Matching Logic = Operational Semantics + FOL

- A logic for reasoning about configurations
- Formulae
 - FOL over configurations, called patterns
 - Configurations are allowed to contain variables
- Models
 - Ground configurations
- Satisfaction
 - Matching for configurations, plus FOL for the rest

Examples of Patterns

- \(x \) points to sequence \(A \), and the reversed sequence \(A \) has been output
 \(\exists n \exists \pi \exists \omega \ (x \mapsto \pi) \mapsto \omega \mapsto \{ \text{init}(n, A), \omega \} \mapsto \{ \text{read}, \text{rev}(A) \} \mapsto \omega \)
- untrusted() can only be called from trusted()
 \(\exists n \exists \omega \ (\text{untrusted}(n) \mapsto \{ n, \text{trusted}(n), \omega \} \mapsto \omega \)
- Read/Write data race (simplified)
 \(\exists X \exists a \ (X \mapsto a \mapsto _) \)

Partial Correctness

- We have two rewrite relations on configurations
 \(\rightarrow \) given by the language operational semantics; \(\text{safe} \)
 \(\rightarrow \) given by specifications; \(\text{unsafe} \), has to be proved
- Idea (simplified for deterministic languages):
 - Pick \(\text{left} \rightarrow \text{right} \). Show that always \(\text{left} \rightarrow \{ \ldots \rightarrow \text{right} \}
 - \text{modulo matching logic reasoning (between rewrite steps)}
- Theorem (soundness):
 - If \(\text{left} \rightarrow \text{right} \) and \(\text{config} \) matches \(\text{left} \) such that \(\text{config} \)
 has a normal form for \(\rightarrow \), then \(\text{nf(config) matches right} \)