
Monitoring Oriented Programming - A Project Overview ∗

Feng Chen, Dongyun Jin, Patrick Meredith, Grigore Roşu
Department of Computer Science, University of Illinois at Urbana-Champaign

201 N Goodwin Ave
Urbana, IL 61801, USA

+1 217-244-7431
{fengchen,djin3,pmeredit,grosu}@cs.uiuc.edu

ABSTRACT
This paper gives a brief overview of Monitoring Oriented
Programming (MOP). In MOP, runtime monitoring is sup-
ported and encouraged as a fundamental principle for build-
ing reliable software: monitors are automatically synthesized
from specified properties and integrated into the original sys-
tem to check its dynamic behaviors. When a specification is
violated or validated at runtime, user-defined actions will be
triggered, which can be any code from information logging
to runtime recovery. Two instances of MOP are introduced:
JavaMOP (for Java programs) and BusMOP (for monitor-
ing PCI bus traffic). The architecture of MOP is discussed,
and a brief explanation of parametric trace monitoring and
its implementation is given. Finally, a comprehensive eval-
uation of JavaMOP attests to its efficiency, especially with
respect to similar systems; BusMOP, in general, imposes 0
runtime overhead on the system it is monitoring.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication— assert checker, class invariant, formal methods,
programming by contract, reliability, validation.

; D.2.4 [Software Engineering]: Testing and Debug-
ging—monitors, tracing.

; D.3.3 [Programming Languages]: Language Con-
structs and Features—constraints.

General Terms
Reliability, Languages, Verification.

Keywords
monitoring oriented programming, runtime verification
∗Supported in part by NSF grants CCF-0448501,
CNS-0509321 and CNS-0720512, by NASA contract
NNL08AA23C, by the Microsoft/Intel funded Universal
Parallel Computing Research Center at UIUC, and by
several Microsoft gifts.

unsynchronized decentralized SafeLock(Lock l, Thread t)
within Main. ∗ {
int acq count, rel count;
event acq after(Lock l, Thread t) :

call(∗ Lock.acquire()) && target(l) && thread(t)
{++ acq count; }

event rel after(Lock l, Thread t) :
call(∗ Lock.release()) && target(l) && thread(t)
{++ rel count; }

cfg : S −> S acq S rel | epsilon
@violation{

System.out.println(acq count + “ acquires and ”
+ rel count + “ releases at line ” + Loc);

}
}

Figure 1: A JavaMOP Specification, SafeLock

1. INTRODUCTION
Runtime monitoring of requirements in software develop-
ment can increase the reliability of the resulting systems.
There is an increasingly broad interest in uses of monitor-
ing in software development and analysis, as reflected, for
example, by abundant approaches proposed recently [19, 1,
14], and also by the runtime verification (RV) and the for-
mal aspects of testing (FATES) initiatives [15, 4, 17, 23, 16,
22] among many others.

Monitoring oriented programming (MOP) [11, 9, 12] is a
generic monitoring framework that integrates specification
and implementation by checking the former against the lat-
ter at runtime. In MOP, one specifies desired properties
using definable formalisms and with actions to handle vio-
lations or validations of the specified property. MOP tools
will then automatically synthesize monitors from property
specifications and integrate them within the application to-
gether with user-provided handling code. Figure 1 shows an
example specification of JavaMOP, an MOP tool for Java
programs (see Section 3). Detailed explanation of the spec-
ification syntax can be found on the MOP website [3].

This specification describes a programming principal for
safe operations of locks, namely that each method in each
thread should release each lock as many times as it acquires
it. It is composed of four parts. The first line is the header

ICICIS'09, pp 72-77. 2009



of the specification, starting with two modifiers, unsynchro-
nized and decentralized; the former states that monitors for
this property do not need to synchronize since they work
within different threads and the latter chooses the way to
index monitors for different parameter bindings, which is
discussed in Section 4. An id for the specification is given
after modifiers and followed by parameters of the property;
in this example, two parameters are used, namely a lock
object l and a thread instance t. At the end of the header
is a within clause, which states that this property is moni-
tored within the boundary of any method defined in the class
Main (the wildcard * indicates “any”). The second part con-
tains the declaration of two monitor variables: acq count and
rel count. The third part of the specification contains event
declarations. Two events are defined: acq for acquiring of
a lock and rel for releasing of a lock. JavaMOP borrows
the syntax of AspectJ [2] in event declarations. For exam-
ple, the acq event is declared to occur “after” a function call
to the acquire method of class Lock. Note that the target
and thread clauses are used to bind parameters in the event.
Each event also increments one of the monitor variables,
which will be unique for each binding of the parameters.

