The ITP Tool’s Manual*

Manuel Clavel and Miguel Palomino
Departamento de Sistemas Informáticos y Programación
Universidad Complutense de Madrid
clavel@sip.ucm.es miguelpt@sip.ucm.es
April 12, 2005

Abstract
The ITP tool is an experimental inductive theorem prover for proving properties of
Maude equational specifications, i.e., specifications in membership equational logic with
an initial algebra semantics. The ITP tool has been written entirely in Maude and is in
fact an executable specification of the formal inference system that it implements.

1 Getting started
To run the current version of the ITP you need to have installed the latest version of the
Maude system (version 2.1.1) in your computer. You can download the latest version of

The current version of the ITP is distributed as the gzip-tar-file itp-tool-vxxx.tar.gz
(where xxx is the actual version identifier), which is available at http://maude.sip.ucm.
es/itp. To untar this file, type tar xvzf itp-tool-vxxx.tar.gz. This command will
create a directory itp-tool-vxxx with a subdirectory itp-src containing the ITP tool’s
source files:

bash> tar xvzf itp-tool-vxxx.tar.gz
itp-tool-vxxx/
 itp-tool-vxxx/itp-src/
 itp-tool-vxxx/itp-src/unification.maude
 itp-tool-vxxx/itp-src/basic.maude
 itp-tool-vxxx/itp-src/check.maude
 itp-tool-vxxx/itp-src/ext-mod.maude
 itp-tool-vxxx/itp-src/ext-term.maude
 itp-tool-vxxx/itp-src/itp-tool.maude
bash>

2 Understanding the ITP
Mechanical reasoning about functional modules in Maude is supported by the experimental
ITP tool, a rewriting-based theorem prover that can be used to prove inductive properties of
membership equational specifications. It is written in Maude, and it is itself an executable

*Research supported by Spanish MCYT projects TIC2002-01167 and TIC2003-01000.
specification. A key feature of the ITP is its reflective design, that allows the definition of customized rewriting strategies different from Maude's default one; currently, this capability is being used to extend the ITP with decision procedures for arithmetic, lists, and combinations of theories. The ITP is still work in progress: it can work with any module present in Maude's database but not with those introduced in Full Maude; in particular, at present it offers no support for parameterized specifications (although there are plans to include it in the future).

2.1 A first proof

We will use the following specification of lists of integers as our running example.

```
fmod LIST is
    protecting INT .
    sorts NeList List .
    subsort NeList < List .
    op [] : -> List [ctor] .
    op _++_ : List List -> List .
    var I : Int .
    vars L L' : List .
    eq [] ++ L = L .
    eq (I : L) ++ L' = I : (L ++ L') .
endfm
```

An obvious property the LIST specification should satisfy is that concatenation of lists (_++_) is associative. To prove it, once the LIST module has been added to Maude's database we load the ITP with the instruction in itp-tool and initialize its own database with the command loop init-itp .; then, the property can be presented to the ITP using the command goal:

```
Maude> (goal list-assoc : LIST |- A{L1:List ; L2:List ; L3:List}
                        (((L1:List ++ L2:List) ++ L3:List) =
                         (L1:List ++ (L2:List ++ L3:List))) .)
```

Here, list-assoc is the name of the goal, LIST is the module in which it is to be proved, and the symbol A (representing ∀) precedes a list of universally quantified variables which have to be annotated with their sorts. Due to parsing restrictions it is convenient to be generous in the use of parentheses; in particular, note that they are used to enclose the terms to be proved equal.

The ITP then outputs

```
=================================
list-assoc$0
=================================

```

++++++++++++++++++++++
indicating that the goal has been correctly processed, has been internally labelled as list-assoc0, and is ready to be worked upon.

Now we can try to prove the property by structural induction on the first variable, using the ind command.

Maude> (ind on L1:List .)

The ITP then generates a corresponding subgoal for each operator with codomain List that has been declared with the attribute ctor (taking subsorts into account), but only shows the one corresponding to the first one, in this case the empty list []:

 ==
list-assoc$1.0
 ==

++++++++++++++++++++++++++++++

At this point, we can try to automatically prove the subgoal with the command auto, that first transforms all variables into fresh constants and then rewrites the terms in both sides of the equality as much as possible by using the equations in the module as rewrite rules.

