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Abstract

We present a program-verification approach based on coinduction, which
makes it feasible to verify programs given an operational semantics of a
programming language, without constructing intermediates like axiomatic
semantics or verification-condition generators. Specifications can be written
using any state predicates.

The key observations are that being able to define the correctness of a
style of program specification as a greatest fixpoint means coinduction can
be used to conclude that a specification holds, and that the number of cases
that need to be enumerated to have a coinductively provable specification can
be reduced to a feasible number by using a generalized coinduction principle
(based on notions of “coinduction up to” developed for proving bisimulation)
instead of the simplest statement of coinduction.

We implement our approach in Coq, producing a certifying language-
independent verification framework. The soundness of the system is based
on a single module proving the necessary coinduction theorem, which is im-
ported unchanged to prove programs in any language.

We demonstrate the power of this approach by verifying algorithms as
complicated as Schorr-Waite graph marking, and the flexibility by instanti-
ating it for language definitions covering several paradigms, and in several
styles of semantics.

We also demonstrate a comfortable level of proof automation for several
languages and domains, using a common overall heuristic strategy instanti-
ated with customized subroutines. Manual assistance is also smoothly inte-
grated where automation is not completely successful.
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Chapter 1

Introduction

Formal verification can justify extremely high confidence in the correctness
of software, by allowing the use of automated tools and reusable soundness
arguments to greatly reduce the amount of material that must be trustworthy
to ensure no program error remains undetected. Ideally most of this trusted
base consists of components reused for all or most verification tasks, and
subject to widespread scrutiny.

An effective formal verification framework needs several components. The
central component is a formal proof system, which consists of a language of
claims about code, a language of proofs, and a description of which proofs
are acceptable for which claims, which is sufficiently precise that a program
can check whether a proof is acceptable for a given claim. Next, there must
be a definition of the meaning of claims in terms of a semantics of the pro-
gramming language, and a proof of soundness of the proof system, in the
sense that an acceptable proof of a claim exists only if the meaning of the
claim is true.

Given these ingredients, justified confidence in the truth of a claim does
not require looking at the code or even the proof, as long as the soundness
proof and the proof checker are trusted, the proof checker accepted the prof-
fered proof, and we can be confident that the proof checker execution was not
compromised by hardware errors. In this description we regard proofs quite
abstractly. As in a program logic, proofs could be derivations in some famil-
iar looking logic which directly concludes claims, but a verification-condition
generation approach also fits, if the task of the proof checker includes check-
ing that the verification conditions were correctly calculated in addition to
checking the proofs of the verification conditions.

One element of this vision which is unavailable for many programming
languages is a sound proof system. For most programming languages, there
is not even a sound proof system. Established approaches such as axiomatic
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semantics or verification-condition generation require designing a new proof
system for each target language, and then proving this new proof system
is sound. Merely designing a proof system can be complicated by certain
language features, such as mutual recursion and nonlocal control flow.1 Even
the familiar while rule in Hoare logic requires a bit of invention beyond the
basic rules of its execution to introduce the idea of a loop invariant. Proving
the soundness of proof systems requires a substantial effort, and a relatively
deep mathematical background. These traditional approaches outline well-
trod paths for developing proof systems for programming languages, but they
must still be trod afresh for each new language.

This work presents instead a single language-independent proof system.
The core of the approach is a generalized coinduction principle, which can
be applied to prove reachability in transition relations (by characterizing the
set of true claims as a greatest fixpoint). This can be instantiated with any
operational semantics expressed as a transition relation, to give a system
for proving that a program in that language meets a specification. This is
proven once to be sound with respect to any supplied relation. Despite the
generality of our approach, verifying a specification using an application of
our theorem can be done with a proof whose shape resembles what might be
expected from a custom program logic, with most proof steps closely related
to execution of the program.

The relation between our approach and ways of reasoning about programs
that cannot be described as an independent verification system is less clear.
One of particular relevance to the work presented here is the use of powerful
type systems, especially in dependently-typed languages which make logical
reasoning available as an integral part of a language. This is in fact the logi-
cal foundation of the Coq system which is used for the soundness proofs and
certifying implementation of our approach. The validity of relying on these
features is based on the soundness of the type system and consistency as a
logic (perhaps captured through strong normalization), rather than a more di-
rect connection to operational semantics as in the soundness of a Hoare-logic
rule. Unfortunately exploring potential connections or interactions between
type-based and coinductive program verification is left for future work. The
aim of the current evaluation is to show that our system can be easily applied

1An axiomatic semantics for a fragment of Java intentionally selected to include several
sorts of complexity is presented in [ON02].
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to a variety of languages and provide a satisfactory verification experience
for a language previously lacking any, rather than to consider competition
or synergy on languages fortunate enough to already have options for verifi-
cation.

Developing a sound program-verification framework for a new language
usually requires an operational semantics in any case, as many approaches
to program verification define the meaning of specifications in terms of the
behavior of programs, meaning such a system can only be proved sound with
respect to an operational semantics. We also believe that developing the
first faithful formal semantics for a language requires testing to ensure the
formalization agrees with existing behavior. This requiring an executable
semantics, which generally means an operational semantics. 2. As such, we
believe most approaches to sound program verification usually require devel-
oping an operational semantics in any case. However, by working directly
with an operational semantics our approach does not require proving sound-
ness of a proof system with respect to that validated operational semantics,
which requires considerably more mathematical sophistication than defining
an operational semantics.

Our coinductive program-verification approach can be used with any op-
erational semantics and is then correct-by-construction: no additional “pro-
gram logic” or soundness proofs are needed to be certain any derivations will
be sound with respect to the provided operational semantics.

To use a metaphor from software engineering, Hoare Logic [Hoa69] is a
design pattern which describes a generally fruitful approach for writing new
code for a given class of problems (perhaps requiring a touch of creativity
along the way), while our approach is a library that can be directly reused.
This becomes literal when we formalize our mathematics in a proof assistant:
a single module defines our proof technique and proves its soundness, and
verifying example programs in a specific language begins by importing the
core module, and providing the language semantics as an argument when
using its contents.

The final ingredient for reliable formal verification is a trusted and trust-
2A definition by translation to another language is also executable, but has difficulty

faithfully reflecting any intentionally unspecified behavior in the source language. An
axiomatic semantics might conceivably be “executed” by proof search, but the attempt in
[Yan+04] suggests this is feasible only for the simplest cases.
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worthy program for checking proofs or proof certificates. By working within
an established proof assistant, we can take advantage of their existing proof-
checking tools, and prior examination of their soundness. Proving the sound-
ness of a proof system in an established proof assistant improves confidence
in the result, and composing this lemma with the verification of an particular
specification results in a proof certificate in the logic of the proof assistant
which states directly that the code behaves according to the given specifica-
tions under the provided operational semantics.

Given a sound verification system the next question is how difficult it
is to apply the system, by writing desired specifications and proving that
code meets them. Making specification and verification easier is necessary
for formal verification to become widely accessible and cost-effective. Proof
automation is required to make program verification practical on larger pro-
grams. Developing abbreviations for writing specifications and implementing
heuristic proof tactics can make it easier to use a system without any threat
to soundness.

We evaluate the usability of our approach by defining language in several
paradigms and verifying a range of examples in each. Our aim here is a proof
of concept, we do not (yet) aim to compete with mature language-specific
proof systems but rather to show that our approach does not inherently
preclude reaching a comfortable level of concise specification and proof au-
tomation. We show that specifications can be written concisely after defining
appropriate abbreviations, and describe automated proof tactics which pro-
vide nearly-complete automation on examples including heap data structures
and recursive functions.

The development of semantics-engineering frameworks such as K [RȘ10]
and PLT-Redex [Kle+] reduces the difficulty of defining an operational se-
mantics to little more than that of writing an interpreter (using the language
of the framework). Recently full semantics of several real programming lan-
guages have been proposed, such as C [HER], Java [BR], JavaScript [Bod+;
PȘR], Python [Gut13; Pol+13], PHP [FM], and OCaml [Owe]. Our coinduc-
tive program-verification approach could be used with any of these semantics
or frameworks.

Developing automatic translators from semantics in these languages into
definitions of transition relations in a chosen proof assistant could be a fruit-
ful source of semantics. We describe an initial translator from K language

4



definitions into Coq.
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Chapter 2

Background

This chapter reviews background material in mathematics and programming
language semantics. All notation and definitions in this chapter should be
standard. Readers should feel free to skip any familiar concepts, except
perhaps to confirm details of our notation.

2.1 Basic Mathematics
In this section we recall basic mathematical notions, and the describe the
notation we use. This section can likely be skipped.

