
Matching Logic Explained∗

Xiaohong Chen1, Dorel Lucanu2, and Grigore Roşu1

1University of Illinois at Urbana-Champaign, Champaign, USA
2Alexandru Ioan Cuza University, Iaşi, Romania

xc3@illinois, dlucanu@info.uaic.ro, grosu@illinois.edu

May 25, 2021

Abstract

Matching logic was recently proposed as a unifying logic for specifying and reasoning about static
structure and dynamic behavior of programs. In matching logic, patterns and specifications are used
to uniformly represent mathematical domains (such as numbers and Boolean values), datatypes, and
transition systems, whose properties can be reasoned about using one fixed matching logic proof system.
In this paper we give a tutorial of matching logic. We use a suite of examples to explain the basic
concepts of matching logic and show how to capture many important mathematical domains, datatypes,
and transition systems using patterns and specifications. We put emphasis on the general principles of
induction and coinduction in matching logic and show how to do inductive and coinductive reasoning
about datatypes and codatatypes. To encourage the future tools development for matching logic, we
propose and use throughout the paper a human-readable formal syntax to write specifications in a
modular and compact way.

Keywords— matching logic, program logics, (co)inductive data types, dependent types, specification of transi-
tion systems, (co)monad specification

1 Introduction
Matching logic is a unifying logic for specifying and reasoning about static structure and dynamic behavior
of programs. It was recently proposed in [1] and further developed in [2, 3]. There exist several equivalent
variants of matching logic. In this paper we consider the functional variant, which has a minimal presentation
among the others. We refer to this variant as matching logic throughout the paper, abbreviating it as ML.

The key concept of ML is its patterns. Patterns are ML formulas, which are built from variables, constant
symbols, a binary application construct, standard FOL constructs ⊥, →, ∃, and a least fixpoint construct
µ. In terms of semantics, patterns are interpreted as the sets of elements that match them, which gives
ML a pattern matching semantics. For example, 0 is a pattern matched by the natural number 0; 1 is a
pattern matched by 1; 0∨ 1 is then a disjunctive1 pattern matched by 0 and 1, or, to put it another way, an
element a matches 0 ∨ 1 iff a matches 0 or a matches 1. Complex patterns can be built this way to match
elements that are of particular structure, have certain dynamic behavior, or satisfy certain logic constraints.
We discuss various examples in Sections 3 to 9.

We can use patterns to constrain models, by enforcing the models to match a set of given patterns, called
axioms. This set of axioms yields a specification, also called a logical theory. In this paper we will define

∗This technical report is published in the Journal of Logical and Algebraic Methods in Programming, vol. 120, which is
available at https://doi.org/10.1016/j.jlamp.2021.100638.

1Disjunction can be defined as syntactic sugar in the usual way. See Section 2.1 for more details on syntactic sugar definitions.

1

xc3@illinois
dlucanu@info.uaic.ro
grosu@illinois.edu
https://doi.org/10.1016/j.jlamp.2021.100638

a variety of specifications, some of them capturing relevant mathematical domains, others datatypes, and
others capturing transition systems. We will also show how to build a complex specification in a modular
way by importing existing specifications. To present ML specifications rigorously and compactly, we propose
a specification syntax in Section 3 that allows us to write specifications in a compact and human-readable
way. All ML specifications presented in this paper are written using this syntax.

Our main technical contribution is a collection of complete ML specifications of important datatypes
and data structures (including parameterized types, function types, and dependent types), a basic process
algebra and its dynamic reduction relation, and the higher-order reasoning about functors and monads in
category theory. For each specification, we derive several nontrivial properties using the matching logic proof
system; some of these properties require inductive/coinductive reasoning, also supported by ML.

We organize the rest of the paper as follows:

– In Section 2 we define the syntax and semantics of ML.
– In Section 3 we introduce the specification syntax and define the specifications of several important

mathematical instruments such as equality, membership, sorts, and functions.
– In Section 4 we explain how patterns are interpreted in ML models.
– In Section 5 we review the Hilbert-style proof system of ML and its soundness theorem.
– In Section 6 we discuss the general principle of induction and coinduction in ML and compare it with

the classical principle of (co)induction in complete lattices.
– In Section 7 we give specifications for examples of main data types used in programming languages: sim-

ple datatypes (booleans and naturals), parametric types (product, sum, functions, lists, and streams),
dependent types (vectors, dependent product, and dependent sum). For each example we present and
prove illustrative (co)inductive properties.

– In Section 8 we define a basic process algebra in ML.
– In Section 9 we use ML for higher-order reasoning in category theory and define functors, monads, and

comonads as ML specifications.
– In Section 10 we conclude the paper.

2 Matching Logic Syntax and Semantics
We introduce the syntax and semantics of matching logic (ML). We refer the reader to [1, 2, 3] for full technical
details. The ML variant that we introduce in this paper is called the functional variant and is firstly proposed
in [3], but there fixpoints are not considered. Therefore, the syntax and semantics definitions that we will
give in this section are an extension of the work in [3] by fixpoints.

2.1 Matching Logic Syntax
ML is an unsorted logic whose formulas, called patterns, are built with variables, constant symbols, a binary
construct called application, the standard FOL constructs ⊥, →, ∃, and a least fixpoint construct µ.

Definition 2.1. Amatching logic signature � = (EV ,SV ,Σ) contains a set EV of element variables denoted
x, y, . . . , a set SV of set variables denoted X,Y, . . . , and a set Σ of constant symbols (or simply symbols)
denoted σ, σ1, σ2, We require that EV and SV are countably infinite sets.

Intuitively, element variables are FOL-style variables that range over the individual elements in the models
(Section 4) while set variables range over the sets of elements. Symbols are like set variables in that they
also represent sets of elements, but unlike set variables, the interpretations of symbols are directly given and
fixed by the underlying models.

Definition 2.2. Given � = (EV ,SV ,Σ), the set Pattern(�) of �-patterns (or simply patterns) is induc-
tively defined by the following grammar:

ϕ ::= x | X | σ | ϕ1 ϕ2 | ⊥ | ϕ1 → ϕ2 | ∃x. ϕ | µX.ϕ

2

where in µX.ϕ we require that ϕ is positive in X; that is, X is not nested in an odd number of times on
the left-hand side of an implication ϕ1 → ϕ2.

We assume that application ϕ1 ϕ2 binds the tightest and is left-associative. Both ∃ and µ are binders.
While ∃ only binds element variables, µ only binds set variables. The scope of binders goes as far as
possible to the right. We assume the standard notions of free variables, α-equivalence, and capture-avoiding
substitution. Specifically, we use FV (ϕ) ⊆ EV ∪ SV to denote the set of (element and set) free variables
in ϕ, i.e., variables that are not in the scope of any ∃ or µ binders. We regard α-equivalent patterns as
syntactically identical. We write ϕ[ψ/x] (resp. ϕ[ψ/X]) for the result of substituting ψ for x (resp. X)
in ϕ, where bound variables are implicitly renamed to prevent variable capture. We define the following
constructs as syntactic sugar in the usual way and assume the standard precedence among them:

¬ϕ ≡ ϕ→ ⊥ ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2

ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) > ≡ ¬⊥
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ∀x. ϕ ≡ ¬∃x.¬ϕ
νX.ϕ ≡ ¬µX.¬ϕ[¬X/X]

The greatest fixpoint pattern νX.ϕ is defined from the least fixpoint in the usual way; see, e.g., [?, Sec-
tion 3.3].

We point out that the above are syntactic sugar, i.e., notations, so they do not extend the logic and can
be eliminated entirely. It is also important to note that these constructs are not symbols. For example, ¬ϕ is
not the (matching logic) symbol ¬ applied to ϕ, because the semantics of symbols (explained in Section 2.2)
do not apply to these logical constructs. As we will see in Definition 2.4, the result of a symbol applying to
⊥ is always ⊥, in terms of the semantics. If ¬ were defined as a symbol, this would result in ¬⊥ being equal
to ⊥, which is not what we want.

2.2 Matching Logic Semantics
ML has a pattern matching semantics. Patterns are interpreted on a given underlying carrier set and each
pattern is interpreted as the set of elements that match it. Intuitively, the pattern ⊥ (called bottom) is
matched by no elements, while > (called top) is matched by all elements. Conjunction ϕ1 ∧ ϕ2 is matched
by the elements that match both ϕ1 and ϕ2, disjunction ϕ1 ∨ ϕ2 by the elements that match ϕ1 or ϕ2,
negation ¬ϕ by the elements that do not match ϕ, and implication ϕ1→ϕ2 by all elements a such that if
a matches ϕ1 then a matches ϕ2. Element variable x is matched by the element to which x evaluates (see
Definition 2.4). Set variable X is matched by the set of elements to which X evaluates; this set can be
empty, or total, or any subset of the carrier set. Application ϕ1 ϕ2 is used to build structures, relations, and
propositions, whose actual semantics depends on ϕ1. For example, if ϕ1 ≡ f is a function symbol, then f x
denotes the (FOL-like) term f(x). By currying the application, we get f x1 . . . xn that represents the term
f(x1, . . . , xn). Similarly, if ϕ1 ≡ p is a predicate symbol, then f x denote the proposition p(x), stating that
x holds for p. Quantification ∃x. ϕ is matched by the elements that match ϕ for some valuation of x; that
is, it abstracts away the irrelevant part x from the matched part ϕ. Least fixpoint µX.ϕ is matched by the
smallest set X of elements that satisfies the equation X = ϕ (this is interesting when X occurs in ϕ).

Below, we first define ML models.

Definition 2.3. Given � = (EV ,SV ,Σ), a �-model (or simply model) is a tuple (M,_•_, {Mσ}σ∈Σ), where

1. M is a carrier set, required to be nonempty;
2. _•_ : M×M → P(M) is a function, called the interpretation of application; here, P(M) is the powerset

of M ;
3. Mσ ⊆M is a subset of M , called the interpretation of σ in M for each σ ∈ Σ.

By abuse of notation, we write M to denote the above model.

3

Compared to FOL, ML enforces a powerset interpretation for both application and symbols. In FOL
models, application as a binary function is interpreted by a function from M ×M to M and a constant
function symbol c is interpreted as an element Mc ∈M in the carrier set. However, ML requires application
and symbols to return a set of elements. Note that the set M is isomorphic to the set of singleton sets in
P(M). Therefore, the FOL-style interpretation can be regarded as a special instance of the ML powerset
interpretation where all returning sets are singleton sets.

For notational simplicity, we extend _•_ from over elements to over sets, pointwisely, as follows:

• : P(M)× P(M)→ P(M) A •B =
⋃

a∈A,b∈B

a • b for A,B ⊆M

Note that ∅ •A = A • ∅ = ∅ for any A ⊆M .
Next, we define variable valuations and pattern interpretations:

Definition 2.4. Given � = (EV ,SV ,Σ) and a modelM , anM -valuation (or simply valuation) is a function
ρ : (EV ∪ SV) → (M ∪ P(M)) that maps element variables to elements in M and set variables to subsets
of M ; that is, ρ(x) ∈ M for all x ∈ EV and ρ(X) ⊆ M for all X ∈ SV . We define a pattern interpretation
|_|ρ : Pattern→ P(M) inductively as follows:

|x|ρ = {ρ(x)} |X|ρ = ρ(X) |σ|ρ = Mσ |⊥|ρ = ∅ |ϕ1 ϕ2|ρ = |ϕ1|ρ • |ϕ2|ρ
|ϕ1 → ϕ2|ρ = M\ (|ϕ1|ρ\|ϕ2|ρ) |∃x. ϕ|ρ =

⋃
a∈M
|ϕ|ρ[a/x] |µX.ϕ|ρ = µFρX,ϕ

where ρ[a/x] is the valuation ρ′ such that ρ′(x) = a, ρ′(y) = ρ(y) for any y ∈ EV distinct from x, and
ρ′(X) = ρ(X) for any X ∈ SV . Here, FρX,ϕ : P(M)→ P(M) is the function defined as FρX,ϕ(A) = |ϕ|ρ[A/X]

for every A ⊆ M , where ρ[A/X] is the valuation ρ′ such that ρ′(X) = A, ρ′(Y) = ρ(Y) for any Y ∈ SV
distinct from X, and ρ′(x) = ρ(x) for any x ∈ EV . By structural induction we can prove that FρX,ϕ is a
monotone function (see Proposition 2.6). Therefore, FρX,ϕ has a unique least fixpoint which we denote as
µFρX,ϕ, by the Knaster-Tarski fixpoint theorem [6] (see Proposition 2.7).

Example 2.5. As an example, we show that |µX.X|ρ = ∅. By definition, |µX.X|ρ = µFρX,X , where
FρX,X(A) = A for all A ⊆ M . In other words, any set A is a fixpoint of FρX,X . Since µFρX,X denotes the
least fixpoint, it equals to the empty set ∅.

In Proposition 2.7, we give a more “constructive” definition of the fixpoint µFρX,ϕ based on the Knaster-
Tarski fixpoint theorem [6].

Proposition 2.6. The function FρX,ϕ as defined in Definition 2.4 is a monotone function for all X,ϕ, ρ;
that is, FρX,ϕ(A) ⊆ FρX,ϕ(B) whenever A ⊆ B.

Proposition 2.7. The function FρX,ϕ has a unique least fixpoint and a unique greatest fixpoint, both given
as below:

µFρX,ϕ =
⋂{

A ⊆M | FρX,ϕ(A) ⊆ A
}
,

νFρX,ϕ =
⋃{

A ⊆M | A ⊆ FρX,ϕ(A)
}
.

As one expects, the interpretation of a pattern ϕ only depends on the valuations of variables that are
free in ϕ.

Proposition 2.8. For any pattern ϕ and two valuations ρ1, ρ2, if ρ1(x) = ρ2(x) for all x ∈ FV (ϕ), then
|ϕ|ρ1 = |ϕ|ρ2 .

4

In particular, given a model M and a pattern ϕ, if FV (ϕ) = ∅, then the interpretation of ϕ is the same
under all valuations. In this case, we use |ϕ| (without the subscript ρ) to denote the (unique) interpretation
of ϕ in the given model M . We call ϕ a closed pattern if FV (ϕ) = ∅.

Given a model M , ML patterns are interpreted as subsets of M , different from how FOL formulas are
interpreted as either true or false. A natural question is how to represent in ML propositions or statements,
whose semantics can take only two values: true or false. The answer is that we can use two special sets,
the total set M and the empty set ∅, to represent true and false. Since we require the carrier set M to
be nonempty, the two sets M and ∅ are never the same. Formally, given a model M and a pattern ϕ, we
call ϕ an M -predicate iff |ϕ|ρ ∈ {∅,M} for all ρ. We call ϕ a predicate iff it is an M -predicate for all M .
A predicate pattern can be regarded as a proposition or a statement. If the statement is a fact, then the
predicate pattern is interpreted as M . Otherwise, it is interpreted as ∅. We will see many examples of
predicate patterns throughout the paper.

Next, we define semantic validity in ML.

Definition 2.9. For M and ϕ, we say that M validates ϕ or ϕ holds in M , written M � ϕ, iff |ϕ|ρ = M
for all ρ. Let Γ ⊆ Pattern be a pattern set. We say that M validates Γ, written M � Γ, iff M � ψ for all
ψ ∈ Γ. We say that Γ validates ϕ, written Γ � ϕ, iff M � Γ implies M � ϕ, for all M .

The above definition of ML validity should be expected. Note that in defining M � ϕ, we require
|ϕ|ρ = M for all valuations ρ. In other words, all elements in M match the pattern ϕ. It is a natural
definition since we use the total set M to denote the logical truth. Therefore, a pattern holds in a model if
it evaluates to “true”, i.e., the total set M , in the model.

For a pattern set Γ, we say that M validates Γ if and only if all patterns in Γ hold in M , that is, all
of them evaluate to true (the total set) in M . Thus, we often call the patterns in Γ axioms and call Γ the
axiom set. A specification is a pair of a signature and an axiom set of patterns of that signature. Formally,

Definition 2.10. A matching logic specification SPEC is a tuple (EV ,SV ,Σ,Γ), where (EV ,SV ,Σ) is a
signature and Γ is a set of patterns, called axioms. We write SPEC � ϕ to mean Γ � ϕ for a pattern ϕ and
M � SPEC to mean M � Γ for a model M .

