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Department of Computer Science, University of Illinois at Urbana-Champaign
{fengchen,grosu}@cs.uiuc.edu

Abstract. Analysis of execution traces plays a fundamental role in
many program analysis approaches. Execution traces are frequently para-
metric, i.e., they contain events with parameter bindings. Each paramet-
ric trace usually consists of many trace slices merged together, each slice
corresponding to a parameter binding. Several techniques have been pro-
posed to analyze parametric traces, but they have limitations: some in
the specification formalism, others in the type of traces they support;
moreover, they share common notions, intuitions, even techniques and
algorithms, suggesting that a fundamental understanding of parametric
trace analysis is needed. This foundational paper gives the first solution
to parametric trace analysis that is unrestricted by the type of paramet-
ric properties or traces that can be analyzed. First, a general purpose
parametric trace slicing technique is discussed, which takes each event in
the parametric trace and distributes it to its corresponding trace slices.
This parametric trace slicing technique can be used in combination with
any conventional, non-parametric trace analysis, by applying the latter
on each trace slice. An online monitoring technique is then presented
based on the slicing technique, providing a logic-independent solution to
runtime verification of parametric properties. The presented monitoring
technique has been implemented and extensively evaluated. The results
confirm that the generality of the discussed techniques does not come at a
performance expense when compared with existing monitoring systems.

1 Introduction and Motivation

Parametric traces, i.e., traces containing events with parameter bindings, abound
in programming language executions, because they naturally appear whenever
abstract parameters (e.g., variable names) are bound to concrete data (e.g.,
heap objects) at runtime. For example, if one is interested in analyzing collec-
tions and iterators in Java, then execution traces of interest may contain events
createIter〈c i〉 (iterator i is created for collection c), updateColl〈c〉 (c is modified),
and “next〈i〉 (i is accessed using its next element method), instantiated for par-
ticular collection and iterator instances. Most properties of parametric traces are
also parametric, i.e., refer to each particular parameter instance; for example, a
property may be “collections are not allowed to change while accessed through
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iterators”, which is parametric in a collection and an iterator. To distinguish
properties parametric in a set of parameters X from ordinary, non-parametric
properties, we write them ΛX.P ; for example, violations of the above paramet-
ric property expressed as a regular expression (here matches mean violations)
can be “Λc, i. createIter〈c i〉 next〈i〉∗ updateColl〈c〉+ next〈i〉”. From here on we
omit the event parameters in parametric properties when they are redundant;
for example, we write “Λc, i. createIter next∗ updateColl+ next” for the above.

Parametric properties, unfortunately, are very hard to formally verify and
validate against real systems, mainly because of their dynamic nature and po-
tentially huge or even unlimited number of parameter bindings. Let us ex-
tend the above example: in Java, one may create a collection from a map
and use the collection’s iterator to operate on the map’s elements. A similar
safety property is: “maps are not allowed to change while accessed indirectly
through iterators”. Its violation pattern is: “Λm, c, i. createColl (updateMap |
updateColl)∗ createIter next∗ (updateMap | updateColl)+ next”, with two new
parametric events createColl〈m, c〉 (collection c is created from map m) and
updateMap〈m〉 (m is updated). All the events used in this property provide only
partial parameter bindings (createColl binds only m and c, etc.), and parameter
bindings carried by different events may be combined into larger bindings during
the analysis; e.g., createColl〈m1, c1〉 can be combined with createIter〈c1, i1〉 into
a full binding 〈m1, c1, i1〉, and also with createIter〈c1, i2〉 into 〈m1, c1, i2〉. It is
highly challenging for a trace analysis technique to correctly and efficiently main-
tain, locate and combine trace slices for different parameter bindings, especially
when the trace is long and the number of parameter bindings is large.

Parametric properties have been receiving growing interest in runtime ver-
ification (RV), as shown by the increasing number of RV systems supporting
them, e.g., [3, 1, 14, 12, 7, 13, 15, 9, 5, 4]. Most of these techniques tightly couple
the handling of parameter bindings with the property checking, yielding mono-
lithic but supposedly efficient monitors. For example, Tracematches [1] extends
state machines with parameter bindings in order to support parametric regu-
lar pattern properties; a series of optimizations to the resulting data-structures
make Tracematches one of the most efficient RV systems [3]. The major chal-
lenges these “monolithic monitor” approaches face are how to keep track of the
status for each particular parameter instance during property checking, and how
to correctly garbage-collect portions of the monitor as they become irrelevant
[14, 5, 4]. Such couplings of parameter binding and property checking result in
rather complex and property-formalism-specific algorithms, hard or impossible
to adapt to other formalisms. For example, [3] builds upon a finite state ma-
chine skeleton associated to the underlying pattern, so it cannot be adapted to,
e.g., context-free patterns; [14] stacks automata in order to support parametric
context-free patterns, making it slower than Tracematches [3] and insensitive
to certain events of interest (such as ends of procedures [15]); Eagle [4] has no
garbage-collection due to its generality, causing prohibitive overhead [3].

JavaMOP [9] proposes a different solution, based on a complete decoupling
of parameter binding from property checking. This separation allows the use
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of “off-the-shelf” algorithms and techniques for non-parametric properties as
plug-ins; e.g., JavaMOP supports several property specification formalisms, in-
cluding regular expressions, temporal logics, and context-free patterns [15, 9],
all parametric. However, the technique currently supported by JavaMOP can
only handle a limited type of traces, namely ones in which the first event for
a particular property instance binds all the property parameters. This limita-
tion prevents JavaMOP from supporting many useful parametric properties [3].
In this paper we show that the decoupling of parameter binding and property
checking is not only possible without any limitation, but also very practical.