Given a set A, the powerset P(A) is the set of subsets of A, definable by
P(A) = {X | X ⊆ A}. Given sets A and B, the set A×B is the set of pairs,
A×B = {(a, b) | a ∈ A, b ∈ B}.

Given sets A and B a relation from A to B is a subset of A × B. A
relation A is a relation from A to A, or a subset of A×A. Membership in a
relation may be written infix, so xRy means (x, y) ∈ R.

A sub-relation of a relation R from A to B is a relation R′ from A′ to
B′ for some subsets A′ ⊆ A and B′ ⊆ B, such that xR′y implies xRy. A
sub-relation is induced from the parent relation if R′ = R ∩ A′ × B′. In this
case xRy for (x, y) ∈ A′ ×B′ iff xR′y.

Definition 2.1 (Relation Properties). A relation is reflexive if every element
is related to itself, xRx, and irreflexive if no element is related to itself, ¬xRx.

A relation is symmetric when xRy implies yRx, and antisymmetric if xRy

implies ¬yRx when x ̸= y.
A relation is transitive when xRy ∧ yRz implies xRz.

Definition 2.2 (Orders). A relation which is reflexive, antisymmetric, and
transitive is called a partial order. A poset or partially ordered set is a set
equipped with a partial order, the relation commonly written ≤. A pair of
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elements a and b are comparable if at least one of a ≤ b or b ≤ a hold. A
total order is a partial order with the additional property that any pair of
elements are comparable.

The collection of total functions with domain A and codomain B is writ-
ten A → B, and partial functions written A ⇀ B. As with relations, a
function on a set A is a function from A to A. Unless otherwise specified
functions are required to be total. We generally write f : A→ B to indicate
the domain and codomain of a function instead of f ∈ A → B. Given a
function f from A to B, perhaps partial, f [b/a] for a ∈ A, b ∈ B denotes the
function from A to B which has f [b/a](a) = b and agrees with f otherwise.

Definition 2.3 (Monotonicity). A function f on a poset is monotone when
it preserves order, i.e. f(a) ≤ f(b) whenever a ≤ b.

Definition 2.4 (Bounds). An upper bound of a subset X of a partially
ordered set is a value c such that x ≤ c for any x ∈ X. An upper bound is
the least upper bound, supremum or lub, written

∨
X, if it is additionally less

than any other bound,
∨
X ≤ k for any upper bound k of X. Conversely, a

lower bound c of a set X has c ≤ x for all x ∈ X. The greatest lower bound,
infimum or glb of a set, written

∧
X is a lower bound with k ≤

∧
X for any

lower bound k of X.

In the general case a subset of a poset or even a total order may not have
any upper bound, or have several upper bounds with no least upper bound.

Definition 2.5 (Lattice). A lattice is a poset where every two-element subset
has a lub and a glb, which are written x∨y for

∨
{x, y} and x∨y for

∨
{x, y}.

Any non-empty finite subset of a lattice has a lub and glb.
A complete lattice is a poset where every subset has a lub and a glb.

Considering in particular the empty set shows that a complete lattice has a
least and a greatest element.

We are particularly interested in the complete lattices formed by ordering
the powerset of some base set by inclusion. Given a set A, define an order ≤
on P(A) by X ≤ Y iff X ⊆ Y . With this definition any collection C ⊆ P(A)
of subsets of A has both a least upper bound and greatest lower bound, which
are respectively the union

∨
C =

∪
C and intersection

∧
C =

∩
C of the

collection of sets.
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2.1.1 Fixpoints

A fixed point or fixpoint of a function is a value mapped to itself by the
function, an x in the domain of f with f(x) = x. Fixpoints are of interest
throughout mathematics, along with fixpoint theorems which give conditions
on functions under which fixpoints are guaranteed to exist (perhaps along
with constructions of the fixpoint).

We are particularly interested in monotone functions on complete lat-
tices, where the Knaster-Tarski fixpoint theorem applies. As is common in
computer science the only thing we need to conclude “by the Knaster-Tarski
fixpoint theorem” is that such functions have fixpoints, and in particular a
least and/or greatest fixpoint. This is actually shown as a lemma in Tarski’s
proof [Tar55].

Lemma 1. A monotone function f on a complete lattice L has a greatest
fixpoint, which is the least upper bound of the set P = {x | x ≤ f(x)} of
postfixed points. Dually, f has a least fixpoint, which is the greatest lower
bound of the set {x | f(x) ≤ x} of prefixed points.

Proof. Fix x in P . By the definition of least upper bound, x ≤
∨

P . By
monotonicity of, f(x) ≤ f(

∨
P ). By the definition of P , x ≤ f(x), so

by transitivity x ≤ f(
∨
P ). This holds for any x ∈ P , so f(

∨
P ) is an

upper bound on P . As
∨
P is the least upper bound,

∨
P ≤ f(

∨
P ). By

monotonicity, f(
∨
P ) ≤ f(f(

∨
P )). Thus, f(

∨
P ) ∈ P . As

∨
P is an upper

bound, f(
∨

P ) ≤
∨

P . By antisymmetry of the partial order, f(
∨

P ) =
∨

P ,
so

∨
P is a fixpoint of f . By reflexivity of the partial order, P includes every

fixpoint of f , so
∨

P is the greatest fixpoint. Dually, the least fixpoint of f
is the greatest lower bound of {x | f(x) ≤ x}.

The full Knaster-Tarski theorem proves more about the structure of the
set of fixpoints.

Theorem 1 (Knaster-Tarski Theorem). Let (L,≤) be a complete lattice and
f a monotone function on L. Then the set F = {x | f(x) = f} of fixpoints
of f is also a complete lattice, under the same order ≤.

Proof. To prove the full result, the least upper bound in F of any subset X

of F will be obtained as the least fixpoint of f on an appropriate sublattice
of L. Here we use the symbols

∨
and

∧
only for bounds in L.

8



Let U be the set of all upper bounds in L of X. There is a least upper
bound u =

∨
X, and U can be described as U = {x | u ≤ x}.

X will have a least upper bound in F if there is a least element among
the fixpoints of f which are in U . By the lemma there is such an element if
U is closed under f and U is a complete (sub)lattice.

For the first, fix b ∈ U . For any x ∈ X we have x ≤ b. As X ⊆ F ,
x = f(x). By monotonicity we have also f(x) ≤ f(b), so x ≤ f(b). Therefore
f(b) is an upper bound on X and thus a member of U .

To show U is a complete lattice, we first recall that u is its least element.
Next we note that as a complete sub-order of L, if an element a is the least or
greatest member a set A ⊆ L, and a ∈ U then a is also the least or greatest
member of A ∩ U . The greatest element ⊤ of L is certainly an upper bound
of X, and thus also the greatest element of U . Now we will show that any
nonempty set B ⊆ U has the same least upper bound and greatest lower
bound in U as in L. As there is some b ∈ B, by transitivity u ≤ b ≤

∨
B.

As u is a lower bound on B it is below the greatest, u ≤
∧

B. Therefore U

is a complete lattice.
Now by the lemma, f indeed has a least fixpoint in U . This is the least

element of F ∩U , and therefore the least upper bound in F of X. Dually, X
also has a greatest lower bound in F . Thus the set F of fixpoints of f is a
complete lattice.

Another fixpoint theorem which is commonly used in computer science,
especially for denotations semantics, is the Kleene fixpoint theorem. This
relaxes the requirement on a poset from being a complete lattice to only
requiring least upper bounds exist for totally ordered subsets (including a
least element), but requires an additional condition on the function f beyond
monotonicity. It gives a more computational description of the leastfixpoint
as the least upper bound of the sequence

⊥ ≤ f(⊥) ≤ f 2(⊥) ≤ ...

obtained by iterating the function starting with the least element ⊥.
However, we will need fixpoints of functions where this theorem does not

apply, and are satisfied the simple description of the least fixpoint in Tarski’s
lemma.
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2.2 Coinduction
The definition of greatest fixpoints gives a proof principle called coinduction.

Lemma 2 (Coinduction). Given a monotone function f on a poset P with
greatest fixpoint v, to show x ≤ v for some x ∈ P it suffices to show x ≤ f(x),
by the description of the greatest fixpoint as the least upper bound of post-fixed
points.

The corresponding principle for least fixpoints gives the more familiar
notion of induction.

Lemma 3 (Induction). Given a monotone function f on a poset P with least
fixpoint u, to show u ≤ x for some x ∈ P it suffices to show f(x) ≤ x.