Maude> (auto .)

The command succeeds, the subgoal is discharged, and the ITP presents us with the remaining subgoal generated by the induction, the one corresponding to the operator _;_.

 ==
list-assoc$2.0
 ==

++++++++++++++++++++++++++++++

Though this output is all but clear, notice that the expression before the arrow => corresponds to the induction hypothesis and how the term VO#0:Int : VO#1:List is substituted for VO#1:List in the subsequent expression. We can also try to prove this subgoal automatically and, again, the ITP succeeds and this completes the proof.

Maude> (auto .)

q.e.d

++++++++++++++++++++++++++++++
2.2 Constructor and defined memberships and the ind command

The behavior of the ind command deserves a closer look: how does the ITP generate the inductive subgoals? In the LIST module, the operators [] and _:_ are declared to be constructors of the sorts List and NeList, respectively, by means of the attribute ctor; since NeList is a subsort of List, this automatically makes _:_ a constructor of List as well. Then, when asked to prove a goal by structural induction on a variable of sort List, the ind command generates two subgoals:

- The first one, that corresponds to the base case, is obtained by replacing the variable with the constant [] in the goal.
- The second one, which is somewhat more obscure and corresponds to the inductive step, is built as an implication where the antecedent and the consequent arise from the original goal by replacing the variable with a fresh one in the first case, and with a term constructed using _:_ in the second.

The situation is a bit more complicated in general and requires the notion of a constructor membership. In Maude, an operator declaration \(\text{op} \ f \ : \ s_1 \cdots s_n \rightarrow s_0 \ [\text{AttrS}] \) is logically equivalent to a declaration \(\text{op} \ f \ : \ [s_1] \cdots [s_n] \rightarrow [s_0] \ [\text{AttrS}] \) at the kind level and a membership axiom \(\text{mb} \ f (x_1 : s_1, \ldots, x_n : s_n) : s_0 . \) The ITP, in addition, distinguishes those operator declarations that contain the ctor attribute from those that do not, and tags the membership axioms associated to the latter with the label metadata "dfn". Hence, the LIST module is interpreted by the ITP as:

```plaintext
fmod LIST-MB is
  protecting INT .
  sorts NeList List .
  subsort NeList < List .
  op [] : -> [List] .
  op _:_ : [Int] [List] -> [NeList] .
  var I : Int .
  vars L L' : List .
  mb [] : List .
  mb (I : L) : NeList .
  mb (L ++ L') : List [metadata "dfn"] .
  eq [] ++ L = L .
  eq (I : L) ++ L' = I : (L ++ L') .
endfm
```

The defined memberships of a functional module are the memberships in the transformed module that are tagged with the label metadata "dfn"; the remaining ones are called constructor memberships. When the ind command is used to reason by structural induction on a variable of sort \(s \), it generates the goals that correspond to the inductive cases from the constructor memberships associated to \(s \) and to all its subsorts.

The defined memberships in a specification provide in a handy manner helpful information for the ITP to reason with, but in "good" specifications they should actually be redundant and deducible from the rest of the specification (for example, it is clear that the concatenation of
two lists should also be a list). For this situation to actually hold, the equations that define
the operations have to thoroughly consider all possibilities so that every term eventually
reduces to a canonical form to which a constructor membership applies. This is the sufficient
completeness problem: see Section 7.1.

3 A script safari

The essentials of the ITP have already been covered in the previous section: terms are proved
equal by reducing them to syntactically equal terms and structural induction is based on the
constructor memberships. Here we continue exploring other ITP commands and illustrate
how they are used in several scripts.