For simplicity, we often do not explicitly mention EV and SV when we define a specification SPEC.
Therefore, we only need to specify the symbol set Σ and the axiom set Γ. In Section 3, we will define several
example specifications using a human-readable, semi-formal syntax.

3 Specification Examples: Important Mathematical Instruments
We define several important mathematical instruments such as equality, membership, sorts, functions, pred-
icates, and constructors, as ML specifications. We will start with equality and membership, both of which
are defined using the definedness symbol. Then, we will axiomatically define sorts in unsorted ML and show
that the sorted functions and predicates can be defined as ML symbols in a direct and easy way. Our last
example is to axiomatize a set of functions as the constructors of a given sort, which requires us to capture
the principle of structural induction over constructor terms using the fixpoint patterns in ML.

3.1 Definedness Symbol and Related Instruments
Recall that a pattern ϕ is interpreted as the set of elements that match it. When ϕ can be matched by at
least one element, we say that ϕ is defined. In this section, we will construct from a given ϕ, a new pattern
dϕe called the definedness pattern, which is a predicate pattern stating that ϕ is defined.

Definition 3.1. Let d_e be a (constant) symbol, which we call the definedness symbol. We write dϕe as
syntactic sugar of d_eϕ, obtained by applying d_e to ϕ, for any ϕ. We define the following axiom

(Definedness) ∀x. dxe

5

Intuitively, (Definedness) states that all elements are defined. In other words, any element variable x is
a defined pattern, because according to ML semantics (Definition 2.4), x is always interpreted as a singleton
set and thus is nonempty.

It is more compact and readable if we write the above definition as a matching logic specification as
follows:

spec DEFINEDNESS
Symbol: d_e
Metavariable: a pattern ϕ
Notation:
dϕe ≡ d_eϕ

Axiom:
(Definedness) ∀x. dxe

endspec

Here, keyword Symbol enumerates the symbols declared in the specification. Keyword Metavariable enumer-
ates the metavariables that are used in the specification. In this specification, the metavariable ϕ is used
only in the notation definition (explained below), where we use ϕ to range over all ML patterns. Later, we
will see specifications that use metavariables in axiom definitions. Keyword Notation introduces notations
(syntactic sugar). Keyword Axiom lists all axioms (schemas). We give names to important axioms for better
readability, like (Definedness), and we omit the metavariable declarations when they can be easily inferred.
Then, DEFINEDNESS can be presented in the following more compact form:

spec DEFINEDNESS
Symbol: d_e
Notation:
dϕe ≡ d_eϕ

Axiom:
(Definedness) ∀x. dxe

endspec

The following proposition explains why d_e is called definedness symbol.

Proposition 3.2. Let M be a model such that M � DEFINEDNESS. For any ϕ and ρ, we have |dϕe|ρ = M
iff |ϕ|ρ 6= ∅, and |dϕe|ρ = ∅ iff |ϕ|ρ = ∅.

Therefore, dϕe is the predicate that holds whenever ϕ is defined, i.e., dϕe evaluates to true (the total set
M) if ϕ is defined and it evaluates to false (the empty set ∅) otherwise.

Using d_e, we can define important mathematical instruments as notations. Let us include these notations
also in DEFINEDNESS as shown below:

spec DEFINEDNESS
Symbol: d_e
Notation:
dϕe ≡ d_eϕ bϕc ≡ ¬d¬ϕe ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c
x ∈ ϕ ≡ dx ∧ ϕe ϕ1 ⊆ ϕ2 ≡ bϕ1 → ϕ2c ϕ1 6= ϕ2 ≡ ¬(ϕ1 = ϕ2)
x 6∈ ϕ ≡ ¬(x ∈ ϕ) ϕ1 6⊆ ϕ2 ≡ ¬(ϕ1 ⊆ ϕ2)

Axiom:
(Definedness) dxe

endspec

Intuitively, bϕc is the dual predicate of dϕe. While dϕe checks non-emptiness of the interpretation of ϕ,
bϕc checks totality, i.e., whether ϕ evaluates to the total set or not. If so, bϕc holds. If not, it fails. Therefore,
bϕc is called totality. Equality ϕ1 = ϕ2 is defined using totality and ϕ1 ↔ ϕ2. Following Definition 2.4, one

6

can show that ϕ1 ↔ ϕ2 represents the complement of the symmetric difference between ϕ1 and ϕ2. In other
words, ϕ1 ↔ ϕ2 is matched by the elements a such that a matches ϕ1 iff it matches ϕ2. Then, ϕ1 and ϕ2

are equal iff ϕ1 ↔ ϕ2 is matched by all elements, and thus we define ϕ1 = ϕ2 ≡ bϕ1 ↔ ϕ2c. Membership
x ∈ ϕ is defined for an element variable x and a pattern ϕ, meaning that the (unique) element matching x
also matches ϕ. In other words, x ∧ ϕ does not evaluate to the empty set. Set inclusion ϕ1 ⊆ ϕ2 is defined
like equality, where we use ϕ1 → ϕ2 instead of ϕ1 ↔ ϕ2. Therefore, ϕ1 is included in ϕ2 iff all elements
matching ϕ1 also match ϕ2, i.e., iff ϕ1 → ϕ2 is matched by all elements.

The following proposition proves that the above mathematical notations have the expected semantics.

Proposition 3.3. Let M be a model such that M � DEFINEDNESS. For any x, ϕ, ϕ1, ϕ2 and ρ, we have

1. |bϕc|ρ = M if |ϕ|ρ = M ; otherwise, |bϕc|ρ = ∅;
2. |ϕ1 = ϕ2|ρ = M if |ϕ1|ρ = |ϕ2|ρ; otherwise, |ϕ1 = ϕ2|ρ = ∅;
3. |x ∈ ϕ|ρ = M if ρ(x) ∈ |ϕ|ρ; otherwise, |x ∈ ϕ|ρ = ∅;
4. |ϕ1 ⊆ ϕ2|ρ = M if |ϕ1|ρ ⊆ |ϕ2|ρ; otherwise, |ϕ1 ⊆ ϕ2|ρ = ∅; note that |x ⊆ ϕ|ρ = |x ∈ ϕ|ρ;

3.2 Inhabitant Symbol and Related Instruments
ML is an unsorted logic. There is no built-in support in ML for sorts or many-sorted functions. However,
we can define sort s as an ML symbol, and use a special symbol [[_]], called the inhabitant symbol, to build
the inhabitant pattern [[_]] s, often written as [[s]], which is a pattern matched by all the elements that have
sort s. In this way we can axiomatize sorts and their properties in ML.

Let us first define the following basic specification for sorts:

spec SORTS
Import: DEFINEDNESS
Symbol: [[_]],Sorts
Notation:

[[s]] ≡ [[_]] s
¬sϕ ≡ (¬ϕ) ∧ [[s]]
∀x:s. ϕ ≡ ∀x. (x ∈ [[s]])→ ϕ
∃x:s. ϕ ≡ ∃x. (x ∈ [[s]]) ∧ ϕ

endspec

Here, keyword Import imports all the symbols, notations, and axioms defined in specification DEFINEDNESS.
Symbol [[_]] is the inhabitant symbol. Symbol Sorts is used to represent the sort set. Notation ¬sϕ is called
sorted negation. Intuitively, ¬sϕ is matched by all the elements that have sort s and do not match ϕ.
Notations ∀x:s. ϕ and ∃x:s. ϕ are called sorted quantification, where x only ranges over the elements of sort
s.

3.2.1 Example: Defining Many-Sorted Signatures in Matching Logic

Let us consider a many-sorted signature (S, F,Π) and see how to capture it as an ML specification. In
(S, F,Π), S is a set of sorts denoted s1, s2, . . . , F = {Fs1···sn,s}s1,...,sn,s∈S is a family set of many-sorted
functions denoted f ∈ Fs1···sn,s, and Π = {Πs1···sn}s1,...,sn∈S is a family set of many-sorted predicates
denoted π ∈ Πs1···sn . For f ∈ Fs1···sn,s and π ∈ Πs1···sn , we call the sorts s1, . . . , sn the argument sorts. For
f ∈ Fs1···sn,s, we call s the return sort.

Intuitively, we will define for each s ∈ S a corresponding ML symbol also denoted s, which represents
the sort name of s. The inhabitant of s is represented by the inhabitant pattern [[s]]. The symbol Sorts then
includes all sorts s ∈ S. Functions and predicates are represented as symbols, whose arities are axiomatized
by ML patterns. This is made formal in the following:

spec MANYSORTED{S, F,Π}
Import: SORTS

7

Metavariable: s ∈ S, f ∈ Fs1···sn,s, π ∈ Πs1···sn
Axiom:

(Sort Name) (s ∈ [[Sorts]]) ∧ (∃z. s = z)
(Nonempty Inhabitant) [[s]] 6= ⊥
(Function) ∀x1:s1 . . . ∀xn:sn.∃y:s. f x1 · · · xn = y
(Predicate) ∀x1:s1 . . . ∀xn:sn. π x1 · · · xn = > ∨ π x1 · · · xn = ⊥

endspec

We explain the above specification. MANYSORTED{S, F,Π} is a parametric specification and can be
instantiated by different many-sorted signatures (S, F,Π). We use s, f, π as metavariables that range over
S, F,Π, respectively, and define a corresponding ML symbol for each of them.

Axiom (Sort Name) has two effects. Firstly, it specifies that s belongs to the inhabitants of Sorts.
Secondly, it specifies that s is a functional pattern, in the sense that its interpretation Ms in any model M is
a singleton. In other words, the pattern s can be matched by exactly one element, as denoted by the element
variable z. This is intended, because conceptually s denotes the sort name s, which is a single “element” in
the underlying carrier set of M .

Axiom (Nonempty Inhabitant) specifies that the inhabitant of s is nonempty. Axiom (Function)
specifies that f x1 · · · xn is matched by exactly one element y of sort s, given that x1, . . . , xn have sorts
s1, . . . , sn, respectively. In other words, f is a many-sorted function from [[s1]]× · · · × [[sn]] to [[s]]. Similarly,
(Predicate) specifies that π is a many-sorted predicate on s1, . . . , sn, because it always returns > or ⊥.
For notational simplicity, we use the function notation f : s1 × · · · × sn → s to mean (Function). When
n = 0, we write f : ε→ s.

Therefore, many-sorted functions and predicates can be uniformly represented using ML symbols and their
behaviors can be defined using ML axioms (Function) and (Predicate), respectively. This demonstrates
the philosophy that we pursue with ML, where we adopt a minimalist design for the syntax and semantics
of ML and only include the absolute necessary constructs. The other more complex constructs and concepts
such as sorts and functions can be defined using axioms and their properties can be reasoned about using
the proof system (Section 5). This makes ML highly flexible because it does not stick to any particular
formalisms or existing approaches.

3.2.2 More Instruments about Sorts

The flexibility of ML allows us to easily define various instruments and properties about sorts using ML
patterns. In this section we show two more examples: (sorted) partial functions and subsorting.

A partial function f : s1× · · · × sn ⇀ s can be undefined on one or more of its arguments. In ML partial
functions can be axiomatized by the following axiom:

(Partial Function) ∀x1:s1. . . .∀xn:sn.∃y:s. f x1 · · · xn ⊆ y

which specifies that f x1 · · · xn can be matched by at most one element. The undefinedness of f on arguments
x1, . . . , xn is captured by f x1 · · · xn returning ⊥. For notational simplicity, we use the partial function
notation f : s1× · · · × sn ⇀ s to mean the axiom (Partial Function), and when n = 0 we write f : ε ⇀ s.

Subsorting is a partial ordering ≤ on the sort set S. When s1 ≤ s2, we say s1 is a subsort of s2, and
require that the inhabitant of s1 is a subset of the inhabitant of s2. Subsorting can be axiomatized in ML
as follows:

(Subsorting) [[s1]] ⊆ [[s2]]

ML has a pattern matching semantics. Therefore, the pattern σ x1 · · · xn can be matched by zero, one,
or more elements. As we have defined above, σ is called a function iff σ x1 · · · xn is matched by one element;
it is called a partial function iff σ x1 · · · xn is matched by at most one element. However, we often do not
want to specify the number of elements that match σ x1 · · · xn, but only want to require that all elements
that match σ x1 · · · xn must have sort s, whenever x1, . . . , xn have sorts s1, . . . , sn. In this case we call σ a
sorted symbol and axiomatize it by the following axiom:

(Sorted Symbol) σ [[s1]] · · · [[sn]] ⊆ [[s]]

8

Notation 3.4. Let s be a sort and M be a model, the interpretation |[[s]]| is the carrier set of s in M . For
notational simplicity, we write [[s]]M as an abbreviation of |[[s]]| to denote the carrier set.

3.3 Constructors and Inductive Domains
Constructors are extensively used in building programs, data, and semantic structures, in order to define and
reason about languages and programs. They can be characterized in the “no junk, no confusion” spirit [7].2
Specifically, let Term be a distinguished sort for terms and C = {c1, c2, . . . } be a set of constructors. For
each ci, we associate an arity arity(ci) ∈ N.3 We define the following ML specification:

spec CONSTRUCTORS{C}
Import: MANYSORTED{{Term}, C, ∅}
Metavariable: c, d ∈ C
Axiom:

(No Confusion) where n = arity(c),m = arity(d)
∀x1:Term . . . ∀xn:Term.∀y1:Term . . . ∀ym:Term.

c x1 · · · xn 6= d y1 · · · ym
∀x1:Term . . . ∀xn:Term.∀y1:Term . . . ∀yn:Term.

c x1 · · · xn = c y1 · · · yn → x1 = y1 ∧ · · · ∧ xn = yn
(Inductive Domain)

[[Term]] = µX.
∨
c∈C cX · · · X with nc X’s, where nc = arity(c)

endspec

Note that CONSTRUCTORS{C} imports symbols and axioms from the many-sorted specification MANYSORTED{{Term}, C, ∅}.
Intuitively, axiom (No Confusion) says that different constructors build different things and that construc-
tors are injective. Axiom (Inductive Domain) says the inhabitant of Term is the smallest set that is closed
under all constructors. Putting them together we have a complete axiomatization of the constructor terms
built from C.

The following proposition is a direct result of the axioms (Function) defined for every c ∈ C in the
specification MANYSORTED{{Term}, C, ∅}, which is imported by CONSTRUCTORS{C}.

Proposition 3.5. Let M be any model such that M � CONSTRUCTORS{C}. Let [[Term]]M = |[[Term]]| be
the carrier set of Term in M (see Notation 3.4). For any c ∈ C with arity n = arity(c), we define a function

fc : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
n times

→ P([[Term]]M)

as follows:
fc(a1, . . . , an) = (· · · (Mc • a1) • · · · • an), for a1, . . . , an ∈ [[Term]]M

Therefore, fc(a1, . . . , an) is a singleton for every a1, . . . , an ∈ [[Term]]M .

Remark 3.6. Since fc(a1, . . . , an) is a singleton that contains exactly one element, we abuse the notation
and denote that element also as fc(a1, . . . , an). Since fc is fully determined by Mc and the interpretation of
application _•_ given by M , we abuse the notation and also write Mc(a1, . . . , an) to mean fc(a1, . . . , an),
when M is given.

Proposition 3.7. Let M be any model such that M � CONSTRUCTORS{C}. Let distinct c, d ∈ C, n =
arity(c), m = arity(d). We define functions (see Remark 3.6):

Mc : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
n times

→ [[Term]]M

2And thus we answer a question by Jacques Carette on themathoverflow site (https://mathoverflow.net/questions/16180/
formalizing-no-junk-no-confusion) ten years ago: Are there logics in which “no junk, no confusion” can be internalized?

3We only consider one-sorted case in this paper. For the general case, we refer the reader to the technical report [8].