This statement may still be somewhat unfamiliar, so let’s see how it gives
rise to the familiar principle of induction on natural numbers, which we state
as follows

Lemma 4 (Natural number induction). Given a property P on natural num-
bers, to show that P (n) for every n ∈ N it suffices to show that

• P (0)

• for any n, P (n) implies P (n+ 1)

To connect this to the fixpoint characterization of induction we take as
our lattice the set of subsets of N ordered by inclusion. Our least fixpoint
will be shown to be N, Our function will be chosen so the least fixpoint is all
of N, and our chosen point will be the extension of the predicate, the set of
numbers satisfying it, given by AP = {n | P (n)}. Then N ⊆ AP implies the
desired conclusion. In terms of AP , the requirements on P are

• 0 ∈ AP

• for any n ∈ AP , n+ 1 ∈ AP .

This can be put into the form f(AP ) ⊆ AP by taking as our function this
operation on sets of natural numbers

suc(X) = {0} ∪ {n+ 1 | n ∈ X}

10



Thus we see that induction on natural numbers is equivalent to the fixpoint
description using a characterization of N as the least fixpoint of suc on the
complete lattice P(N).

We work with the intuition that showing an inclusion A ⊆ B establishes
that every element of the set A satisfies the predicate whose extension is the
set B. Under this point of view, induction lets us do some initial work to find
a characterization of a set of particular interest as a least fixpoint, to obtain
a lemma which lets us more easily attempt to prove A ⊆ B for a variety of
desired predicates B. Coinduction conversely lets us do some initial work to
characterize a property of interest as a greatest fixpoint, to obtain a lemma
which lets us more easily show that various desired sets contain only elements
satisfying the predicate of interest.

In particular, we will work with sets of claims about program execution
and characterize the property of a claim being true as a greatest fixpoint,
to obtain a coinduction principle for showing that entire sets of claims hold,
which we will apply to the sets of claims corresponding to the specifications
of programs.

2.3 Semantics
A formal definition of a programming language is necessary to support any
formal proofs about the behavior of programs. Two major approaches to
semantics are operational semantics and denotational semantics.

A denotational semantics is based on assigning a meaning to terms in the
programming language, by giving a mapping from code into a mathematical
domain that completely characterizes the behavior of a fragment of code.
The value resulting from a fragment of code is called its denotation. Ideally
the mapping defines the denotation of any language construct as a function
of the denotation rather than the code of its subterms.

For a simple example, arithmetic expressions over constants can be given
a denotation as numbers if division (by zero) is avoided, or by adding an ad-
ditional value for errors to the set of numbers, and each operator is described
as a function of the values of its arguments. Expressions over variables can be
handled by using partial functions from variables to values as environments,
and giving denotations as functions from environments to numbers, extended
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i ∈ Z – Integers
x ∈ Id – Identifiers
b ∈ B(= {⊤,⊥}) – Booleans
σ ∈ Id ⇀ Z – Environments (used in semantics)

e ∈ Exp – Expressions
e ::= i | x | x -- | e + e

be ∈ BExp – Boolean Expressions
be ::= b | ! be | be && be | e <= e | e == e

s ∈ Stmt – Statements
s ::= x := e | skip | s ; s
| if ( be ) { stmt } else { stmt } | while ( be ) { s }

Figure 2.1: IMP Syntax

with an error result as before. Simple statements can be given a denotation
as functions from environment to environments. More complicated language
features such as loops or recursive functions (let alone concurrency) require
more sophisticated domains constructed to ensure recursive descriptions are
well-defined.

An operational semantics is concerned with describing how code executes.
All of the styles discussed are illustrated on a simple imperative language in
Fig. 2.1. Our language deliberately includes a postdecrement operator x--,
so expression evaluation includes side effects, and the examples will show
how to deal with this complication.

An operational semantics includes a definition of a set of states or con-
figurations which combine code with other runtime state needed to describe
how a language executes, which may include components such as an environ-
ment mapping local variables to values, a heap mapping pointers to values,
a call stack, active exception handlers, tables of class or function definitions.
An operational semantics also includes a relation describing the execution of
these configurations. We show multiple operational semantics for a simple
imperative language IMP in Figs. 2.2, 2.3, 2.4 and 2.5 The major division
in operational semantics is between big-step semantics and small-step seman-
tics.

A big-step semantics describes execution with a relation between config-
urations and a set of results, which immediately relates a program to a final

12



Configurations are pairs ⟨s, σ⟩

e, σ ⇓e i, σ – Arithmetic Expression evaluation
σ(x) = i

Var
x, σ ⇓e i, σ

σ(x) = i
Dec

x--, σ ⇓e i, σ[i− 1/x]
e1, σ ⇓e i1, σ1 e2, σ1 ⇓e i2, σ2

Add
e1+e2, σ ⇓e (i1 + i2), σ2

be, σ ⇓b b, σ – Boolean Expression evaluation
be, σ ⇓b b, σ′

Not
!be, σ →b ¬b, σ′

be1, σ ⇓b ⊥, σ′

And-⊥
be1&&be2, σ ⇓b ⊥, σ′

be1, σ ⇓b ⊤, σ1 be2, σ1 ⇓b b, σ2
And-⊤

be1&&be2, σ ⇓b b, σ2

e1, σ ⇓e i1, σ1 e2, σ1 ⇓e i2, σ2Eq
e1=e2, σ ⇓b (i1 = i2), σ2

e1, σ ⇓e i1, σ1 e2, σ1 ⇓e i2, σ2
Le

e1<=e2, σ ⇓b (i1 ≤ i2), σ2

s, σ ⇓ σ – Configuration evaluation

e, σ ⇓e i, σ′

Asgn
x:=e, σ ⇓ σ[i/x]

s1, σ ⇓ σ1 s2, σ1 ⇓ σ2Seq
s1;s2, σ ⇓ σ2

if(be){s;while(be){s}}else{skip}, σ ⇓ σ′

While
while(be){s}, σ ⇓ σ′

be, σ ⇓b ⊤, σ1 s1, σ1 ⇓ σ2
If-⊤

if(be){s1}else{s2}, σ ⇓ σ2

be, σ ⇓b ⊥, σ1 s2, σ1 ⇓ σ2
If-⊥

if(be){s1}else{s2}, σ ⇓ σ2

Figure 2.2: IMP Big-Step Semantics
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output or summary of its execution. This relation is almost always defined
inductively in terms of the big-step results of subprograms. The relation
need not be functional - a configuration may be assigned multiple results if
execution is not deterministic, and assigning a configuration no result may
be used to model errors or diverging execution such as infinite loops (both
cases might also be modeled as part of the result set, though handling infinite
execution generally requires a coinductive big-step semantics, as in [LG09]).

A small-step semantics describes execution with a relation on the set
of configurations which is interpreted as defining primitive execution steps.
A possible behavior of a program is described as a sequence of states each
related to the next by the step relation.

The semantics also describes how these configurations execute. This di-
vides semantics into small-step and big-step semantics. In a small-step se-
mantics, execution is described by a relation on configurations which connects
states and their possible immediate successors. Possible executions of a pro-
gram consist of sequences of states which are each related to the next by the
step relation. Unlike a big-step semantics this gives an inherent notion of
intermediate states in an execution, and the only inherent notion of a final
result is in reaching a state with no successors, also called a stuck state or a
normal form. An execution which never terminates corresponds to an infinite
series of steps that avoids any stuck states.

There are several styles for defining small-step semantics. The main dif-
ference is how the evaluation in subterms is handled, such as reducing 1 + 2

to 3 within (1 + 2) + 4 to produce the term 3 + 4. We describe structural
operational semantics (abbreviated SOS), reduction semantics (or evaluation-
context semantics), and K-style semantics.

The oldest approach is structural operational semantics [Plo04], abbrevi-
ated SOS, which defines the step relation inductively and uses congruence
rules which allow a compound term to take an execution step when a related
configuration for a subterm takes a step.