In spite of all the recent advances in parametric property and trace analysis,
the following questions are still left largely open in their full generality: Given a
parametric trace τ and a parametric property ΛX.P , what does it mean for τ
to be a good or a bad trace for ΛX.P? How can we leverage, to the parametric
case, knowledge and techniques to analyze conventional, non-parametric traces
against conventional, non-parametric properties? In this paper we first formulate
and then rigorously answer these questions and empirically validate our answer.
Contributions. Besides proposing a formal semantics to parametric traces,
properties, and monitoring, we make two theoretical contributions and discuss
an implementation that validates them empirically. Our first result is a general-
purpose online parametric trace slicing algorithm (algorithm A〈X〉), which pos-
itively answers the question: given a parametric execution trace τ , can one ef-
fectively find the slices τ�θ corresponding to each parameter instance θ without
having to traverse the trace for each θ? Our second result, which builds upon the
slicing algorithm, is an online monitoring technique (algorithms B〈X〉 and C〈X〉)
for parametric properties, which separates handling of parameters from checking
trace slices against the specified property. It positively answers the question: is
it possible to monitor arbitrary parametric properties ΛX.P against parametric
execution traces τ , provided that the root non-parametric property P is moni-
torable using conventional monitors? Finally, we implemented and evaluated the
proposed techniques and show empirically that their generality does not come
at a performance expense when compared with existing monitoring systems.
Paper structure. Section 2 formalizes parametric events, traces and proper-
ties, defines trace slicing and discusses an online trace slicing algorithm. Section
3 presents our main techniques for parametric trace monitoring. Section 4 dis-
cusses implementation optimizations to the proposed monitoring technique and
its evaluation. Section 5 summarizes related researches and Section 6 concludes.
Note. Proofs to all the claimed results can be found in [16].

2 Parametric Trace Slicing for Monitoring

In this section, we first define some basic notions (event, trace and property)
and then present an online parametric trace slicing algorithm that provides the
foundation for the online monitoring technique discussed in Section 3.
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2.1 Events, Traces and Properties

Here we introduce the notions of event, trace and property, first non-parametric
and then parametric. Trace slicing is then defined as a reduct operation that
forgets all the events unrelated to the given parameter instance.

Definition 1. Let E be a set of (non-parametric) events, called base events
or simply events. An E-trace, or simply a (non-parametric) trace when E is
understood or not important, is any finite sequence of events in E, that is, an
element in E∗. If event e ∈ E appears in trace w ∈ E∗ then we write e ∈ w.

Example. (part 1 of simple running example) Consider a certain resource (e.g., a
synchronization object) that can be acquired and released during the lifetime of a
given procedure (between its begin and end). Then E = {acquire, release, begin, end}
and execution traces corresponding to this resource are sequences of the form
“begin acquire acquire release end begin end”, “begin acquire acquire”, etc. For
now there are no “good” or “bad” execution traces. �

Definition 2. An E-property P , or simply a (base or non-parametric) prop-
erty, is a function P : E∗ → C partitioning the set of traces into categories C. It
is common, but not enforced, that C includes “validating”, “violating”, and “don’t
know” (or “?”) categories. In general, C, the co-domain of P , can be any set.

Example. (part 2) Consider a regular expression specification, (begin(ε | (
acquire (acquire | release)∗release))end)∗, stating that the procedure can (non-
recursively) take place multiple times and, if the resource is acquired during the
procedure then it is released by the end of the procedure. The validating traces
are those matching the pattern, e.g., “begin acquire acquire release end begin end”.
At first sight, one may say that all the other traces are violating traces, be-
cause they are not in the language of the regular expression. However, there are
two interesting types of such “violating” traces: ones which may still lead to a
validating trace provided the right events will be received in the future, e.g.,
“begin acquire acquire”, and ones which have no chance of becoming a validating
trace, e.g. “begin acquire release acquire end”. Therefore, we can pick C to be
the set {validating, violating, don’t know} and, for a given regular expression E,
define its associated property PE : E∗ → C as follows: PE(w) = validating iff w is
in the language of E, PE(w) = violating iff there is no w′ ∈ E∗ such that ww′ is
in the language of E, and PE(w) = don’t know otherwise; this is the monitoring
semantics of regular expressions in JavaMOP [9]. Other semantic choices are
possible; for example, one may choose C to be the set {matching, don’t care} and
define PE(w) = matching iff w is in the language of E, and PE(w) = don’t care
otherwise; this is the semantics of regular expressions in Tracematches [1]. �

We next extend the above definitions to the parametric case, i.e., events
carrying concrete data instantiating abstract parameters.
Example. (part 3) Events acquire and release are parametric in the resource; if
r is the name of the generic “resource” parameter and r1 and r2 are two concrete
resources, then parametric acquire/release events have the form acquire〈r 7→ r1〉,
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release〈r 7→ r2〉, etc. Not all events need carry instances for all parameters; e.g.,
the begin/end parametric events have the form begin〈⊥〉 and end〈⊥〉, where ⊥,
the partial map undefined everywhere, instantiates no parameter. �

Let [A→B]/[A⇁B] be the sets of total/partial functions from A to B.

Definition 3. (Parametric events and traces). Let X be a set of param-
eters and let V be a set of corresponding parameter values. If E is a set of
base events like in Def. 1, then let E〈X〉 be the set of corresponding parametric
events e〈θ〉, where e is a base event in E and θ is a partial function in [X⇁V ].
A parametric trace is a trace with events in E〈X〉, that is, a word in E〈X〉∗.