The fourth part of the specification is a formal descrip-
tion of the desired property. As discussed in Section 2, MOP
is specification-formalism-independent, and one may choose
different logics to specify properties. In this example, the
property description begins with cfg, meaning that a con-
text free grammar (CFG) is used, and continues with a CFG
pattern of declared events, which denotes that acquires and
releases of a lock should match. The last part of the spec-
ification consists of handlers to execute in different states
of the corresponding monitor, such as violation and valida-
tion. In Figure 1, the handler starts with @violation, defining
the action, a simple warning report in this case, to execute
when the violation of the specified CFG pattern is detected.
The handler reports the number of acquires and releases of
a given lock in a given thread, and the line number that the
violation occurs on (given by the variable LOC).

By a clear separation of monitor generation and monitor
integration, MOP provides a fundamental and generic sup-
port for effective and efficient applications of runtime moni-
toring in different problem domains, and can be understood
from at least three perspectives:

1. As a discipline allowing one to improve safety, relia-
bility and dependability of a system by monitoring its
requirements against its implementation at runtime;

2. As an extension of programming languages with log-
ics. One can add logical statements anywhere in the
program, referring to past or future states of the pro-
gram. These statements are like any other program-
ming language Boolean expressions, so they give the
user a maximum of flexibility on how to use them:
to terminate the program, guide its execution, recover
from a bad state, add new functionality, etc.;

3. As a lightweight formal method. While firmly based
on logical formalisms and mathematical techniques,
MOP’s purpose is not program verification. Instead,
the idea is to avoid verifying an implementation against
its specification before operation, by not letting it go
wrong at runtime.

Figure 2: Architecture of MOP

In the rest of the this paper, we first introduce the generic
framework of MOP (Section 2), then discuss two language
instances of MOP that have been implemented within the
framework (Section 3). A specific topic of monitoring para-
metric properties is also discussed (Section 4) due to its sig-
nificance in practice. Finally, we present an evaluation of
JavaMOP, which testifies to its efficiency (Section 5). An
evaluation of BusMOP (an MOP tool for monitoring PCI
bus traffic) is unnecessary, as it has 0 runtime overhead.

2. MOP FRAMEWORK
Monitoring applications share some features, such as pro-
gram instrumentation and monitor integration, even when
they aim at different domains or goals. MOP separates mon-
itor generation and integration and provides a generic, ex-
tensible framework for runtime monitoring, allowing one to
instantiate MOP with specific programming languages and
specification formalisms to support different domains. In
this section, we focus on the overall architecture of MOP,
into which one can easily plug in new specification formalisms.

2.1 Architecture
Figure 2 shows the architecture of MOP. There are two kinds
of components in MOP, namely logic repositories and lan-
guage clients. The logic repository, shown in the bottom of
Figure 2, contains various logic plugins and a logic plugin
manager component. The former is the core component to
generate monitoring code from formulas written in a spe-
cific logic; for example, the PTLTL plugin synthesizes state
machines from PTLTL formulas. The output of logic plu-
gins is usually pseudocode and not bound to any specific
programming language. This way, the essential monitor-
ing generation can be shared by different instances of MOP
using different programming languages. The logic plugin
manager bridges the communication between the languages
client and the logic plugin. More specifically, it receives the
monitor generation request from the language client and dis-
tributes the request to an appropriate plugin. After the plu-
gin synthesizes the monitor for the request, the logic plugin
manager collects the result and sends it back to the lan-
guage client. This way, one can easily add new logic plugins
into the repository to support new specification formalisms

ICICIS'09, pp 72-77. 2009



Figure 3: Monitor for the CFG pattern in Figure 1

in MOP without changing the language client. The lan-
guage client hides the programming-language-independent
logic repository and provides language specific support for
applying MOP in particular programming languages. Ev-
ery language client is usually composed of three layers: the
bottom layer contains language translators that translate
the abstract output of logic plugins into concrete code in
a specific programming language; the middle layer is the
specification processor that extracts formulas from the given
property specification and then instruments the generated
monitoring code into the target program; at last, the top
layer provides usage interfaces to the user. Two examples of
language clients are discussed in Section 3.