In the SOS semantics in Fig. 2.3 we have rules such as

e1, σ →e e
′
1, σ

′

e1+e2, σ →e e
′
1+e2, σ′

which allows evaluation to occur within the first argument of an addition
expression. This rule explicitly shows how σ is made available to the step in
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Configurations are pairs ⟨s, σ⟩

e, σ →e e, σ – Expression evaluation
σ(x) = i

Var
x, σ →e i, σ

σ(x) = i
Dec

x--, σ →e i, σ[i− 1/x]
Add

i1+i2, σ →e i1 + i2, σ
e1, σ →e e

′
1, σ

′

e1+e2, σ →e e
′
1+e2, σ′

e2, σ →e e
′
2, σ

′

i1+e2, σ →e i1+e′2, σ′

be, σ →b be, σ – Boolean Expression evaluation

And-⊤
⊤&&be, σ →b be, σ

And-⊥
⊥&&be, σ →b ⊥, σ

Not
!b, σ →b ¬b, σ

Eq
i1=i2, σ →b (i1 = i2), σ

Le
i1<=i2, σ →b (i1 ≤ i2), σ

be1, σ →b be
′
1, σ

′

be1&&be2, σ →b be
′
1&&be2, σ′

be1, σ →b be
′
1, σ

′

!be1, σ →b !be′1, σ′

e1, σ →e e
′
1, σ

′

e1=e2, σ →b e
′
1=e2, σ′

e2, σ →e e
′
2, σ

′

i1=e2, σ →b i1=e′2, σ′

e1, σ →e e
′
1, σ

′

e1<=e2, σ →b e
′
1<=e2, σ′

e2, σ →e e
′
2, σ

′

i1<=e2, σ →b i1<=e′2, σ′

s, σ → s, σ – Configuration evaluation

Asgn
x:=i, σ → skip, σ[i/x]

Seq
skip;s2, σ → s2, σ

While
while(be){s}, σ → if(be){s;while(be){s}}else{skip}, σ

If-⊤
if(⊤){s1}else{s2}, σ → s1, σ

If-⊥
if(⊥){s1}else{s2}, σ → s2, σ

e, σ → e′, σ′

x:=e, σ → x:=e′, σ′

s1, σ → s′1, σ
′

s1;s2, σ → s′1;s2, σ′

be, σ → be′, σ′

if(be){s1}else{s2}, σ → if(be′){s1}else{s2}, σ′

Figure 2.3: IMP SOS Semantics
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the hypothesis, and the possibly modified σ′ is copied back into the conclusion.
Even with just one component besides the code in the configuration this is
already somewhat tedious. Even worse, this affects the modularity of the
semantics. Extending the language in a way that requires extending the
configuration could require modifying all existing rules, and even simple rules
such as this one cannot be shared between similar semantics. To address
this, refined variants of SOS such as MSOS [Mos04] and GSOS [BIM95]
include conventions allowing rules to avoid explicitly mentioning state they
only pass along rather than directly using. Tool support for writing structural
operational semantics is available in the Maude MSOS tool [CB07].

Reduction semantics [FFF09] is based on the idea of explicitly defining
the contexts where evaluation may occur, rather than encoding it with a
collection of congruence rules. This definition is made by giving a recursive
definition of evaluation contexts and a plugging operation which combines
a context and a focused term back into a configuration. Then contexts are
mentioned in rules such as the addition rule

C[i1+i2]→ C[i1 + i2]

to explicitly allow the expression being reduced (called a redex) to occur in-
side a context. This approach natively allows for some degree of abbreviation
over components of states which a rule does not need, by allowing them to be
absorbed into the context. Because the recursive structure of terms is han-
dled by the definition of contexts, the definition of the execution relation itself
need not be recursive, and every step in the execution of a program is taken
by using a single rule, without needing to construct an appropriate stack of
congruence rules. However, applying a rule to a given configuration still re-
quires finding the correct decomposition into context and redex. Reduction
semantics is the natively supported style of the PLT-Redex tool [FFF09].

The K style of operation semantics was developed in parallel with the
K tool [RȘ10; Șer+14], originating from an effort to define programming lan-
guage semantics with rewriting logic [ȘRM09]. While big-step, small-step,
and reduction semantics were all faithfully expressible, the setting motivated
avoiding both the recursive definition of rules needed for SOS and the sophis-
ticated pattern matching needed to decompose a term into context and redex
as in reduction semantics. Instead, a K-style semantics explicitly represents
the process of focusing on a current subterm as part of the configuration. A
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Configurations are pairs ⟨s, σ⟩

C ∈ Cxt – Evaluation Contexts
C ::= □ | ⟨□, σ⟩ | CItem , C

CItem ::= □ + e | i + □ | ! □ | □ && be | □ <= e | i <= □ | □ == e | i == □ |
x := □ | □ ; s | if ( □ ) { stmt } else { stmt }

C[e], C[be], C[s] – Context plugging

□[s] = s

⟨□, σ⟩[s] = ⟨s, σ⟩
(□+e2, C)[e1] = C[e1+e2]
(i1+□, C)[e2] = C[i1+e2]
(!□, C)[be] = C[!be]

(□&&be2, C)[be1] = C[be1&&be2]
(□<=e2, C)[e1] = C[e1<=e2]
(i1<=□, C)[e2] = C[i1<=e2]
(□==e2, C)[e1] = C[e1==e2]
(i1==□, C)[e2] = C[i1==e2]
(x:=□, C)[e] = C[x:=e]
(□;s2, C)[s1] = C[s1;s2]

(if(□){s1}else{s2}, C)[be] = C[if(be){s1}else{s2}]

⟨s, σ⟩ → ⟨s, σ⟩ – Configuration execution
σ(x) = i

Var
⟨C[x], σ⟩ → ⟨C[i], σ⟩

σ(x) = i
Dec

⟨C[x--], σ⟩ → ⟨C[i], σ[i+ 1/x]⟩
Add:C[i1+i2]→ C[i1 + i2] Eq:C[i1==i2]→ C[(i1 = i2)]
Not:C[!b]→ C[¬b] Le:C[i1<=i2]→ C[(i1 ≤ i2)]
And-⊤:C[⊤&&be]→ C[be] Asgn:⟨C[x:=i], σ⟩ → ⟨C[skip], σ[i/x]⟩
And-⊥:C[⊥&&be]→ C[⊥] If-⊤:C[if(⊤){s1}else{s2}]→ C[s1]
Seq:C[skip;s2]→ C[s2] If-⊥:C[if(⊥){s1}else{s2}]→ C[s2]
While:C[while(be){s}]→ C[if(be){s;while(be){s}}else{skip}]

Figure 2.4: IMP Reduction Semantics

17



Configurations are pairs ⟨s, σ⟩

K ::= .K | KItem ↷ K

KItem ::= e | be | s | Freezer

Freezer ::= □ + e | e + □ | ! □ | □ && be | □ <= e | e <= □ | □ == e | e ==
□ | x := □ | if ( □ ) { stmt } else { stmt }

⟨s, σ⟩ → ⟨s, σ⟩ – Configuration execution
σ(x) = i

Var
⟨x ↷ K, σ⟩ → ⟨i ↷ K, σ⟩

σ(x) = i
Dec

⟨x-- ↷ K, σ⟩ → ⟨i ↷ K, σ[i− 1/x]⟩
Asgn:⟨x:=i ↷ K, σ⟩ → ⟨K, σ[i/x]⟩ Add:⟨i1+i2 ↷ K,σ⟩ → ⟨i1 + i2 ↷ K, σ⟩
Eq:⟨i1==i2 ↷ K, σ⟩ → ⟨(i1 = i2) ↷ K, σ⟩Le:⟨i1<=i2, σ⟩ → ⟨(i1 ≤ i2) ↷ K,σ⟩
Not:⟨!b ↷ K, σ⟩ → ⟨¬b ↷ K,σ⟩ And-⊤:⟨⊤&&be ↷ K,σ⟩ → ⟨be ↷ K, σ⟩
Skip:⟨skip ↷ K, σ⟩ → ⟨K,σ⟩ And-⊥:⟨⊥&&be ↷ K, σ⟩ → ⟨⊥↷ K, σ⟩
Seq:⟨s1;s2 ↷ K,σ⟩ → ⟨s1 ↷ s2 ↷ K, σ⟩
If-⊤:⟨if(⊤){s1}else{s2} ↷ K,σ⟩ → ⟨s1 ↷ K, σ⟩
If-⊥:⟨if(⊥){s1}else{s2} ↷ K,σ⟩ → ⟨s2 ↷ K, σ⟩

While: ⟨while(be){s} ↷ K, σ⟩ →
⟨if(be){s;while(be){s}}else{skip} ↷ K,σ⟩

Heating and Cooling rules
⟨e1+e2 ↷ K, σ⟩⇌ ⟨e1 ↷ □+e2 ↷ K,σ⟩ → when e1 ̸∈ Z, ← when e1 ∈ Z
⟨e1+e2 ↷ K, σ⟩⇌ ⟨e2 ↷ e1+□ ↷ K,σ⟩ → when e2 ̸∈ Z, ← when e2 ∈ Z
⟨!be ↷ K, σ⟩⇌ ⟨be ↷ !□ ↷ K, σ⟩ → when be ̸∈ B, ← when be ∈ B
⟨be1&&be2 ↷ K, σ⟩⇌ ⟨be1 ↷ □&&be2 ↷ K, σ⟩