3.1 Defined memberships revisited

To stress how defined memberships are treated by the ITP, let us extend the LIST-MB module
with an operator empty? that checks whether a list is empty or not. Admittedly, since we
already have a sort NeList to distinguish nonempty lists, the use of the operator empty? in
this example is a bit contrived; let us stick with it for the sake of the argument.

fmod LIST-MB is
 protecting INT .
sorts NeList List .
 subsort NeList < List .
 op [] : -> [List] .
 op _:_ : [Int] [List] -> [NeList] .
 op empty? : List -> Bool .
 var I : Int .
 vars L L' : List .
 mb [] : List .
 mb (I : L) : NeList .
 mb (L ++ L') : List [metadata "dfn"] .
 eq [] ++ L = L .
 eq (I : L) ++ L' = I : (L ++ L') .
 eq empty?([]) = true .
 eq empty?(I : L) = false .
endfm

The ITP can also be used to prove membership assertions; in particular, we can try to
show that the term empty?(L) is of sort Bool for every list L.

Maude> (goal empty-bool : LIST-MB |- \A\{L:List\} \((\text{empty?}(L:List)) : \text{Bool}) .)

As expected, since the specification includes the declaration

op empty? : List -> Bool .
the goal can be discharged by just using `auto`. What would have happened, however, if we had forgotten to add the equation

```latex
\text{eq empty?}([]) = \text{true} .
```

to the specification? Obviously, this would have left undefined `empty?` over the empty list with the undesired consequence that now not all terms of the form `empty?(L)` are of sort `Bool`. Nonetheless, the ITP would have still proved it! As mentioned in Section 2.2, this is the sufficient completeness problem: to guarantee that the equations for the defined operators in the specification consider all possible cases. In this situation, the defined membership

```latex
\text{mb empty?}(L) : \text{Bool} \ [\text{metadata "dfn"}] .
```

associated to the declaration of `empty?` is not redundant and cannot be derived from the rest of the specification.

3.2 The `ctor-split` command

From what we have just seen, a safer approach to specification would then be to declared all defined operators at the kind level and to use the ITP to show that they have the intended typing.

```latex
\text{op empty?} : [\text{List}] \rightarrow [\text{Bool}] .
\text{eq empty?}([]) = \text{true} .
\text{eq empty?}(I : L) = \text{false} .
```

Now, if we present to the ITP our desired goal again

```latex
Maude> (\text{goal empty-bool} : \text{LIST-MB} \ |- \ A(L:\text{List}) ((\text{empty?}(L:\text{List})) : \text{Bool}) .)
```

and try to prove it with the `auto` command, we get the following output:

```
=================================
empty-bool$1.1.1.0
=================================
```

```
|-
empty?(L*List): \text{Bool}
```

```
+-------------------------------------------------------------------+
The goal labeled empty-bool$1.1.1.0 is not an identity
```

Since the defined membership is no longer available, the ITP cannot jump to the conclusion that `empty?(L*List)` has sort `Bool`, and since `L*List` is a fresh constant, none of the equations in the specifications can be applied to further reduce the term. To continue with the proof, we apply a case analysis using the `ctor-split` command, that studies what happens for each of the different constructors of the sort `List`. (Induction cannot be applied here because `L*List` is a constant; of course, the `ind` command could have been used before applying `auto` and that would yield a different proof.)

```latex
Maude> (ctor-split on L*List .)
```

```
=================================
empty-bool$1.1.1.1.0
```

6
|-(L*List =[]) ==> (empty?(L*List): Bool)

The first case corresponds to the empty list and is easily discharged with auto.

Maude> (auto .)

empty-bool$1.1.1.2.0

|-(A{V0#0:Int ; V0#1:List}((L*List = V0#0:Int : V0#1:List)==>(empty?(L*List): Bool))

The second case corresponds to the constructor _:_ and is also proved with auto.

Maude> (auto .)

q.e.d

Even though, as mentioned earlier, declaring the defined operators at the kind level offers a safer way of writing specifications, we do not encourage this practice because it would imply the necessity of having to prove manually plenty of tedious and trivial details. Of course, the sufficient completeness problem cannot be just swept aside, but to deal with it we suggest instead to use the sufficient completeness analyser that has been integrated with the last release of the ITP (see Section 7.1).