2.2 Logic Plugins
Every logic plugin implements and encapsulates a monitor
synthesis algorithm for a particular requirements specifica-
tion formalism, such as the past-time linear temporal logic
(PTLTL) and the context free grammar (CFG) supported
in the current MOP framework. The logic plugin accepts as
the input a set of abstract events and a formula written in
the underlying formalism and outputs an abstract monitor,
usually a piece of pseudocode, which checks a trace of events
against the given formula. For example, Figure 3 shows the
monitoring code generated by the MOP CFG plugin from
the CFG pattern in Figure 1. CFG monitors are contained
within two tables: the Action and Goto tables, and every
monitor has a stack used to track previous states of the
monitor; the top of the stack is always the current state.

The Action table denotes what action should be taken
when a given event is seen, in a given state. Four actions
are possible: shift, reduce, accept, and error. When a shift
action is encountered, the state denoted in the shift action
is pushed onto the stack, in preparation for the arrival of
the next event. Multiple reduce actions are possible in the
presence of a given event, and the shift action is always the
last action to occur. When an event causes a reduction, the
number in the reduce denotes how many states to pop from
the stack. The symbol in the reduce action is used as one of
the two indices into the Goto table. The state left at the top
of the stack after the necessary number of states is popped
is the second index into the Goto table. The element found
in the Goto table is similar to a shift action, in that it tells
the monitor which state to push onto the top of the stack.
This state is then used to check for further reductions and
an eventual shift (or error). As one might imagine, an error
occurs when the event received by the monitor is not valid
in the current state; this action causes the monitor to run
the violation handler. The accept action causes the monitor
to run the validation handler.

Consider, again, Figure 3. In state 0, the initial state, if
an acq event is seen, the monitor shifts to state 14. Because
acq is the only valid start of a trace, we can see that, if rel
is seen, it causes an error. The $ event denotes the guessed
end of the trace. Anytime a reduction by $ is possible, $ is
inserted in the stream, and reductions proceed with a copy
of the current stack. This allows for a given run of a program
to generate multiple validations. This algorithm is explained
in detail in [20].

3. MOP INSTANCES
Every MOP instance needs to instantiate the MOP frame-
work in four dimensions: 1) a specification language based
on the problem domain, which is mainly related to how one
defines events in the domain, 2) a target language for gen-
erated monitors, 3) supported specification formalisms, and
4) the handlers allowed in the specification. Two MOP in-
stances have been implemented, namely JavaMOP and Bus-
MOP. We expect to see more MOP instances in the future,
as many problem domains can benefit from monitoring.

3.1 JavaMOP
JavaMOP is a development tool for Java, supporting several
logical formalisms and a specification language to describe
Java program behavior [11]. It compiles a specification into
optimized monitoring code. This resulting code is AspectJ
[18], and is program-independent. For example, a user can
write a JavaMOP specification for a library. Then, Java-
MOP generates monitoring code for this specification. This
code can be applied to any program that uses the library.

In JavaMOP, an event corresponds to a pointcut that an
AspectJ [2] compiler (such as ajc) can use to weave monitor-
ing code into the original program. Pointcuts include func-
tion call, function return, function begin, function end, field
assignment, object creation, and more complex ones with
pointcut operators, which combine multiple simpler point-
cuts. JavaMOP generates monitoring code for each pointcut
to maintain monitoring state and check if the program con-
forms to the specification.

A system behavior can be described using one of sev-

ICICIS'09, pp 72-77. 2009



eral logical formalisms supported by JavaMOP. Logical for-
malisms include: ERE (extended regular expressions), FSM
(finite state machines), CFG (context free grammars), PTLTL
(past time linear temporal logic), FTLTL (future time lin-
ear temporal logic), and ptCaRet (past time linear temporal
logic with calls and returns). A specification will be inter-
preted by the Logic Repository, a generic server used by
all instances of MOP, and transformed into generic monitor
code. JavaMOP translates this monitor to AspectJ code.