→ when be1 ̸∈ B, ← when be1 ∈ B
⟨e1<=e2 ↷ K, σ⟩⇌ ⟨e1 ↷ □<=e2 ↷ K, σ⟩ → when e1 ̸∈ Z, ← when e1 ∈ Z
⟨e1<=e2 ↷ K, σ⟩⇌ ⟨e2 ↷ e1<=□ ↷ K, σ⟩ → when e2 ̸∈ Z, ← when e2 ∈ Z
⟨e1==e2 ↷ K, σ⟩⇌ ⟨e1 ↷ □==e2 ↷ K, σ⟩ → when e1 ̸∈ Z, ← when e1 ∈ Z
⟨e1==e2 ↷ K, σ⟩⇌ ⟨e2 ↷ e1==□ ↷ K, σ⟩ → when e2 ̸∈ Z, ← when e2 ∈ Z
⟨x:=e ↷ K, σ⟩⇌ ⟨e ↷ x:=□ ↷ K, σ⟩ → when e ̸∈ Z, ← when e ∈ Z
⟨if(be){s1}else{s2} ↷ K,σ⟩⇌ ⟨be ↷ if(□){s1}else{s2} ↷ K,σ⟩

→ when be ̸∈ B, ← when be ∈ B

Figure 2.5: IMP K-Style Semantics
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K-style semantics has a sequence of “komputation” items where other styles
might have a single term for the current code. Items include terms introduced
to express the semantics, in addition to fragments of code.

A subterm is lifted to the front of the sequence and the result embedded
back into a larger term with heating and cooling rules such as

heat-+1⟨e1+e1 ↷ K | σ⟩ → ⟨e1 ↷ □+_(e2) ↷ K |σ⟩ when e1 ̸∈ Z

cool-+1⟨i ↷ □+_(e2) ↷ K |σ⟩ → ⟨i+e1 ↷ K |σ⟩ when i ∈ Z

The computation item □+_ is a freezer, retaining the operator and other
argument while execution proceeds within the first argument of the addi-
tion expression. In practice, both the freezers and the heating and cooling
rules are usually generated from annotations on the grammar saying which
positions of which operators allow evaluation.

By relying on heating rules to expose subterms as the front of the com-
putation sequence, the remaining rules of the semantics can be written to
assume the desired term stands alone at the front of the computation se-
quence, as in this rule which evaluates an addition.

eval-+
(i1+i2 ↷ K,σ)→ (i1 + i2 ↷ K,σ)

This part of the approach is related to the idea of a zipper [Hue97] in func-
tional programming, where a datatype allowing quick access to a designated
subterm is a larger term is created by defining a set of one-step contexts,
and representing a term with a focused subterm as a pair of the focused sub-
term and a list of contexts recording the structure back up to the root. The
K-style handling can be thought of as a zipper-style implementation of the
context/redex decomposition of a reduction semantics.
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Chapter 3

Coinductive Verification

This chapter presents the key ideas and mathematics of our coinductive ap-
proach to program verification. We begin with a simple problem to motivate
basic definitions, and then to give a detailed demonstration of how they can
be used to specify and verify a simple program. After seeing the foundational
details and hopefully getting an intuition for the soundness of a coinductive
proof, we describe how simple abbreviations and the use of proof assistants
can handle many of the details we would rarely wish to see. Finally we pre-
vent the full statements and proofs of the coinduction theorems and lemmas
that we use.

3.1 Coinductive Proof System
In this section we will demonstrate how coinduction can be used for program
verification by giving a detailed proof for a simple example.

We begin by introducing a language-independent notion of specification,
by recalling the common notation of Hoare triples with a partial correctness
interpretation and eliminating the portions of that notation which rely on
assumptions about the language for greater concision. A set of the resulting
partial reachability claims can capture the meaning of a set of Hoare triples.
The assertion that a set of claims are true is amenable to coinductive proof
because the collection of true claims can be defined as a greatest fixpoint.

Then we demonstrate how a simple program specification can be proved
by coinduction. The most basic coinduction theorem is too unwieldy, but
switching to an enhanced coinduction principle makes the proof much eas-
ier. In fact, the shape of the proof can closely follow the control flow of
the program being verified, even though the statements to be proved may
be stated in apparently unrelated terms of fixpoints and set inclusions. A
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particular point to notice is that loops are nicely handled without needing
any language-specific lemmas for reasoning about loops.

We show most details to emphasize that only elementary mathematics is
necessary to apply this approach, but it does make a traditional of the proof
somewhat long and leaves much redundancy among intermediate stages of the
proof. However, the simplicity also makes it easy to translate the statement
to be proved into the language of a proof assistant, which will then manage
most of the tedious detail such as updating the statement of the current goal.
We show in Appendix A an extended transcript of proving this example
in Coq, showing what help is provided even without any significant proof
automation. In particular, the user need only enter brief commands, while
the tool updates and displays the current progress of the proof attempt.
Most of our additional example programs rely on the more complete proof
automation described in Section 4.3, which proves the examples in Section 5.1
and Appendix B almost completely automatically.

Consider the simple program

s=0; while (n-- != 0) {s = s+n}

We let sum stand for the program and loop stand for the while statement.
When executed in an environment where s is defined and n has a non-

negative initial value n, it sets s to the sum of integers 1, . . . , n − 1, which
is n(n − 1)/2. This example includes potential nontermination because the
semantics use unbounded integers, so the loop runs forever n.

This program is written in the language of Fig. 2.1 and will be verified
according to the semantics in Fig. 2.3 or Fig. 2.4. The configurations of this
semantics consist of pairs ⟨T | σ⟩ of a current statement T and a store σ

mapping identifiers to integers. A portion of a possible execution of this
program is shown in Fig. 3.1 The exact granularity of the semantics is not
critical, as long as a diverging execution will produce an infinite execution.
(Using several styles of operational semantics with our implementation is
demonstrated and discussed in Section 4.1.1).

While coinductive program verification can be defined in a self-contained
way, we discuss it in comparison with a traditional Hoare logic approach, for
two reasons. First, it will help motivate some of the definitions we propose,
which let use prove similar conclusions despite the different foundations of
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⟨s=0;loop|n 7→ 1⟩
⟨skip;loop|n 7→ 1,s 7→0⟩

⟨while(n--!=0){s=s+n}|n 7→ 1,s 7→0⟩
⟨if(n--!=0){s=s+n;loop}else{skip}|n 7→ 1,s 7→0⟩
⟨if(1!=0){s=s+n;loop}else{skip}|n 7→ 0,s 7→0⟩
⟨if(⊤){s=s+n;loop}else{skip}|n 7→ 0,s 7→0⟩

⟨s=s+n;loop|n 7→ 0,s 7→0⟩
⟨s=0+n;loop|n 7→ 0,s 7→0⟩
⟨s=0+0;loop|n 7→ 0,s 7→0⟩
⟨s=0;loop|n 7→ 0,s 7→0⟩
⟨skip;loop|n 7→ 0,s 7→0⟩

⟨while(n--!=0){s=s+n}|n 7→ 0,s 7→0⟩
⟨if(n--!=0){s=s+n;loop}else{skip}|n 7→ 0,s 7→0⟩
⟨if(0!=0){s=s+n;loop}else{skip}|n 7→−1,s 7→0⟩
⟨if(⊥){s=s+n;loop}else{skip}|n 7→−1,s 7→0⟩

⟨skip|n 7→−1,s 7→0⟩

Figure 3.1: Example execution of sum program

the approaches. Second, it will help put coinductive verification in context,
showing how it handles some issues that require some complexity to handle
in Hoare logic.

3.1.1 Specifications

We will now consider how to specify that the program computes the sum.
Speaking in terms of the operational semantics, execution from any config-
uration where the current code begins with the sum program and the store
maps variable n to a value n should either diverge, or reach a configuration
that is done executing and has a store which maps variable s to the sum
n(n− 1)/2, may have any value for n, and is otherwise unchanged.