To simplify writing, we occasionally assume the parameter values set V implicit.
Example. (part 4) A parametric trace can be: begin〈⊥〉 acquire〈θ1〉 acquire〈θ2〉
acquire〈θ1〉 release〈θ1〉 end〈⊥〉 begin〈⊥〉 acquire〈θ2〉 release〈θ2〉 end〈⊥〉, where
θ1 maps r to r1 and θ2 maps r to r2. We take the freedom to only list the
parameter values when writing parameter instances, that is, 〈r1〉 instead of
〈r 7→ r1〉, or τ�r2 instead of τ�r 7→r2 , etc. With this notation, the above trace
is: begin〈〉 acquire〈r1〉 acquire〈r2〉 acquire〈r1〉 release〈r1〉 end〈〉 begin〈〉 acquire〈r2〉
release〈r2〉 end〈〉. This trace involves two resources, r1 and r2, and really consists
of two trace slices, one for each resource. The begin and end events belong to both
trace slices. The slice corresponding to θ1 is “begin acquire acquire release end begin
end”, while the one for θ2 is “begin acquire end begin acquire release end“. �

Definition 4. Partial functions θ in [X⇁V ] are called parameter instances.
θ, θ′ ∈ [A⇁B] are compatible if for any x ∈ Dom(θ) ∩ Dom(θ′), θ(x) = θ′(x).
We can combine compatible instances θ and θ′, written θ t θ′, as follows:

(θ t θ′)(x) =

θ(x) when θ(x) is defined
θ′(x) when θ′(x) is defined
undefined otherwise

θ t θ′ is also called the least upper bound (lub) of θ and θ′. θ′ is less
informative than θ, or θ is more informative than θ′, written θ′ v θ, iff for
any x ∈ X, if θ′(x) is defined then θ(x) is also defined and θ′(x) = θ(x).

For our example, 〈〉 is compatible with 〈r1〉 and with 〈r2〉, but 〈r1〉 and 〈r2〉 are
not compatible; moreover, 〈〉 v 〈r1〉 and 〈〉 v 〈r2〉.

Definition 5. (Trace slicing) Given parametric trace τ ∈ E〈X〉∗ and θ in
[X⇁V ], let the θ-trace slice τ�θ ∈ E∗ be the non-parametric trace defined as:

– ε�θ= ε, where ε is the empty trace/word, and

– (τ e〈θ′〉)�θ=
{

(τ�θ) e when θ′ v θ
τ�θ when θ′ 6v θ

The trace slice τ�θ first filters out all the parametric events that are not relevant
for the instance θ, i.e., which contain instances of parameters that θ does not care
about, and then, for the remaining events relevant to θ, it forgets the parameters
so that the trace can be checked against base, non-parametric properties. It is
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crucial to discard parameter instances that are not relevant to θ during the
slicing, including those more informative than θ, in order to achieve a “proper”
slice for θ: in our running example, the trace slice for 〈〉 should contain only
begin and end events and no acquire or release. Otherwise, the acquire and release
of different resources will interfere with each other in the trace slice for 〈〉.

One should not confuse extracting/abstracting traces from executions with
slicing traces. The former determines the events to include in the trace, as well as
parameter instances carried by events, while the latter dispatches each event in
the given trace to corresponding trace slices according to the event’s parameter
instance. Different abstractions may result in different parametric traces from
the same execution and thus may lead to different trace slices for the same
parameter instance θ. For the (map, collection, iterator) example in Section 1,
X = {m, c, i} and an execution may generate the following parametric trace:
createColl〈m1, c1〉 createIter〈c1, i1〉 next〈i1〉 updateMap〈m1〉. The trace slice for
〈m1〉 is updateMap for this parametric trace. Now suppose that we are only
interested in operations on maps. Then X = {m} and the trace abstracted from
the execution generating the above trace is createColl〈m1〉 updateMap〈m1〉, in
which events and parameter bindings irrelevant to m are removed. Then the
trace slice for 〈m1〉 is createColl updateMap. In this paper we focus on the trace
slicing; more discussion about trace abstraction can be found in [10].

Definition 6. Let X be a set of parameters together with their corresponding
parameter values V , like in Definition 3, and let P : E∗ → C be a non-parametric
property like in Definition 2. Then we define the parametric property ΛX.P
as the property (over traces E〈X〉∗ and categories [[X⇁V ]→ C])

ΛX.P : E〈X〉∗ → [[X⇁V ]→ C]

defined as (ΛX.P )(τ)(θ) = P (τ�θ) for any τ ∈ E〈X〉∗ and any θ ∈ [X⇁V ]. If
X = {x1, ..., xn} we may write Λx1, ..., xn.P instead of (Λ{x1, ..., xn}.P . Also, if
Pϕ is defined using a pattern or formula ϕ in some particular trace specification
formalism, we take the liberty to write ΛX.ϕ instead of ΛX.Pϕ.

Parametric properties ΛX.P over base properties P : E∗ → C are therefore
properties taking traces in E〈X〉∗ to categories [[X⇁V ]→ C], i.e., to function
domains from parameter instances to base property categories. ΛX.P is defined
as if many instances of P are observed at the same time on the parametric
trace, one property instance for each parameter instance, each property instance
concerned with its events only, dropping the unrelated ones.

2.2 Algorithm for Online Parametric Trace Slicing

Definition 5 illustrates a way to slice a parametric trace for given parameter
bindings. However, it is not suitable for online trace slicing, where the trace is
observed incrementally and no future knowledge is available, because we cannot
know all possible parameter instances θ apriori. We next define an algorithm
A〈X〉 in Fig. 1 that takes a parametric trace τ ∈ E〈X〉∗ incrementally, and
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builds a partial function T ∈ [[X⇁V ]⇁E∗] of finite domain as a quick lookup
table for all slices of τ .