9

https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion
https://mathoverflow.net/questions/16180/formalizing-no-junk-no-confusion

Md : [[Term]]M × · · · × [[Term]]M︸ ︷︷ ︸
m times

→ [[Term]]M

Then by the axioms (No Confusion), we have that Mc,Md are injective functions, and their ranges are
disjoint.

Proposition 3.8. Let Term be the set of terms built from constructors in C. Then by the axiom (Inductive
Domain), [[Term]]M is isomorphic to Term, for any model M � CONSTRUCTORS{C}.

3.3.1 Example: Natural Numbers

Natural numbers can be regarded as constructor terms of sort Nat built from two functions: 0 : ε→ Nat and
s : Nat → Nat . In the following, we show the specification of natural numbers, obtained by instantiating the
constructor specification in Section 3.3 with C = {0, s} and Term = Nat . We also inline all the imported
MANYSORTED specification for better readability.

spec NAT
Import: SORTS
Axiom:

(Sort Name) (Nat ∈ [[Sorts]]) ∧ (∃z.Nat = z)
(Nonempty Inhabitant) [[Nat]] 6= ⊥
(Function) ∃y:Nat .0 = y
(Function) ∀x:Nat .∃y:Nat . sx = y
(Function) ∀x1:Nat .∀x2:Nat .∃y:Nat . plus x1 x2 = y
(No Confusion) ∀x:Nat .0 6= sx
(No Confusion) ∀x:Nat .∀y:Nat . sx = s y → x = y
(Inductive Domain) [[Nat]] = µN.0 ∨ sN

endspec

The above definition is self-explanatory. Note that the (Function) axioms specify that 0, s, and plus
are FOL-like functions. The (No Confusion) axioms specify that 0 is not the successor of any natural
numbers and the successors of two numbers are equal only if the two numbers are equal. Finally, (Inductive
Domain) states that the inhabitant set of Nat is the smallest set closed under 0 and s.

3.4 A Discussion about Curried and Uncurried Styles
There are two ways to define multary functions and predicates in ML. In the above, we showed the curried
style, where a multary function or predicate takes the arguments one by one. For example, the addition of
x and y is represented by plus x y, where the function plus is applied to x first, yielding a partial evaluation
result plus x. Then, the result is further applied to y, yielding the final result. An alternative is the uncurried
style, where we define the addition of x and y as plus (pair x y), where pair is the pairing symbol that builds
the pair of x and y.

The curried style uses the built-in ML application construct so the encoding is simpler while the uncurried
style requires some infrastructure definition such as pair . On the other hand, the uncurried style does not
produce partial evaluation results such as plus x. All function and predicate applications must be complete.
Therefore, the ML models of an uncurried style definition are often simpler to build than those of a curried
style, because they do not need have elements that correspond to the semantics of those partial evaluation
results. The uncurried style is also more preferable in a setting where we overload functions and predicates,
because we can know the sorts of all arguments upfront.

In this paper, we focus on the curried style, but the reader can refer to [8] for several uncurried style
definitions.

10

4 Understanding Models and Interpretation of Patterns
In this section we explain, based on an example, the flexibility to define models for ML specifications and
how various patterns are interpreted in a model. Let us consider the following specification (with loose
semantics) of natural numbers (we present the complete specification for clarity):

spec BNAT
Symbol: d_e, [[_]],Sorts,Nat ,0, s, le
Axiom:

(Definedness) :
∀x. dxe

(Sort Name) :
Nat : ε→ Sorts

(Function) :
0 : ε→ Nat
s : Nat → Nat

(Predicate) :
∀x:Nat . le x = > ∨ le x = ⊥

endspec

4.1 Three Matching Logic Models of the Specification BNAT

We present four possible models for the specification BNAT. The first model is the canonical model of natural
numbers, the second one is related to the greatest fixpoint, the third one is similar to the first one but with
a less conventional interpretation for s and le, and the fourth one is based on the set-theoretic definition of
natural numbers.

The First Matching Logic Model M1 of BNAT The first model that we will define for the specification
BNAT is based on the standard model of natural numbers.

model M1 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
n, for n ∈ N where N is the set of natural numbers
le n, for n ∈ N, denoting partial evaluation results

Symbol Interpretation:
M1d_e = {def} M1[[_]] = {inh} M1Sorts = {Nat}
M1Nat = {Nat} M10 = {0} M1s = {s} M1le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = N
s • n = {n+ 1}, for all n ∈ N
le • n = {le n}, for all n ∈ N
(le n) •m = M, if n ≤ m for n,m ∈ N
a • b = ∅, if none of the above applies, for a, b ∈M

endmodel

The Second Matching Logic Model M2 of BNAT This differs from M1 in that we interpret the inhab-
itant of Nat as the set of co-natural numbers N ∪ {∞}.

model M2 of BNAT

11

Carrier Set M includes:
def, inh,Nat, s, le
n, for n ∈ N where N is the set of natural numbers
∞, a distinguished infinity symbol
le n, for n ∈ N
le ∞

Symbol Interpretation:
M2d_e = {def} M2[[_]] = {inh} M2Sorts = {Nat}
M2Nat = {Nat} M20 = {0} M2s = {s} M2le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = N ∪ {∞}
s • n = {n+ 1}, for all n ∈ N
s • ∞ = {∞}
le • n = {le n}, for all n ∈ N
le • ∞ = {le ∞}
(le n) •m = M, if n ≤ m for n,m ∈ N
(le n) • ∞ = M, if n ∈ N
(le ∞) • ∞ = M
a • b = ∅, if none of the above applies, for a, b ∈M

endmodel

The Third Matching Logic Model M3 of BNAT This is a less usual model. The purpose of showing it
is to show that we may have exotic models:

model M3 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
r, for r ∈ R≥0 where R≥0 is the set of non-negative real numbers
le r, for r ∈ R≥0

Symbol Interpretation:
M3d_e = {def} M3[[_]] = {inh} M3Sorts = {Nat}
M3Nat = {Nat} M30 = {0} M3s = {s} M3le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = R≥0

s • r = {r + 1}, for all r ∈ R≥0

le • r = {le r}, for all r ∈ R≥0

(le r1) • r2 = M, if r1 ≤ r2 for r1, r2 ∈ R≥0

a • b = ∅, if none of the above applies, for a, b ∈M
endmodel

The Fourth Matching Logic Model M4 of BNAT This is a more convoluted model based on the set-
theoretic definition of natural numbers. In this definition, the natural numbers are defined in the following
way (also known as the von Neumann ordinals):

0 ≡ {},
1 ≡ {0},
2 ≡ {0, 1},
3 ≡ {0, 1, 2}, . . .

12

where {} is the empty set. Let us define N = {0, 1, . . . } be the set of set-theoretic natural numbers. Note
that under this definition, the less-than relation between natural numbers becomes set inclusion, i.e., n1 ≤ n2

iff n1 ⊆ n2.
Next, we define the ML model M4.

model M4 of BNAT
Carrier Set M includes:

def, inh,Nat, s, le
n, for n ∈ N
le n, for n ∈ N

Symbol Interpretation:
M4d_e = {def} M4[[_]] = {inh} M4Sorts = {Nat}
M4Nat = {Nat} M40 = {0} M4s = {s} M4le = {le}

Application Interpretation:
def • a = M, for all a ∈M
inh • Nat = N
s • n = {n+ 1}, for all n ∈ N
le • n = {le n}, for all n ∈ N
(le n1) • n2 = M, if n1 ⊆ n2 for n1, n2 ∈ N
a • b = ∅, if none of the above applies, for a, b ∈M

endmodel

4.2 Explaining the Interpretation of Patterns
In order to understand how patterns are interpreted in a model, we consider the following four BNAT-patterns:
s 0, ¬Nat(s 0), x ∧ le (s 0)x, ∃x:Nat . x ∧ le (s 0)x, and we interpret them in M1,M2,M3, respectively. We do
not consider the model M4 here because its representations of natural numbers are based on set-theoretic
encodings and is too different to be compared with the other three. Recall that ¬Nat(s 0) ≡ [[Nat]] ∧ ¬(s 0)
is the sorted negation of s 0 within Nat . We shall write |ϕ|M1,ρ to denote the interpretation of ϕ in M1.
Similarly, we write |ϕ|M2,ρ and |ϕ|M3,ρ to mean the interpretation of ϕ in M2 and M3, respectively.

Interpreting s 0 Since this is a closed pattern with no free variables, its interpretation is fully determined
by the model and does not depend on the valuations. Let ρ be any valuation. We have:

|s 0|M1,ρ = |s 0|M2,ρ = |s 0|M3,ρ = {1}.

Interpreting ¬Nat(s 0) This pattern is the negation of s 0 within sort Nat :

|¬Nat(s 0)|M1,ρ = N \ {1},
|¬Nat(s 0)|M2,ρ = (N ∪ {∞}) \ {1},
|¬Nat(s 0)|M3,ρ = R≥0 \ {1}.

Interpreting x∧ le (s 0)x This pattern has a free variable x, so its interpretation depends on the valuation
of x. Let ρ be a valuation. Note that if ρ(x) is not in the inhabitant of Nat , then le (s 0)x is undefined (i.e.,
returning ⊥), and thus x ∧ le (s 0)x returns ⊥. This is shown below:

|x ∧ le (s 0)x|M,ρ = ∅, for M ∈ {M1,M2,M3} and ρ(x) 6∈ [[Nat]]M.

Recall that [[Nat]]M is the inhabitant of Nat in M, defined in Notation 3.4.
Next, we consider the case where ρ(x) ∈ [[Nat]]M, for M ∈ {M1,M2,M3}. Let us consider two valuations

as an example: ρ0(x) = 0 and ρ3(x) = 3. Then:

|x ∧ le (s 0)x|M1,ρ0 = {ρ0(x)} ∩ |le (s 0)x|M1,ρ0 = {0} ∩ ∅ = ∅,

13

|x ∧ le (s 0)x|M2,ρ0 = |x ∧ le (s 0)x|M3,ρ0 = ∅, for the same reason as above,
|x ∧ le (s 0)x|M1,ρ3 = {ρ3(x)} ∩ |le (s 0)x|M1,ρ3 = {3} ∩M = {3},
|x ∧ le (s 0)x|M2,ρ3 = |x ∧ le (s 0)x|M3,ρ3 = {3}, for the same reason as above.

Here, we use M to denote the carrier set of M for M ∈ {M1,M2,M3}.
As we can see from the above, the intuition of x ∧ le (s 0)x is that it equals x if s 0 is less than (or equal

to) x, and it equals ∅, otherwise. With this intuition in mind, we can interpret ∃x:Nat . x∧ le (s 0)x, as shown
below.

Interpreting ∃x:Nat . x∧ le (s 0)x This is a closed pattern. However, the quantifier ∃x.Nat requires us to
consider all valuations of x in [[Nat]]M for M ∈ {M1,M2,M3}.

Let us first consider the interpretation in M1, where [[Nat]]M1 = N:

|∃x:Nat . x ∧ le (s 0)x|M1,ρ =
⋃
n∈N

|x ∧ le (s 0)x|ρ[n/x],M1

= ({0} ∩ ∅) ∪ ({1} ∩M) ∪ ({2} ∩M) ∪ · · ·
= {1, 2, . . . }
= N \ {0}.

Next, let us consider the interpretation in M2, where [[Nat]]M2 = N ∪ {∞}:

|∃x:Nat . x ∧ le (s 0)x|M2,ρ

=

(⋃
n∈N

|x ∧ le (s 0)x|ρ[n/x],M2

)
∪ |x ∧ le (s 0)x|ρ[∞/x],M2

= (N \ {0}) ∪ {∞}
= N ∪ {∞} \ {0}.

Finally, let us consider the interpretation in M3, where [[Nat]]M3 = R≥0:

|∃x:Nat . x ∧ le (s 0)x|M3,ρ =
⋃

r∈R≥0

|x ∧ le (s 0)x|ρ[r/x],M3 = {r ∈ R≥0 | r ≥ 1}.

Note that the last set above is not a countable set.

5 Matching Logic Proof System
In this section we review the Hilbert-style proof system for matching logic given in [2]. The proof system is
shown in Fig. 1. We write SPEC ` ϕ to mean that ϕ can be proved by the proof system using the axioms in
SPEC. The following theorem shows that the proof system is sound.

Theorem 5.1 ([2]). SPEC ` ϕ implies SPEC � ϕ.

In this paper we will use the proof system to simplify our reasoning about ML validity and semantics.
The following derived rules are useful for coinductive reasoning:

(Post-Fixpoint) ` νX.ϕ→ ϕ[νX.ϕ/X]

(Knaster-Tarski)
` ψ → ϕ[ψ/X]

` ψ → νX.ϕ

14

FO
L

R
ea
so
ni
ng



T
ec
hn

ic
al

R
ul
es



R
ea
so
ni
ng

Fr
am

e



R
ea
so
ni
ng

F
ix
po

in
t



(Tautology) ϕ if ϕ is a propositional
tautology over patterns

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2

(∃-Quantifier) ϕ[y/x]→ ∃x. ϕ

(∃-Generalization)
ϕ1 → ϕ2 if x 6∈ FV (ϕ2)

(∃x.ϕ1)→ ϕ2

(Existence) ∃x. x
(Singleton) ¬ (C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

(Propagation⊥) C[⊥]→ ⊥
(Propagation∨) C[ϕ1 ∨ ϕ2]→ C[ϕ1] ∨ C[ϕ2]

(Propagation∃) C[∃x. ϕ]→ ∃x.C[ϕ] if x 6∈ FV (C)

(Framing)
ϕ1 → ϕ2

C[ϕ1]→ C[ϕ2]

(Substitution)
ϕ

ϕ[ψ/X]

(Pre-Fixpoint) ϕ[µX. ϕ/X]→ µX. ϕ

(Knaster-Tarski)
ϕ[ψ/X]→ ψ

µX. ϕ→ ψ

Figure 1: A Hilbert-style proof system of matching logic [2] (where C[ϕ], C1[ϕ], C2[ϕ] denote patterns of the
form ϕψ or ψ ϕ for some ψ).

15

6 Explaining the General Principles of Induction and Coinduction
In this section we explain how the (Knaster-Tarski) proof rule supplies a (co)induction proof principle in
ML. The explanation is based on the well-known (co)induction principle expressed in lattice theory.

6.1 Induction Principle in Complete Lattices and in Matching Logic
There is a clear similarity between the induction principle and the Knaster-Tarski proof rule:

Complete Lattices Matching Logic
F(X) ⊆ X
µF ⊆ X

(IndPrinc)
ϕ[ψ/X]→ ψ

µX .ϕ→ ψ
(Knaster-Tarski)

The induction principle (IndPrinc) uses a monotone function F over a complete lattice. For instance, the
functional F for the natural numbers is given by F(X) = {0} ∪ {sx | x ∈ X}, defined over the powerset
lattice. The set of natural numbers, defined in this way, is µF = {0, s 0, s2 0, . . .}. A set X satisfying the
hypothesis of (IndPrinc) is usually called pre-fixpoint.
Explanation. We start by explaining first how (IndPrinc) is used to prove properties. Assume we have to
prove a property of the form ∀x:µF . φ(x), i.e., all elements in an inductive set (i.e., a set that is defined
as the least fixpoint of F) have property φ. We consider the set Xφ = {x | φ(x)} and we first show that
F(Xφ) ⊆ Xφ, then applying (IndPrinc) we obtain µF ⊆ Xφ, which is equivalent to say that ∀x:µF . φ(x)
holds. For the natural numbers, F(Xφ) ⊆ Xφ is equivalent to {0} ∪ {s(x) | x ∈ Xφ} ⊆ Xφ, i.e., we have to
check φ(0) (base case) and that φ(x) =⇒ φ(s(0)) (induction step).

Now we explain how (Knaster-Tarski) supplies an induction proof principle in ML. The least fixpoint
µF is specified by a pattern µX.ϕ and the set Xφ is specified by the pattern ψ ≡ ∃x. x∧φ(x). The inclusion
µF ⊆ Xφ is specified by the pattern µX .ϕ → ψ and the inclusion F(Xφ) ⊆ XΦ by ϕ[ψ/X] → ψ. For the
example of the natural numbers, we have that ϕ ≡ 0∨sX and ϕ[ψ/X] ≡ 0∨sψ. It follows that ϕ[ψ/X]→ ψ
is equivalent to 0→ ψ and sψ → ψ, which can be informally expressed as ψ(0) and ψ(x)→ ψ(sx).