A user can write a handler in Java for each monitoring
state. There can be more monitoring states than simple
validation and violation, depending on logical formalism. A
handler can be used for logging, recovering, blocking, or any
other purpose. Since handlers are specified as arbitrary Java
code, a user has a lot of freedom to achieve her purposes.

3.2 BusMOP
BusMOP [21] was designed to address the safety problem of
third party consumer off-the-shelf components (COTS). The
complexity of safety critical systems has grown to the point
where the ability to use COTS in a safe manner is almost
mandatory. Additionally, the vast majority of OS crashes in
PCs are caused by faulty peripherals or their drivers. Bus-
MOP answers both of these problems by allowing the spec-
ification and monitoring of properties with respect to PCI
Bus traffic (soon to be expanded to other bus architectures).

In BusMOP, the events correspond to reads and writes
of specified values to specified memory locations on the bus.
PCI Bus interrupts are also allowed as events. The mon-
itors, and the logic to glean events from bus traffic, are
synthesized from hardware design language (HDL) code and
programmed onto a field programmable gate array (FPGA),
which is plugged into the PCI Bus.

BusMOP supports the FSM, ERE, and PTLTL plugins
of MOP, with plans to add FTLTL soon. CFG has the prob-
lem of unbounded logic response time, which would cause
the monitor to not meet timing constraints in some cases,
and is thus not suitable for inclusion in BusMOP.

Handlers in BusMOP can be specified using arbitrary
VHDL code. Several resources are provided for the user
for use in handler code, such as serial output for logging,
and the actual ability to write to the PCI Bus to perform
recovery. Recovery actions in BusMOP require bus arbitra-
tion to undo deleterious actions of faulty peripherals or their
drivers. This bus arbitration is the only possible overhead
incurred by BusMOP, in cases of heavy Bus traffic. In the
majority of systems, BusMOP can be used with 0 overhead.

4. PARAMETRIC MONITORING
We next discuss an important topic in monitoring, namely,
the monitoring of parametric specifications. Parametric spec-
ifications, i.e., specifications associated with parameters, are
widely used in practice, particularly in object oriented lan-
guages, like Java, where we need to describe properties over
a group of objects. For example, in the specification in Fig-
ure 1, the events are parametrized by the Lock l and Thread
t. This is because we do not want events from multiple
threads to interfere with each other, and because we are
only interested in the pattern with respect to a given lock.
If a program locks a lock x and releases lock y, we should not

see this as a validation of the property, in fact, assuming y
has not been locked previously, this should be a violation of
the pattern. Note that not all problem domains need param-
eters. For example, BusMOP does not support parametric
events because the only possible candidate for parametriza-
tion is memory address, and specifications in BusMOP con-
cern themselves with specific memory addresses (e.g., con-
trol registers on peripherals) or ranges of addresses (e.g.,
buffers), rather than all memory addresses.

When monitoring a parametric specification, the observed
execution trace is parametric, i.e., the events in the trace
come with parameter information. For example, a possible
parametric trace for the specification in Figure 1 is acq〈l1,
t1〉 acq〈l2, t1〉 acq〈l1, t1〉 rel〈l1,t1〉 rel〈l1, t1〉 rel〈l2, t1〉 acq〈l1,
t2〉 rel〈l1, t2〉1. Every event in this trace is associated with
a concrete parameter binding, such as 〈l1, t1〉 that indicates
that the parameters l and t in Figure 1 are bound to con-
crete objects l1 and t1, respectively. Such a parametric trace
represents a set of non-parametric traces each of which corre-
sponds to a particular parameter binding. For example, the
above trace contains three non-parametric traces for three
parameter bindings as shown below:

〈l1,t1〉 〈l2,t1〉 〈l1, t2〉
acq acq rel rel acq rel acq rel

Each of these matches the pattern in Figure 1, thus no
violations are produced. It is highly non-trivial to moni-
tor parametric specifications efficiently since there can be a
tremendous number of parameter bindings during a single
execution. For example, in a few experiments that we car-
ried out, millions of parameter bindings were created [12].
Most other approaches for monitoring parametric specifica-
tions handle parameters in a logic-specific way [19, 1, 6], that
is, they extended the underlying specification formalisms
with parameter and devised algorithms for the extended for-
malism. Such solution results in very complicated monitor
synthesis algorithms and makes it difficult to support new
problem domains. In MOP, parameters are handled in a
completely logical formalism independent manner and sepa-
rated from the monitor synthesis process, vastly simplifying
the implementation of new logic plugins. Also, surprisingly,
this logic independent consideration of parameters turns out
to be more efficient than those closely coupled systems (see
Section 5) thanks to the clean separation of concerns.

Our solution to parametric specification is based on para-
metric trace slicing. Parametric trace slicing is the process
of taking a parametric trace of events, and producing a set of
not-parametric traces, such that the parameter instances of
all the events grouped into a given resultant non-parametric
slice are compatible. More formally, trace slicing is defined
as a reduct operation that forgets all the events unrelated
to the given parameter instance. Parameter instances are
considered compatible if, for all parameters that are instan-
tiated, the parameters agree. For example, 〈l1, t1〉 and 〈l1〉
are compatible and 〈l1, t1〉 and 〈l1, t2〉 are incompatible.

Since we can cleanly slice a parametric trace into sets of

1This example is made easier by the fact that the only two
events have the same number of parameters, more compli-
cated examples can be seen in [13].

ICICIS'09, pp 72-77. 2009



Algorithm A〈X〉
Input: parametric trace τ ∈ E〈X〉∗
Output: map T ∈ [[X⇁V ]⇁E∗] and

set Θ ⊆ [X⇁V ]
1 T← ⊥; T(⊥)← ε; Θ← {⊥}
2 foreach e〈θ〉 in order in τ do
3 : foreach θ′ ∈ {θ} tΘ do
4 : : T(θ′)← T(max (θ′]Θ) e
5 : endfor
6 : Θ← {⊥, θ} tΘ
7 endfor

Figure 4: Parametric slicing algorithm A〈X〉.

non-parametric traces, we can use a set of monitor instances,
each of which handle a non-parametric trace specialized to
a given parameter instance, to verify the input parametric
trace. The monitor is generated from the non-parametric
formula in the specification, such as the CFG pattern in
Figure 1. This way, the underlying logic plugin does not
need to be aware of the parameters and can make use of any
existing optimal algorithms for non-parametric formalisms.

4.1 Online Parametric Trace Slicing
In this section we briefly discuss the base algorithm for on-
line parametric trace slicing first introduced in [13], which
can be seen in Figure 4. By online, we mean that the trace
arrives incrementally, one event at a time. Several optimiza-
tions have been applied to this base algorithm and those
interested in the correctness and the optimizations of this
algorithm are encouraged to read [13, 10].

The input to the algorithm is a trace τ ∈ E〈X〉∗. Here,
E〈X〉 represents the set of parametric events, and E〈X〉∗
is thus the set of parametric traces. [X⇁V ] is the set of
parameter instances, which are, mathematically, the set of
partial functions from the set of parameters X to program
values V (e.g., considering our running example, we can see
acq〈l1, t1〉 is simply shorthand for acq〈l → l1, t → t1〉). For
outputs, Θ is a set of parameter bindings and T is a lookup
map that takes, as an argument, a parameter binding, and
returns a non-parametric trace from E∗. This is a rather
formal way to look at online monitoring; intuitively, a set of
monitors, each specialized for a given parameter instance,
can use this map to filter whether or not a given event be-
longs in its non-parametric trace slice.