Algorithm A〈X〉
Input: parametric trace τ ∈ E〈X〉∗
Output: map T ∈ [[X⇁V ]⇁E∗] and

set Θ ⊆ [X⇁V ]
1 T← ⊥; T(⊥)← ε; Θ ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ} tΘ do
4 : : T(θ′)← T(max (θ′]Θ) e
5 : endfor
6 : Θ ← {⊥, θ} tΘ
7 endfor

Fig. 1. Parametric slicing algorithm A〈X〉.

Let us first introduce some op-
erations on sets of partial func-
tions used in A〈X〉 (only the in-
formal intuition is given here; rig-
orous definitions can be found in
[16]). Given sets of partial func-
tions Θ,Θ′ ⊆ [X⇁V ], tΘ is the
least informative partial function
θ ∈ [X⇁V ] such that for any θ′ ∈
Θ, θ′ v θ; maxΘ is the most in-
formative θ ∈ Θ; ΘtΘ′ = {θtθ′ |
θ ∈ Θ, θ′ ∈ Θ′ s.t., θ t θ′ exists};
and (θ]Θ = {θ′ | θ′ ∈ Θ and θ′ v
θ}. Note that tΘ and maxΘ may
not exist. Then Theorem 1 shows
that, for any θ ∈ [X⇁V ], the
trace slice τ�θ is T(max (θ]Θ) af-
ter A〈X〉 processes τ , where Θ is
the domain of T, calculated by A〈X〉 incrementally. Therefore, assuming that
A〈X〉 is run on trace τ , all one has to do in order to calculate a slice τ�θ for
a given θ ∈ [X⇁V ] is to calculate max (θ]Θ followed by a lookup into T. This
way the trace τ , which can be very long, is processed/traversed only once, as
it is being generated, and appropriate data-structures are maintained by our
algorithm that allow for retrieval of slices for any parameter instance θ, without
traversing τ again.

Fig. 1 shows our trace slicing algorithm A〈X〉. In spite of A〈X〉’s small size,
its proof of correctness is surprisingly intricate as shown in [16]. The algorithm
A〈X〉 on input τ , written more succinctly A〈X〉(τ), traverses τ from its first
event to its last event and, for each encountered event e〈θ〉, updates both its
data-structures, T and Θ. After processing each event, the relationship between
T and Θ is that the latter is the domain of the former. Line 1 initializes the
data-structures: T is undefined everywhere (i.e., ⊥) except for the undefined-
everywhere function ⊥, where T(⊥) = ε; as expected, Θ is then initialized to
the set {⊥}. The code (lines 3 to 6) inside the outer loop (lines 2 to 7) can be
triggered when a new event is received. When a new event is received, say e〈θ〉,
T is updated as follows: for each θ′ ∈ [X⇁V ] that can be obtained by combining
θ with the compatible partial functions in the domain of the current T, update
T(θ′) by adding the non-parametric event e to the end of the slice corresponding
to the largest (i.e., most “knowledgeable”) entry in the current table T that is
less informative or as informative as θ′; Θ is then extended in line 6.

Example. Consider the following sample parametric trace with events para-
metric in {a, b, c}: τ = e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 . Table
1 shows how A〈X〉 works on τ . An entry of the form “〈θ〉 : w” in a table cell
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e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉
〈〉:ε
〈a1〉:e1

〈〉:ε
〈a1〉:e1
〈a2〉:e2

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3e4

〈〉:ε
〈a1〉:e1e5
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3e5
〈a2b1〉:e2e3e4

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6
〈a1b1〉:e1e3e5e6
〈a2b1〉:e2e3e4e6

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7

Table 1. A run of the trace slicing algorithm A〈X〉.

corresponding to a “current” parametric event e〈θ〉 means that T(θ) = w after
processing all the parametric events up to and including the current one; T is
undefined on any other partial function. Obviously, the Θ corresponding to a
cell is the union of all the θ’s that appear in pairs “〈θ〉 : w” in that cell. Trace
slices for parameter instances, e.g., 〈a1b1〉 and 〈a2b1〉, which have not been seen
in any observed event are also created. Note that, as each parametric event e〈θ〉
is processed, the non-parametric event e is added at most once to each slice. �

A〈X〉 computes trace slices for all combinations of parameter instances ob-
served in parametric trace events. Its complexity is therefore O(n×m) where n
is the length of the trace and m is the number of all possible parameter com-
binations. However, A〈X〉 is not intended to be implemented directly; it is only
used as a correctness backbone for other trace analysis algorithms, such as the
monitoring algorithms discussed below. An alternative and apparently more effi-
cient solution is to only record trace slices for parameter instances that actually
appear in the trace (instead of for all combinations of them), and then construct
the slice for a given parameter instance by combining such trace slices for com-
patible parameter instances. However, the complexity of constructing all possible
trace slices at the end using such an algorithm is also O(n × m). In addition,
A〈X〉 is more suitable for online monitoring: each event is sent to its slices (that
are consumed by corresponding monitors) and never touched again.

A〈X〉 compactly and uniformly captures several special cases and subcases
that are worth discussing. The discussion below can be formalized as an induc-
tive (on the length of τ) proof of correctness for A〈X〉, but we prefer to keep
this discussion informal here and use it as a means to better explain the algo-
rithm A〈X〉, providing the reader with additional intuition for its difficulty and
compactness. A rigorous proof can be found in [16].

