# Difference between revisions of "Projects"

(26 intermediate revisions by 2 users not shown) | |||

Line 1: | Line 1: | ||

__NOTOC__ __NOEDITSECTION__ | __NOTOC__ __NOEDITSECTION__ | ||

+ | Currently our research falls into one of the following three areas: | ||

+ | : '''''[[K and Matching Logic | Programming Language Design and Semantics]]''''' | ||

+ | : '''''[[Runtime Verification]]''''' | ||

+ | : '''''[[Circ | Behavioral Specification]]''''' | ||

+ | You want to work on these topics? See [[Grigore Rosu]]'s list of [[Open Problems and Challenges]]. | ||

+ | Below are our specific projects (at least one of us is working on one of these). | ||

+ | |||

+ | |||

{{Header | [[k: | K]]}} | {{Header | [[k: | K]]}} | ||

− | [[K]] is a rewrite-based executable semantic framework in which programming languages, type systems and formal analysis tools can be defined using configurations, computations and rules. Configurations organize the state in units called cells, which are labeled and can be nested. Computations carry computational meaning as special nested list structures sequentializing computational tasks, such as fragments of program | + | '''''[[k: | K]]''''' is a rewrite-based executable semantic framework in which programming languages, type systems and formal analysis tools can be defined using configurations, computations and rules. Configurations organize the state in units called cells, which are labeled and can be nested. Computations carry computational meaning as special nested list structures sequentializing computational tasks, such as fragments of program [[k: | [more ...]]] |

+ | |||

{{Header | [[:ml:Matching Logic|Matching Logic]]}} | {{Header | [[:ml:Matching Logic|Matching Logic]]}} | ||

− | '''''[[:ml:Matching Logic|Matching | + | '''''[[:ml:Matching Logic | Matching logic]]''''' allows us to regard a language through both operational and axiomatic lenses at the same time, making no distinction between the two. A programming language is given a semantics as a set of rewrite rules. A language-independent proof system can then be used to derive both operational behaviours and formal properties of a program. In other words, one matching logic semantics fulfils the roles of both operational and axiomatic semantics in a uniform manner [[:ml:Matching Logic | [more ...]]] |

− | + | ||

− | + | ||

− | + | ||

− | + | ||

− | + | ||

{{Header | [[MOP]]}} | {{Header | [[MOP]]}} | ||

'''''[[Monitoring-Oriented Programming]]''''', abbreviated MOP, is a software development and analysis framework aiming at reducing the gap between formal specification and implementation by allowing them ''together'' to form a system. In MOP, runtime monitoring is supported and encouraged as a fundamental principle for building reliable software. [[Monitoring-Oriented Programming | [more ...]]] | '''''[[Monitoring-Oriented Programming]]''''', abbreviated MOP, is a software development and analysis framework aiming at reducing the gap between formal specification and implementation by allowing them ''together'' to form a system. In MOP, runtime monitoring is supported and encouraged as a fundamental principle for building reliable software. [[Monitoring-Oriented Programming | [more ...]]] | ||

− | + | ||

− | + | ||

+ | {{Header | [[jPredictor]]}} | ||

+ | |||

+ | [[Predictive Runtime Analysis | Predictive runtime analysis]] is a technique to detect potential concurrency errors in a system by observing its execution traces; the analyzed execution traces may not necessarily hit the errors directly. Typical concurrency errors that can be predictively detected include dataraces and deadlocks, both notoriously hard to find by just ordinary testing. We also have techniques that can predict general safety property violations, expressed using any formalism that permits monitor sythesis, including temporal logics and regular patterns. [[Predictive Runtime Analysis | [more ...]]] | ||

+ | |||

{{Header | [[Circ]]}} | {{Header | [[Circ]]}} | ||

Circ is an automated prover that is implemented as an extension of Maude. Circ implements the ''circularity principle'', which generalizes both circular coinduction and structural induction, and can be expressed in plain English | Circ is an automated prover that is implemented as an extension of Maude. Circ implements the ''circularity principle'', which generalizes both circular coinduction and structural induction, and can be expressed in plain English | ||

− | as follows. Assume that each equation of interest (to be proved) ''e'' admits a frozen form ''fr(e)'' and a set of derived equations [[ Circ | [more ...]]] | + | as follows. Assume that each equation of interest (to be proved) ''e'' admits a frozen form ''fr(e)'' and a set of derived equations [[ Circ | [more ...]]] |

− | |||

− | [[ | + | {{Header | [[ROSRV]]}} |

− | + | ||

+ | '''''[[ROSRV]]''''' is a runtime verification framework for the Robot Operating System (ROS). ROS is an open-source framework for robot software development, providing operating system-like functionality on heterogeneous computer clusters. With the wide adoption of ROS, its safety and security are becoming an important problem. [[ ROSRV | [more ...]]] | ||