In a Hoare logic with a partial-correctness interpretation, that specifica-
tion could be written

{∣∣n = N
∣∣}s = 0; while (n-- != 0) {s = s+n}

{∣∣s = N(N − 1)/2
∣∣}

This notation is concise and evocative, but some of that convenience re-
lies on details of a particular languages semantics. For example, program
variables can be used directly in formulas to stand for their values, but this
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means the interpretation of the notation must mention details of how the cur-
rent environment is represented in the configuration. In pursuit of language-
independence we will forgo these conveniences for now (showing how to regain
some in Section 3.1.6), and write specifications in terms of full configurations:

∀n, T, s0, σ. ⟨s = 0; while (n-- != 0) {s = s+n}; T | n 7→n, s 7→ s0, σ⟩

⇒ {⟨T | n 7→n′, s 7→n(n− 1)/2, σ⟩ | n′ ∈ Z}

We generally regard an operational semantics as the relation R ⊆ C × C of
atomic execution steps on a set C of configurations; we write a →R b for
(a, b) ∈ R and a→+

R b for the transitive closure of R.

Definition 3.1 (One-Path Partial Reachability). A reachability claim c⇒R

P relates an initial state c ∈ C and a target set of states P ⊆ C. A claim is
satisfied or valid if the initial state c can either reach a state in P or can take
an infinite number of steps. We drop the subscripts, as in a → b or c ⇒ P ,
when R is understood.

With this definition a claim only requires that some single execution from
c falls into either case. This is suitable only for deterministic languages. We
present another definition which constrains all paths in Section 3.2, and show
both definitions can be used for coinduction. However, these definitions are
equivalent on deterministic languages, and the one-path definition is easier to
work with because it only requires exhibiting successors rather than reasoning
about all possible successors.

The leading universal quantification means the specification above is not
an individual reachability claim, but a set of claims which together constitute
the specification of the program. This style of specification expresses desired
program behavior with claims about the properties of the language semantics
itself, asking whether certain sorts of execution paths exist.

3.1.2 Hoare Logic Proof

Before we demonstrate our approach we will review how the sum program
would be verified using the axiomatic semantics shown in Fig. 3.2. The
first step is transforming the program to remove side effects from the loop
condition. This is necessary to allow the proof rules to substitute entire
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Skip {∣∣P ∣∣}skip{∣∣P ∣∣}
{∣∣P ∣∣}s1{∣∣R ∣∣} {∣∣R ∣∣}s2{∣∣Q ∣∣}

Sequence {∣∣P ∣∣}s1;s2{∣∣Q ∣∣}
E has no side effectsAssign {∣∣P [E/x]

∣∣}x := e
{∣∣P ∣∣}

{∣∣P ∧ b
∣∣}s{∣∣P ∣∣}

While {∣∣P ∣∣}while(b)s{∣∣P ∧ ¬b ∣∣}
|= P =⇒ P ′ {∣∣P ′

∣∣}s{∣∣Q′
∣∣} |= Q′ =⇒ Q

Conseq {∣∣P ∣∣}s{∣∣Q ∣∣}
Figure 3.2: Axiomatic Semantics for IMP

expressions into predicates. Directly supporting side effects is also possible,
and detailed in [ON02], but it requires expanding the proof system and proofs
with a separate proof rule for each operator. The modified program is

s = 0; while (n != 0) {n = n-1; s = s+n}; n = n-1

The specification uses an auxiliary variable N not mentioned in the program
to record the initial value of the variable n. We choose s + n(n − 1)/2 =

N(N − 1)/2 for the loop invariant. All the other intermediate predicates
in the proof tree can be filled in by working backwards from the known
postconditions, because rules other than While allow any proposition P as
the postcondition. Whenever working backwards reaches a give precondition
the Conseq rule is used with a hypothesis that the given precondition implies
the desired one. Here is the derivation for s=0, which uses the Conseq rule to
match up with the precondition given by the overall program specification.

Assign {∣∣0 + n(n−1)
2

= N(N−1)
2

∣∣}s = 0
{∣∣s+ n(n−1)

2
= N(N−1)

2

∣∣}
Conseq {∣∣n = N

∣∣}s = 0
{∣∣s+ n(n−1)

2
= N(N−1)

2

∣∣}
Here is the derivation for the final n-1, which uses the Conseq rule to

match the precondition imposed the while loop with the predicate propagated
from the postcondition of the whole program.

Assign {∣∣s = N(N−1)
2

∣∣}n = n-1
{∣∣s = N(N−1)

2

∣∣}
Conseq {∣∣s+ n(n−1)

2
= N(N−1)

2
∧ n = 0

∣∣}n = n-1
{∣∣s = N(N−1)

2

∣∣}
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Assign {∣∣s+n−1+ (n−1)(n−2)
2

=N(N−1)
2

∣∣}n=n-1{∣∣s+n+n(n−1)
2

=N(N−1)
2

∣∣}
Conseq {∣∣s+n(n−1)

2
=N(N−1)

2
∧n̸=0

∣∣}n=n-1{∣∣s+n+n(n−1)
2

=N(N−1)
2

∣∣}
...

... Assign {∣∣s+n+n(n−1)
2

=N(N−1)
2

∣∣}s=s+n{∣∣s+n(n−1)
2

=N(N−1)
2

∣∣}
Seq {∣∣s+n(n−1)

2
=N(N−1)

2
∧n̸=0

∣∣}n=n-1;s=s+n{∣∣s+n(n−1)
2

=N(N−1)
2

∣∣}
While {∣∣s+n(n−1)

2
=N(N−1)

2

∣∣}while(n!=0){n=n-1;s=s+n}{∣∣s+n(n−1)
2

=N(N−1)
2
∧¬n ̸=0

∣∣}
Figure 3.3: Hoare Logic derivation for sum loop

The derivation for the while loop is shown in Fig. 3.3. The applications
of the Consequence rule in depend on implications

n = N =⇒ 0 +
n(n− 1)

2
=

N(N − 1)

2

s+
n(n− 1)

2
=

N(N − 1)

2
∧ n = 0 =⇒ s =

N(N − 1)

2

s+
n(n− 1)

2
=

N(N − 1)

2
∧ n ̸= 0 =⇒

s+ (n− 1) +
(n− 1)(n− 2)

2
=

N(N − 1)

2

The first two are trivial and the third follows from

n(n− 1)

2
=

(2 + (n− 2))(n− 1)

2
= (n− 1) +

(n− 1)(n− 2)

2

These three derivations are combined with the seq rule to produce a proof
of the desired conclusion for the overall program:

{∣∣n = N
∣∣}s=0; while(n!=0){n=n-1; s=s+n}; n=n-1

{∣∣s =
N(N − 1)

2

∣∣}
3.1.3 Coinductive Proofs

Now we introduce the proofs of our system. To be able to prove the overall
specification we will need to add a specification of the loop itself.

∀x, n, T, σ. ⟨loop; T | n 7→x, s 7→ s, σ⟩

⇒ {⟨T | n 7→n′, s 7→ s+
n(n− 1)

2
, σ⟩ | n′ ∈ Z}
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This serves a similar purpose to a loop invariant in that it helps deal with
loops by giving a more general precondition which also covers any states that
may result from execution around the loop.

Unlike an axiomatic semantics there is nothing special about while loops
in our proof system. We could have handled the loop by making an extra
claim about states at any point in the loop, perhaps those whose code begins
s=s+n;loop instead of those just loop.

Before stating a coinduction lemma we build some intuition by giving an
informal argument that explicitly describes possible executions to show that
the loop specification is valid. In the semantics of Fig. 2.3 or fig:imp-sem-
reduction we have for any T , σ, s, and nonzero n that

⟨loop; T | n 7→ 0, s 7→ s, σ⟩ →+ ⟨T | n 7→−1, s 7→ s, σ⟩ (3.1)
⟨loop; T | n 7→n, s 7→ s, σ⟩ →+ ⟨loop; T | n 7→n− 1, s 7→ s+ n, σ⟩ (3.2)

in a number of steps independent of n. This suffices to argue that the spec-
ification is valid. For initial states with n ≥ 0 we assemble an explicit path
to the target by induction on n. For n < 0 we can show execution diverges
by concatenating the execution segments given by (3.2) for initial values
n, n− 1, n− 2, . . ..

Constructing specific execution paths, however, is too explicit. One prob-
lem is knowing in advance which configurations will diverge. Another prob-
lem is that this requires calculating exactly what state to expect at the begin-
ning of the next loop iteration rather than allowing a more flexible predicate.
Even in deterministic languages it is better if it is not necessary to predict
things like the addresses where newly heap-allocated values will be placed.

Another problem is that calculating explicit execution paths requires de-
scribing the exact states reached rather than just using using predicates.
Even for a deterministic language where this may be possible it is better
if proofs do not need to predict details such as the exact addresses where
heap-allocated values will reside.