For example, for the version of the LIST-MB module that contains the declaration of empty? at the sort level, but with the equation empty?([]) = true missing, the result would be:

Maude> (scc LIST-MB .)

|- true = false

Though not very informative, this output is enough to point out that the specification is not sufficiently complete.
3.3 Another induction scheme: c-ind and show-all

In addition to the `ind` command to reason by induction on the structure of terms, the ITP also offers the `(c-ind on .)` command to reason by induction over the natural numbers. This command takes a term of sort `Nat` as argument and generates two subgoals from the original goal: one in which the term is assumed to be equal to 0 and another one in which it states that the goal holds for \(N \) assuming that it holds for values less than \(N \). To illustrate its use, let us extend the `LIST-MB` with an operation to determine the length of a list.

\[
\text{op length : List -> Nat .}
\]
\[
\text{eq length([]) = 0 .}
\]
\[
\text{eq length(I : L) = length(L) + 1 .}
\]

Now, the associativity of the operator \(_++_ \) can alternatively be proved by using `c-ind`:

...

Maude> (c-ind on (length(L1:List)) .)

==
list-assoc$1.0
==

++++++++++++++++++++++++++++

The first subgoal simply assumes that \(\text{length}(L1:List) \) is 0. Using `auto` seems to have no effect except for the transformation of the variables into constants.

Maude> (auto .)

==
list-assoc$1.1.1.1.1.1.0
==

++++++++++++++++++++++++++++

The goal labeled `list-assoc$1.1.1.1.1.1.0` is not an identity

To try to understand what is going on we can use the `show-all` command, which outputs the functional module the ITP is currently reasoning about (see Section 4).

Maude> (show-all .)

The resulting module is identical to the original `LIST-MB` (with \texttt{length}) except for the additional declaration of the new constants `L1*`, `L2*`, and `L3*`, and the equation `length(L1*)`
= 0. Obviously, this additional information is not enough to further reduce any of the terms in the goal.

To proceed with the proof we must supply the ITP with additional guidelines to follow and what turns out to be useful in this case is to make a case analysis using \texttt{ctor-split}.

\begin{verbatim}
Maude> (ctor-split on L1*List .)

==
list-assoc$1.1.1.1.1.0
==

+++++++++++++++++++++++++++++++++

Now we can try to prove the goal assuming that \texttt{L1*List} is the empty list, and \texttt{auto} easily succeeds.

Maude> (auto .)

==
list-assoc$1.1.1.1.2.0
==

|-(A{V1#0:Int ; V1#1:List}((L1*List = V1#0:Int : V1#1:List)==>((L1*List ++ L2*List)++ L3*List = L1*List ++(L2*List ++ L3*List)))

++++++++++++++++++++++++++++++

The remaining goal deserves closer attention. The list \texttt{L1*List} is now built using \texttt{::_} and is not clear at all why the goal should be true. But recall that this subgoal has arisen while we are trying to prove the first subgoal generated by \texttt{c-ind}, that is, the one in which \texttt{length(L1*List)} is 0. And this is in contradiction with \texttt{L1*List} being constructed with \texttt{::_} (all such terms must have length at least equal to 1, according to the equations for \texttt{length}): \texttt{auto} notices this contradiction and automatically discharges the subgoal.

Maude> (auto .)

==
list-assoc$2.0
==

++++++++++++++++++++++++++++++
\end{verbatim}
The proof of this second subgoal generated by \texttt{c-ind} proceeds exactly like that for the first one. After applying \texttt{auto}, it is necessary to make a case analysis whose subcases can be discharged with \texttt{auto}. (This time, it is the proof of the first case which succeeds by contradiction.)

Maude> (auto .)
 (ctor-split on L1*List .)
 (auto .)
 (auto .)

In this example, the script produced by \texttt{c-ind} is certainly more cumbersome than the one for \texttt{ind}. However, there are proofs (e.g., in the merge sort algorithm) where \texttt{c-ind} gives rise to proofs that cannot easily be done by structural induction.