Examples of inductive proofs for natural numbers using the proof rule (Knaster-Tarski) are included in
Sections 7.1.2 and 7.2.3. Examples about inductive reasoning for parametric lists are included in Section 7.2.4.

6.2 Coinduction Principle in Complete Lattices and in Matching Logic
The following coinduction principle, which we will use in Sections 7 and 9, is dual to induction principle:

Complete Lattices Matching Logic
X ⊆ F(X)

X ⊆ νF
(CoindPrinc)

ψ → ϕ[ψ/X]

ψ → νX .ϕ
(Knaster-Tarski)

A set X satisfying the hypothesis of (CoindPrinc) is usually called post-fixpoint. We consider the example
of the infinite lists νF = {b0 :: b1 :: b2 :: . . . | bi = 0 ∨ bi = 1}, where F(X) = {b :: x | x ∈ X, b = 0 ∨ b = 1},
and b :: x is a sugar syntax for cons b x.
Explanation. (CoindPrinc) is used to prove that Xφ ⊆ νF , i.e., the set of elements satisfying φ is a subset
of the coinductive set νF . For instance, if φ(x) is x = b :: x1 ∧ x1 = (1 − b) :: x2 ∧ φ(x2) ∧ b ∈ 0 ∨ 1, then
Xφ ⊆ νF says that the elements having the property φ are infinite lists. Note that this is not trivial; we can
prove it by (CoindPrinc) and showing that Xφ ⊆ F(Xφ) = {y | y = b :: x ∧ x ∈ Xφ}.

Let us explain the above reasoning in ML terms. The coinductive set νF is specified by the pattern νY . ϕ,
where ϕ ≡ (0 :: Y ∨1 :: Y), and Xφ is expressed by a pattern ψ defined in the same way as for the inductive
case: ψ ≡ ∃x. x ∧ φ(x). The inclusion Xφ ⊆ νF is expressed by ψ → νY . ϕ, and the inclusion Xφ ⊆ F(Xφ)
is expressed by ψ → ϕ[ψ/X]. For the example of infinite lists, this means that ψ → 0 :: ψ ∨ 1 :: ψ.

The usual coinduction proof rule is explained in plain English as follows: In order to prove that Xφ ⊆ νF ,

1. find a subset X;

16

2. show that X is a post-fixpoint: X ⊆ F(X);
3. show that Xφ ⊆ X.

The same coinduction proof rule is expressed in ML terms as follows: In order to prove that F |= ψ →
νX.ϕ,

1. find a suitable pattern ψ′;
2. show that ψ′ is a “post-fixpoint”: F |= ψ′ → ϕ[ψ′/X];
3. show that F |= ψ → ψ′.

Examples of coinductive proofs are given in Sections 7.2.5 and 8.

7 Defining Types as Matching Logic Specifications
In this section, we show how to define types as matching logic specifications. We discuss the basic types such
as Booleans and numbers in Section 7.1. Then, we discuss parameterized types in Section 7.2, fixed-length
vector types in Section 7.3, parametric finite sets in Section 7.4, product dependent types in Section 7.5,
sum dependent types in Section 7.6. We give some discussion on binding in Section 7.7.

7.1 Simple Types
We start with the basic types such as Boolean values and natural numbers.

7.1.1 Booleans

spec BOOL
Import: SORTS
Symbol: Bool , tt ,ff , !,&
Metavariable: patterns ϕ1, ϕ2

Notation: ϕ1 & ϕ2 ≡ &ϕ1 ϕ2

Axiom:
(Sort Name) : Bool ∈ [[Sorts]]
(Function) :

ff : ε→ Bool tt : ε→ Bool
! : Bool → Bool & : Bool × Bool → Bool

(Inductive Domain) : [[Bool]] = tt ∨ ff
(No Confusion) : tt 6= ff
(Definition) :

! tt = ff ! ff = tt
∀x:Bool . x& tt = x ∀x:Bool . x& ff = ff
∀x:Bool . tt &x = x ∀x:Bool .ff &x = ff

endspec

Explanation. The type/sort Bool has two constant constructors tt and ff , which are specified as functional
constants. Therefore, in any model M � BOOL, the inhabitant of Bool in M must be a set consisting of
exactly two elements: the interpretation of tt and the interpretation of ff . The axioms that define ! and &
are usual.

7.1.2 Natural Numbers

17

spec NAT
Import: SORTS
Symbol: Nat ,0, s
Axiom:

(Sort Name) : Nat ∈ [[Sorts]]
(Function) :

0 : ε→ Nat s : Nat → Nat
(Inductive Domain) : [[Nat]] = µX. 0 ∨ sX
(No Confusion) :
∀x:Nat .0 6= sx
∀x, y:Nat . sx = s y → x = y

endspec

Therefore, [[Nat]] is the smallest set built from 0 and s, which are the only two constructors of Nat .

Proposition 7.1. The following propositions hold:

1. NAT |= 0 ∈ [[Nat]]
2. NAT |= s [[Nat]] ⊆ [[Nat]]
3. NAT |= ∀x:Nat .0 6= sx
4. NAT |= ∀x:Nat . y:Nat . sx 6= y → x 6= s y

Explanation. We prove Item 1 as an example. Let M be any model such that M � NAT. Recall that
the axiom (Function) 0 : ε → Nat is a shortcut of ∃z. z ∈ [[Nat]] ∧ z = 0. Therefore, for some (irrelevant)
valuation ρ we have |∃z. z ∈ [[Nat]]∧z = 0|ρ =

⋃
a∈M |z ∈ [[Nat]]∧z = 0|ρ[a/z] = M . Note that |z ∈ [[Nat]]∧z =

0|ρ[a/z] ∈ {0,M} for all a. Therefore, there exists a0 ∈M such that |z ∈ [[Nat]]∧z = 0|ρ[a0/z] = M . Note that
|z ∈ [[Nat]]∧ z = 0|ρ[a0/z] = |z ∈ [[Nat]]|ρ[a0/z] ∩ |z = 0|ρ[a0/z] = M implies that a0 ∈ [[Nat]]M and {a0} = M0.
Therefore, |0 ∧ [[Nat]]|ρ = |0|ρ ∩ |[[Nat]]|ρ = M0 ∩ [[Nat]]M 6= ∅, and thus, |0 ∈ [[Nat]]|ρ = |d0 ∧ [[Nat]]e|ρ = M .
Since M is any model with M � NAT, we conclude that NAT � 0 ∈ [[Nat]].

Proposition 7.2. For any M � NAT, let [[Nat]]M = |[[Nat]]|M be the inhabitant of Nat in M . Then we have
that [[Nat]]M is isomorphic to N, where N is the set of natural numbers.

Explanation. LetM0 andMs be the interpretations of 0 and s inM , respectively. By the axiom (Function)
for 0, we know that M0 is a singleton, whose element we denote (by abuse of notation) as 0. By the axiom
(Function) for s, we know that for any n ∈ [[Nat]]M , Ms • n is a singleton, whose element we denote (by
abuse of notation) as s(n). By the axiom (No Confusion), we have that the elements 0, s(0), s(s(0)), . . .
are all distinct. Clearly, the set {0, s(0), s(s(0)), . . . } is isomorphic to N, and by abuse of notation we use N
to denote the set. Next, we prove that [[Nat]]M is isomorphic to N. By the axiom (Inductive Domain),
[[Nat]]M = |µX. 0∨sX|ρ = µF , where F : P(M)→ P(M) is defined as F(A) = |0∨sX|ρ[A/X] = {0}∪{s(n) |
n ∈ A}. Then F(N) = {0} ∪ {s(n) | n ∈ N} = N, so N is a fixpoint of F . On the other hand, we can prove
by induction that any fixpoint of F includes s(· · · (s(0)) · · ·) with any number of s. Therefore, N is indeed
the least fixpoint of F , and thus [[Nat]]M is isomorphic to N.

Proposition 7.3 (Successor Pre-fixpoint). Let P be a set variable. Then we have

1. NAT |= (sP → P)↔ (∀x. x ∈ P → sx ∈ P);
2. NAT |= P ⊆ [[Nat]]→ ((sP → P)↔ (∀x:Nat . x ∈ P → sx ∈ P)).

We call both equivalences (PrefixSucc). Note that in Item 1 we use the unsorted quantification ∀x while
in Item 2 we use the sorted quantification ∀x:Nat .

Explanation. We only explain Item 1 as an example. Let us assume a model M � NAT and a valuation ρ.
Note that ∀x. x ∈ P → sx ∈ P is a predicate pattern. Then we have that

|sP → P |ρ = M

18

iff |sP |ρ ⊆ |P |ρ
iff Ms • |P |ρ ⊆ |P |ρ
iff Ms • n ∈ |P |ρ for all n ∈ |P |ρ
iff |∀x. x ∈ P → sx ∈ P |ρ = M

A similar reasoning holds for |sP → P |ρ = ∅.

Proposition 7.4 (Peano Induction). Let P be a set variable.

NAT |= P ⊆ [[Nat]]→ ((0 ∈ P ∧ (sP → P))→ ∀x:Nat . x ∈ P) (IndNat)

Explanation. Let M � NAT and ρ by any valuation. If ρ(P) 6⊆ [[Nat]]M , then |P ⊆ [[Nat]]|ρ = ∅, and thus
|P ⊆ [[Nat]] → ((0 ∈ P ∧ (sP → P)) → ∀x:Nat . x ∈ P)|ρ = M . Therefore, we assume ρ(P) ⊆ [[Nat]]M , and
our goal is to prove that |(0 ∈ P ∧ (sP → P))→ ∀x:Nat . x ∈ P |ρ = M .

If |0 ∈ P |ρ = ∅ or |s P → P |ρ = ∅, we have |(0 ∈ P ∧ (sP → P)) → ∀x:Nat . x ∈ P |ρ = M . Therefore,
we assume that |0 ∈ P |ρ = |s P → P |ρ = M ; that is, 0 ∈ ρ(P), and by Proposition 7.1, for all n ∈ N,
s(n) ∈ ρ(P). By Proposition 7.2, we have ρ(P) = [[Nat]]M , and thus |∀x:Nat . x ∈ P |ρ = M .

Remark 7.5. Let ϕ(x) be a FOL formula with a distinguished variable x. Let set variable P be matched by
exactly the elements x such that ϕ(x) holds. Then clearly, we have that ϕ(x) holds if and only if x ∈ P .
Based on this observation, we can rewrite (IndNat) in the following more familiar form:

NAT |= ϕ(0) ∧ (∀y:Nat . ϕ(y)→ ϕ(s y))→ ∀x:Nat . ϕ(x)

7.2 Parameterized Types
A parameterized type (sort) is a type that depends on other type values. In this section we define five
parameterized types: product types, sum (coproduct) types, function types, parametric (finite) lists, and
parametric streams (infinite lists). The key observation is that since ML is an unsorted logic and sorts are
definable concepts, it is natural and straightforward to define parameterized types by defining proper sorts
axioms.

7.2.1 Product Types

Given two sorts s1 and s2, we define a new sort s1⊗s2, called the product (sort) of s1 and s2, as follows:

spec PROD{s1, s2}
Import: SORTS
Symbol: ⊗, 〈_,_〉, π1, π2

Notation:
s1 ⊗ s2 ≡ ⊗ s1 s2

〈x, y〉 ≡ 〈_,_〉x y
Axiom:

(Product Sort)
s1 ∈ [[Sorts]] ∧ s2 ∈ [[Sorts]]→ s1⊗s2 ∈ [[Sorts]]

(Pair)
〈_,_〉 : s1 × s2 → s1⊗s2

(Project Left)
π1 : s1⊗s2 → s1

(Project Right)
π2 : s1⊗s2 → s2

(Injection)
〈x1, x2〉 = 〈y1, y2〉 → x1 = x2 ∧ y1 = y2

(Inverse PairProj1)

19

∀x1:s1.∀x2:s2. πi 〈x1, x2〉 = xi, i = 1, 2
(Inverse PairProj2)
∀y:s1⊗s2. 〈π1 y, π2 y〉 = y

endspec

Explanation. Axioms (Pair), (Project Left), and (Project Right) are instances of the axiom schema
(Function). Axioms (Inverse PairProj1) and (Inverse PairProj2) express the fact that the pair
function and the projections are inverse with respect to each other.

Proposition 7.6. The following hold:

1. ∀y:s1⊗s2.∃x1:s1.∃x2:s2. y = 〈x1, x2〉.
2. [[s1⊗s2]] = [[s1]]× [[s2]].

Explanation. (Item 1). Consider xi = πi y, i = 1, 2. We obtain xi ∈ [[si]], i = 1, 2, by the corresponding
(Project _) axiom. The equality y = 〈x1, x2〉 follows by (Inverse PairProj2).
(Item 2). The pair function 〈_,_〉 is a bijection by (Injection) and Item 1.

7.2.2 Sum (Coproduct) Types

Given two sorts s1 and s2 we define a new sort s1⊕s2, called the sum (coproduct) of s1 and s2, as follows:

spec SUM{s1, s2}
Import: SORTS
Symbol: ⊕, ι1, ι2, ε1, ε2
Notation: s1⊕s2 ≡ ⊕ s1 s2

Axiom:
(Sum Sort)
s1 ∈ [[Sorts]] ∧ s2 ∈ [[Sorts]]→ s1⊕s2 ∈ [[Sorts]]

(Inject Left)
ι1 : s1 → s1⊕s2

(Inject Right)
ι2 : s2 → s1⊕s2

(Eject Left)
ε1 : s1⊕s2 ⇀ s1

(Eject Right)
ε2 : s1⊕s2 ⇀ s2

(Inverse InjEj1)
∀x:si. εi (ιi x) = x, i = 1, 2

(Inverse InjEj2)
∀x:s3−i. εi (ι3−i x) = ⊥, i = 1, 2

(CoProduct)
∀s1, s2:Sorts. [[s1⊕s2]] ⊆ (ι1 [[s1]]) ∨ (ι2 [[s2]])

endspec

Explanation. (Inject _) and (Eject _) are instances of (Function) and (Partial Function), respec-
tively.

Proposition 7.7. The following hold:

1. ι1 and ι2 are injective functions.
2. [[s1⊕s2]] = (ι1 [[s1]]) ∨ (ι2 [[s2]]).
3. SUM{s1, s2} ` ∀s1, s2:Sorts. (ι1 [[s1]]) ∧ (ι2 [[s2]]) = ⊥.

20

Explanation. 1. Take ι1 as an example. Suppose ι1 x = ι1 y, then we have ε1(ι1 x) = ε1(ι1 y); by
(InverseInjEj1), we have x = y.
2. We have to show that [[s1⊕s2]] ⊇ (ι1 [[s1]]) ∨ (ι2 [[s2]]), which follows by (Inject _).
3. Intuitively, assume y ∈ (ι1 [[s1]]) ∧ (ι2 [[s2]]) and we show contradiction. By assumption, there exist
x1 and x2 such that y = ι1(x1) = ι2(x2). We have ε2(ι1(x1)) = ⊥ = ε1(ι2(x2)) by (Inverse InjEj2).
But ι1(x1) = y = ι2(x2) and hence ε2(ι1(x1)) = ε2(ι2(x2)) = x2 and ε1(ι1(x2)) = ε1(ι1(x1)) = x1 by
(Inverse InjEj1), which is a contradiction.

Proposition 7.8. [[s1⊕s2]] = [[s1]]] [[s2]], where] denotes set disjoint union, defined as [[s1]]] [[s2]] =
([[s1]]× {1}) ∪ ([[s2]]× {2}).
Explanation. Formally, we need to establish the following bijection:

ι : [[s1⊕s2]]→ [[s1]]] [[s2]]

ε : [[s1]]] [[s2]]→ [[s1⊕s2]]

Note that by (CoProduct), for every b ∈ [[s1 ⊕ s2]], there exists i ∈ {1, 2}, such that b ∈ ιi([[si]]); by the
injectivity of ιi, we know there exists a unique ab ∈ [[si]] such that b = ιi(ab). Then, we define ι as follows:

ι(b) =

{
(ab, 1) if ab ∈ [[s1]] such that b = ιi(ab),

(ab, 2) if ab ∈ [[s2]] such that b = ιi(ab).