The algorithm begins with T as having only one binding,
from the empty parameter set (⊥) to the empty trace (ε).
Θ begins knowing only about the empty parameter set. In-
tuitively then, the algorithm begins with one monitor that
is keeping track of events for the empty parameter set. Any
non-parametric events which arrive, will be added to the
map index for the empty parameter binding. The foreach
loop on line 2 in Figure 4 loops over each event in trace
τ , note, however, that each event actually arrives incremen-
tally, as the monitored program is running. The foreach loop
on line 3 loops over every parameter binding θ′ ∈ Θ, which is
compatible with θ. As explained earlier, compatible means
they agree on the values of all parameters for which they
have a binding. For example, a non-parametric event will
be compatible with all parameter bindings in Θ at the time
it arrives, because ⊥, its parameter instance, is compatible

with all other parameter bindings. On line 4, the trace for θ′,
that is T(θ′), is updated using the trace from T(max (θ′]Θ)
appended with the current event. What the operator max
does, is find the parameter instance that is maximally com-
patible with θ′, that is the parameter binding which is both
compatible, and instantiates the most variables. This en-
sures that if θ′ is a new, never-before-seen parameter bind-
ing, it will be assigned the trace from the most compatible
parameter instance, with the current event added to the end.

5. PERFORMANCE EVALUATION
SafeMapIterator SafeSyncCollection SafeSyncMap SafeIterator

TM MOP TM MOP TM MOP TM MOP PQL

antlr -2 2 -2 1 -3 1 0 0 82
bloat >10000 935 1448 712 2267 660 11258 749 8694
chart -1 0 0 1 1 0 11 3 50

eclipse 8 1 0 0 0 1 2 1 1
fop 11 -3 -4 0 16 -3 5 1 24

hsqldb 29 0 24 0 22 0 17 0 78
jython 57 7 6 -4 8 -5 16 0 12
luindex 7 5 0 1 3 4 9 5 181
lusearch 9 -1 9 1 8 -1 34 2 132

pmd >10000 196 33 15 50 12 196 14 1334
xalan 10 4 7 1 6 0 10 8 53

Table 1: Average Percent Runtime Overhead for
Tracematches (TM), JavaMOP (MOP), and PQL
(for SafeIterator only) (convergence within 3%).

We evaluated our implementation on the DaCapo bench-
mark suite[5]. Tracematches[1] was also evaluated for com-
parison. For one of the properties, SafeIterator, we also
include numbers for PQL[19] that were originally published
in [20]. Also note that the experiments discussed below are
only part of our evaluation due to the limited space of this
paper; more results can be found in [12, 20]. Briefly, Java-
MOP performs better than any other existing monitoring
techniques in most experiments. We do not have a per-
formance evaluation of BusMOP, because the overhead of
BusMOP is effectively 0.

5.1 Experimental Settings
Our experiments were performed on a machine with 1.5GB
RAM and a Pentium 4 2.66GHz processor. The machine’s
operating system is UBuntu Linux 7.10, and we used ver-
sion 2006-10 of the DaCapo benchmark suite. It contains
eleven open source programs [5]: antlr, bloat, chart, eclipse,
fop, hsqldb, jython, luindex, lusearch, pmd, and xalan. The
default input for DaCapo was used, and we use the -converge

option to ensure the validity of our test by running each test
multiple times, until the runtime converges. After this con-
vergence, the runtime is stabilized within 3%, thus numbers
in Table 1 should be interpreted as ”±3%”. Furthermore,
additional code introduced by the AspectJ weaving process
changes the program structure in DaCapo, and sometimes
this causes the benchmark to run a little bit faster due to
better concurrency interleaving and/or cache layout.

5.2 Properties
We used the following properties, borrowed from [7, 8].

• SafeMapIterator: Do not update a Map when using the
Iterator interface to iterate its values or its keys;
• SafeSyncCollection: If a Collection is synchronized, then

its iterator also should be accessed in a synchronized
manner;
• SafeSyncMap: If a Collection is synchronized, then its

iterators on values and keys also should be accessed in
a synchronized manner;

ICICIS'09, pp 72-77. 2009



• SafeIterator: Do not update a Collection when using the
Iterator interface to iterate its elements;

SafeMapIterator, SafeSyncCollection were chosen specif-
ically because the events beginning traces do not contain in-
stantiations of all the parameters. This is important because
earlier versions of JavaMOP could not monitor properties
such as these. SafeIterator was chosen primarily because
is has generated some of the largest overheads in previous
works[12, 20]. We do not use the specification given in Fig-
ure 1 because it is not expressible in Tracematches, which
only supports regular language based specifications.

