
others, is equivalent to the standard past time temporal
logic. The path exploration tool described in [13] uses
a future time temporal logic formula to guide the exe-
cution of a program for debugging purposes. Hence, the
role of a temporal logic formula is turned around from
monitoring a trace to generation of a trace.

Past time LTL has been shown to have the same ex-
pressiveness as future time LTL [11]. However, past time
LTL is exponentially more succinct than future time LTL
[29]. For example, a property like ”every response should
be preceded by a request” can be easily stated in past time
logic (reflecting directly the previous sentence), but the
corresponding future time representation becomes ”it’s
not the case that (there is no request until (there is a re-
sponse and no request))”. Hence, past time LTL is more
convenient for specifying certain properties, and is the
focus of this paper.

We present two efficient monitoring algorithms for
checking safety formulae of the form “always P”, where
P is a past time LTL formula, one based on formula
rewriting and one based on synthesizing efficient mon-
itoring code from a formula. The rewriting-based algo-
rithm illustrates how rewriting can be used to easily and
elegantly define new logics for monitoring. This may be
of interest when experimenting with logics, or if logics
are domain specific and change with the application, or
if one simply wants a small and elegant implementation.
The synthesis-based algorithm, on the other hand, gener-
ates a very effective monitor for the particular past time
logic, and focuses on efficiency. It is also better suited for
generating code that can be inserted in the monitored
program, in contrast to the rewriting approach, where a
rewriting engine must be called by an external call.

The first algorithm is implemented by rewriting us-
ing Maude [5–7], an executable specification language
whose main operational engine is based on term rewrit-
ing. Since flexibility with respect to defining/modifying
monitoring logics is a very important factor at this stage
in the development of PathExplorer, we have actually

1 The implementation details of TR are not public.

developed a general framework using Maude which al-
lows one to easily and effectively define new logics for
runtime analysis and to monitor execution traces against
formulae in these logics. The rewriting algorithm pre-
sented in this paper instantiate that framework to our
logic of interest, past time LTL. The second algorithm
presented in this paper is designed to be as efficient and
specialized as possible, thus adding the minimum pos-
sible amount of runtime overhead. It essentially synthe-
sizes a special purpose, efficient monitoring code from
formulae, which is further compiled into an executable
monitor. Further optimizations of the second algorithm
are suggested, making each monitoring step typically run
in time lower than the size of the monitored formula.
Both algorithms are based on the fact that the seman-
tics of past time LTL can be defined recursively in such
as way that one only needs to look one step, or event,
backwards in order to compute the new truth value of
a formula and of its subformulae, thus allowing one to
process and then discard the events as they are received
from the instrumented program. Several special opera-
tors suitable for writing succinct monitoring safety spec-
ifications are introduced and shown semantically equiv-
alent to the standard past time operators.

Section 2 gives a short description of the PathEx-
plorer architecture, putting the presented work in con-
text. Section 3 recalls past time LTL and introduces sev-
eral monitoring operators together with their semantics,
then discusses several past time logics and finally shows
their equivalences. Section 4 first presents our rewriting-
based framework for defining and executing new moni-
toring logics, and then shows how past time LTL fits into
this framework. Section 5 finally explains our monitor-
synthesis algorithm, together with optimizations and two
ways to implement it. Section 6 concludes the paper.

2 The PathExplorer Architecture

PathExplorer, PaX, is a flexible environment for mon-
itoring and analyzing program executions. A program
(or a set of programs) to be monitored, is supposed to
be instrumented to emit execution events to an observer,
which then examines the events and checks whether they
satisfy certain user-given constraints. We first give an
overview of the observer that monitors the event stream.
Then we discuss how a program is instrumented for mon-
itoring of temporal logic properties. The instrumentation
presented is specialized to Java, but the principles carry
over to any programming language.

2.1 The Observer

The constraints to be monitored can be of different kinds
and defined in different languages. Each kind of con-
straint is represented by a module. Such a constraint

J. of STTT, Volume 6(2), pp 158-173. 2004 
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Fig. 1. Overview of the PaX observer.

module in principle implements a particular logic or pro-
gram analysis algorithm. Currently there are modules for
checking deadlock potentials, data race potentials, and
for checking temporal logic formulae in different logics.
Amongst the latter, several modules have been imple-
mented for checking future time temporal logic, and the
work presented in this paper is the basis for a module for
checking past time logic formulae. In general, the user
can program new constraint modules and in this manner
extend PaX in an easy way.

The system is defined in a component-based way,
based on a dataflow view, where components are put
together using a “pipeline” operator, see Figure 1. The
dataflow between any two components is a stream of
events in simple text format, without any a-priori as-
sumptions about the format of the events; the receiving
component just ignores events it cannot recognize. This
simplifies composition and allows for components to be
written in different languages and in particular to define
observers of arbitrary systems, programmed in a variety
of programming languages. This latter fact is important
at NASA since several systems are written in a mixture
of C, C++ and Java.

The central component of the PaX system is a so-
called dispatcher. The dispatcher receives events from
the executing program or system and then retransmits
the event stream to each of the constraint modules. Each
module is running in its own process with one input pipe,
only dealing with events that are relevant to the module.
For this purpose each module is equipped with an event
parser. The dispatcher takes as input a configuration
script, which specifies a list of commands - a command
for each module that starts the module in a process.
The dispatcher may read its input event stream from a
file, or alternatively from a socket, to which the instru-
mented running program must write the event stream. In
the latter case, monitoring can happen on-the-fly as the

event stream is produced, and potentially on a different
computer than the observed system.

2.2 Code Instrumentation

The program or system to be observed must be instru-
mented to emit execution events to the dispatcher (writ-
ing them to a file or to a socket as discussed above). We
have currently implemented an automated instrumenta-
tion package for Java bytecode using the Java bytecode
engineering tool JTrek [25]. The instrumentation pack-
age together with PathExplorer is called Java PathEx-
plorer (JPaX). Given information about what kind of
events to be emitted, the instrumentation package in-
struments the bytecode by inserting extra code for emit-
ting events. For deadlock analysis, for example, events
are generated that inform about lock acquisitions and re-
leases. For temporal logic monitoring, one specifies the
variables to be observed, and what predicates over these
variables one wants to refer to in the temporal properties
to be monitored. Imagine for example that the observer
monitors the formula: “always p”, involving the predi-
cate p, and that p is intended to be defined as p ≡ x > y,
where x and y are static variables defined in a class C. In
this case all updates to these variables must be instru-
mented, such that an update to any of them causes the
predicate to be evaluated, and a toggle p to be emitted
to the observer in case it has changed. The instrumen-
tation script is written in Java (using reflection), but in
essence can be represented as follows:

monitor C.x, C.y;
proposition p is C.x > C.y;

The code will then be instrumented to emit changes in
the predicate p. More specifically, first the initial value
of the predicate is transmitted to the observer. Subse-
quently, whenever one of the two variables is updated,
the predicate is evaluated, and in case its value has
changed since last evaluation, the predicate name p is
transmitted to the observer as a toggle. The observer
keeps track of the value of the predicate, based on its
initial value, and the subsequent predicate toggles. Fig-
ure 2 shows an execution trace where x and y initially
are 0, and then subsequently updated. The correspond-
ing values of p are shown. Also shown are the events that
are sent to the observer. That is, the initial value of p
and the subsequent p toggles.