Then, we define ε as follows:

ε((a, i)) = ιi(a)

It is straightforward to see that ι and ε are inverse to each other. This proves that [[s1⊕s2]] = [[s1]]] [[s2]].

7.2.3 Function Types

Given two sorts s1 and s2, we define a new sort s1→○s2, called the function sort from s1 to s2, as follows:

spec FUN{s1, s2}
Import: SORTS
Symbol: →○
Notation:
s1→○s2 ≡ →○ s1 s2

(f =s1
ext g) ≡ (∀x:s1. f x = g x)

Axiom:
s1→○s2 ∈ [[Sorts]]
[[s1→○s2]] = ∃f. f ∧ ∀x:s1.∃ y:s2. f x = y

endspec

Proposition 7.9. The following hold:

1. ∀f. (∀x:s1.∃y:s2. f x = y)→ f ∈ [[s1→○s2]].
2. ∀f :s1→○s2. (∀x:s1.∃y:s2. f x = y).

Remark 7.10. Even if strongly related, there is a difference between f :s1→○s2 and f : s1 → s2. The former
says that f ∈ [[s1→○s2]] and the latter is a sugar syntax for the axiom

∀x:s1.∃ y:s2. f x = y,

which is equivalent to

∀x. x ∈ [[s1]]→ ∃ y. y ∈ [[s2]] ∧ f x = y.

The relationship between the two notations is easy to see if we note that the definition of [[s1→○s2]] can be
written as ∃f. f ∧ f : s1 → s2. However, f ∈ [[s1→○s2]] says further that f is a functional symbol.

21

Since we have axiomatic definitions for the product and function sorts, we may use them to formalize
the iteration and recursion principles for the type of natural numbers.

Proposition 7.11 (Natural Numbers Iteration Principle).

∀h.∀c:s.∀f :s→○s. (h0 = c ∧ ∀n:Nat . h (sn) = f (hn))→
(∀n:Nat .∃ y:s. h n = y) (ItNat)

Explanation. (ItNat) is equivalent to

∀h.∀c:s.∀f :s→○s. (h0 = c ∧ ∀n:Nat . h (sn) = f (hn))→
([[Nat]] ⊆ ∃x. ∃ y:s. x ∧ hx = y)

and we apply then the induction principle:

c:s h 0 = c

NAT |= 0 ∈ ∃x.∃ y:s. x ∧ hx = y
Hyp

f :s→○s

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ (∃x.∃ y:s. sx ∧ f (hx) = y)

Hyp

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ (∃x.∃ y:s. sx ∧ h (sx) = y)

Hyp

NAT |= ∃x.∃ y:s. x ∧ hx = y
→ s (∃x. ∃ y:s. x ∧ hx = y)

Def s

NAT |= [[Nat]] ⊆ ∃x.∃ y:s. x ∧ hx = y
IndNat

Example 7.12. The following ML specification defines two functions plus and mult on natural numbers in
the usual way:

spec PLUS&MULT
Import: NAT
Symbol: plus,mult
Metavariable: element variables x:Nat , y:Nat
Axiom:

plus x0 = x
plus x (s y) = s (plus x y)
mult x0 = 0
mult x (s y) = plus (mult x y)x

endspec

The fact that plus and mult are well-defined follows by applying (ItNat). For instance, for plus we consider
h = plus x, c = 0, and f = s.

Proposition 7.13 (Natural Numbers (Primitive) Recursion Principle).

∀h.∀c:s.∀g:(s⊗Nat)→○s. (h0 = c ∧ ∀n:Nat . h (sn) = g (hn)n)→
(∀n:Nat .∃ y:s. h n = y) (PrRecNat)

Explanation. (PrRecNat) is equivalent to

∀h.∀c:s.∀g:(s⊗Nat)→○s. (h0 = c ∧ ∀n:Nat . h (sn) = g ((hn)n))→
([[Nat]] ⊆ ∃x. ∃ y:s. x ∧ hx = y)

and we apply then the induction principle:

22

c:s h 0 = c

NAT |= 0 ∈ ∃x.∃ y:s. x ∧ hx = y
Hyp

g:s⊗Nat→○s

NAT |=
∃x.∃ y:s. x ∧ hx = y
→
(∃x.∃ y:s. sx ∧ g (hx)x = y)

Hyp

NAT |=
∃x.∃ y:s. x ∧ hx = y
→
(∃x.∃ y:s. sx ∧ h (sx) = y)

Hyp

NAT |=
∃x. ∃ y:s. x ∧ hx = y
→
s (∃x.∃ y:s. x ∧ hx = y)

Def s

NAT |= [[Nat]] ⊆ ∃x.∃ y:s. x ∧ hx = y
IndNat

Example 7.14. The following ML specification defines the factorial function fact in the usual way:

spec FACT
Import: NAT
Symbol: fact
Metavariable: element variables x:Nat , y:Nat
Axiom:

fact 0 = s 0
fact (sx) = mult (fact x)x

endspec

The fact that fact is well-defined follows by applying (PrRecNat) with h = fact , c = s 0, and g = mult .

7.2.4 Parameterized (Finite) Lists

The type of parametric lists is a canonical example of a polymorphic datatype, i.e., a datatype parameter-
ized by another type. Polymorphic datatypes are included in many programming languages (Java, C++,
Haskell, etc.), known also as generic types. For instance, they were introduced to C++ in 1987, without a
serious consideration on the logical foundation for their semantics [9]; now generic programming in C++ is
redesigned using the semantic notion of concept, which is a predicate on template arguments [10]. In this
section we present a complete specification for parametric lists, which can be used as a foundation for any
implementation.

Datatype Specification of Lists The most usual way to define parametric lists is by using a BNF-like
notation:

List〈Elt〉 ::= nil | cons(Elt ,List〈Elt〉)

A reader familiar with a functional programming language perhaps prefers a Haskell-like notation:

data List a = Nil | Cons a (List a)

This specification is sufficient for someone who wants to use the datatype, but, for sure, it is not sufficient
for implementing the datatype.

Matching Logic Specification of Lists The following ML specification of parametric lists shows that
much semantic information is missing from the above specification.

spec LIST{s}
Import: SORTS
Symbol: List ,nil , cons
Metavariable: element variables x:s, x′:s, `:List〈s〉, `′:List〈s〉
Notation: List〈s〉 ≡ List s

23

Axiom:
(Sort Name) : s ∈ [[Sorts]]→ List〈s〉 ∈ [[Sorts]]
(Function) :
∃y.List = y
∃y:List〈s〉.nil = y
∃y:List〈s〉. cons x ` = y

(Inductive Domain) :
[[List〈s〉]] = µX.nil ∨ cons [[s]]X

(No Confusion) :
nil 6= cons x `
cons x ` = cons x′ `′ → x = x′ ∧ ` = `′

endspec

Explanation. From (Sort Name) we infer that List〈s〉 is a functional constant, i.e., ∃y.List〈s〉 = y. Some
programming languages may have constraints on polymorphic datatypes. For instance, in Java s cannot
be a primitive type. Then the axiom (Sort Name) is replaced by ∃y.List〈s〉 ⊆ y, List〈s〉 ⊆ [[Sorts]],
and s ∈ PrimitiveSorts → List〈s〉 = ⊥. The first axiom (Function) says that the generic name List
is a function constant; the next two constraint constants cons and nil to functional interpretations. The
axiom (Inductive Domain) says that the set of the inhabitants of List〈s〉 contains exactly those elements
that we obtain by repeatedly using finitely many times the constructors nil and cons.

The next results show how many interesting properties can be formally derived from the above specifi-
cation and internally expressed in ML.

Proposition 7.15 (Lists Induction Principle).

LIST{s} |= (nil ∈ P ∧ cons [[s]]P ⊆ P)→ [[List s]] ⊆ P (IndList)

Explanation.
LIST{s} |= nil ∈ P
LIST{s} |= nil → P

LIST{s} |= cons [[s]]P ⊆ P
LIST{s} |= cons([[s]], P)→ P

LIST{s} |= nil ∨ cons([[s]], P)→ P
PropTaut

LIST{s} |= (nil ∨ cons([[s]], L))[P/L]→ P
Replace

LIST{s} |= µL:List .nil ∨ cons([[s]], L)→ P
K-T

LIST{s} |= [[List s]] ⊆ P
Def.⊆

Remark 7.16. Using a notation similar to that from Remark 7.5, (IndList) can be rewritten in the more
familiar form:

LIST{s} |= ϕ(nil) ∧ (∀`:List s. ϕ(`)→ ∀x:s. ϕ(cons x `))→ ∀`:List s. ϕ(`).

Proposition 7.17 (Lists Iteration Principle).

LIST{s} |=∀h.∀c:s′.∀f :s⊗s′→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x y) = f (x, h `))→
(∀`:List〈s〉.∃ y:s′. h ` = y) (ItList)

Explanation. (ItList) is equivalent to

LIST{s} |=∀h.∀c:s′.∀f :s⊗s′→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x y) = f (x, h `))→
([[List〈s〉]] ⊆ ∃x. ∃ y:s′. x ∧ hx = y)

24

which allows to use the induction principle for lists to derive a justification:

c:s′ hnil = c

LIST{s} |=nil ∈
∃x.∃ y:s. x
∧

hx = y

Hyp

f :s⊗s′→○s′

LIST{s} |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′. ∃a:s. cons a x ∧

f a (hx) = y

Hyp

LIST{s} |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′.∃a:s. cons a x ∧

h (cons a x) = y

Hyp

LIST{s} |=
∃x.∃ y:s′. x ∧ hx = y
→
cons [[s]] (∃x.∃ y:s′. x ∧ hx = y)

Def cons

LIST{s} |= [[List〈s〉]] ⊆ ∃x.∃ y:s′. x ∧ hx = y
IndList

A direct use of (ItList) is given by the definition of map:

Example 7.18. Let MAP{s} be the following ML specification:

spec MAP{s}
Import: LIST{s}
Symbol: map
Metavariable: element variables x:s, `:List〈s〉, g:s→○s′

Axiom:
map g nil = nil
map g (cons x `) = cons (g x) (map g `)

endspec

Then we obtain

MAP{s} |= map ∈ [[((s→○s′)⊗ List〈s〉)→○List〈s′〉]]
MAP{s} |= map g ∈ [[List〈s〉→○List〈s′〉]]

by applying the Lists Iteration Principle with c = nil , h = map g, f x `′ = cons (g x) `′, where x is of sort s
and `′ of sort List〈s′〉.

Proposition 7.19 (Lists (Primitive) Recursion Principle).

LIST{s} |=∀h.∀c:s′.∀g:(s⊗List〈s〉)→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x `) = g (h `)x `)→
(∀`:List〈s〉.∃ y:s′. h `′ = y) (PrRecList)

Explanation. We write (PrRecList) in the equivalent form

LIST{s} |=∀h.∀c:s′.∀g:(s⊗List〈s〉)→○s′.

(hnil = c ∧ ∀x:s.∀`:List〈s〉. h (cons x `) = g (h `)x)`→
([[List〈s〉]] ⊆ ∃x. ∃ y:s′. x ∧ hx = y)

and apply the induction principle for lists:

25

c:s h0 = c

LIST{s} |= nil ∈ ∃x. ∃ y:s′. x ∧ hx = y
Hyp

g:(s′⊗s⊗List〈s〉)→○s′

LIST{s} |=
∃x.∃ y:s′. x ∧ hx = y
→
∃x.∃ y:s′.∃a:s. cons a x ∧

g (hx) a x = y

Hyp

LIST{s} |=
∃x. ∃ y:s′. x ∧ hx = y
→
∃x. ∃ y:s′. ∃a:s. cons a x ∧

h (cons a x) = y

Hyp

LIST{s} |=
∃x.∃ y:s′. x ∧ hx = y
→
cons [[s]] (∃x.∃ y:s′. x ∧ hx = y)

Defcons

LIST{s} |= [[List〈s〉]] ⊆ ∃x. ∃ y:s′. x ∧ hx = y
IndList

Here is a direct use of the primitive recursive principle for lists:

Example 7.20. Let FOLDR{s} be the following ML specification:

spec FOLDR{s}
Import: LIST{s}
Symbol: foldr
Metavariable: element variables x:s, z:s′, `:List〈s〉, f :s⊗s′→○s′

Axiom:
foldr f z nil = z
foldr f z (cons x `) = f x (foldr f z `)

endspec

Then we obtain

FOLDR{s} |= foldr :((s→○s′)⊗s′⊗List〈s〉)→○s′

FOLDR{s} |= foldr f z:List〈s〉→○s′

by applying the Lists Primitive Recursion Principle with c = z′, h = foldr f z, g y x ` = f x y, where x is of
sort s, y of sort s′, and ` of sort List〈s〉.

7.2.5 Parameterized (Infinite) Streams

The type of streams (infinite lists) is a canonical example of coinductive types with associated coinductive
reasoning. Infinite datatypes are used in programming languages, e.g., Haskell, together with lazy evaluation,
which allows to bypass the undefined values (e.g., the result of an infinite execution of a program).

Infinite Datatype (Codatatype) Specification of Streams Streams can be specified using a BNF-like
notation

Stream〈Elt〉 ::= cons(Elt ,Stream〈Elt〉)

or a Haskell-like notation:

data InfList a = a ::: (InfList a)

where the constructor x ::: ` corresponds to cons(x, `). The constructors of infinite datatypes are useful
to define the set of its inhabitants, but useless in practice when we do not need or want runtime pattern-
matches on a data constructor which will never occur. Therefore, the equivalent definition with destructors
is used in practice. For the case of streams, the destructors are hd and tl defined by hd(cons(x, `)) = x and
tl(cons(x, `)) = `. Following the convention of inductive and coinductive data types, we use constructors for
(inductive) data and destructors for codata. In some literature, destructors are also called observers.

26

Matching Logic Specification of Streams The following ML specification includes both the construc-
tors and the destructors. The constructors are used to define the set of inhabitants as the greatest fixpoint
while the destructors are defined axiomatically.

spec STREAM{s}
Symbol: Stream, cons, hd , tl ,≈Stream

Metavariable: element variables x, x′:s; `, `1, `2:Stream〈s〉
Notation:

Stream〈s〉 ≡ Stream s
`1 ≈Stream `2 ≡ 〈`1, `2〉 ∈ ≈Stream

cons x 〈`1, `2〉 ≡ 〈cons x `1, cons x `2〉
α(X) ≡ ∃`. ` ∧ hd ` ∈ [[s]] ∧ tl ` ∈ X
β(R) ≡ ∃`, `′:Stream〈s〉. 〈`, `′〉 ∧ hd ` = hd `′ ∧ 〈tl `, tl `′〉 ∈ R

Axiom:
(Sort Name) ∀s:Sorts.Stream〈s〉 ∈ [[Sorts]]
(Function)
∃y.Stream = y
∀x. ∀y.∃z. cons x y = z

(Coinductive Domain) ∀s:Sorts. [[Stream〈s〉]] = νX. cons [[s]]X
(No Confusion)

cons x ` = cons x′ `′ → x = x′ ∧ ` = `′

(Destructors)
hd(cons x `) = x
tl(cons x `) = `

(Bisimilarity)
≈Stream = νR:Stream〈s〉⊗Stream〈s〉. cons [[s]]R
∀`1, `2:Stream〈s〉. (`1 ≈Stream `2) = (`1 = `2)

endspec

Explanation. The axioms for sorts and constructors are similar to those for finite lists. The notations
α(X) and β(R) are used to show that we can obtain an equivalent specification using destructors (see
below). In order to understand the coinductive definition of the domain, we recall that, given a model M ,
|νX. cons [[s]]X|ρ = νFρX,ϕ, where ϕ ≡ cons [[s]]X. Since FρX,ϕ is cocontinuous, we have

νFρX,ϕ = M ∩ FρX,ϕ(M) ∩ FρX,ϕ(FρX,ϕ(M)) ∩ · · ·
= M ∩ |cons [[s]]X|ρ[M/X] ∩ |cons [[s]]X|ρ[|cons [[s]]X|ρ[M/X]/X] ∩ · · ·
= M ∩ [[s]]M ::: M ∩ [[s]]M ::: [[s]]M ::: M ∩ · · ·
= [[s]]M ::: [[s]]M ::: [[s]]M ::: · · ·
= {a0 ::: a1 ::: a2 ::: · · · | ai ∈ [[s]]M , i = 0, 1, 2, . . .}

where A ::: B ≡ (|cons|ρ •A) •B and [[s]]M ≡ |[[s]]|ρ. We also have a0 ::: a1 ::: a2 ::: · · · 6= b0 ::: b1 ::: b2 ::: · · · if
there is an i such that ai 6= bi, by applying (No Confusion) i+1 times.. It is easy to see now the similarity
with the Haskell definition of infinite trees. Note that the definition does not depend on ρ since X is the
only variable in ϕ. Let [[s]]∞M denote this greatest fixpoint.