5.3 Results and Discussions
Table 1 summaries the results of our experiments. It shows
the percent overheads of JavaMOP and Tracematches. All
the properties were heavily monitored in the experiments.
As shown in [12], millions of parameter instances were ob-
served for some properties under monitoring, e.g., SafeItera-

tor, putting a critical test on the generated monitoring code.
Both systems generated unnoticeable runtime overhead in
most experiments, showing their efficiency. For JavaMOP,
only 7 out of 66 cases caused more than 10% runtime over-
head. The numbers for Tracematches are 9 out of 66.

6. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. J.

Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
trace matching with free variables to AspectJ. In
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’05), pages 345–364.
ACM, 2005.

[2] AspectJ. http://eclipse.org/aspectj/.

[3] MOP website. http://fsl.cs.uiuc.edu/MOP.

[4] H. Barringer, B. Finkbeiner, Y. Gurevich, and
H. Sipma, editors. Runtime Verification (RV’05),
volume 144 of ENTCS. Elsevier, 2005.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan,
K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,
M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann. The DaCapo benchmarks: Java
benchmarking development and analysis. In
Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’06), pages 169–190.
ACM, 2006.

[6] E. Bodden. J-LO, a tool for runtime-checking
temporal assertions. Master’s thesis, RWTH Aachen
University, 2005.

[7] E. Bodden, F. Chen, and G. Roşu. Dependent advice:
A general approach to optimizing history-based
aspects. In Aspect-Oriented Software Development
(AOSD’09), 2009. to appear.

[8] E. Bodden, L. Hendren, and O. Lhoták. A staged
static program analysis to improve the performance of
runtime monitoring. In European Conference on
Object Oriented Programming (ECOOP’07), volume
4609 of LNCS, pages 525–549, 2007.

[9] F. Chen, M. D’Amorim, and G. Roşu. A formal
monitoring-based framework for software development

and analysis. In International Conference on Formal
Engineering Methods (ICFEM’04), volume 3308 of
LNCS, pages 357–372, 2004.

[10] F. Chen, D. Jin, P. Meredith, and G. Roşu. Efficient
Formalism-Independent Monitoring of Parametric
Properties (Extended Version). Technical Report
UIUCDCS-R-2008-2977, University of Illinois at
Urbana-Champaign, 2008.

[11] F. Chen and G. Roşu. Towards monitoring-oriented
programming: A paradigm combining specification
and implementation. In Runtime Verification (RV’03),
volume 89 of ENTCS, pages 108–127, 2003.

[12] F. Chen and G. Roşu. MOP: An efficient and generic
runtime verification framework. In Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA’07), pages 569–588. ACM, 2007.

[13] F. Chen and G. Roşu. Parametric trace slicing and
monitoring. In International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS’09), 2009. to appear.

[14] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA’05), pages 385–402. ACM, 2005.

[15] K. Havelund, M. Nunez, G. Roşu, and B. Wolff,
editors. Formal Approaches to Testing and Runtime
Verification (FATES/RV’06), volume 4264 of LNCS.
Springer, 2006.

[16] K. Havelund and G. Roşu, editors. Runtime
Verification (RV’02), volume 70 of ENTCS. Elsevier,
2002.

[17] K. Havelund and G. Roşu, editors. Runtime
Verification (RV’04), volume 113 of ENTCS. Elsevier,
2004.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In European Conference on Object Oriented
Programming (ECOOP’01), volume 2072 of LNCS,
pages 327–353, 2001.

[19] M. Martin, V. B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a
program query language. In Object Oriented
Programming, Systems, Languages and Applications
(OOPSLA’07), pages 365–383. ACM, 2005.

[20] P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient
monitoring of parametric context-free patterns. In
Automated Software Engineering (ASE ’08), pages
148–157. IEEE/ACM, 2008.

[21] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Roşu.
Hardware runtime monitoring for dependable
cots-based real-time embedded systems. In Real-Time
System Symposium (RTSS’08), pages 481–491. IEEE,
2008.

[22] G. Roşu and K. Havelund. Monitoring java programs
with Java PathExplorer. In In Proceedings of Runtime
Verification (RV’01), pages 97–114. Elsevier, 2001.

[23] O. Sokolsky and M. Viswanathan, editors. Runtime
Verification (RV’03), volume 89 of ENTCS. Elsevier,
2003.

ICICIS'09, pp 72-77. 2009