3.4 A more complex example: \texttt{lem} and \texttt{split}

Let us extend now the original \texttt{LIST} specification with an operation \texttt{insertion-sort} that sorts a list using the insertion sort algorithm, and a Boolean operation \texttt{sorted?} that checks if a list is sorted.

```plaintext
fmod LIST is
   protecting INT .

   sorts NeList List .
   subsort NeList < List .

   op [] : -> List [ctor] .

   op _++_ : List List -> List .
   op insertion-sort : List -> List .
   op insert-list : List Int -> List .
   op sorted? : List -> Bool .

   vars I I' : Int .
   vars L L' : List .

   eq [] ++ L = L .
   eq (I : L) ++ L' = I : (L ++ L') .

   eq insertion-sort([]) = [] .
   eq insertion-sort(I : L) = insert-list(insertion-sort(L), I) .
   eq insert-list([], I') = I' : [] .
   ceq insert-list(I : L, I') = I' : I : L if I' <= I .
   ceq insert-list(I : L, I') = I : insert-list(L, I') if I' > I .

   eq sorted?([]) = true .
   eq sorted?(I : []) = true .
   ceq sorted?(I : I' : L) = false if I' < I .
   ceq sorted?(I : I' : L) = sorted?(I' : L) if I <= I' .
endfm
```

We want the list \(L \) returned by a call to \texttt{insertion-sort} to be actually ordered so that \texttt{sorted?}(L) = \texttt{true}, and we set ourselves to prove it. (For the operation \texttt{insertion-sort}
to be well-defined it would also be necessary to prove that L is a permutation of the original list, that is, that the elements in L are exactly the same as in the original list and with the same multiplicity: we leave this proof as an exercise to the reader.)

Maude> (goal SORTED : LIST |- A{L:List}
 ((sorted?(insertion-sort(L:List))) = (true)) .)

The proof proceeds by structural induction on L. For the empty list, the result follows immediately using auto; in the inductive step, however, after applying auto we arrive to:

=================================
SORTED$2.1.1.1.1.1.0
=================================

|-> sorted?(insert-list(insertion-sort(V0#1*List),V0#0*Int))= true

The goal labeled SORTED$2.1.1.1.1.1.0 is not an identity

At this point, the ITP can no longer reduce the term and gets stuck.

Let us think about what remains to be proved. By the induction hypothesis, the list insertion-sort(V0#1*List) is sorted and, since we believe the equations for insert-list are correct, we would expect insert-list(insertion-sort(V0#1*List),V0#0*Int) to be sorted as well, even though it can be reduced no further. What we need is precisely this, an auxiliary result that states that inserting a new element into an ordered list using insert-list results in another ordered list. Such a lemma can be introduced in the ITP with the lem command and has to be proved for the reasoning to be sound. In the current ITP’s version, the lemma actually has to be proved before it can be used; this restriction will probably be removed in future versions.

Maude> (lem sort1 : A{I:Int ; L:List}
 ((sorted?(L:List)) = (true) =>
 (sorted?(insert-list(L:List,I:Int))) = (true)) .)

=================================
sort1$0
=================================

|-> sorted?(insert-list(insertion-sort(V0#0*List),V0#0*Int))= true

The goal labeled SORTED$2.1.1.1.1.0 is not an identity

At this point, the ITP can no longer reduce the term and gets stuck.

Let us think about what remains to be proved. By the induction hypothesis, the list insertion-sort(V0#1*List) is sorted and, since we believe the equations for insert-list are correct, we would expect insert-list(insertion-sort(V0#1*List),V0#0*Int) to be sorted as well, even though it can be reduced no further. What we need is precisely this, an auxiliary result that states that inserting a new element into an ordered list using insert-list results in another ordered list. Such a lemma can be introduced in the ITP with the lem command and has to be proved for the reasoning to be sound. In the current ITP’s version, the lemma actually has to be proved before it can be used; this restriction will probably be removed in future versions.
The goal labeled sort1$2.1.1.1.1.1.1.1.1.0 is not an identity

If we take a look at the equations for insert-list, the reason why this term cannot be reduced becomes apparent: the two equations that might apply are conditional and depend on whether I*Int <= V1#0*Int or I*Int > V1#0*Int. Therefore, we use the split command with the term I*Int <= V1#0*Int, to generate a subgoal in which the term is taken to be true and another one in which is considered to be false; discharging both goals will prove that from which they arose.