We can weaken (3.2) to checking that

⟨while (n-- != 0) {s = s+n}; T | n 7→n, s 7→ s, σ⟩
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with n ̸= 0 reaches after finite steps a state of the form

⟨while (n-- != 0) {s = s+n}; T | n 7→n′, s 7→ s′, σ⟩

such that s + n(n − 1)/2 = s′ + n′(n′ − 1)/2. This indeed suffices: either
the resulting state has n′ = 0 and reaches the target by (3.1) or n′ ̸= 0

and this claim applies again. Wandering forward will eventually either reach
the target set or extend forever to give an infinite path. Either satisfies the
reachability claim.

This intuition about “wandering forward” can be formalized with coin-
duction, specifically coinduction in a lattice of subsets ordered by inclusion.
To start connecting coinduction to verification we regard specifications as
sets of claims. To phrase the validity of a specification as a question of set
inclusion we introduce a trivial definition of the set of all valid claims:

Definition 3.2. If R ⊆ C × C, define validR ⊆ C × P(C) by

validR = {(c, P ) | c⇒R P holds}

Pairs (c, P ) ∈ C×P(C) are called claims or specifications, and our objective
is to prove them true, i.e., c⇒R P .

Sets of claims S ⊆ C × P(C) are all true if S ⊆ validR. To show such
inclusions by coinduction we express validR as a greatest fixpoint (Lemma 7),
specifically of the following operator (proven as Lemma 7):

Definition 3.3. Given R ⊆ C×C, let stepR : P(C×P(C))→ P(C×P(C))

be defined by

stepR(S) = {(c, P ) | c ∈ P ∨ ∃d . c→R d ∧ (d, P ) ∈ S}

The last ingredient we need is a generalized coinduction principle:

Definition 3.4. Given any monotone function F : P(D) → P(D) on a
powerset, define its F -closure F ∗ : P(D)→ P(D) by

F ∗(X) = µY. F (Y ) ∪X

This is well-defined because Y 7→ F (Y ) ∪X is monotone for any X.
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Definition 3.5 (Transitivity Rule). For any C, trans : P(C × P(C)) →
P(C ×P(C)) is defined by

trans(S) = {(c, P ) | ∃Q.(c,Q) ∈ S ∧ ∀d ∈ Q, (d, P ) ∈ S}

For brevity, let expandR(X) = stepR(X) ∪ trans(X).

Lemma 5. For any R⊆C×C and S⊆C×P(C),

S ⊆ stepR(expand∗
R(S)) implies S ⊆ validR

This lemma replaces the entire axiomatic semantics shown in Fig. 3.2, and
it’s proof replaces the soundness proof that would be required for that ax-
iomatic semantics. The only formal definition specific to IMP that is needed
is an operational semantics from Fig. 2.3, 2.4 or 2.5. Furthermore, the state-
ment and proof of this lemma do not depend on details of the target relation.
Instead of requiring language designers to know how to prove the soundness
of a customized proof system they need only provide an operational seman-
tics. This lemma is proven once and covers all languages.

Now we show how to use this lemma to prove the example program. These
definitions and results may appear like abstract mathematics quite far from
the world of programming but we will see that we can use them in ways
directly corresponding to (symbolic) execution in the operational semantics.

Expressed as a set of claims our specification is

S ≡ {(⟨s = 0; loop; T | n 7→n, s 7→ s, σ⟩
, {⟨T | n 7→n′, s 7→n(n− 1)/2, σ⟩ | ∀n′}) | ∀n, s, T, σ}

∪ {(⟨while (n--!=0) {s=s+n}; T | n 7→n, s 7→ s, σ⟩
, {⟨T | n 7→n′, s 7→ s+ n(n− 1)/2, σ⟩ | ∀n′}) | ∀s, n, T, σ}

The specification holds if S ⊆ validR. By Lemma 5, it suffices to show

S ⊆ stepR(expand∗
R(S)) (3.3)

We introduce an abbreviation for the goal sets

G(T, n, s, σ) = {⟨T | n 7→n′, s 7→ s+ n(n− 1)/2, σ⟩ | ∀n′}
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We begin the proof by splitting the desired inclusion into a separate goal for
each family of claims, using the simple fact that (A∪B) ⊆ X iff A ⊆ X and
B ⊆ X. This leaves two inclusions to be shown

{(⟨s=0;loop;T | n 7→n, s 7→ s, σ⟩, G(T, n, 0, σ)) | ∀T, n, s, σ}

⊆ stepR(expand∗
R(S)) (3.4)

{(⟨loop; T | n 7→n, s 7→ s, σ⟩, G(T, n, s, σ)) | ∀T, n, s, σ}

⊆ stepR(expand∗
R(S)) (3.5)

The claims making up the overall specification of the program are handled
in Eq. (3.4). The first execution step of the state in each claim executes the
assignment to s regardless of the value of the variables

∀n, s, T, σ. ⟨s=0;loop;T | n 7→n, s 7→ s, σ⟩ → ⟨skip;loop;T | n 7→n, s 7→ 0, σ⟩

We can use this with execution step with the second case in the definition of
stepR to reduce Eq. (3.4) to showing

{(⟨skip;loop;T | n 7→n, s 7→ 0, σ⟩, G(T, n, 0, σ)) | ∀n, T, σ} ⊆ expand∗
R(S)

The initial state of these claims can take equivalent steps eliminating skip.
To use these steps as before we need stepR on the right-hand side. We expose
an instance of stepR by strengthening the goal with the following inclusion,
shown by unfolding the definition of expandR and the fixpoint in −∗

stepR(expand∗
R(S)) ⊆ S ∪ (stepR ∪ trans)(expand∗

R(S))

= S ∪ expandR(expand∗
R(S)) = expand∗

R(S)

Now we can use an execution step as before, reducing the goal to showing

{(⟨loop;T | n 7→n, s 7→ 0, σ⟩, G(T, n, 0, σ)) | ∀n, T, σ} ⊆ expand∗
R(S)

All these claims are instances of the loop claims from the original specification
with s = 0. To use the original claims we strengthen the goal by the inclusion

S ⊆ S ∪ expandR(expand∗
R(S)) = expand∗

R(S)
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and finish the proof of Eq. (3.4) by noting that

{(⟨loop;T | n 7→n, s 7→ 0, σ⟩, G(T, n, 0, σ)) | ∀n, T, σ} ⊆ S

Now it remains to prove Eq. (3.5). As before we begin showing inclusion
in stepR(expand∗

R(S)) by using a suitable execution step. In this case the
first step always unfolds the while statement, leaving goal

{(⟨if(n--!= 0){s=s+n;loop}else{skip};T | n 7→n, s 7→ s, σ⟩

, G(T, n, s, σ)) | ∀T, n, s, σ} ⊆ expand∗
R(S)

Using stepR(expand∗
R(S)) ⊆ expand∗

R(S) as before, we take more execution
steps until the if-condition is a single but symbolic Boolean value.

{(⟨if(n ̸= 0){s=s+n;loop}else{skip};T | n 7→n− 1, s 7→ s, σ⟩

, G(T, n, s, σ)) | ∀T, n, s, σ} ⊆ expand∗
R(S)

Further progress requires dividing this into cases for n ̸= 0 and n = 0. A
case distinction is made by observing that A ∪ B ⊆ X if both A ⊆ X and
B ⊆ X, leaving two inclusions to check

{(⟨if(⊤){s=s+n;loop}else{skip};T | n 7→n− 1, s 7→ s, σ⟩

, G(T, n, s, σ)) | ∀T, n, s, σ. n ̸= 0} ⊆ expand∗
R(S)

{(⟨if(⊥){s=s+n;loop}else{skip};T | n 7→−1, s 7→ s, σ⟩

, G(T, 0, s, σ)) | ∀T, s, σ} ⊆ expand∗
R(S)

In each case we translate more execution steps to proof steps, leaving goals

{(⟨loop;T | n 7→n− 1, s 7→ s+ (n− 1), σ⟩, G(T, n, s, σ)) | ∀T, n, s, σ, n ̸= 0}

∪ {(⟨T | n 7→−1, s 7→ s, σ⟩, G(T, 0, s, σ)) | ∀T, s, σ} ⊆ expand∗
R(S)

In the n = 0 case, the current configuration is already in the correspond-
ing target set. To conclude, we expose an application of stepR as before but
now use the right case c ∈ P in the definition of stepR to leave the goal

∀T, s, σ. ⟨T | n 7→−1, s 7→ s, σ⟩ ∈ {⟨T | n 7→n′, s 7→ s, σ⟩ | ∀n′}
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In the n ̸= 0 case, the claims would match loop claims in S if

G(T, n, s, σ) = G(T, n− 1, (n− 1) + s, σ)

Expanding the definition of G, this holds if

s+ n(n− 1)/2 = s+ (n− 1) + (n− 1)(n− 2)/2

which is true for n as we saw earlier. This concludes the proof of Eq. (3.3),
and thus by Lemma 5 we have the inclusion S ⊆ validR, meaning that the
sum program s=0;loop satisfies its specification.