Let us first note that a partial function added to Θ will never be removed
from Θ; that’s because Θ ⊆ {⊥, θ} tΘ. The same holds true for the domain of
T, because line 4 can only add new elements to Dom(T); in fact, the domain of
T is extended with precisely the set {θ} t Θ after each event parametric in θ
is processed by A〈X〉. Moreover, since Dom(T) = Θ = Θε = {⊥} initially and
since Θ∪ ({θ}tΘ) = {⊥, θ}tΘ while Θτ e〈θ〉 = {⊥, θ}tΘτ , where Θτ is Θ after
A〈X〉 processes τ , we can inductively show that Dom(T) = Θ = Θτ each time
after A〈X〉 is executed on a parametric trace τ . Each θ′ considered by the loop at
lines 3-5 has the property that θ v θ′, and at (precisely) one iteration of the loop
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θ′ is θ; indeed, θ ∈ {θ} tΘ because ⊥ ∈ Θ. Essentially, the claimed Theorem 1
holds iff T(θ′) = τ�θ′ after T(θ′) is updated in line 4. A tricky observation which
is crucial for this is that the updates of T(θ′) do not interfere with each other
for different θ′ ∈ {θ} t Θ; otherwise the non-parametric event e may be added
multiple times to some trace slices T(θ′).

Let us next informally argue, inductively, that it is indeed the case that
T(θ′) = τ�θ′ after T(θ′) is updated in line 4 (it vacuously holds on the empty
trace). Since max (θ′]Θ ∈ Θ, the inductive hypothesis tells us that T(max (θ′]Θ) =
τ�max (θ′]Θ ; these are further equal to τ�θ′ . Since θ v θ′, the definition of trace
slicing implies that (τ e〈θ〉)�θ′= τ�θ′ e. Therefore, T(θ′) is indeed (τ e〈θ〉)�θ′ after
line 4 of A〈X〉 is executed while processing the event e〈θ〉 that follows trace τ .
This concludes our informal proof sketch.

Let A〈X〉(τ).T and A〈X〉(τ).Θ be T and Θ of A〈X〉 after it processes τ .

Theorem 1. The following hold for any τ ∈ E〈X〉∗:

1. Dom(A〈X〉(τ).T) = A〈X〉(τ).Θ = Θτ ;
2. A〈X〉(τ).T(θ) = τ�θ for any θ ∈ A〈X〉(τ).Θ;
3. τ�θ= A〈X〉(τ).T(max (θ]A〈X〉(τ).Θ) for any θ ∈ [X⇁V ].

3 Online Parametric Trace Monitoring

Here we first define monitors M and parametric monitors ΛX.M . Like for para-
metric properties, which are just properties over parametric traces, we show that
parametric monitors are also just monitors, but for parametric events and with
instance-indexed states and output categories. We show that a parametric mon-
itor ΛX.M is a monitor for the parametric property ΛX.P , with P the property
monitored by M . Finally, we present an online monitoring algorithm based on
algorithm A〈X〉 and then refine it to an efficient monitoring algorithm.

3.1 Monitors and Parametric Monitors

Non-parametric monitors are defined as a variant of Moore machines:

Definition 7. A monitor M is a tuple (S, E , C, ı, σ : S × E → S, γ : S → C),
where S is a set of states, E is a set of input events, C is a set of output categories,
ı ∈ S is the initial state, σ is the transition function, and γ is the output function.
The transition function is extended to σ : S × E∗ → S the standard way.

The notion of a monitor above is rather conceptual. Actual implementations
of monitors need not generate all the state space apriori, but on a “by need”
basis. Allowing monitors with infinitely many states is a necessity in our context.
Even though only a finite number of states is reached during any given (finite)
execution trace, there is, in general, no bound on how many. For example, mon-
itors for context-free grammars like the ones in [15] have potentially unbounded
stacks as part of their state. Also, as shown shortly, parametric monitors have
domains of functions as state spaces, which are infinite as well.
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Definition 8. M = (S, E , C, ı, σ, γ) is a monitor for property P : E∗ → C iff
γ(σ(ı, w)) = P (w) for each w ∈ E∗. Every monitor M defines the property PM :
E∗ → C with PM (w) = γ(σ(ı, w)); note that M is a monitor for PM . Monitors
M and M ′ are equivalent, written M ≡M ′ iff PM = PM ′ .

Proposition 1. Every property P defines a monitor MP with MP a monitor
for P . For any property P , PMP

= P . For any monitor M , if M = MP for
some property P then MPM ≡M .

We next define parametric monitors in the same style as the other parametric
entities defined in this paper: starting with a base monitor and a set of param-
eters, the corresponding parametric monitor can be thought of as a set of base
monitors running in parallel, one for each parameter instance.

Definition 9. Given parameters X with corresponding values V and monitor
M = (S, E , C, ı, σ : S × E → S, γ : S→C), the parametric monitor ΛX.M is
the monitor ([[X⇁V ]→S], E〈X〉, [[X⇁V ]→C], λθ.ı, ΛX.σ, ΛX.γ), with ΛX.σ :
[[X⇁V ]→S]× E〈X〉→ [[X⇁V ]→S] and ΛX.γ : [[X⇁V ]→S]→ [[X⇁V ]→C]
defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =
{
σ(δ(θ), e) if θ′ v θ
δ(θ) if θ′ 6v θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X⇁V ]→S] and any θ, θ′ ∈ [X⇁V ].

Therefore, a state δ of parametric monitor ΛX.M maintains a state δ(θ) of
M for each parameter instance θ, takes parametric events as input, and outputs
categories indexed by parameter instances (one category of M per instance).

Proposition 2. If M is a monitor for P , then ΛX.M is a monitor for para-
metric property ΛX.P , or, PΛX.M = ΛX.PM .