Another novelty is the inclusion of the bisimilarity in the specification. It is defined similarly to the set
of inhabitants, but over pairs of elements. Since we have the additional constraint R:Stream〈s〉⊗Stream〈s〉,
the greatest fixpoint can be computed starting from [[s]]∞M × [[s]]∞M :

νFρR,ϕ = [[s]]∞M × [[s]]∞M ∩ FρR,ϕ([[s]]
∞
M × [[s]]∞M) ∩ FρR,ϕ(F

ρ
R,ϕ([[s]]

∞
M × [[s]]∞M)) ∩ · · ·

= [[s]]∞M × [[s]]∞M ∩ |cons [[s]]X|ρ[[[s]]∞M×[[s]]∞
M
/R] ∩ · · ·

= [[s]]∞M × [[s]]∞M ∩ [[s]]M ::: [[s]]∞M × [[s]]∞M ∩ [[s]]M ::: [[s]]M ::: [[s]]∞M × [[s]]∞M ∩ · · ·

27

= [[s]]∞M × [[s]]∞M ∩ {〈a0 :: `, a0 :: `′〉 | a0 ∈ [[s]]M , 〈`, `′〉 ∈ [[s]]∞M × [[s]]∞M} ∩ · · ·
= {〈a0 ::: a1 ::: a2 ::: · · ·, a0 ::: a1 ::: a2 ::: · · ·〉 | ai ∈ [[s]]M , i = 0, 1, 2, . . .}

where ϕ is now cons [[s]]R. Note that [[s]]M ::: R = {a ::: R | a ∈ [[s]]M} = {〈a ::: `, a ::: `′〉 | a ∈
[[s]]M , 〈`, `′〉 ∈ R}, according to the notation from the specification.

Proposition 7.21. The following results show that streams can be equivalently specified using destructors.

1. STREAM{s} |= ∀`:Stream. cons(hd `) (tl `) = `.
2. STREAM{s} |= [[Stream]] = νX. α(X).
3. STREAM{s} |= ∀`, `′:Stream. cons ((hd `) ∧ (hd `′)) ((tl `) ∧ (tl `′))→ ` ∧ `′.
4. STREAM{s} |= ≈Stream = νR:Stream〈s〉⊗Stream〈s〉. β(R)

Explanation. Item 1 shows that destructors and constructors are inverse to each other. Item 2 shows that
the inhabitant of streams is the biggest set closed under the destructors. Item 3 shows that the constructor
cons is injective. The name of constructor for cons is a bit misused here, because it alone cannot construct
streams (there is no nil -like constructor). But it can reconstruct a stream from its components given by the
destructors. The notation β(R) says that R is a bisimulation (see, e.g., [11]) or a behavioral equivalence
(see, e.g., [12]). Then Item 4 specifies that ≈Stream is the largest bisimulation (behavioral equivalence).

Proposition 7.22 (Streams Coinduction Principle I).

STREAM{s} |= (P ⊆ P ′ ∧ P ′ ⊆ cons [[s]]P ′)→ (P ⊆ [[Stream〈s〉]]) (CoindStream)
STREAM{s} |= (R ⊆ R′ ∧R′ ⊆ cons [[s]]R′)→ (R ⊆ ≈Stream) (CoindStreamEqC)

where P :Stream and R : Stream〈s〉⊗Stream〈s〉.

Explanation. Both are special instances of the coinduction proof rule as discussed at the end of Section 6.
For example, the following is the proof for STREAM{s} |= P ′ → [[Stream〈s〉]], which is equivalent to
STREAM{s} |= P ′ ⊆ [[Stream〈s〉]]:

P ′ → cons [[s]]P

P ′ → νX. cons [[s]]X
Knaster-Tarski

P ′ → [[Stream〈s〉]]
Coind Dom

Then we obtain STREAM{s} |= P → [[Stream〈s〉]] by FOL reasoning.

Corollary 7.23 (Streams Coinduction Principle II).

STREAM{s} |= (R ⊆ R′ ∧R′ ⊆ β(R′))→ (R ⊆ ≈Stream) (CoindStreamEqD)

where R : Stream〈s〉⊗Stream〈s〉.

Explanation. This coinductive principle is an instance of the coinduction proof rule discussed at the end of
Section 6, by observing Item 4 in Proposition 7.21.

Proposition 7.24 (Streams Coiteration Principle).

STREAM{s} |= ∃h. ∃x:s′. ∃c:s′→○s. ∃g:s′→○s′. h(x) ∧

∀y:s′. hd (h y) = c y ∧
tl(h y) = h (g y)

⊆ [[Stream〈s〉]] (CoitStream)

Explanation. Note the use of the existential quantifier, comparing with the dual universal quantifier used in
Proposition 7.17. This is due to the fact that c, g, and h are used now to “produce” a set of streams. Let P ′
denote the pattern

h(x) ∧ ∀y:s′. hd (h y) = c y ∧ tl(h y) = h (g y)

and let P denote

28

∃h.∃x:s′.∃c:s′→○s.∃g:s′→○s′. P ′.

We have:
c ∈ [[s′→○s]]

c y ∈ [[s]]
Fol

g ∈ [[s′→○s′]]

h (g y) ∈ P
Fol

P ′ → α(P)
Fol

P → α(P)
∃-Generalization

P → νX. α(X)
Knaster-Tarski

P → [[Stream〈s〉]]
Proposition 7.21 Item 2

Example 7.25. Given the following ML specification:

spec CNST&FROM
Import: NAT + STREAM{Nat}
Symbol: cnst , from
Metavariable: element variables n:Nat
Axiom:

hd (cnst n) = n hd (from n) = n
tl (cnst n) = cnst n tl (from n) = from (sn)

endspec

we obtain
CNST&FROM � ∃n:Nat . cnst n ∨ from n ⊆ [[Stream〈s〉]]

by applying CoitStream. For instance, for from we take c n = n and g n = sn. The symbol cnst is used
for specifying the constant stream given by the argument n, 〈n, n, n, . . .〉, and the symbol from for specifying
the stream of natural numbers starting from the argument n, 〈n, n+ 1, n+ 2, . . .〉.

7.3 Fixed-Length Vector Types
A vector type (sort) Vec s n is a dependent type taking two parameters, where s is the base sort and n
denotes the size of the vectors. In this section we will define two versions of vectors. In the first version,
vectors of size n+ 1 are built by pairing one element and a vector of size n. In the second version, a vector
of size n+ 1 is obtained by constructing a list whose head is an element and whose tail is a vector of size n.
In both versions we require that there is only one vector, the empty vector null , whose size is zero.

The First Definition of Vectors Let us first show the first version.

spec VEC1
Import: NAT
Symbol: Vec,null
Metavariable: element variables s:Sorts, n:Nat
Axiom:

(Sort Name) : ∀n:Nat .∀s:Sorts.Vec s n ∈ [[Sorts]]
(Function) :
∃y.Vec = y
∃y.null = y

(Inductive Domain) :
[[Vec s0]] = null
[[Vec s (sn)]] = [[s⊗Vec s n]]

endspec

29

Explanation. (Sort Name) and (Function) are similar to the specification of lists discussed in Sec-
tion 7.2.4. The first (Inductive Domain) axiom specifies that there is only one vector null whose size is
zero. The second (Inductive Domain) axiom specifies that the vector type Vec s (sn) is an alias for the
product type of s and the vector type Vec s n. In other words, a vector type is a nested product type.

The Second Definition of Vectors Now we define the second version of vectors using finite lists.

spec VEC2
imports : NAT
Symbol: Vec,null , cons
Metavariable: element variables s:Sorts, n:Nat
Axiom:

(Sort Name) : ∀n:Nat .∀s:Sorts.Vec s n ∈ [[Sorts]]
(Function) :
∃y.Vec = y
∃y.null = y

(Inductive Domain) :
[[Vec s0]] = null
[[Vec s (sn)]] = cons [[s]] [[Vec s n]]

(No Confusion)
∀x:s.∀y:Vec s n.null 6= cons x y
∀x, x′:s. .∀y, y′:Vec s n. cons x y = cons x′ y′ → x = x′ ∧ y = y′

endspec

Explanation. (Sort Name), (Function), and the first (Inductive Domain) axioms are similar to the
first definition version. The second (Inductive Domain) axiom specifies that the vector type Vec s (sn)
contains all the finite lists of length sn where the base sort is s.

7.4 Parametric (Finite) Sets
Similarly to the type of parametric lists List〈s〉, the type of parametric finite sets Set〈s〉 is a parametric
type that is parametric in a sort s. The following ML specification defines finite sets as terms built from
empty , union, and singleton (that builds singleton sets from elements), where empty is the unit element of
union and union satisfies the properties of associativity, commutativity, and idempotency. We also define
the operation delete that deletes an element from a set.

spec SET{s}
imports : SORTS
Symbol: Set , empty , union, singleton, delete
Metavariable: element variables s:Sorts
Notation: Set〈s〉 ≡ Set s
Axiom:

(Sort Name) : ∀s:Sorts.Set〈s〉 ∈ [[Sorts]]
(Function) :
∃y.Set = y
∃y:Set〈s〉. empty = y
∀y1, y2:Set〈s〉.∃y:Set〈s〉. union y1 y2 = y
∀x:s.∃y:Set〈s〉. singleton x = y
∀x:s.∀y:Set〈s〉.∃y′:Set〈s〉. delete y x = y′

(Inductive Domain) :
[[Set〈s〉]] = µS. empty ∨ (singleton [[s]]) ∨ union S S

(Associativity) :

30

(union y1 (union y2 y3)) = ((union (union y1 y2) y3))
(Commutativity) :

(union y1 y2) = (union y2 y1)
(Idempotency) :

(union y y) = y
(Unit) :

(union y empty) = y
(Delete) :

delete empty z = empty
delete (singleton x) z = empty ∧ x = z ∨ (singleton x) ∧ x 6= z
delete (union y1 y2) z = union (delete y1 z) (delete y2 z)

(No Confusion)
∀x:s. empty 6= singleton x
∀x, y:s. singleton x = singleton y → x = y
empty = (union y1 y2)→ y1 = empty ∧ y2 = empty
∀x:s. (singleton x) = (union y1 y2)
→ (y1 = singleton x) ∧ (y2 = singleton x)
∨ (y1 = singleton x) ∧ (y2 = empty)
∨ (y1 = empty) ∧ (y2 = singleton x)

(union y1 y2) = (union y3 y4)
→ ∀z:s. (union (delete y1 z) (delete y2 z))

= (union (delete y3 z) (delete y4 z))
endspec

Explanation. The axioms (Sort Name), (Function), and (Inductive Domain) are similar to those in the
specification LIST{s}. The axioms (Associativity), (Commutativity), and (Idempotency) define the
corresponding properties of the operation union. The axiom (Unit) defines that empty is the unit element
of union. The axiom (Delete) defines the behaviors of the operation delete. The (No Confusion) axioms
define the no-confusion properties modulo the above axioms. Note that the last (No Confusion) uses
delete to reduce the sizes of the argument sets.

In general, it is highly nontrivial to define the (No Confusion) axioms for constructors that have
underlying axioms (such as the associativity and commutativity axioms for union above). In the above
specification SET{s}, we define (No Confusion) using the operation delete that is not a constructor of
sets, so the resulting specification is easier to understand, but it is specific to defining sets and cannot be
generalized to define arbitrary constructors modulo any axioms.

There are two ways to define constructors modulo axioms in a more general way. Firstly, we can use
unification and the most general unifiers (mgu) when they exist. Intuitively, unification solves equations
between constructor terms and mgu is a complete and minimal solution (i.e., a substitution mapping variables
to terms). Indeed, a (No Confusion) axiom has the following common form c x1 . . . xn = d y1 . . . ym → ϕ,
where ϕ specifies when the two terms (built from c and d respectively) are equal. If there are no underlying
axioms about constructors, then it is clear that ϕ requires c = d, m = n, and all the corresponding arguments
are equal. However, when there are underlying axioms about constructors, ϕ may be different. For example,
the fourth (No Confusion) axiom in the specification SET{s} states three conditions where singleton x
equals union y1 y2, where singleton and union are different constructors of sets. A key observation is that
ϕ can be generated from the mgu of c x1 . . . xn and d y1 . . . ym. Thus, we can use unification and mgu to
define the (No-Confusion) axioms. We leave further research on this approach as future work.

The drawback of the above approach using unification is that mgu may not exist for all underlying con-
structor axioms. Even if the mgu exists, the resulting (No Confusion) axioms may be hard to read and
understood by humans. The second approach solves these problems by not defining the no-confusion prop-
erties modulo axioms directly on the constructor terms. Instead, we define the standard (No-Confusion)
axioms assuming that there are no underlying axioms and then capture (No-Confusion) by defining the
smallest congruence relation that includes all the (equational) properties about constructors. Then, for any

31

two terms t1 and t2, t1 equals to t2 modulo the underlying axioms if and only if they are in the defined congru-
ence relation. Following this approach, we essentially capture initial algebra semantics in an axiomatically
way in ML. This topic is studied thoroughly in the technical report [8].

7.5 Dependent Product Types
The dependent product type Πx:s1. s2 is an extension of the function type s1→○s2. Let us assume s2 is an
expression where x occurs free. If a function f has the function type s1→○s2, then for an element a of sort
s1, the term f a has sort s2 no matter what a is. However, if a function f has the dependent product type
Πx:s1. s2, then for an element a of sort s1, the term f a has sort s2[a/x], which is dependent on the argument
a. Clearly, if s2 has no free occurrences of x, then Πx:s1. s2 reduces to s1→○s2.

It is straightforward to specify the inhabitant of Πx:s1. s2 following the similar definition of the inhabitant
of s1→○s2. However, it is (surprisingly) not a trivial task to capture the binding behavior of Πx:s1. s2, in
which x is bound in s2. We shall leave this to Section 7.7. In this paper we only show how to specify the
inhabitant set of Πx:s1. s2. In other words, we only define [[Πx:s1. s2]] (directly as a syntactic sugar) without
defining Πx:s1. s2, because the latter requires us to deal with the binding of x into s2.

spec DPROD
Notation:

[[Πx:s1. s2(x)]] ≡ ∃f. f ∧ ∀x:s1.∃y:s2(x). f x = y
endspec

Explanation. In the above definition we write s2(x) to emphasize that x may occur free in s2. The reader can
verify that when x 6∈ FV (s2), the above notation reduces to the definition of the inhabitant of the function
type s1→○s2.

Proposition 7.26. The following hold:

1. ∀f. (∀x:s1.∃y:s2(x). f x = y)→ f ∈ [[Πx:s1. s2(x)]].
2. ∀f :(Πx:s1. s2(x)). x ∈ [[s1]]→ f x ∈ [[s2(x)]].