Maude> (split on (I*Int <= V1#0*Int) .)

At first sight, nothing has changed, and that is true, but only as far as the goal is concerned: internally, the module the ITP is using to prove the goal has been extended with the additional equation

eq I*Int <= V1#0*Int = true

which can be checked by the user with the show-all command.

So let us resume the proof. The current goal is discharged with auto, which leaves us with another one which is apparently the same (but now, under the assumption that I*Int <= V1#0*Int = false). However, if we now apply the same command auto, we end up with

Under the current assumption that I*Int <= V1#0*Int = false and the induction hypothesis that insert-list(V1#0*Int : V1#1*List,I*Int) is ordered, it is clear that the equality holds. What we need is yet another lemma that makes this observation a general and explicit statement.

Maude> (lem sort2 : A{I:Int ; I':Int ; L:List}
 ((sorted?(I:Int : L:List)) = (true) & (I:Int <= I':Int) = (true) =>
 (sorted?(I:Int : insert-list(L:List,I':Int))) = (true)) .)
Note that the symbol \& is used to separate conjunctions in the antecedent of the implication.

The proof of this lemma proceeds along lines that should be familiar by now: no new auxiliary results are needed and we just present the necessary commands: we encourage the reader to try to obtain them by himself.

Maude> (ind on L:List .)
 (auto .)
 (auto .)
 (split on (I*Int <= V2#0*Int) .)
 (auto .)
 (auto .)
 (split on (I*Int <= V2#0*Int) .)
 (auto .)
 (auto .)

Once the last auto in the script above has been executed, the ITP prompts us with the goal labelled sort1$2.1.1.1.1.1.1.1.1.2.1.1.0, which is the point where the proof was interrupted to introduce the lemma sort2; with this result at our disposal we can discharge it with auto. This brings forward the goal SORTED$2.1.1.1.1.1.0 and, similarly, the ITP can finally prove it with auto by using sort1 and complete the proof.

4 The ITP’s module database

5 ITP commands

5.1 (goal Label : Entailment .)
Syntax op goal_:_. : Token Goal -> Input .

Summary It introduces the goal to be proved in the ITP.

Details This command introduces a goal, named Label, to be proved with the ITP. The expression Entailment has the form IdMod |- A{x_1: s_1, . . . , x_n: s_n} expression, with IdMod the name of the module the goal is about, x_1, . . . , x_n variables, and expression a Horn clause built with \& and =>.

5.2 (lem Label : LEntailment .)
Syntax op lem_:_. : Token UserFormula -> Input .

Summary It introduces an auxiliary result to be proved in the ITP.

Details This command introduces a lemma, named Label, to be proved with the ITP. The expression LEntailment has the form |- A{x_1: s_1, . . . , x_n: s_n} expression, with x_1, . . . , x_n variables and expression a Horn clause built with \& and =>.

5.3 (auto .)
Syntax op auto . : -> Input .

Summary It tries to automatically prove the current goal.
Details It first transforms all the variables into fresh constants and then reduces the terms in the goal as much as possible by using the equations in the module as rewrite rules. When necessary, decision procedures are applied to check if the conditions of conditional equations are satisfied.

5.4 (ind on Var.)

Syntax op ind on_ : Token -> Input.

Summary It generates the set of goals that correspond to the inductive cases necessary to prove the goal by structural induction on the sort of the variable Var.

Details The goals are generated from the constructor memberships for the sort of Var and all its subsorts. Base cases correspond to unconditional memberships of the form $mb \ t : s$, and give rise to new subgoals by replacing the Var in the current goal with t. The inductive steps correspond to conditional memberships.

5.5 (c-ind on Nat-Term.)

Syntax op c-ind on (_,) : Bubble -> Input.

Summary It proceeds to prove the goal by induction on the value of Nat-Term.