3.2 Algorithm for Online Parametric Trace Monitoring

We next propose a monitoring algorithm for parametric properties. A first chal-
lenge here is how to represent the states of the parametric monitor. Inspired by
algorithm A〈X〉, we encode functions [[X⇁V ]⇁S] as tables with entries indexed
by parameter instances in [X⇁V ] and with contents states in S. Such tables will
have finite entries since each event binds only a finite number of parameters. Fig.
2 shows our monitoring algorithm for parametric properties. Given parametric
property ΛX.P and M a monitor for P , B〈X〉(M) yields a monitor that is equiv-
alent to ΛX.M , that is, a monitor for ΛX.P . Section 4 shows one way to use
this algorithm: a monitor M is first synthesized from the base property P , then
that monitor M is used to synthesize the monitor B〈X〉(M) for the parametric
property ΛX.P .
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Algorithm B〈X〉(M=(S, E , C, ı, σ, γ))
Input: parametric trace τ ∈ E〈X〉∗
Output:Γ : [[X⇁V ]⇁C] and Θ ⊆ [X⇁V ]
1 ∆← ⊥; ∆(⊥)← ı; Θ ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ} tΘ do
4 : : ∆(θ′)← σ(∆(max (θ′]Θ), e)
5 : : Γ (θ′)← γ(∆(θ′))
6 : endfor
7 : Θ ← {⊥, θ} tΘ
8 endfor

Fig. 2. Monitoring algorithm B〈X〉

B〈X〉(M) follows very closely the
algorithm for trace slicing in Fig. 1,
the main difference being that trace
slices are processed, as generated, by
M : instead of calculating the trace
slice of θ′ by appending base event
e to the corresponding existing trace
slice in line 4 of A〈X〉, we now calcu-
late and store in table ∆ the state of
the “monitor instance” corresponding
to θ′ by sending e to the correspond-
ing existing monitor instance (line 4 in
B〈X〉(M)); at the same time we also
calculate the output corresponding to
that monitor instance and store it in
table Γ . In other words, we replace
trace slices in A〈X〉 by local monitors processing those slices. We also check
whether Γ (θ′) at line 5 violates or validates the property and, if so, a message
including θ′ is output. Given a monitor M , letMB〈X〉(M) be the monitor defined
by B〈X〉(M). Theorem 2 then proves the correctness of B〈X〉.

Theorem 2. MB〈X〉(M) ≡ ΛX.M for any monitor M . If M is a monitor for
P , then MB〈X〉(M) is a monitor for parametric property ΛX.P .

3.3 Optimized Online Monitoring Algorithm

Algorithm C〈X〉 in Fig. 3 refines Algorithm B〈X〉 in Fig. 2 for efficient online
monitoring. C〈X〉 essentially expands the body of the outer loop in B〈X〉 (lines
3 to 7 in Fig. 2). The direct use of B〈X〉 would yield prohibitive runtime over-
head when monitoring large traces, because its inner loop requires search for all
parameter instances in Θ that are compatible with θ; this search can be very ex-
pensive. C〈X〉 introduces an auxiliary data structure and illustrates a mechanical
way to accomplish the search, which also facilitates further optimizations.

C〈X〉 uses three tables: ∆, U and Γ . ∆ and Γ are the same as ∆ and Γ in
B〈X〉, respectively. U is an auxiliary data structure used to optimize the search
“for all θ′ ∈ {θ}tΘ” in B〈X〉 (line 3 in Fig. 2). It maps each parameter instance θ
into the finite set of parameter instances encountered in ∆ so far that are strictly
more informative than θ, i.e., U(θ) = {θ′ | θ′ ∈ Dom(∆) and θ @ θ′}. Another
major difference between B〈X〉 and C〈X〉 is that C〈X〉 does not maintain Θ
explicitly: Θ at the beginning/end of the body of the outer loop in B〈X〉 is
Dom(∆) at the beginning/end of C〈X〉, respectively. However, Θ is fixed during
the loop at lines 3 to 6 in B〈X〉 and updated atomically in line 7, while Dom(∆)
can be changed at any time during the execution of C〈X〉.

C〈X〉 is composed of two functions, main and defineTo. The defineTo function
takes two parameter instances, θ and θ′, and adds a new entry corresponding to
θ into ∆ and U . Specifically, it sets ∆(θ) to ∆(θ′) and adds θ into the set U(θ′′)
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Algorithm C〈X〉(M = (S, E , C, ı, σ, γ))
Globals: mappings ∆ : [[X⇁V ]⇁S],

Γ : [[X⇁V ]⇁C],
U : [X⇁V ]→ Pf ([X⇁V ])

Initialization:
U(θ)← ∅ for any θ ∈ [X⇁V ],
∆(⊥)← ı

function main(e〈θ〉)
1 if ∆(θ)undefined then
2 : foreach θmax @ θ (in reversed

: topological order) do
3 : : if ∆(θmax) defined then
4 : : : goto 7
5 : : endif
6 : endfor
7 : defineTo(θ, θmax)
8 : foreach θmax @ θ (in reversed