3 Finite Trace Past Time LTL

In this section we remind some basic notions of finite
trace linear past time temporal logic [27,28], establish
some conventions and introduce some operators that we
found particularly useful for runtime monitoring. We em-
phasize that the semantics of past time LTL can be ele-
gantly defined recursively, thus allowing us to implement
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Fig. 2. Events corresponding to observing predicate p ≡ x > y.

monitoring algorithms that only need to look one step
backwards. We also show that past time LTL can be en-
tirely defined using just the special operators, that were
introduced essentially because of practical needs, thus
strengthening our belief that past time LTL is an appro-
priate candidate logic for expressing monitoring safety
requirements.

3.1 Syntax

We allow the following constructors for formulae, where
A is a finite set of “atomic propositions”:

F ::= true | false | A | ¬F | F op F
(propositional operators)

◦· F | �·F | �·F | F Ss F | F Sw F
(standard past time operators)

↑ F |↓ F | [F, F )s | [F, F )w

(monitoring operators)

The propositional binary operators, op, are the stan-
dard ones, that is, disjunction, conjunction, implication,
equivalence, and exclusive disjunction.

The standard past time and the monitoring opera-
tors are often called “temporal operators”, because they
refer to other (past) moments in time. The operator ◦· F
should be read “previously F”; its intuition is that F
held at the immediately previous moment in time. �·F
should be read “eventually in the past F”, with the in-
tuition that there is some past moment in time when
F was true. �·F should be read “always in the past F”,
with the obvious meaning. The operator F1 Ss F2, which
should be read “F1 strong since F2”, reflects the intu-
ition that F2 held at some moment in the past and, since
then, F1 held all the time. F1 Sw F2 is a weak version of
“since”, read “F1 weak since F2”, saying that either F1

was true all the time or otherwise F1 Ss F2.
The monitoring operators ↑, ↓, [ , )s, and [ , )w were

inspired by work in runtime verification in [26]. We found
these operators often more intuitive and compact than
the usual past time operators in specifying runtime re-
quirements, despite the fact that they have the same

expressive power as the standard ones, as we discovered
later. The operator ↑ F should be read “start F”; it says
that the formula F just started to be true, that is, it was
false previously but it is true now. Dually, the operator
↓ F which is read “end F”, carries the intuition that
F ends to be true, that is, it was previously true but it
is false now. The operators [F1, F2)s and [F1, F2)w are
read “strong/weak interval F1, F2” and they carry the
intuition that F1 was true at some point in the past
but F2 has not been seen to be true since then, includ-
ing that moment. For example, if Start and Down are
predicates on the state of a web server to be monitored,
then [Start,Down)s is a property stating that the server
was rebooted recently and since then it was not down,
while [Start,Down)w says that the server was not down
recently, meaning that it was either not down at all re-
cently or it was rebooted and since then it was not down.

3.2 Formal Semantics

We next present formally the intuitive semantics de-
scribed above. We regard a trace as a finite sequence of
abstract states. In practice, these states are generated by
events emitted by the program or system that we want to
observe. Such events could indicate when variables’ val-
ues are changed or when locks are acquired or released
by threads or processes, or even when a physical action
takes place, such as opening or closing a valve, a gate, or
a door. If s is a state and a is an atomic proposition then
a(s) is true if and only if a holds in the state s. Notice
that we are loose with respect to what “holds” means,
because, depending on the context, it can mean any-
thing. However, in the case of JPaX the atomic pred-
icates are just any Java boolean expressions and their
satisfaction is decided by evaluating them in the current
state of the Java program. If t = s1s2 . . . sn (n ≥ 1) is a
trace then we let ti denote the trace s1s2 . . . si for each
1 ≤ i ≤ n. The formal semantics of the operators defined
in the previous subsection is given in Figure 3.

Notice the special semantics of the operator “previ-
ously ” on a trace of one state: s |= ◦· F iff s |= F .
This is consistent with the view that a trace consisting
of exactly one state s is considered like a stationary in-
finite trace containing only the state s. We adopted this
view because of intuitions related to monitoring. One can
start monitoring a process potentially at any moment,
so the first state in the trace might be different from the
initial state of the monitored process. We think that the
“best guess” one can have w.r.t. the past of the mon-
itored program is that it was stationary. Alternatively,
one could consider that ◦· F is false on a trace of one state
for any atomic proposition F , but we find this semantics
inconvenient because some atomic propositions may be
related, such as, for example, a proposition “gate-up”
and a proposition “gate-down”.
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Klaus Havelund, Grigore Roşu: Efficient Monitoring of Safety Properties 5

t |= true is always true,
t |= false is always false,
t |= a iff a(sn) holds,
t |= ¬F iff t �|= F ,
t |= F1 op F2 iff t |= F1 and/or/etc. t |= F2, when op is ∧/∨/etc.,
t |= ◦· F iff t′ |= F , where t′ = tn−1 if n > 1 and t′ = t if n = 1,
t |= �·F iff ti |= F for some 1 ≤ i ≤ n,
t |= �·F iff ti |= F for all 1 ≤ i ≤ n,
t |= F1 Ss F2 iff tj |= F2 for some 1 ≤ j ≤ n and ti |= F1 for all j < i ≤ n,
t |= F1 Sw F2 iff t |= F1 Ss F2 or t |= �·F1,
t |=↑ F iff t |= F and tn−1 �|= F ,
t |=↓ F iff tn−1 |= F and t �|= F ,
t |= [F1, F2)s iff tj |= F1 for some 1 ≤ j ≤ n and ti �|= F2 for all j ≤ i ≤ n,
t |= [F1, F2)w iff t |= [F1, F2)s or t |= �· ¬F2.

Fig. 3. Semantics of finite trace past time LTL.

3.3 Recursive Semantics

An observation of crucial importance in the design of the
subsequent algorithms is that the semantics above can
be defined recursively, in such a way that the satisfaction
relation for a formula and a trace can be calculated along
the execution trace looking only one step backwards, as
shown in Figure 4.

For example, according to the formal, nonrecursive,
semantics, a trace t = s1s2...sn satisfies the formula
[F1, F2)w if and only if either F2 was false all the time
in the past or otherwise F1 was true at some point and
since then F2 was always false, including that moment.
Therefore, in the case of a trace of size 1, i.e., when
n = 1, it follows immediately that t |= [F1, F2)w if and
only if t 	|= F2. Otherwise, if the trace has more than one
event then first of all t 	|= F2, and then either t |= F1 or
else the prefix trace satisfies the interval formula, that is,
tn−1 |= [F1, F2)w. Similar reasoning applies to the other
recurrences.

3.4 Equivalent Logics

We call the past time temporal logic presented above
ptLTL. There is a tendency among logicians to minimize
the number of operators in a given logic. For example,
it is known that two operators are sufficient in proposi-
tional calculus, and two more (“next” and “until”) are
needed for future time temporal logics. There are also
various ways to minimize ptLTL. Let ptLTL�Ops be the
restriction of ptLTL to the propositional operators plus
the operations in Ops. Then

Theorem 1. The following 12 logics are all equivalent
to ptLTL:

1. ptLTL�{◦·,Ss},
2. ptLTL�{◦·,Sw},
3. ptLTL�{◦·,[)s},
4. ptLTL�{◦·,[)w},
5. ptLTL�{↑,Ss},

6. ptLTL�{↑,Sw},
7. ptLTL�{↑,[)s},
8. ptLTL�{↑,[)w},
9. ptLTL�{↓,Ss},

10. ptLTL�{↓,Sw},
11. ptLTL�{↓,[)s},
12. ptLTL�{↓,[)w}.

The first two are known in the literature [27].