+ | |||

== Past Projects == | == Past Projects == | ||

+ | |||

{{Header | [[Generic First-Order Logic | GFOL]]}} | {{Header | [[Generic First-Order Logic | GFOL]]}} | ||

[[Generic First-Order Logic | GFOL]] is a logic whose formulae are built using the traditional first-order connectives and quantifiers, but whose terms are ''generic'', in the sense that no particular syntax is assumed for them. Terms are only required to constitute a ''term syntax'', i.e., to have free variables and substitution that obey some natural axioms. Classical first-order terms, as well as any type of terms involving bindings, fall into this category. Many lambda calculi can be ''viewed as'' (and not merely ''encoded as'') theories in [[Generic First-Order Logic | GFOL]]. This has an important methodological consequence for our calculi- and programming-languages- specification goals: the "general purpose" [[Generic First-Order Logic | GFOL]] semantics offers, in a uniform way, meaningful semantics for each particular specified calculus [[ Generic First-Order Logic | [more ...]]] | [[Generic First-Order Logic | GFOL]] is a logic whose formulae are built using the traditional first-order connectives and quantifiers, but whose terms are ''generic'', in the sense that no particular syntax is assumed for them. Terms are only required to constitute a ''term syntax'', i.e., to have free variables and substitution that obey some natural axioms. Classical first-order terms, as well as any type of terms involving bindings, fall into this category. Many lambda calculi can be ''viewed as'' (and not merely ''encoded as'') theories in [[Generic First-Order Logic | GFOL]]. This has an important methodological consequence for our calculi- and programming-languages- specification goals: the "general purpose" [[Generic First-Order Logic | GFOL]] semantics offers, in a uniform way, meaningful semantics for each particular specified calculus [[ Generic First-Order Logic | [more ...]]] |

## Latest revision as of 03:43, 26 February 2016

Currently our research falls into one of the following three areas:

You want to work on these topics? See Grigore Rosu's list of Open Problems and Challenges. Below are our specific projects (at least one of us is working on one of these).

K |
---|

* K* is a rewrite-based executable semantic framework in which programming languages, type systems and formal analysis tools can be defined using configurations, computations and rules. Configurations organize the state in units called cells, which are labeled and can be nested. Computations carry computational meaning as special nested list structures sequentializing computational tasks, such as fragments of program [more ...]

Matching Logic |
---|

* Matching logic* allows us to regard a language through both operational and axiomatic lenses at the same time, making no distinction between the two. A programming language is given a semantics as a set of rewrite rules. A language-independent proof system can then be used to derive both operational behaviours and formal properties of a program. In other words, one matching logic semantics fulfils the roles of both operational and axiomatic semantics in a uniform manner [more ...]

MOP |
---|

* Monitoring-Oriented Programming*, abbreviated MOP, is a software development and analysis framework aiming at reducing the gap between formal specification and implementation by allowing them

*together*to form a system. In MOP, runtime monitoring is supported and encouraged as a fundamental principle for building reliable software. [more ...]

jPredictor |
---|

Predictive runtime analysis is a technique to detect potential concurrency errors in a system by observing its execution traces; the analyzed execution traces may not necessarily hit the errors directly. Typical concurrency errors that can be predictively detected include dataraces and deadlocks, both notoriously hard to find by just ordinary testing. We also have techniques that can predict general safety property violations, expressed using any formalism that permits monitor sythesis, including temporal logics and regular patterns. [more ...]

Circ |
---|

Circ is an automated prover that is implemented as an extension of Maude. Circ implements the *circularity principle*, which generalizes both circular coinduction and structural induction, and can be expressed in plain English
as follows. Assume that each equation of interest (to be proved) *e* admits a frozen form *fr(e)* and a set of derived equations [more ...]

ROSRV |
---|

* ROSRV* is a runtime verification framework for the Robot Operating System (ROS). ROS is an open-source framework for robot software development, providing operating system-like functionality on heterogeneous computer clusters. With the wide adoption of ROS, its safety and security are becoming an important problem. [more ...]

## Past Projects

GFOL |
---|

GFOL is a logic whose formulae are built using the traditional first-order connectives and quantifiers, but whose terms are *generic*, in the sense that no particular syntax is assumed for them. Terms are only required to constitute a *term syntax*, i.e., to have free variables and substitution that obey some natural axioms. Classical first-order terms, as well as any type of terms involving bindings, fall into this category. Many lambda calculi can be *viewed as* (and not merely *encoded as*) theories in GFOL. This has an important methodological consequence for our calculi- and programming-languages- specification goals: the "general purpose" GFOL semantics offers, in a uniform way, meaningful semantics for each particular specified calculus [more ...]