Details It generates two subgoals from the current one. The first one consists in the original goal assuming that the value of Nat-Term is 0. The second subgoal states that if the original one holds when the value of Nat-Term is less than N, then it also holds when the value of Nat-Term is N.

5.6 (ctor-split on Const.)

Syntax op ctor-split on_ : Token -> Input.

Summary It generates the set of goals that correspond to a case analysis over the structure of the terms with the sort of Const.

Details The goals are generated from the constructor memberships for the sort of Const and all its subsorts, in the same way as for ind, but no induction hypothesis is generated.

5.7 (scc IdMod.)

Syntax op scc_ : Token -> Input.

Summary It generates the set of goals corresponding to the proof obligations which, if discharged, ensure sufficient completeness of the IdMod functional module.

Details It first calls on the functional module named IdMod the function checkCompleteness, which implements the SCC’s sufficient completeness analyzer. Then, it converts the resulting proof obligations into a set of goals, which are all associated with the constructor submodule of IdMod. Finally, it eliminates from the state of the proof those goals that can be proved automatically using the ITP’s auto command.
5.8 (show-all .)

Syntax op show-all . : -> Input .

Summary It outputs the active module in the ITP’s module database.

Details

5.9 (split on (Bool-Term) .)

Syntax op split on (_). : Bubble -> Input .

Summary It splits the current goal in two: one in which Bool-Term is assumed to be true and another one in which it is assumed to be false.

Details

6 ITP projects

6.1 ASIP: algebraic semantics of imperative programs

The ASIP project is based on J. Goguen’s seminal work on algebraic semantics of imperative programs. It aims to provide a version of the ITP that may be used to formally specify and verify software.

7 ITP related tools

7.1 SCC: a sufficient completeness checker

SCC [1] is an experimental tool for checking the sufficient completeness of partial specifications written in Maude. Sufficient completeness is the property that operations are defined on all valid inputs. It is an important property both for developers of specifications, to check that they have not missed a case while defining the operations, and to inductive theorem provers, to check the soundness of a proposed induction scheme. The SCC tool has been written in Maude and relies on Maude’s reflective capabilities and the ITP tool. The SCC tool is included in the latest distribution of the ITP tool, and it can be executed both in stand-alone mode and through appropriate commands during an ITP session.

A Glossary

Constructor membership. The constructor memberships of a given module named IdMod are:

- the (conditional) membership axioms in IdMod that are not declared with the defn attribute; and
- membership axioms mb \(f(x_1:s_1, \ldots, x_n:s_n) : s_0 \), for every operator declaration \(\text{op } f : s_1 \cdots s_n \rightarrow s_0 \) [AttrS] . in IdMod such that AttrS contains the ctor attribute.

Constructor submodule. The constructor submodule of a given module named IdMod is the submodule of IdMod that contains:
• the many-kind signature in $IdMod$;
• all the equations in $IdMod$;
• all the subsort declarations in $IdMod$; and
• only the constructor memberships in $IdMod$.

Defined membership. The set of defined memberships of a given module $IdMod$ is given by:

• the (conditional) membership axioms in $IdMod$ that are declared with the `defn` attribute; and
• the membership axioms $\text{mb } f(x_1:s_1,\ldots,x_n:s_n) : s_0$. for every operator declaration $\text{op } f : s_1\cdots s_n \rightarrow s_0 [\text{AttrS}]$. in $IdMod$ such that AttrS does not contain the `ctor` attribute.

Subsort declaration. From a mathematical point of view, a subsort declaration $s < s'$ is logically equivalent to a membership axiom $(\forall x) x : s' \text{ if } x : s$. In Maude, however, since kinds cannot be explicitly declared, subsort declarations cannot be desugared in this way.

Sufficient completeness. A module named $IdMod$ is sufficiently complete when its operations are defined on all the terms of the appropriate sorts, i.e., they always return terms of the expected sort when called on terms of the appropriate sorts.

More formally, a module named $IdMod$ is sufficiently complete relative to its constructor memberships if and only if the unique homomorphism between the algebra of terms of its constructor submodule and its own algebra of terms is an isomorphism. See [2] for more details.

References