Proof. We first show the following properties:

1. �·F = true Ss F
2. �·F = ¬�· ¬F
3. F1 Sw F2 = (�·F1) ∨ (F1 Ss F2)
4. �·F = F Sw false
5. �·F = ¬�· ¬F
6. F1 Ss F2 = (�·F2) ∧ (F1 Sw F2)
7. ↑ F = F ∧ ¬ ◦·F
8. ↓ F = ¬F ∧ ◦· F
9. [F1, F2)s = ¬F2 ∧ ((◦· ¬F2) Ss F1)

10. [F1, F2)w = ¬F2 ∧ ((◦· ¬F2) Sw F1)
11. ↓ F = ↑ ¬F
12. ↑ F = ↓ ¬F
13. [F1, F2)w = (�· ¬F2) ∨ [F1, F2)s

14. [F1, F2)s = (�·F1) ∧ [F1, F2)w

15. ◦· F = (F → ¬ ↑ F ) ∧ (¬F →↓ F )
16. F1 Ss F2 = F2 ∨ [ ◦·F2,¬F1)s

These properties are intuitive and relatively easy to prove.
For example, property 15., the definition of ◦·F in terms
of ↑ F and ↓ F , says that in order to find out the value
of a formula F in the previous state it suffices to look at
the value of the formula in the current state and then,
if it is true then look if the formula just started to be
true or else look if the formula just ended to be true. We
next only prove property 10., the proofs of the others
are similar and straightforward.

In order to prove 10., one needs to show that for any
trace t, it is the case that t |= [F1, F2)w if and only if
t |=w ¬F2 ∧ ((◦· ¬F2) Sw F1). We show this by induction
on the size of the trace t. If the size of t is 1, that is, if
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t |= �·F iff t |= F or (n > 1 and tn−1 |= �·F ),
t |= �·F iff t |= F and (n > 1 implies tn−1 |= �·F ),
t |= F1 Ss F2 iff t |= F2 or (n > 1 and t |= F1 and tn−1 |= F1 Ss F2),
t |= F1 Sw F2 iff t |= F2 or (t |= F1 and (n > 1 implies tn−1 |= F1 Sw F2)),
t |= [F1, F2)s iff t �|= F2 and (t |= F1 or (n > 1 and tn−1 |= [F1, F2)s)),
t |= [F1, F2)w iff t �|= F2 and (t |= F1 or (n > 1 implies tn−1 |= [F1, F2)w)).

Fig. 4. Recursive semantics of finite trace past time LTL.

t = s1, then

t |= [F1, F2)w iff
iff t 	|= F2

iff t |= ¬F2

iff (by “absorption” in boolean reasoning)
t |= ¬F2 and (t |= F1 or t |= ¬F2)

iff t |= ¬F2 and (t |= F1 or t |= ◦· ¬F2)
iff t |= ¬F2 ∧ ((◦· ¬F2) Sw F1).

If the size of the trace t is n > 1 then

t |= [F1, F2)w iff
iff (by the recursive semantics)

t 	|= F2 and (t |= F1 or
tn−1 |= [F1, F2)w)

iff (by the induction hypothesis)
t 	|= F2 and (t |= F1 or

tn−1 |= ¬F2 ∧ ((◦· ¬F2) Sw F1))
iff t 	|= F2 and (t |= F1 or tn−1 |= ¬F2 and

tn−1 |= (◦· ¬F2) Sw F1)
iff t 	|= F2 and (t |= F1 or t |= ◦· ¬F2 and

tn−1 |= (◦· ¬F2) Sw F1)
iff (by the recursive semantics)

t 	|= F2 and t |= (◦· ¬F2) Sw F1

iff t |= ¬F2 ∧ ((◦· ¬F2) Sw F1).

Therefore, [F1, F2)w = ¬F2 ∧ ((◦· ¬F2) Sw F1).
The equivalences of the 12 logics with ptLTL follow

now immediately. For example, in order to show the 8th
logic, ptLTL�{↑,[)s}, equivalent to ptLTL, one needs to
show how the operators ↑ and [ , )s can define all the
other past time temporal operators. This is straightfor-
ward because, 11. shows how ↓ can be defined in terms
of ↑, 15. shows how ◦·F can be defined using just ↑ and ↓,
16. defines Ss , 1. defines �· , 2. �· , 3. Sw , and 13. defines
the weak interval. The interested reader can check the
other 11 equivalences of logics. �

Unlike in theoretical research, in practical monitoring
of programs we want to have as many temporal operators
available as possible and not to automatically translate
them into a reduced kernel set. The reason is twofold.
On the one hand, the more operators are available, the
more succinct and natural the task of writing require-
ment specifications. On the other hand, as seen later in
the paper, additional memory is needed for each tempo-
ral operator, so we want to keep the formulae as concise
as possible.

4 Monitoring Safety by Rewriting

The architecture of JPaX is such that events extracted
from a running program are sent to an observer which
decides whether requirements are violated or not. An im-
portant concern that we had and are still having at this
relatively incipient stage of JPaX, is whether the cho-
sen monitoring logics are expressive enough to specify
powerful, practical and interesting requirements. Since
flexibility with respect to defining/modifying monitoring
logics is a very important factor at this stage, we have de-
veloped a rewriting-based framework which allows one to
easily and effectively define new logics for runtime anal-
ysis and to monitor execution traces against formulae
in these logics. We use the rewriting system Maude as a
basis for this framework. In the following we first present
Maude, and how formulae and important data structures
are represented in Maude. Then we describe how basic
propositional calculus is defined in Maude, and then how
ptLTL is defined. Finally, it is described how this Maude
definition of ptLTL is used for monitoring requirements
stated by the user on execution traces.

4.1 Maude

We have implemented our logic-defining framework by
rewriting in Maude [5–7]. Maude is a modularized mem-
bership equational [31] and rewriting logic [30] specifica-
tion and verification system, whose operational engine
is mainly based on a very efficient implementation of
rewriting. A Maude module consists of sort and opera-
tor declarations, as well as equations relating terms over
the operators and universally quantified variables. Mod-
ules can be composed in a hierarchical manner, building
new theories from old theories. A particular attractive
aspect of Maude is its mix-fix notation for syntax, which,
together with precedence attributes of operators gives us
an elegant way to compactly define syntax of logics. For
example, the operation declarations2:

op _/\_ : Expression Expression

-> Expression [prec 33] .

op _\/_ : Expression Expression

-> Expression [prec 40] .

op [_,_} : Expression Expression

-> Expression .

2 These declarations are artificial and intended to explain some
of Maude’s features; they will not be needed later in the paper.
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op if_then_else_ : Bool Expression Expression

-> Expression .

define a simple syntax over the sort Expression, where
conjunction and disjunction are infix operators (the un-
derscores stand for arguments, whose sorts are listed af-
ter the colon), while the interval and the conditional
are mix-fix: operator and arguments can be mixed. Con-
junction binds tighter than disjunction because it has a
lower precedence (the lower the precedence the tighter
the binding), so one is relieved from having to add use-
less parentheses to one’s formulae.

It is often the case that equational and/or rewriting
logics act like foundational logics, in the sense that other
logics, or more precisely their syntax and operational
semantics, can be expressed and efficiently executed by
rewriting, so we regard Maude as a good choice to de-
velop and prototype with various monitoring logics. The
Maude implementations of the current logics supported
by JPaX are quite compact. They are based on a sim-
ple, general architecture to define new logics which we
only describe informally in the next subsection. Maude’s
notation will be introduced “on the fly” as needed.