7.6 Dependent Sum Types
The dependent sum type Σx:s1. s2 is an extension of the product type s1 ⊗ s2. Let us assume that s2 is an
expression where x occurs free. If a pair 〈a, b〉 has the product type s1⊗s2, then a has type s1 and b has type
s2. If a pair 〈a, b〉 has the sum type Σx:s1. s2 and a has type s1, then b has type s2[a/x]. In other words,
the type of b depends on a. Clearly, if s2 has no free occurrences of x, then Σx:s1. s2 reduces to s1 ⊗ s2.

Similarly to the dependent product type Πx:s1. s2, the dependent sum type Σx:s1. s2 also has binding
behavior: it binds x to s2. Therefore, in the following specification we only define the inhabitant of Σx:s1. s2

directly as a notation.

spec DSUM
Symbol: 〈_,_〉
Notation:

[[Σx:s1. s2(x)]] ≡ ∃x:s1.∃y:s2(x). 〈x, y〉
Axiom:

(No Confusion) :
∀x, x′:s1.∀y:s2(x).∀y′:s2(x′). 〈x, y〉 = 〈x′, y′〉 → x = x′ ∧ y = y′

endspec

Proposition 7.27. The following hold:

1. DSUM |= ∀p:(Σx:s1. s2(x)).∃x:s1.∃y:s2(x). p = 〈x, y〉.
2. DSUM |= ∀x:s1.∀y:s2(x). 〈x, y〉 ∈ [[Σx:s1. s2(x)]].

32

7.7 Discussion: Defining Binders
In Sections 7.5 and 7.6, we showed how to define the inhabitant sets of dependent product and sum types
in ML. However, we did not show the complete ML definition of any type systems because type systems
have terms with binders. In [3], we proposed a general approach to defining arbitrary binders in ML and
we developed sound and complete ML specifications for various logical systems with binders, including λ-
calculus, System F, pure type systems, and π-calculus. In this section, we only discuss the high-level ideas
about how to handle binders in ML.

It is known that binders are difficult to be encoded in a formal system. The difficulty lies in the handling
of α-equivalence and capture-avoiding substitution. Let us use (untyped) λ-calculus as an example. In
λ-calculus, function abstraction λx. e is a binding construct that binds x in e. As a result, one function
abstraction can have many syntactically different representations. For example, the identity function can be
represented as λx. x, or λy. y, or λz. z, etc. Renaming bound variables in a function abstraction does not
change the meaning of the function. Therefore, we are interested in the syntax of λ-calculus modulo the
renaming of bound variables, i.e., α-equivalence. Let us look at the following axiom (schema) in λ-calculus,
called the (Beta) axiom that defines the behavior of function application:

(Beta) (λx. e) e′ = e[e′/x]

where x is a variable, e and e′ are λ-calculus expressions, and e[e′/x] denotes the result of substituting e′
for x in e, where bound variables are automatically renamed to prevent variable capture. Variable capture
means that a free variable in e′ gets bound by a binder in e after substitution. For example, consider the
function application: (λx. λy. x) y. If we apply (Beta) without the necessary variable renaming, we will get
the incorrect result λy. y, where the argument y is now bound by λy. The correct way requires us to rename
λx. λy. x to λx. λz. x, where z is a fresh variable that does not occur in the function nor in the argument.
Then, we have (λx. λz. x) y, which then yields the correct result λz. y. This is called the capture-avoiding
substitution.

To define λx. e in ML, we first define the set {〈y, e[y/x]〉 | for all variables y} that includes all possible
α-equivalent representations of the function λx. e. Note that the above set is essentially the graph of the
function x 7→ e. Therefore, we use the following ML pattern to define the graph set:

〈x, e〉 ≡ pair x e

[x]e ≡ intension ∃x. 〈x, e〉

where pair is the pairing symbol that takes x and e and returns the pair 〈x, e〉. Pattern ∃x. 〈x, e〉 then
ranges over all variables x and computes the union set, which is exactly the graph set. Also note that in
∃x. 〈x, e〉, the variable x is bound in e by the ML’s built-in binder ∃. Thus, we are using the built-in ∃
binder to capture the binding behavior of λ in λ-calculus. The construct intension takes a set (as a collection
of elements) and returns the set itself as one individual element. Therefore, the pattern intension ∃x. 〈x, e〉,
or using the notation [x]e, represents the graph set as one individual element instead of a collection of the
argument-value pairs, and thus when we apply other functions or constructors to the graph [x]e, we will not
trigger ML’s pointwise extension (see Definition 2.4). For more technical details, we refer the reader to [3,
Section 6].

In short, we can use the ML pattern [x]e to denote the graph of the function x 7→ e. The graph pattern
includes all the binding information of x into e. Note that the notation [x]e is a common notation in other
approaches to dealing with binders using higher-order abstract syntax [?] and nominal logic [?]. Finally, we
can define λx. e ≡ lambda [x]e as syntactic sugar, where we apply the constructor lambda to the graph set
[x]e. Different binders will have different outmost constructors, but all take the same graph set as argument
(if they have the same binding behavior of x into e).

Now, let LAMBDA be the ML specification that includes the above binder definitions plus the (Beta)
axiom. Then we can prove that LAMBDA precisely captures λ-calculus. Formally, we prove the following
conservative extension theorem (see [3, Theorem 36]):

`λ e1 = e2 iff LAMBDA ` e1 = e2

33

where `λ denotes the formal reasoning of λ-calculus, i.e., equational reasoning modulo axiom (Beta).

8 Defining Basic Process Algebra as Matching Logic Specifications
Process algebra is the field where the behavior of distributed or parallel systems is studied by algebraic
means. The most known theories include calculus of communicating systems [13], communicating sequential
process [14], π-calculus [15], and algebra of communicating processes [16, 17]. In this paper we consider
a simple fragment of the algebra of communicating processes called the basic process algebra (BPA). BPA
introduces simple operators together with their axioms that enable to describe finite processes. Infinite
processes can be specified using guarded recursive specifications. We strongly believe that the approach used
for BPA can be successfully applied to the other theories and ML is a suitable framework for describing and
reasoning about processes.

The main ingredients of BPA include:

1. a finite set Atom of atomic actions: Atom ::= a | b | c | d | · · · ;
2. a set PTerm of process terms denoted p, q, . . . :

PTerm ::= Atom | PTerm + PTerm | PTerm ; PTerm

3. a predicate p u−→
√

that represents the successful execution of an atomic action u ∈ Atom of process p;
4. a set of axioms defining the transition relation between process terms:

u
u−→
√

x
u−→
√

x+ y
u−→
√

x
u−→ x′

x+ y
u−→ x′

y
u−→
√

x+ y
u−→
√

y
u−→ y′

x+ y
u−→ y′

x
u−→
√

x ; y
u−→ y

x
u−→ x′

x ; y
u−→ x′ ; y

In the following, we define the ML specification for BPA.

spec BPA
Symbol: Atom,PTerm,

√
, a, b, c, d, . . . ,_+_,_;_, •,≈BPA

Metavariable: element variables x, x′, y, y′:PTerm, u:Atom
Notation:
•u x ≡ •ux
p+ q ≡ _+_ p q
p ; q ≡ _;_ p q
x ≈BPA y ≡ 〈x, y〉 ∈ ≈BPA

β(R) ≡ 〈
√
,
√
〉 ∨

∃p,q:PTerm. 〈p, q〉 ∧ ∀p′:PTerm.∀u:Atom. (p→ •u p′)→
(∃q′:PTerm. q → •u q′ ∧ 〈p′, q′〉 ∈ R))
∧ ∀q′:PTerm.∀u:Atom. (q → •u q′)→

(∃p′:PTerm. p→ •u p′ ∧ 〈p′, q′〉 ∈ R))
Axiom:

(Sort Name) :
Atom ∈ [[Sorts]] PTerm ∈ [[Sorts]]

(Function) :
∃y.Atom = y ∃y.PTerm = y
∃y._+_ = y ∃y._;_ = y
+ : PTerm × PTerm → PTerm
; : PTerm × PTerm → PTerm

(Domain) :
[[Atom]] = a ∨ b ∨ c ∨ d ∨ · · ·
[[PTerm]] = µX.Atom ∨ (X +X) ∨ (X;X)

34

(No Confusion) :
x+ y = x′ + y′ → x = x′ ∧ y = y′

x ; y = x′ ; y′ → x = x′ ∧ y = y′

(Transition) :
•u[[PTerm]] ⊆ [[PTerm]] ∨

√

•u
√

= µU. u ∨ U + [[PTerm]] ∨ [[PTerm]] + U
•uy = µY . (•u

√
) ; y ∨ Y + [[PTerm]] ∨ [[PTerm]] + Y ∨

∃x, x′, y′:PTerm. x ; y′ ∧ y = x′ ; y′ ∧ x ∈ •u x′
(Bisimulation)
≈BPA = νR. β(R)

endspec

Explanation. The first (Transition) axiom is equivalent to •[[Atom]] [[PTerm]]) ⊆ [[PTerm]]∨
√

and specifies
the signature of the transition relation. The second (Transition) axiom is the definition of the predicate

√
.

The third (Transition) axiom says that •uy denotes the u-predecessors w.r.t. the transition relation of a
process term y; the correspondence with the transition axioms is transparent. However, the ML specification
is more precise since it defines the exact set of transitions as the least fixpoint. Later it is extended to the
greatest fixpoint in order to allow infinite processes. The pattern β(R) is used to define the bisimulation
equivalence in the last axiom. R ⊆ β(R) says that R is a post-fixpoint, i.e, a bisimulation.

Proposition 8.1 (BPA Coinduction Principle).

BPA |= (R ⊆ R′ ∧R′ ⊆ β(R′))→ (R ⊆ ≈BPA) (CoindBPA)

where R : PTerm⊗PTerm.

Explanation. The relation R′ ⊆ β(R′) says that R′ is a bisimulation and ≈BPA is the largest bisimulation,
called bisimulation equivalence. The proof is similar to that for streams specified with destructors.

Having an ML specification for BPA, we may use ML reasoning to prove properties of process terms.

Proposition 8.2. The following hold:

1. BPA � (∃p:PTerm. 〈p+ p, p〉) ⊆ ≈BPA.
2. BPA � (∃p, q:PTerm. 〈(p+ q, q + p〉) ⊆ ≈BPA.
3. BPA � (∃p, p′, q:PTerm. 〈(p+ p′) ; q, p ; q + p′ ; q〉) ⊆ ≈BPA.

Explanation. We show the proof trees for Item 1 and leave the rest as exercises. For notational simplicity
let us define Φ ≡ ∃p:PTerm. 〈p+ p, p〉.

BPA � 〈p′ + p
′
, p
′〉 ∈ Φ

FOL
BPA � (p→ •up′ ∧ (p+ p)→ •u(p

′
+ p
′
))→ p→ •up′ ∧ 〈p′ + p

′
, p
′〉 ∈ Φ · · ·

•up′
BPA � ∀p′:PTerm. ∀u:Atom. ((p+ p)→ •u p′)→ (∃q′:PTerm. p→ •u q′ ∧ 〈p′, q′〉 ∈ Φ))

∧ ∀q′:PTerm. ∀u:Atom. (p→ •u q′)→ (∃p′:PTerm. (p+ p)→ •u p′ ∧ 〈p′, q′〉 ∈ Φ))
FOL

BPA � 〈p+ p, p〉 → β(Φ)
∃-Gen

BPA � (∃p:PTerm. 〈p+ p, p〉)→ β(Φ)
KT

BPA � Φ ⊆ ≈BPA

Infinite processes are specified using guarded recursive specifications [17]. Here is a very simple example:

x = a ; y

y = b ;x
a b

First we extend the definition of terms to describe infinite processes: [[PTerm]] = νX.Atom ∨X+X ∨X;X.
Then the two processes are specified together using the product sort PTerm⊗PTerm:

〈px , py〉 = νP :PTerm⊗PTerm. 〈a ;π2(P), b ;π1(P)〉.

35

However, there is a subtle difference between the definition of the solution of a recursive specification in
process algebra and that given by its ML encoding. In process algebra, a solution is given by any pair
〈p1, p2〉 of processes such that p1 ≈ a ; p1 and p2 ≈ b ; p2. In the ML encoding, px and py designate sets
of processes. Therefore, in order to capture the definition from process algebra, we have to prove that
∀p, q. p ∈ px ∧ q ∈ px → p ≈ q (and similarly for py). For the above example, these properties follow from
the fact that px and py are singleton: ∃p1. px = p1 and ∃p2. py = p2.

Having processes encoded in ML, we may use ML patterns to express their properties. For instance,
we can show that the processes specified above include infinite loops: px ∨ py → νY . •{a,b} Y , where
•U ϕ ≡

∨
u∈U •u ϕ.

The approach explained on the above example can be straightforwardly extended to processes specified
by a system of n equations Xi = ti(X1, . . . , Xn), i = 1, . . . , n. For instance, the above system is encoded by

〈px 1, . . ., pxn〉 = νP :PTerm⊗ · · · ⊗ PTerm. t(π1(P), . . . , πn(P))

Process algebra is extended with additional rules to obtain transition system semantics:

ti(p1, . . . , pn)
u−→
√

pi
u−→
√

ti(p1, . . . , pn)
u−→ y

pi
u−→ y

where 〈p1, . . ., pn〉 is the solution of the system. With ML encoding, the above rules become internal theorems
proved using ML reasoning.

9 Defining Functors and (Co)Monads as Matching Logic Specifica-
tions

In this section we show how higher-order reasoning in category theory can be internalized in ML. We give
specifications for functors, monads, and comonads as they are defined in functional languages, like Haskell
(see, e.g., [18, 19]).

9.1 Functors
We first enrich [[Sorts]] with a “category structure”:

spec CAT
Symbol: id , ◦
Metavariable: element variables s, s1, s2, s3:Sorts
Notation:
g ◦ h ≡ ◦ g h

Axiom:
(Function) :
∃y. id = y
∃y. ◦ = y

(Identity and Composition Laws) :
(id s):s→○s
∀x:s. (id s)x = x
∀g1:s1→○s2.∀g2:s2→○s3. (g2 ◦ g1):s1→○s3

∀x:s1.∀g1:s1→○s2.∀g2:s2→○s3. (g2 ◦ g1)x = g2 (g1 x)
endspec

Explanation. The objects of the category are given by sorts, and the arrows by the inhabitants of function
sorts s→○s′. The axioms of the category are self-explaining. Recall that g : s1→○s2 ≡ g ∈ [[s1→○s2]].

36

Proposition 9.1.

CAT |= ∀g:s1→○s2. (g ◦ (id s1)) =s1
ext g

CAT |= ∀g:s1→○s2. ((id s2) ◦ g) =s1
ext g (◦Idl)

CAT |= ∀g1:s1→○s2 .∀g2:s2→○s3 .∀g3:s3→○s4 .(g3 ◦ (g2 ◦ g1)) =s1
ext ((g3 ◦ g2) ◦ g1) (◦Assoc)

The explanation is left as an exercise to the reader.

Remark 9.2. A reader familiar with the Haskell programming language already noticed that CAT can be
seen as an ML axiomatization of Hask [?], the category of Haskell types and functions. An essential aspect
fo this axiomatization is the use of extensional equality for functions.

Matching Logic specification of a functor It is given by means of two symbols f and map as follows:

spec FNCTR
Import: CAT
Symbol: f,map
Metavariable: element variables s, s1, s2:Sorts
Axiom:

(Function) :
∃y. f = y
∃y.map = y

(Functor Laws) :
f : Sorts → Sorts
∀g:s1→○s2. (map g):(f s1)→○(f s2)
(map (id s)) = id s
∀h:s1→○s2.∀g:s2→○s3.map (g ◦ h) =ms1

ext (map g) ◦ (map h) (MDist)
endspec

Explanation. The objects mapping is given by the first (Functor Laws) axiom and the arrows mapping is
given by the second one. The last two axioms say that a functor preserves the identities and the composition.