: topological order) do

9 : : foreach θcomp ∈ U(θmax)
: : compatible with θ do

10 : : : if ∆(θcomp t θ) undef. then
11 : : : : defineTo(θcomp t θ, θcomp)
12 : : : endif
13 : : endfor
14 : endfor
15 endif
16 foreach θ′ ∈ {θ} ∪ U(θ) do
17 : ∆(θ′)← σ(∆(θ′), e)
18 : Γ (θ′)← σ(∆(θ′))
19 endfor
function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 foreach θ′′ @ θ do
3 : U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Fig. 3. Monitoring algorithm C〈X〉

for each θ′′ @ θ. The main function differentiates two cases when a new event
e〈θ〉 is received and processed. The simpler case is that ∆ is already defined on
θ, i.e., θ ∈ Θ at the beginning of the iteration of the outer loop in B〈X〉. In
this case, {θ} t Θ = {θ′ | θ′ ∈ Θ and θ v θ′} ⊆ Θ, so the lines 3 to 6 in B〈X〉
become precisely the lines 16 to 19 in C〈X〉. In the other case, when ∆ is not
already defined on θ, main takes two steps to handle e. The first step searches
for new parameter instances introduced by {θ} t Θ and adds entries for them
into ∆ (lines 2 to 15). We first add an entry to ∆ for θ at lines 2 to 7. Then we
search for all parameter instances θcomp that are compatible with θ, making use
of U (line 8 and 9); for each such θcomp, an appropriate entry is added to ∆ for
its lub with θ, and U updated accordingly (lines 10 to 12). This way, ∆ will be
defined on all the new parameter instances introduced by {θ} tΘ after the first
step. In the second step, the related monitor states and outputs are updated in a
similar way as in the first case (lines 16 to 19). It is interesting to note how C〈X〉
searches at lines 2 and 8 for max (θ]Θ that B〈X〉 refers to at line 4 in Fig. 2: it
enumerates all the θmax @ θ in reversed topological order (larger to smaller); we
proved that max (θ]Θ exists and this search will find it ([16]).
Correctness of C〈X〉. We next argue informally the correctness of C〈X〉 (for-
mal proofs can be found in [16]) by showing that it is equivalent to the body
of the outer loop in B〈X〉. Suppose that parametric trace τ has already been
processed by both C〈X〉 and B〈X〉, and a new event e〈θ〉 is to be processed next.
First, note that C〈X〉 terminates: there is only a finite number of partial maps
less informative than θ, that is, only a finite number of iterations for the loops
at lines 2 and 8 in main; since U is only updated at line 3 in defineTo, U(θ) is
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finite for any θ ∈ [X⇁V ] and thus the loop at line 9 in main also terminates.
Assuming that running the base monitor M takes constant time, the worse case
complexity of C〈X〉(M) is O(k × l) to process e〈θ〉, where k is 2|Dom(θ)| and l
is the number of incompatible parameter instances in τ . Parametric properties
often have a fixed and small number of parameters, in which case k is not sig-
nificant. Depending on the trace, l can grow arbitrarily large; in the worst case,
each event may carry an instance incompatible with the previous ones.

Next result establishes the correctness of C〈X〉. Fix a monitor M . Let ∆b
C and

Γ bC be the ∆C and ΓC when main(e〈θ〉) in C〈X〉(M) begins (“b”=“begin”); let ∆e
C

and Γ eC be the ∆C and ΓC when main(e〈θ〉) ends (“e”=“end”); let B〈X〉(M)(τ).∆
and B〈X〉(M)(τ).Γ be the ∆ and Γ after B〈X〉(M) processes trace τ .

Theorem 3. If ∆b
C = B〈X〉(M)(τ).∆ and Γ bC = B〈X〉(M)(τ).Γ , then ∆e

C =
B〈X〉(M)(τ e〈θ〉).∆ and Γ bC = B〈X〉(M)(τ e〈θ〉).Γ .

4 Implementation and Evaluation

We have implemented our online monitoring algorithm in a prototype, here
called PMon (from ”Parametric Monitoring”), and evaluated it on the DaCapo
benchmark [6]. Some optimizations have also been implemented. Note that C〈X〉
iterates through all the possible parameter instances that are less informative
than θ in three different loops: at lines 2 and 8 in main, and at line 2 in defineTo.
Hence, it is important to reduce the number of such instances in each loop.
A static analysis of the specification, discussed in [8], exhaustively explores all
possible event combinations that can lead to violations of the property, and then
the number of loop iterations is reduced by skipping parameter instances that
cannot affect the result of monitoring. The static analysis is used at compile
time to unroll the loops in C〈X〉 and reduce the size of ∆ and U .

Another optimization is based on the observation that the monitoring process
needs to start only when certain events are received. Such events are called
monitor creation events in [9]. The parameter instances carried by such creation
events may also be used to reduce the number of parameter instances that need to
be considered. An extreme, yet surprisingly common case is when creation events
instantiate all the property parameters. In this case, the monitoring process
does not need to search for compatible parameter instances even when an event
with an incomplete parameter instance is observed. The current JavaMOP [9]
supports only traces whose monitoring starts with a fully instantiated creation
event; this was perceived as an inherent limitation of JavaMOP, a consequence of
its generality [3]. Interestingly, it now becomes just a common-case optimization
of our novel, general and unrestricted technique presented here.
Experiments and Evaluation. The following properties from [8] were checked
in our experiments. The latter two cannot be handled by JavaMOP.

– LeakingSync. Only access a synchronized collection using its synchronized
wrapper. One violation pattern monitored: Λc. sync(c) asyncAccess(c).
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LeakingSync FailSafeEnum ASyncIterCol* ASyncIterMap*
PMon Man TM MOP PMon Man TM MOP PMon Man TM PMon Man TM

antlr 2 1 5 2 0 0 1 0 1 0 0 2 1 2
bloat 140 145 785 141 0 2 0 2 721 150 1459 660 164 2300
chart 25 21 70 24 1 0 0 0 2 0 0 0 0 0
eclipse 0 0 0 0 0 0 0 2 1 2 0 1 0 0

fop 53 47 146 50 1 0 0 0 2 1 1 2 1 0
hsqldb 2 5 24 4 0 0 25 0 1 0 25 1 0 0
jython 62 52 55 59 0 0 8 0 0 0 9 0 0 9
luindex 8 7 20 7 7 4 16 3 3 0 2 1 0 4
lusearch 12 10 52 12 5 2 28 7 4 1 9 0 0 8

pmd 55 47 53 52 0 0 0 0 37 30 36 50 49 53
xalan 39 29 117 40 5 6 33 4 1 1 6 1 1 7

Table 2. Average percent runtime overhead for PMon, manually coded monitors(Man),
Tracematches(TM) and JavaMOP(MOP), with convergence within 3%. *: Cannot be
handled by JavaMOP

– FailSafeEnum. Do not update a vector while enumerating over it. The follow-
ing violation pattern monitored: Λv, e. createEnum(v, e) modify(v) access(e).