4.2 Formulae and Data Structures

We have defined a generic module, called FORMULA, which
defines the infrastructure for all the user-defined logics.
Its Maude code is rather technical and so will not be
given here. The module FORMULA includes some desig-
nated basic sorts, such as Formula for syntactic formulae,
FormulaDS for formula data structures needed when more
information than the formula itself should be stored for
the next transition as in the case of past time LTL, Atom
for atomic propositions (or state variables), AtomState

for assignments of boolean values to atoms, also called
“states”, and AtomState* for such assignments together
with final assignments, i.e., those that are followed by
the end of a trace, sometimes requiring a special evalu-
ation procedure. A state As is made terminal by apply-
ing it a unary operator, * : AtomState -> AtomState*.
Formula is a subsort of FormulaDS, because there are log-
ics in which no extra information but a modified formula
needs to be carried over for the next iteration (such as
future time LTL which is also provided by JPaX). There
are two constants of sort Formula provided, namely true

and false, with the obvious meaning. The propositions
that hold in a certain program state are generated by
the executing instrumented program.

One of the most important operators in FORMULA is
{ }:FormulaDS AtomState* -> FormulaDS, which updates
the formula data structure when an (abstract) state change
occurs during the execution of the program. Notice the
use of mix-fix notation for operator declaration, in which
underscores represent places of arguments, their order
being the one in the arity of the operator. On atomic
propositions, say A, the module FORMULA defines the “up-

date” operator as follows: A{As*} is true or false, depend-
ing on whether As* assigns true or false to the atom A,
where As* is an atom state (i.e., an assignment from
atoms to boolean values), which is either a terminal
state (the last in a trace) or not. In the case of proposi-
tional calculus, this update operation basically evaluates
propositions in the new state. For other logics it can be
more complicated, depending on their trace semantics.

4.3 Propositional Calculus

Propositional calculus should be included in any moni-
toring logic. Therefore, we begin with the following mod-
ule which is heavily used in JPaX. It implements an ef-
ficient rewriting procedure due to Hsiang [23] to decide
validity of propositions, reducing any boolean expres-
sion to an exclusive disjunction (formally written _++_)
of conjunctions (_/\_):

fmod PROP-CALC is extending FORMULA .

*** Constructors ***

op _/\_ : Formula Formula

-> Formula [assoc comm] .

op _++_ : Formula Formula

-> Formula [assoc comm] .

vars X Y Z : Formula . var As* : AtomState* .

eq true /\ X = X .

eq false /\ X = false .

eq false ++ X = X .

eq X ++ X = false .

eq X /\ X = X .

eq X /\ (Y ++ Z) = (X /\ Y) ++ (X /\ Z) .

*** Derived operators ***

op _\/_ : Formula Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op _<->_ : Formula Formula -> Formula .

op !_ : Formula -> Formula .

eq X \/ Y = (X /\ Y) ++ X ++ Y .

eq ! X = true ++ X .

eq X -> Y = true ++ X ++ (X /\ Y) .

eq X <-> Y = true ++ X ++ Y .

*** Operational Semantics

eq (X /\ Y){As*} = X{As*} /\ Y{As*} .

eq (X ++ Y){As*} = X{As*} ++ Y{As*}

endfm

In Maude, operators are introduced after the op and
ops (when more than one operator is introduced) sym-
bols. Operators can be given attributes in square brack-
ets, such as associativity and commutativity. Universally
quantified variables used in equations are introduced af-
ter the var and vars symbols. Finally, equations are
introduced after the eq symbol. The specification of the
simple propositional calculus above shows the flexibil-
ity of the mix-fix notation of Maude, which allows us to
define the syntax of a logic in the most natural way.
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The equations above are interpreted as rewriting rules
by Maude, so they will be applied from left to right only.
However, due to the associativity and commutativity at-
tributes, rewrites as well as matchings are applied mod-
ulo associativity and commutativity (AC), making there-
fore the procedure implied by the rewrite rules for propo-
sitional calculus above highly non-trivial. As proved by
Hsiang [23], the AC rewriting system above has the prop-
erty that any proposition is reduced to true or false if
it is semantically true or false, or otherwise to a canoni-
cal form modulo AC; thus two formulae are equivalent if
and only if their canonical forms are equal modulo AC.
We found this procedure quite convenient so far, being
able to efficiently reduce formulae of hundreds of sym-
bols that occurred in practical examples. However, one
should of course not expect this procedure to work ef-
ficiently on any proposition, because the propositional
validity problem is NP-complete.

4.4 Past Time Linear Temporal Logic

Past time LTL can now be implemented on top of the
provided logic-defining framework. Our rewriting based
implementation below follows the recursive semantics of
past time LTL defined in Subsection 3.3, and, it appears
similar to the Java implementation used in [26]. We next
explain the PT-LTL module in detail.

We start by defining the syntax of past time LTL.
Since it extends the module PROP-CALC of propositional
calculus, we only have to define syntax for the temporal
operators:

fmod PT-LTL is extending PROP-CALC .

op (*)_ : Formula -> Formula .

*** previously

op <*>_ : Formula -> Formula .

*** eventually in the past

op [*]_ : Formula -> Formula .

*** always in the past

op _Ss_ : Formula Formula -> Formula .

*** strong since

op _Sw_ : Formula Formula -> Formula .

*** weak since

op start : Formula -> Formula .

*** start

op end : Formula -> Formula .

*** end

op [_,_}s : Formula Formula -> Formula .

*** strong interval

op [_,_}w : Formula Formula -> Formula .

*** weak interval

We have used a curly bracket to close the intervals be-
cause, for some technical parsing related reasons, Maude
does not allow unbalanced parentheses in its terms. The
syntax above can now be used by users to write monitor-
ing requirements as formulae. These formulae are loaded
by JPaX at initialization and then sent to Maude for
parsing and processing. When the first event from the

instrumented program is received by JPaX, it sends this
event to Maude in order to initialize its monitoring data
structures associated to its formulae (remember that the
recursive definition of past time LTL in Subsection 3.3
treats the first event of the trace differently). This is
done by launching the reduction mkDS(F, As) in Maude,
where F is the formula to monitor and As is the atom
state abstracting the first event generated by the mon-
itored program; mkDS is an abbreviation for “make data
structure” and is defined below.

Before we define the operation mkDS, we first discuss
the formula data structures storing not only the formu-
lae but also their current satisfaction status. It is worth
noticing that the strong and weak temporal operators
have exactly the same recursive semantics starting with
the second event. That suggests that we do not need
nodes of different type (strong and weak) in the formula
data structure once the monitoring process is initialized:
the difference between strong and weak versions of an op-
erator are rather represented by the initial values passed
as arguments to a single common version of the operator.
The following operation declarations therefore define the
constructors for these data structures:

op atom : Atom Bool -> FormulaDS .

op and : FormulaDS FormulaDS Bool -> FormulaDS .

op xor : FormulaDS FormulaDS Bool -> FormulaDS .

op previously : FormulaDS Bool -> FormulaDS .

op eventuallyPast : FormulaDS Bool -> FormulaDS .

op alwaysPast : FormulaDS Bool -> FormulaDS .

op since : FormulaDS FormulaDS Bool -> FormulaDS .

op start : FormulaDS Bool -> FormulaDS .

op end : FormulaDS Bool -> FormulaDS .

op interval: FormulaDS FormulaDS Bool -> FormulaDS.

The first operation defines a cell storing an atomic propo-
sition together with its observed boolean value, while
the next two store conjunction and exclusive disjunction
nodes. According to the propositional calculus procedure
defined in module PROP-CALC in Subsection 4.3, these are
the only propositional operators that can occur in re-
duced formulae. The remaining operators are the seven
past time temporal operators introduced so far.