9.2 Monads
9.2.1 Monads Categorically

Recall that in category theory a monad consists of a functor (m,map) and two natural transformations:
µ : m2 → m (join, multiplication), and η : 1m → m (unit) satisfying the following equations:

µ ◦ (ηm) = 1m

µ ◦ (mη) = 1m

µ ◦ (mµ) = µ ◦ (µm)

where 1m : m→ m is the identity natural transformation. The natural transformation µ associates an arrow
µs : m2 s → ms for each sort s:Sorts. Similarly, η associates an arrow ηs : s → ms for each s:Sorts. Note
that the above equalities express the commutativity of diagrams in terms of category theory. In the ML
encoding they become internal axioms.

Matching Logic Specification

spec MONAD
Import: FNCTR

37

Symbol: µ, η
Metavariable: element variables s, s1, s2:Sorts
Notation:
µs ≡ µ s

Axiom:
(Natural Transformations) :
µs:((m ◦m) s)→○(ms)
ηs:s→○(ms)
∀ g:s1→○s2. ηs2 ◦ g =s1

ext (map g) ◦ ηs1 (ηNt)
∀ g:s1→○s2. (µs2 ◦ (map map g)) =mms1

ext (map g) ◦ µs1 (µNt)
(Diagram Commutativity)
µs ◦ η(ms) =s

ext id (ms) (ηIdr)
µs ◦ (map ηs) =s

ext id (ms) (ηIdl)
µms =mmms

ext map µs (µmComm)
endspec

Explanation. We prefer to use the axiom (µmComm) instead of (µAssoc) (see below), which is proved as
semantic consequence.

Proposition 9.3.

MONAD |= ∀s:Sorts. µs ◦ (map µs) =mms
ext µs ◦ µ(ms) (µAssoc)

MONAD |= ∀ g:s1→○ms2.map (µs2 ◦ (map g)) =mms1
ext (map g) ◦ µs1 (µNt2)

Explanation. (µAssoc) follows by applying (µmComm). (µNt2) is explained as follows:

map (µs2 ◦ (map g)) =mms1
ext (map µs2) ◦ (map map g) (by (MDist))

=mms1
ext (µms2) ◦ (map map g) (by (µmComm))

=mms1
ext (map g) ◦ µs1 (by (µNt))

9.2.2 Monads in Functional Programming Languages

In programming languages and semantics the Kleisli alternative definition for monads is used (see, e.g., [20]).
Roughly speaking, this consists of considering instead of µ a symbol bind (denoted also by »=) defined by
the following axiom, which we add to MONAD:

∀ g:s1→○ms2. bind g =ms1
ext µs2 ◦map g

It is easy to see that bind satisfies bind :ms1→○(s1→○ms2)→○ms2, which can be spelled out as follows:

∀x:ms1.∀ g:s1→○ms2.∃y:ms2. bind g x = y.

A common name for the unit η in programming languages is that of return. We prove now the properties
of bind , which characterize it in Kleisli categories and programming languages:

Proposition 9.4. The following hold:

1. MONAD |= (bind g) ◦ ηs1 =s1
ext g

2. MONAD |= bind ηs =ms
ext idms

3. MONAD |= ∀ g:s1→○ms2.∀h:s2→○ms3. bind((bind h) ◦ g) =ms3
ext bind h ◦ bind g

Explanation. We have the following reasoning.
(Item 1).

(bind g) ◦ ηs1 =ms1
ext (µs2 ◦ (map g)) ◦ ηs1 (by definition of bind)

38

=ms1
ext µs2 ◦ ((map g) ◦ ηs1) (by (◦Assoc))

=ms1
ext µs2 ◦ (ηms2 ◦ g) (by (ηNt)

=ms1
ext (µs2 ◦ ηms2) ◦ g (by (◦Assoc))

=ms1
ext idms2 ◦ g (by (ηIdr))

=ms1
ext g (by (◦Idl))

(Item 2).

bind ηs =ms
ext µs ◦ (map ηs) (by definition of bind)

=ms
ext idms (by (ηIdl))

(Item 3).

bind((bind h) ◦ g)

=ms3
ext bind((µs3 ◦ (map h)) ◦ g) (by definition of bind)

=ms1
ext µs3 ◦map ((µs3 ◦ (map h)) ◦ g) (by definition of bind)

=ms1
ext µs3 ◦map (µs3 ◦ (map h)) ◦ (map g) (by (MDist),(◦Assoc))

=ms1
ext µs3 ◦ ((map h) ◦ µs2) ◦ (map g) (by (µNt2))

=ms1
ext (µs3 ◦ (map h)) ◦ (µs2 ◦ (map g)) (by (◦Assoc))

=ms1
ext bind h ◦ bind g (by definition of bind)

Remark 9.5. MONAD can be seen as a partial ML axiomatization of the monads in Haskell [20]. The
definition of the Haskell class Monad is as follows:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

The correspondence between the members of the class Monad and those of MONAD is:

(>>=) :: m a -> (a -> m b) -> m b bind :ma→○ (a→○mb)→○mb
return :: a -> m a ηa:a→○ma

In the Haskell documentation, it is written that the members of the class Monad should obey the following
equations:

return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

which are exactly the properties proved in Proposition 9.4. In order to get a full axiomatization for the
Haskell monad, we need to add the symbols >> and fail, together with their axioms, to MONAD.

9.3 Comonads
9.3.1 Comonads Categorically

In category theory the notion of comonad is defined as the dual of that of monad. Consequently, a comonad
consists of a functor (w,map) and two natural transformations: δ : w → w2 (duplication, comultiplication),
and ε : w → 1w satisfying the following equations:

(εw) ◦ δ = 1w

39

(w ε) ◦ δ = 1w

w δ ◦ δ = δ w ◦ δ

where 1w : m→ m is the identity natural transformation. The natural transformation δ associates an arrow
δs : w s → w2 s for each sort s:Sorts. Similarly, ε associates an arrow εs : w s → s for each s:Sorts. Note
that the above equalities express the commutativity of diagrams in category theory terms.

Matching Logic Specification

spec COMONAD
Import: FNCTR
Symbol: δ, ε
Notation:
δs ≡ δ s
εs ≡ ε s

Axiom:
(Natural Transformations) :
∀s:Sorts. δs:(w ◦ w s)→○(w s)
∀s:Sorts. εs:(w s)→○s
∀ g:s1→○s2. g ◦ εs1 =w s1

ext εs2 ◦ (map g) (εNt)
∀ g:s1→○s2. δs2 ◦ (map g) =ww s1

ext (map map g) ◦ δs1 (δNt)
(Diagram Commutativity)
∀s:Sorts. εw s ◦ δs =s

ext idw s (εIdr)
∀s:Sorts. (map εs) ◦ δs =s

ext idw s (εIdl)
∀s:Sorts.map δs =w s

ext δw s (wδComm)
endspec

Proposition 9.6.

COMONAD |= ∀s:Sorts. (map δs) ◦ δs =w s
ext δw s ◦ δs (δAssoc)

COMONAD |= ∀ g:w s1→○s2.map ((map g) ◦ δs1) =ww s1
ext δs2 ◦ (map g) (δNt2)

Explanation. Similar to that of Proposition 9.3.

9.3.2 Comonads in Functional Programming Languages

Similarly to monads, a comonad is defined in programming languages using a symbol cobind (extend) defined
by the following axiom, which we add to COMONAD:

∀ g:w s1→○s2. cobind g =w s2
ext map g ◦ δs1

We prove now the properties of cobind , which characterize it in coKleisli categories and programming lan-
guages:

Proposition 9.7. The following hold:

1. COMONAD |= εs2 ◦ (cobind g) =w s1
ext g

2. COMONAD |= cobind εs =ms
ext idw s

3. COMONAD |= ∀ g:w s1→○s2.∀h:w s2→○s3. cobind(h ◦ (cobind g)) =ms1
ext cobind h ◦ cobind g

Explanation. Similar to that of Proposition 9.4.

Remark 9.8. The Haskell class Comonad is defined as follows [21]:

40

class Functor w => Comonad w where
extract :: w a -> a
duplicate :: w a -> w (w a)
extend :: (w a -> b) -> w a -> w b

The correspondence between this class and COMONAD is almost obvious:

extract :: w a -> a εa:w a→○ a
duplicate :: w a -> w (w a) δa:w a→○ww a
extend :: (w a -> b) -> w a -> w b cobind :(w a→○ b)→○w a→○w b

The equations the class should obey

extend extract = id
extract . extend f = f
extend f . extend g = extend (f . extend g)

are exactly those given by Proposition 9.7.

10 Conclusion
In this paper we gave an example-driven, yet comprehensive introduction to matching logic. We showed
how to use matching logic specifications to capture various mathematical domains and data types, and
we proposed matching logic notations to define domain-specific languages. We explained technical details
when writing matching logic specifications and reasoning about matching logic semantics. In particular we
discussed how to carry out inductive and coinductive reasoning using matching logic.

Matching logic follows a minimalism design. Matching logic syntax has only 8 syntactic constructs that
are the most basic ones such as variables, (user-provided) symbols, application, propositional connectives,
quantification, and fixpoints, leaving the more complex concepts such as equality, functions, predicates, sorts,
many-sorted and/or order-sorted structures, inductive and coinductive data structures, types, and so on as
definable concepts. In the paper, we showed how to define these concepts as matching logic specifications.

We focused on the expressiveness of matching logic by presenting matching logic specifications that define
a variety of logical systems, particularly those that have direct support for induction and/or coinduction and
for dealing with data types. From these specifications, we demonstrated the flexibility of matching logic.

The minimalism design of matching logic also includes the fact that it has a relatively small proof system,
as shown in Section 5. As a result, it is relatively simple to implement an algorithm that checks the correctness
of a matching logic Hilbert-style proof. Such an algorithm is called the proof checking algorithm. Therefore,
matching logic is preferred if one cares about a small trusted core for all formal reasoning.

Matching logic is particularly useful in defining the formal semantics of programming language. For
example, the K formal language framework (http://kframework.org) uses matching logic as its logical
foundation. In K, the syntax of programming languages is declared using BNF grammars, which translates
into inductive data types built from the constructors (which are language constructs) in matching logic. The
language semantics is defined in terms of rewrite rules of the form ϕ1 ⇒ ϕ2, where ϕ1 and ϕ2 are matching
logic patterns that can be matched by the computation configurations of the languages. In other words, the
formal definition of a programming language yields a corresponding logical theory in matching logic. We
refer the reader to [?, ?] for more discussion.

References
[1] G. Roşu, Matching logic, Logical Methods in Computer Science 13 (4) (2017) 1–61. doi:10.23638/

LMCS-13(4:28)2017.

41

http://kframework.org
https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.23638/LMCS-13(4:28)2017

[2] X. Chen, G. Rosu, Matching µ-logic, in: Proceedings of the 34th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS 2019), IEEE, Vancouver, Canada, 2019, pp. 1–13. doi:10.1109/
LICS.2019.8785675.

[3] X. Chen, G. Roşu, A general approach to define binders using matching logic, Tech. Rep. http://hdl.
handle.net/2142/106608, University of Illinois at Urbana-Champaign (2020).

[4] X. Chen, G. Roşu, Applicative matching logic, Tech. Rep. http://hdl.handle.net/2142/104616,
University of Illinois at Urbana-Champaign (July 2019).

[5] A. Arusoaie, D. Lucanu, Unification in matching logic, in: Proceedings of the 3rd World Congress on
Formal Methods (FM 2019), 2019, pp. 502–518. doi:10.1007/978-3-030-30942-8_30.

[6] A. Tarski, A lattice-theoretical fixpoint theorem and its applications., Pacific J. Math. 5 (2) (1955)
285–309.

[7] J. A. Goguen, An initial algebra approach to the specification, correctness and implementation of
abstract data types, IBM Research Report 6487 (1976).

[8] X. Chen, D. Lucanu, G. Roşu, Initial algebra semantics in matching logic, Tech. Rep. http://hdl.
handle.net/2142/107781, University of Illinois at Urbana-Champaign and Alexandru Ioan Cuza Uni-
versity (2020).

[9] B. Stroustrup, Concepts: the future of generic programming or how to design good concepts and use
them well (2017).
URL https://www.stroustrup.com/good_concepts.pdf

[10] A. Sutton, Defining concepts, Overload Journal (131) (2016).
URL https://accu.org/index.php/journals/2198

[11] M. Niqui, J. J. M. M. Rutten, Stream processing coalgebraically, Sci. Comput. Program. 78 (11) (2013)
2192–2215. doi:10.1016/j.scico.2012.07.013.

[12] G. Roşu, D. Lucanu, Circular coinduction – a proof theoretical foundation, in: Proceedings of the 3rd

International Conference on Algebra and Coalgebra in Computer Science (CALCO 2009), Springer,
Udine, Italy, 2009, pp. 127–144. doi:10.1007/978-3-642-03741-2_10.

[13] R. Milner (Ed.), A calculus of communicating systems, Springer, 1980. doi:10.1007/3-540-10235-3.

[14] C. A. R. Hoare, Communicating sequential processes, Prentice-Hall, 1985.

[15] R. Milner, Communicating and mobile systems - the Pi-calculus, Cambridge University Press, 1999.

[16] J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge University Press, 1990.

[17] W. Fokkink, Introduction to process algebra, Springer, 2000. doi:10.1007/978-3-662-04293-9.

[18] T. Uustalu, V. Vene, Comonadic notions of computation, Electr. Notes Theor. Comput. Sci. 203 (5)
(2008) 263–284. doi:10.1016/j.entcs.2008.05.029.

[19] D. Orchard, Should I use a monad or a comonad?, draft work (2012).
URL https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.
pdf

[20] Haskell monads, last visit December 2019.
URL https://wiki.haskell.org/Monad

[21] Haskell monads, last visit December 2019.
URL http://hackage.haskell.org/package/comonad

42

https://doi.org/10.1109/LICS.2019.8785675
https://doi.org/10.1109/LICS.2019.8785675
http://hdl.handle.net/2142/106608
http://hdl.handle.net/2142/106608
http://hdl.handle.net/2142/104616
https://doi.org/10.1007/978-3-030-30942-8_30
http://hdl.handle.net/2142/107781
http://hdl.handle.net/2142/107781
https://www.stroustrup.com/good_concepts.pdf
https://www.stroustrup.com/good_concepts.pdf
https://www.stroustrup.com/good_concepts.pdf
https://accu.org/index.php/journals/2198
https://accu.org/index.php/journals/2198
https://doi.org/10.1016/j.scico.2012.07.013
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1016/j.entcs.2008.05.029
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://www.cs.kent.ac.uk/people/staff/dao7/drafts/monad-or-comonad-orchard11-draft.pdf
https://wiki.haskell.org/Monad
https://wiki.haskell.org/Monad
http://hackage.haskell.org/package/comonad
http://hackage.haskell.org/package/comonad

	Introduction
	Matching Logic Syntax and Semantics
	Matching Logic Syntax
	Matching Logic Semantics

	Specification Examples: Important Mathematical Instruments
	Definedness Symbol and Related Instruments
	Inhabitant Symbol and Related Instruments
	Example: Defining Many-Sorted Signatures in Matching Logic
	More Instruments about Sorts

	Constructors and Inductive Domains
	Example: Natural Numbers

	A Discussion about Curried and Uncurried Styles

	Understanding Models and Interpretation of Patterns
	Three Matching Logic Models of the Specification BNAT
	Explaining the Interpretation of Patterns

	Matching Logic Proof System
	Explaining the General Principles of Induction and Coinduction
	Induction Principle in Complete Lattices and in Matching Logic
	Coinduction Principle in Complete Lattices and in Matching Logic

	Defining Types as Matching Logic Specifications
	Simple Types
	Booleans
	Natural Numbers

	Parameterized Types
	Product Types
	Sum (Coproduct) Types
	Function Types
	Parameterized (Finite) Lists
	Parameterized (Infinite) Streams

	Fixed-Length Vector Types
	Parametric (Finite) Sets
	Dependent Product Types
	Dependent Sum Types
	Discussion: Defining Binders

	Defining Basic Process Algebra as Matching Logic Specifications
	Defining Functors and (Co)Monads as Matching Logic Specifications
	Functors
	Monads
	Monads Categorically
	Monads in Functional Programming Languages

	Comonads
	Comonads Categorically
	Comonads in Functional Programming Languages

	Conclusion