– ASyncIterCol. Only iterate a synchronized collection c when holding a lock
on c. Two violation patterns monitored: Λc, i. sync(c) ayncCreateIter(c, i) and
Λc, i. sync(c) syncCreateIter(c, i) asyncAccess(i).

– ASyncIterMap. Only iterate a synchronized map m when holding a lock on
m. Two violation patterns monitored: Λm, s, i. sync(m) getSet(m, s)async-
CreateIter(s, i), Λm, s, i. sync(m) getSet(m, s) syncCreateIter(s, i) asyncAccess(i).

These properties were chosen since they involve some of the most used data
structures in Java and generate intensive monitoring overhead; also, their over-
head is a consequence of the huge number of parameter instances to handle and
not because of the complexity of the base, non-parametric properties.

Using the above properties, we compared our implementation with three
other monitoring approaches, namely: optimal manually implemented monitors1,
Tracematches and JavaMOP. The latter two are chosen for comparison because
they are very efficient monitoring systems [3, 9]. The evaluation carried out on a
1.5GB, Pentium 4 2.66GHz machine running Ubuntu 7.10. We used the DaCapo
benchmark version 2006-10; it contains eleven open source programs, as shown
in Table 2. The provided default input was used with the -converge option to
execute the benchmark multiple times until the execution time falls within 3%
variation. The average execution time of six iterations after convergence is used.

The results are shown in Table 2. Among all 44 experiments, PMon generates
14% runtime overhead on average with more than 15% in only 10 experiments,
showing that our algorithm is efficient2. Comparing with other approaches, we
have the following observations: 1) PMon performed as well as or better than
Tracematches in all cases, although the latter has domain specific optimiza-

1 Borrowed from [8], supposedly the best monitoring code for the given properties.
2 These properties generated a tremendous number of events and parameter instances,

e.g., millions of events and instances seen for LeakingSync and FailSafeEnum [9].
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tions for its hard-wired parametric regular patterns; 2) PMon generates similar
runtime overhead as JavaMOP in the cases that can be handled by JavaMOP,
showing that PMon conservatively extends the limited algorithm implemented
in JavaMOP; 3) the monitoring code generated by PMon performs as well as
the manually implemented monitors in most cases in the evaluated properties.

5 Related work

Several approaches have been proposed to specify and monitor parametric prop-
erties. Tracematches [1, 3] is an extension of AspectJ [2] supporting specifications
of parametric regular patterns; when patterns are matched during the execution,
user-defined advice can be triggered. J-LO [7] is a variation of Tracematches that
supports linear temporal logic properties. Also based on AspectJ, [13] proposes
Live Sequence Charts (LSC) [11] as an inter-object scenario-based specification
formalism; LSC is implicitly parametric, requiring dynamic parameter binding at
runtime. Tracematches, J-LO and LSC [13] support a limited number of parame-
ters, and each handles parameterization in a way that is specific to its particular
specification formalism. Our proposed technique is generic in the specification
formalism, and admits a potentially unlimited number of parameters.

Program Query Language (PQL) [14] allows the specification and monitor-
ing of parametric context-free grammar (CFG) patterns. Unlike previous ap-
proaches, PQL can associate parameters with sub-patterns that can be recur-
sively matched at runtime, yielding a potentially unbounded number of parame-
ters. PQL’s approach to parametric monitoring is specific to its particular CFG-
based specification formalism. Also, PQL’s design does not support arbitrary
execution traces. For example, field updates and method begins are not observ-
able. Like PQL, our technique also allows an unlimited number of parameters.
Unlike PQL, our technique is not limited to particular events and is generic in
the property specification formalism; CFGs are just one such possible formalism.

Eagle [4], RuleR [5], and Program Trace Query Language (PTQL) [12] are
very general trace specification and monitoring systems, whose specification for-
malisms allow complex properties with parameter bindings anywhere in the spec-
ification. Eagle and RuleR are based on fixed-point logics and rewrite rules,
while PTQL is based on SQL relational queries. These systems attempt to de-
fine general specification formalisms supporting data binding among many other
features, while we attempt to define a general parameterization approach that is
logic-independent. The very general specification formalisms tend to be slower
[3, 15, 9]. We believe that our techniques can be used as an optimization for cer-
tain common types of properties expressible in these systems: use any of these to
specify the base property P , then use our generic techniques to analyze ΛX.P .

6 Concluding Remarks and Future Work

A semantic foundation for parametric traces, properties and monitoring was
proposed. A parametric trace slicing technique, which was discussed and proved
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correct, allows the extraction of all the non-parametric trace slices from a para-
metric slice by traversing the original trace only once and dispatching each para-
metric event to its corresponding slices. It thus enables the leveraging of any non-
parametric, i.e., conventional, trace analysis techniques to the parametric case.
A parametric monitoring technique then makes use of it to monitor arbitrary
parametric properties against parametric execution traces using and indexing
ordinary monitors for the base, non-parametric property. An implementation of
the discussed techniques reveals that their generality, compared to the existing
similar, but limited, techniques, does not come at a performance expense.
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