An operator that extracts the boolean value associ-
ated to a temporal formula is needed in the sequel, so
we define it next. The syntax of this operator is [ ] :

FormulaDS -> Bool and it is defined in the module FORMULA,
together with its obvious equations [true] = true and
[false] = false. Its definition on temporal and propo-
sitional and temporal operators follows:

var A : Atom . var B : Bool .

vars D Dx Dy : FormulaDS .

eq [and(Dx,Dy,B)] = B .

eq [xor(Dx,Dy,B)] = B .

eq [atom(A,B)] = B .

eq [previously(D,B)] = B .

eq [eventuallyPast(D,B)] = B .

eq [alwaysPast(D,B)] = B .

eq [since(Dx,Dy,B)] = B .
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eq [interval(Dx,Dy,B)] = B .

eq [start(Dx,B)] = B .

eq [end(Dx,B)] = B .

The operation mkDS can be defined now. It basically
follows the recursive semantics in Subsection 3.3, when
the length of the trace is 1:

vars X Y : Formula .

op mkDS : Formula AtomState -> FormulaDS .

eq mkDS(true, As) = true .

eq mkDS(false, As) = false .

eq mkDS(A, As) = atom(A, (A{As} == true)) .

eq mkDS(X /\ Y, As) =

and(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] and [mkDS(X,As)]) .

eq mkDS(X ++ Y, As) =

xor(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] xor [mkDS(X,As)]) .

eq mkDS( (*)X, As) =

previously(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS( <*>X, As) =

eventuallyPast(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS( [*]X, As) =

alwaysPast(mkDS(X, As), [mkDS(X, As)]) .

eq mkDS(X Ss Y, As) =

since(mkDS(X,As), mkDS(Y,As), [mkDS(Y,As)]) .

eq mkDS(X Sw Y, As) =

since(mkDS(X,As), mkDS(Y,As),

[mkDS(X,As)] or [mkDS(Y,As)]) .

eq mkDS(start(X), As) = start(mkDS(X,As),false) .

eq mkDS(end(X), As) = end(mkDS(X,As), false) .

eq mkDS([X,Y}s, As) =

interval(mkDS(X,As), mkDS(Y,As),

[mkDS(Y,As)] and not [mkDS(Y,As)]) .

eq mkDS([X,Y}w, As) =

interval(mkDS(X,As), mkDS(Y,As),

not [mkDS(Y,As)]) .

The data structure associated to a past time formula
is essentially its syntax tree augmented with a boolean
bit for each node. Each boolean bit will store the re-
sult of the satisfaction relation between the current ex-
ecution trace and the corresponding subformula. The
only thing left is to define how the formula data struc-
tures, or more precisely their bits, modify when a new
event is received. This is defined below, using the oper-
ator { } : FormulaDS AtomState -> FormulaDS provided
by the module Formula:

eq atom(A, B){As} = atom(A, (A{As} == true)) .

eq and(Dx, Dy, B){As} =

and(Dx{As}, Dy{As},[Dx{As}] and [Dy{As}]) .

eq xor(Dx, Dy, B){As} =

xor(Dx{As}, Dy{As},[Dx{As}] xor [Dy{As}]) .

eq previously(D,B){As} = previously(D{As},[D]) .

eq eventuallyPast(D, B){As} =

eventuallyPast(D{As}, [D{As}] or B) .

eq alwaysPast(D, B){As} =

alwaysPast(D{As}, [D{As}] and B) .

eq since(Dx, Dy, B){As} =

since(Dx{As}, Dy{As},

[Dy{As}] or [Dx{As}] and B) .

eq start(Dx,B){As} =

start(Dx{As}, [Dx{As}] and not B) .

eq end(Dx,B){As} =

end(Dx{As}, not [Dx{As}] and B) .

eq interval(Dx, Dy, B){As} =

interval(Dx{As}, Dy{As}, not [Dy{As}] and

([Dx{As}] or B)) .

endfm

The operator _==_ is built-in and takes two terms of
same sort, reduces them to their normal forms, and then
returns true if they are equal and false otherwise.

4.5 Monitoring with Maude

In this subsection we give more details on how the ac-
tual rewriting based monitoring process works. When
the JPaX system is started, the user is supposed to have
already specified several formulae in a file containing
monitoring requirements. The first thing JPaX does is
to start a Maude process, load the past time LTL seman-
tics described above, and then set Maude to run in its
loop mode, which is an execution mode in which Maude
maintains a state term which the user (potentially an-
other process, such as JPaX) can modify interactively.
Then JPaX sends Maude all the requirement formulae
that the user wants to monitor. Maude stores them in
its loop state and waits for JPaX to send events. Notice
that the above is general and applies to any logic.

When JPaX receives the first event from the instru-
mented program that is relevant for the past time LTL
analysis module, it just sends it to Maude. On receiv-
ing the first event, say As, Maude needs to generate the
formula data structures for all the formulae to be moni-
tored. It does so by replacing each formula F in the loop
state by the normal form of the term mkDS(F, As). Then
it waits for JPaX to submit further events. Each time a
new relevant event As is received by JPaX from the in-
strumented program, it just forwards it to Maude. Then
Maude replaces each formula data structure D in its loop
state by D{As} and then waits for further events. If at
any moment [D] is false for the data structure D associ-
ated to a formula F, then Maude sends an error message
to JPaX , which further warns the user appropriately.

It should be obvious that the runtime complexity
of the rewriting monitoring algorithm is O(m) to pro-
cess an event, where m is the size of the past time LTL
formula to monitor. That is, the algorithm only needs
to traverse the data structure representing the formula
bottom-up for each new event, and update one bit in
each node. So the overall runtime complexity is O(n ·m),
where n is the number of events to be monitored. This
is the best one can asymptotically hope from a runtime
monitoring algorithm, but of course, there is room for
even faster algorithms in practical situations, as the one
presented in the next section. The main benefit of the
rewriting algorithm presented in this section is that it
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falls under the general framework by which one can eas-
ily add or experiment with new monitoring logics within
the JPaX system.

The Maude code performing the above steps is rela-
tively straightforward but rather ugly, so we prefer not to
present it here. Additionally, Maude’s support for inter-
process communication is planned to be changed soon,
so this code would become soon obsolete.

5 Synthesizing Monitors for Safety Properties

The rewriting algorithm above is a very good choice
in the context of the current version of JPaX, because
it gives us flexibility and is efficient enough to process
events at a faster rate than they can actually be sent
by JPaX. However, there might be situations in which
a full scale AC rewriting engine like Maude is not avail-
able, such as within an embedded system, or in which
as little runtime overhead as possible is allowed, such
as in real time applications. In this section we present
a dynamic programming based algorithm, also based on
the recursive semantics of past time LTL in Subsection
3.3, which takes as input a formula and generates source
code which can further be compiled into an efficient exe-
cutable monitor for that formula. This algorithm can be
used in two different ways. On the one hand, it can be
used as an efficient external monitor to take an action
when a formula is violated, such as to report an error to a
user, to reboot the system, to send a message, or even to
generate a correcting task. On the other hand, it can be
used in a context in which one allows past time LTL an-
notations in the source code of a program, where the log-
ical annotations can be expanded into source code which
is further compiled together with the original program.
These two use modes, offline versus inline, are further
explained in Subsection 5.4.

5.1 The Algorithm Illustrated by an Example

In this section we show via an example how to gener-
ate dynamic programming code for a concrete ptLTL-
formula. We think that this example would practically be
sufficient for the reader to foresee our general algorithm
presented in the next subsection. Let ↑ p→ [q, ↓ (r∨s))s

be the ptLTL-formula that we want to generate code for.
The formula states: “whenever p becomes true, then q
has been true in the past, and since then we have not yet
seen the end of r or s”. The code translation depends on
an enumeration of the subformulae of the formula that
satisfies the enumeration invariant: any formula has an
enumeration number smaller than the numbers of all its
subformulae. Let ϕ0, ϕ1, ..., ϕ8 be such an enumeration:

ϕ0 = ↑ p→ [q, ↓ (r ∨ s))s,
ϕ1 = ↑ p,
ϕ2 = p,
ϕ3 = [q, ↓ (r ∨ s))s,
ϕ4 = q,
ϕ5 = ↓ (r ∨ s),
ϕ6 = r ∨ s,
ϕ7 = r,
ϕ8 = s.

Note that the formulae have here been enumerated in a
post-order fashion. One could have chosen a breadth-first
order, or any other enumeration, as long as the enumer-
ation invariant is true.

The input to the generated program will be a finite
trace t = s1s2...sn of n events. The generated program
will maintain a state via a function update : State ×
Event → State, which updates the state with a given
event.

In order to illustrate the dynamic programming as-
pect of the solution, one can imagine recursively defin-
ing a matrix s[1..n, 0..8] of boolean values {0, 1}, with
the meaning that s[i, j] = 1 iff ti |= ϕj . Then one can
fill the table according to the recursive semantics of past
time LTL as described in Subsection 3.3. This would
be the standard way of regarding the above satisfaction
problem as a dynamic programming problem. An im-
portant observation is, however, that, like in many other
dynamic programming algorithms, one doesn’t have to
store the entire table s[1..n, 0..8], which would be quite
large in practice; in this case, one needs only s[i, 0..8] and
s[i−1, 0..8], which we’ll write now[0..8] and pre[0..8] from
now on, respectively. It is now only a relatively simple
exercise to write up the following algorithm for checking
the above formula on a finite trace:

State state← {};
bit pre[0..8];
bit now[0..8];
Input: trace t = s1s2...sn;
/* Initialization of state and pre */
state← update(state, s1);
pre[8]← s(state);
pre[7]← r(state);
pre[6]← pre[7] or pre[8];
pre[5]← false;
pre[4]← q(state);
pre[3]← pre[4] and not pre[5];
pre[2]← p(state);
pre[1]← false;
pre[0]← not pre[1] or pre[3];
/* Event interpretation loop */
for i = 2 to n do {

state← update(state, si);
now[8]← s(state);
now[7]← r(state);
now[6]← now[7] or now[8];
now[5]← not now[6] and pre[6];
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now[4]← q(state);
now[3]← (pre[3] or now[4]) and not now[5];
now[2]← p(state);
now[1]← now[2] and not pre[2];
now[0]← not now[1] or now[3];
if now[0] = 0 then

output(‘‘property violated’’);
pre← now;

};

In the following we explain the generated program.

Declarations Initially a state is declared. This will be
updated as the input event list is processed. Next,
the two arrays pre and now are declared. The pre
array will contain values of all subformulae in the
previous state, while now will contain the value of all
subformulae in the current state.

Initialization The initialization phase consists of initial-
izing the state variable and the pre array. The first
event s1 of the event list is used to initialize the state
variable. The pre array is initialized by evaluating all
subformulae bottom up, starting with highest for-
mula numbers, and assigning these values to the cor-
responding elements of the pre array; hence, for any
i ∈ {0 . . . 8} pre[i] is assigned the initial value of for-
mula ϕi. The pre array is initialized in such a way
as to maintain the view that the initial state is sup-
posed stationary before monitoring is started. This
in particular means that ↑ p is false, as well as is
↓ (r ∨ s), since there is no change in state (indices 1
and 5). The interval operator has the obvious initial
interpretation: the first argument must be true and
the second false for the formula to be true (index 3).
Propositions are true if they hold in the initial state
(indices 2, 4, 7 and 8), and boolean operators are
interpreted the standard way (indices 0, 6).

Event Loop The main evaluation loop goes through the
event trace, starting from the second event. For each
such event, the state is updated, followed by assign-
ments to the now array in a bottom-up fashion sim-
ilar to the initialization of the pre array: the array
elements are assigned values from higher index val-
ues to lower index values, corresponding to the val-
ues of the corresponding subformulae. Propositional
boolean operators are interpreted the standard way
(indices 0 and 6). The formula ↑ p is true if p is true
now and not true in the previous state (index 1).
Similarly with the formula ↓ (r ∨ s) (index 5). The
formula [q, ↓ (r∨s))s is true if either the formula was
true in the previous state, or q is true in the current
state, and in addition ↓ (r∨ s) is not true in the cur-
rent state (index 3). At the end of the loop an error
message is issued if now[0], the value of the whole
formula, has the value 0 in the current state. Finally,
the entire now array is copied into pre.

Given a fixed ptLTL formula, the analysis of this al-
gorithm is straightforward. Its time complexity is Θ(n)

where n is the length of the input trace, the constant
being given by the size of the ptLTL formula. The mem-
ory required is constant, since the length of the two
arrays is the size of the ptLTL formula. However, one
may want to also include the size of the formula, say
m, into the analysis; then the time complexity is ob-
viously Θ(n · m) while memory required is 2 · (m + 1)
bits. The authors conjecture that it’s hard to find an
algorithm running faster than the above in practical sit-
uations, though some slight optimizations are possible
(see Section 5.3).

5.2 The Algorithm Formalized

We now formally describe our algorithm that synthe-
sizes a dynamic programming algorithm from a ptLTL-
formula. It takes as input a formula and generates a pro-
gram as the one above, containing a “for” loop which tra-
verses the trace of events, while validating or invalidating
the formula. The generated program is printed using the
function output, which takes one or more string or in-
teger parameters which are concatenated in the output.
This algorithm is designed to generate pseudocode, but
it can easily be adapted to generate code in any imper-
ative programming language:

Input: past time LTL formula ϕ
let ϕ0, ϕ1, ..., ϕm be the subformulae of ϕ;
output(“State state← {};”);
output(“bit pre[0..m];”);
output(“bit now[0..m];”);
output(“Input: trace t = s1s2...sn;”);
output(“/* Initialization of state and pre */”);
output(“state← update(state, s1);”);
for j = m downto 0 do {

output(“ pre[”, j, “]← ”);
if ϕj is a variable then

output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then

output(“not pre[”,j′, “];”);
if ϕj = ϕj1 op ϕj2 then

output(“pre[”,j1, “] op pre[”,j2, “];”);
if ϕj = ◦· ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j1, “];”);
if ϕj = ϕj1 Ss ϕj2 then

output(“pre[”, j2, “];”);
if ϕj = ϕj1 Sw ϕj2 then

output(“pre[”,j1, “] or pre[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2 )s then

output(“pre[”,j1, “] and not pre[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2 )w then
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output(“not pre[”, j2, “];”);
if ϕj =↑ ϕj′ then output(“false;”);
if ϕj =↓ ϕj′ then output(“false;”);

};
output(“/* Event interpretation loop */”);
output(“for i = 2 to n do {”);
for j = m downto 0 do {

output(“ now[”, j, “]← ”);
if ϕj is a variable then output(ϕj , “(state);”);
if ϕj is true then output(“true;”);
if ϕj is false then output(“false;”);
if ϕj = ¬ϕj′ then output(“not now[”,j′, “];”);
if ϕj = ϕj1 op ϕj2 then

output(“now[”,j1, “] op now[”, j2, “];”);
if ϕj = ◦· ϕj1 then output(“pre[”, j1, “];”);
if ϕj = �·ϕj1 then

output(“pre[”, j, “] or now[”,j1, “]”);
if ϕj = �·ϕj1 then

output(“pre[”, j, “] and now[”,j1, “]”);
if ϕj = ϕj1 Ss ϕj2 then

output(“(pre[”, j, “] and now[”,j1, “]) or
now[”, j2, “];”);

if ϕj = ϕj1 Sw ϕj2 then
output(“(pre[”, j, “] and now[”,j1, “]) or

now[”, j2, “];”);
if ϕj = [ϕj1 , ϕj2)s then

output(“(pre[”, j, “] or now[”,j1, “]) and
not now[”, j2, “];”);

if ϕj = [ϕj1 , ϕj2)w then
output(“(pre[”, j, “] or now[”,j1, “]) and

not now[”, j2, “];”);
if ϕj =↑ ϕj′ then

output(“now[”, j′, “] and
not pre[”, j′, “];”);

if ϕj =↓ ϕj′ then
output(“not now[”, j′, “] and

pre[”, j′, “];”);
};
output(“ if now[0] = 0 then

output(‘‘property violated’’);”);
output(“ pre ← now;”);
output(“}”);

op is any binary propositional connective. Since we have
already given a detailed explanation of the example in
the previous section, we shall only give a very brief de-
scription of this algorithm.

The formula should be first visited top down to assign
increasing numbers to subformulae as they are visited.
Let ϕ0, ϕ1, ..., ϕm be the list of all subformulae. Because
of the recursive nature of ptLTL, this step ensures us
that the truth value of ti |= ϕj can be completely
determined from the truth values of ti |= ϕj′ for all
j < j′ ≤ m and the truth values of ti−1 |= ϕj′ for all
j ≤ j′ ≤ m.

Before we generate the main loop, we should first
generate code for initializing the array pre[0..m], basi-

cally giving it the truth values of the subformulae on
the initial state, conceptually being an infinite trace with
repeated occurrences of the initial state. After that, the
generated main event loop will process the events. The
loop body will update/calculate the array now and in
the end will move it into the array pre to serve as basis
for the next iteration. After each iteration i, now[0] tells
whether the formula is validated by the trace s1s2...si.

Since the formula enumeration procedure is linear,
the algorithm synthesizes a dynamic programming algo-
rithm from an ptLTL formula in linear time with the size
of the formula. The boolean operations used above are
usually very efficiently implemented on any microproces-
sor and the arrays of bits pre and now are small enough
to be kept in cache. Moreover, the dependencies between
instructions in the generated “for” loop are simple to an-
alyze, so a reasonable compiler can easily unfold or/and
parallelize it to take advantage of machine’s resources.
Consequently, the generated code is expected to run very
fast. We shall next illustrate how such optimizations can
be part of the translation algorithm.

5.3 Optimizing the Generated Code

The generated code presented in Subsection 5.1 is not
optimal. Even though a smart compiler can in principle
generate good machine code from it, it is still worth ex-
ploring ways to synthesize directly optimized code espe-
cially because there are some attributes that are specific
to the runtime observer which a compiler cannot take
into consideration.

A first observation is that not all the bits in pre are
needed, but only those which are used at the next it-
eration, namely 2, 3, and 6. Therefore, only a bit per
temporal operator is needed, thereby reducing signifi-
cantly the memory required by the generated algorithm.
Then the body of the generated “for” loop becomes after
(blind) substitution (we don’t consider the initialization
code here):

state← update(state, si)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and

not (not now[3] and pre[3])
now[1]← p(state)
if ((not (now[1] and not pre[1]) or now[2]) = 0)

then output(‘‘property violated’’);

that can be further optimized by boolean simplifications:

state← update(state, si)
now[3]← r(state) or s(state)
now[2]← (pre[2] or q(state)) and

(now[3] or not pre[3])
now[1]← p(state)
if (now[1] and not pre[1] and not now[2])

then output(‘‘property violated’’);
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The most expensive part of the code above is the func-
tion calls, namely p(state), q(state), r(state), and s(state).
Depending upon the runtime requirements, the execu-
tion time of these functions may vary significantly. How-
ever, since one of the major concerns of monitoring is to
affect the normal execution of the monitored program as
little as possible, especially in the inline monitoring ap-
proach, one would of course want to evaluate the atomic
predicates on states only if really needed, or rather to
evaluate only those that, probabilistically, add a mini-
mum cost. Since we don’t want to count on an optimiz-
ing compiler, we prefer to store the boolean formula as
some kind of binary decision diagram, more precisely,
as a term over the conditional operation ? : , where
‘e1?e2 : e3’ means: ”if e1 then e2 else e3”. For example,
pre[3] ? pre[2] ? now[3] : q(state) : pre[2] ? 1 : q(state)
(see [18] for a formal definition). Therefore, one is faced
with the following optimization problem:

Given a boolean formula ϕ using propositions a1,
a2, ..., an of costs c1, c2, ..., cn, respectively, find
a ( ? : )-expression that optimally implements ϕ.

We have implemented a procedure in Maude, on top of
propositional calculus, which generates all correct ( ? :
)-expressions for ϕ, admittedly a potentially exponen-

tial number in the number of distinct atomic proposi-
tions in ϕ, and then chooses the shortest in size, ignoring
the costs. Applied on the code above, it yields:

state← update(state, si)
now[3]← r(state) ? 1 : s(state)
now[2]← pre[3] ? pre[2] ? now[3] :

q(state) : pre[2] ? 1 : q(state)
now[1]← p(state)
if (pre[1] ? 0 : now[2] ? 0 : now [1 ])

then output(‘‘property violated’’);

We would like to extend our procedure to take the evalu-
ation costs of predicates into consideration. These costs
can either be provided by the user of the system or be
calculated automatically by a static analysis of predi-
cates’ code, or even be estimated by executing the pred-
icates on a sample of states. However, based on our ex-
amples so far, we conjecture at this incipient stage that,
given a boolean formula ϕ in which all the atomic propo-
sitions have the same cost, the probabilistically runtime
optimal ( ? : )-expression implementing ϕ is exactly
the one which is smallest in size.

A further optimization would be to generate directly
machine code instead of using a compiler. Then the ar-
rays of bits now and pre can be stored in two registers,
which would be all the memory needed. Since all the op-
erations executed are bit operations, the generated code
is expected to be very fast. One could even imagine hard-
ware implementations of past time monitors, using the
same ideas, in order to enforce safety requirements on
physical devices.

5.4 Implementation of Offline and Inline Monitoring

In this section we briefly describe our efforts to imple-
ment the above described algorithm to create monitors
for observing the execution of Java programs in PathEx-
plorer. We present two approaches that we have pursued.
In the off-line approach we create a monitor that runs
in parallel with the executing program, potentially on
a different computer, receiving events from the running
program, and checking on-the-fly that the formulae are
satisfied. In this approach the formulae to be checked are
given in a separate specification. In the inline approach,
formulae are written as comments in the program text,
and are then expanded into Java code that is inserted
after the comments.

5.4.1 Offline Monitoring

The code generator for off-line monitoring has been writ-
ten in Java, using JavaCC [24], an environment for writ-
ing parsers and for generating and manipulating abstract
syntax trees. The input to the code generator is a spec-
ification given in a file separate from the program. The
specification for our example looks as follows (the default
interpretation of intervals is “strong”):

specification Example is
P = start(p) -> [q,end(r|s));

end

Several named formulae can be listed; here we have only
included one, named P. The translator reads this specifi-
cation and generates a single Java class, called Formulae,
which contains all the machinery for evaluating all the
formulae (in this case one) in the specification. This
class must then be compiled and instantiated as part of
the monitor. The class contains an evaluate() method
which is applied after each state change and which will
evaluate all the formulae. The class constructor takes
as parameter a reference to the object that represents
the state, such that any updates to the state by the
monitor, based on received events, can be seen by the
evaluate() method. The generated Formulae class for
the above specification looks as follows:

class Formulae{
abstract class Formula{
protected String name; protected State state;
protected boolean[] pre; protected boolean[] now;

public Formula(String name,State state){
this.name = name; this.state = state;
}
public String getName(){return name;}
public abstract boolean evaluate();

}
private List formulae = new ArrayList();
public void evaluate(){
Iterator it = formulae.iterator();
while(it.hasNext()){
Formula formula = (Formula)it.next();
if(!formula.evaluate()){
System.out.println("Property " + formula.getName() +

" violated");
}}}
class Formula_P extends Formula{
public boolean evaluate(){
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now[8] = state.holds("s");
now[7] = state.holds("r");
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[4] = state.holds("q");
now[3] = (pre[3] || now[4]) && !now[5];
now[2] = state.holds("p");
now[1] = now[2] && !pre[2];
now[0] = !now[1] || now[3];
System.arraycopy(now,0,pre,0,9);
return now[0];

}
public Formula_P(State state){
super("P",state);
pre = new boolean[9]; now = new boolean[9];
pre[8] = state.holds("s");
pre[7] = state.holds("r");
pre[6] = pre[7] || pre[8];
pre[5] = false;
pre[4] = state.holds("q");
pre[3] = pre[4] && !pre[5];
pre[2] = state.holds("p");
pre[1] = false;
pre[0] = !pre[1] || pre[3];

}
}
public Formulae(State state){
formulae.add(new Formula_P(state));

}
}

The class contains an inner abstract3 class Formula and,
in the general case, an inner class Formula X extending
the Formula class for each formula in the specification,
where X is the formula’s name. In our case there is one
such Formula P class. The abstract Formula class de-
clares the pre and now arrays, without giving them any
size, since this is formula specific. An abstract evaluate
method is also declared. The class Formula P contains
the real definition of this evaluate() method. The con-
structor for this class in addition initializes the sizes of
pre and now depending on the size of the formula, and
also initializes the pre array.

In order to handle the general case where several for-
mulae occur in the specification, and hence many Formula X
classes are defined, we need to create instances for all
these classes and store them in some data structure where
they can be accessed by the outermost evaluate()method.
The formulae list variable is initialized to contain all
these instances when the constructor of the Formulae
class is called. The outermost evaluate() method, on
each invocation, goes through this list and calls evaluate()
on each single formula object.

5.4.2 Inline Monitoring

The general architecture of PaX was mainly designed
for offline monitoring in order to accommodate appli-
cations where the source code is not available or where
the monitored process is not even a program, but some
kind of physical device. However, it is often the case that
the source code of an application is available and that
one is willing to accept extra code for testing purposes.
Inline monitoring has actually higher precision because

3 An abstract class is a class where some methods are abstract,
by having no body. Implementations for these methods will be
provided in extending subclasses.

one knows exactly where an event was emitted in the
execution of the program. Moreover, one can even throw
exceptions when a safety property is violated, like in
Temporal Rover [10], so the running program has the
possibility to recover from an erroneous execution or to
guide its execution in order to avoid undesired behaviors.

In order to provide support for inline monitoring, we
developed some simple scripts that replace temporal an-
notations in Java source code by actual monitoring code,
which throws an exception when the formula is violated.
In [14] we show an example of expanded code for future
time LTL. The “for” loop and the update of the state
in the generic algorithm in Section 5.1 are not needed
anymore because the atomic predicates use directly the
current state of the program when the expanded code is
reached during the execution. In [4] the tool Java-MoP
is described, which implements the presented algorithm
as a logic plug-in for inline monitoring (as well as for
off-line monitoring).

The following code snippets illustrate the inline ap-
proach. Assume a class A, that defines four integer vari-
ables and a method m, which contains the past time tem-
poral logic formula from above. Now the propositions p,
q, r and s are defined to refer to the four variables.
The intention is that whenever the program point of the
comment is reached, the formula will be evaluated.

class A{
int a,b,c,d;
void m(){

...
/* @monitor

proposition p = a>0;
proposition q = b>0;
proposition r = c>0;
proposition s = d>0;
property P = start(p) -> [q,end(r|s));

*/
...

}
}

This class is now automatically translated into the fol-
lowing, where code representing the semantics of the for-
mula has been inserted at the position of the formula
comment, and in the constructor:

class A{
int a,b,c,d;
boolean[] pre = new boolean[9];
boolean[] now = new boolean[9];

public A(){
pre[8] = d>0;
pre[7] = c>0;
pre[6] = pre[7] || pre[8];
pre[5] = false;
pre[4] = b>0;
pre[3] = pre[4] && !pre[5];
pre[2] = a>0;
pre[1] = false;
pre[0] = !pre[1] || pre[3];

}

void m(){
...
now[8] = d>0;
now[7] = c>0;
now[6] = now[7] || now[8];
now[5] = !now[6] && pre[6];
now[4] = b>0;
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Klaus Havelund, Grigore Roşu: Efficient Monitoring of Safety Properties 15

now[3] = (pre[3] || now[4]) && !now[5];
now[2] = a>0;
now[1] = now[2] && !pre[2];
now[0] = !now[1] || now[3];
System.arraycopy(now,0,pre,0,9);
if(!now[0])throw Violated("P");
...

}
}

It is essentially the same code as in the offline case, ex-
cept that the looping constructs have been removed.

It is inline monitoring that motivated us to optimize
the generated code as much as possible as in Subsec-
tion 5.3. Since the running program and the monitor
are a single process now, the time needed to execute the
monitoring code can significantly influence the otherwise
normal execution of the monitored program.

6 Conclusion

Two efficient algorithms for monitoring safety require-
ments expressed using past time linear temporal logic
were presented, one based on rewriting and implemented
in Maude, and the other based on dynamic program-
ming, synthesizing specialized monitors from formulae.
They both check that a finite sequence of events emit-
ted by a running program satisfies a formula. Operators
convenient for monitoring were considered and shown
equivalent to standard past time temporal operators.

These algorithms have been implemented in PathEx-
plorer, a runtime verification tool currently under devel-
opment. The synthesis algorithm has also been imple-
mented (as a plug-in) in the Java-MoP tool [4], which
is a general framework for supporting program monitor-
ing for user provided logics; and in the JMPaX tool [35],
which extends part of this work to partial order models
instead of simple traces.

It is our intention to investigate how the presented
algorithms can be refined to work for a logic that com-
bines past and future time temporal logic and that can
refer to real-time and data values. Other kinds of run-
time verification are also investigated, such as, for ex-
ample, techniques for detecting error potentials in multi-
threaded programs. Recent work on detecting high-level
data races is described in [2].

A number of experiments have been carried out with
PathExplorer on a planetary rover application written
in 35,000 lines of C++. The experiments range from
concurrency analysis (deadlock and data race analysis)
to monitoring of temporal logic formulae combined with
test case generation, as described in [1]. A model checker
is used to generate test cases, where a test case consists
of input to the application plus a set of temporal formu-
lae that the execution of the application on that input
must satisfy. When running this testing environment,
hundreds of test cases are generated and the execution
of these are monitored against the generated formulae.
Initial experiments have been made with a logic that

combines past time and future time temporal logic and
supports real-time and data reasoning. A bug was de-
tected in the rover application in the very first such ex-
periment we made. A thread did not detect a prema-
ture termination of a certain task in a timely manner.
The programmer had forgotten to insert this termination
check and was reminded by a single run of the testing
environment. This testing environment is planned to be-
come part of the rover application programmer’s testing
toolbox.
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