Reasoning with fixpoints and functions like stepR can be thought of as
reasoning with proof rules, but ones which interact with the target program-
ming language only through its operational semantics. stepR corresponds to
two rules: taking an execution step and showing that the current configura-
tion is in the target set. Unions correspond to case analysis. The fixpoint in
the closure definition corresponds to iterative uses of these proof rules or to
referring back to claims in the original specification.
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HIMP
append(x, y) {

var p;
if (x = 0) return y;
p := x;
while (*(p+1) <> 0)
p := *(p+1);

*(p+1) := y;
return x;

}

Lambda
(λ (λ ifNil 1 0
((λ (λ 0 0)

(λ 1 (λ 1 1 0))) (λ
(λ (λ (λ 0 1)) (deref 0)
(λ ifNil (cdr 0)
((λ 5) (assign 0
(cons (car 0) 3)))

(2 (cdr 0)))))
1)))

Stack
: append over if
over begin 1+ dup @ dup while nip repeat drop !
else nip then ;

Figure 3.4: Destructive list append in three languages

Before we prove the correctness of our coinductive verification approach,
we consider the following pragmatic question: “Can this simple approach
really work?”. We have implemented it in Coq and specified and verified pro-
grams in a variety of languages, each language being defined as an operational
semantics. Our experiments can be found at http://fsl.cs.illinois.
edu/coinduction. We empirically show not only that coinductive program
verification is feasible and versatile, but also that it is amenable to highly
effective proof automation.

3.1.4 Languages

Here we discuss three languages following different paradigms, each defined
operationally. Many more operational semantics are available with the dis-
tributions of e.g., K [RȘ10], PLT-Redex [Kle+], and Ott [Sew+07], but we
believe these three language are sufficient to demonstrate that our verifica-
tion approach works across several language paradigms. Fig. 3.4 shows a
destructive linked-list append function in each language.

HIMP (IMP with Heap) is an imperative language with (recursive) func-
tions and a heap. The heap addresses are integers, to demonstrate reason-
ing about low-level representations, and memory allocation/deallocation are

32

http://fsl.cs.illinois.edu/coinduction
http://fsl.cs.illinois.edu/coinduction


primitives. The configuration is a 5-tuple of current code, local variable envi-
ronment mapping identifiers to values, call stack with frames as pairs of code
and environment, heap, and a collection of functions as a map from function
name to definition. HIMP is defined with a K-style semantics.

Indeed the Coq definition of HIMP originates before work began on coin-
ductive program verification, being first developed in connection with work
on formalizing the soundness proofs for Reachability Logic Chapter 7 and
to experiment with translating K definitions to Coq. Reachability Logic ba-
sically requires K-style semantics, but as we examine in Section 4.1.1 with
coinductive program verification there are no major advantages or disadvan-
tages between styles of operational semantics.

Stack is a Forth-like stack based language, though, unlike in Forth, we
do make control structures part of the grammar. A single shared data stack
is used both for local state and to communicate between function invocations,
eliminating the store, formal parameters on function declarations, and the
environment of stack frames. Stack’s configuration is also a 5-tuple, but in-
stead of a current environment there is a stack of values, and stack frames do
not store an environment. Lacking any tree-structured syntax, the distinc-
tion between styles of semantics collapses, and the transition relation simply
enumerates the stack effect of each command.

Lambda is a simple call-by-value lambda calculus, extended with primi-
tive integer, pair and nil values, and primitive operations for heap access. Un-
like HIMP or Stack, fixpoint combinators enable recursive definitions without
relying on primitive support for named functions. For further minimalism
we also use DeBruijn indices instead of named variables. The semantics is
based on a CEK machine, extended with a heap. Lambda’s configuration is
a 4-tuple of current expression, current environment, the heap, and a current
continuation.

3.1.5 Specifying Data Structures

Our coinductive verification approach is orthogonal to how claims in C ×
P(C), or sets of them, are specified. Presented abstractly, specifications can
use arbitrary sets or predicates. In our Coq implementation, this corresponds
to using any predicates definable in Coq’s logic. Within this design space,
we began with Matching Logic [RES] for our experiments, building on earlier
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work on reachability logic discussed in Chapter 7. The patterns of matching
logic generalize both unification and first order logic formulas. The basic
idea is that operator for building values should also be available in patterns,
connecting patterns over subterms to form a pattern matching values formed
by that operator from values matching the sub-patterns, similarly to unifica-
tion. In addition, patterns can also be combined logically by the usual FOL
connectives, just like formulas. For example, pattern P ∧Q matches a value
if P and Q both match it, [t] matches only the value t, ∃x.P matches if there
is any assignment of x under which P matches, and JφK where φ is a FOL
formula matches any value if φ holds and no values otherwise.1

To specify programs manipulating heap data structures we use patterns
matching subheaps that contain a data structure representing an abstract
value. The operators we use for writing heap patterns are influenced by
separation logic and particularly the “computational separation logic” used
in Bedrock [Chla]. We define representation predicates for data structures
as functions from an abstract description of a value into a primitive pattern
describing the its representation in memory. The basic ingredients for this
approach are the primitive patterns for describing maps: pattern emp for the
empty map, k 7→ v for the singleton map binding key k to value v, and P,Q

for maps which are disjoint unions of submaps respectively matching P and
Q. We use abbreviation ⟨φ⟩ ≡ JφK∧emp to facilitate inline logical assertions
and p 7→[v0, . . . , vi] ≡ p 7→ v0, (p+ 1) 7→ v1, . . . , (p+ i) 7→ vi to describe values
at contiguous addresses.

A pattern that matches a heap containing only a linked list starting at
address p and representing the list l of integers is defined recursively by

list(nil, p) = ⟨p = 0⟩
list(x : l, p) = ⟨p ̸= 0⟩, ∃pl.p 7→[x, pl], list(l, pl)

We also define a predicate list_seg(l, e, p) for list segments, useful in algo-
rithms using pointers to the middle of a list, by generalizing the constant 0

to the trailing pointer parameter e. Simple binary trees can be defined by

tree(leaf, p) = ⟨p = 0⟩
tree(node(x, l, r), p) = ⟨p ̸= 0⟩, ∃pl, pr, p 7→[x, lp, rp], tree(l, lp), tree(r, rp).
1In the presentation of [RES] neither [t] nor JφK require a visible marker, but in Coq

patterns are a distinct type from terms and pure formulas, requiring explicit injections.
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Given such representation predicates, specifications and proofs can be
done in terms of the abstract values represented in memory, rather than
details of addresses and map entries. By relying on widely reusable (across
different languages) proof automation that deals with the primitive patterns,
the proof scripting specific to such pattern definitions is concerned exclusively
with unfolding the definition when allowed, deciding what abstract value, if
any, is represented at a given address in a partially unfolded heap, which
helps decide how another claim applies to the current state when attempting
a transitivity step.

3.1.6 Specifying Reachability Claims

As mentioned, claims in C×P(C) can be specified using any logical formalism,
here the full power of Coq. An explicit specification can be verbose and
low-level, especially when many semantic components in the configuration
stay unchanged. However, any reasonable logic allows making definitions to
reduce redundancy. Our use of matching logic particularly facilitates framing
conditions, allowing us to regain the compactness and elegance of Hoare logic
specifications with definable syntactic sugar. For example, defining

call(f(formals){body}, args, Pin, Pout) =

{(⟨f(args) ↷ rest, env, stk, heap, funs⟩,
{⟨r ↷ rest, env, stk, heap′, funs⟩ | ∀r, heap′.heap′ ⊨ Pout(r), [Hf ]})

| ∀rest, env, stk, heap, Hf , funs.
heap ⊨ Pin, [Hf ] ∧ f 7→ f(formals){body} ∈ funs}

gives an equivalent of the usual Hoare pre-/post-condition on function calls.
The first parameter is the function definition and the second is the list of
arguments. The heap effect is described as a pattern Pin for the allowable
initial states of the heap and function Pout from returned values to corre-
sponding heap patterns. For example, we can now write a specification for
the definition D of the append function in Fig. 3.4 as∪

x,y,a,b

call(D, [x, y], (list(a, x) ⋆ list(b, y)), (λr. list(a++b, r))) (3.6)
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call(Head, [x], [H] ∧ list(v : l, x), λr.⟨r = v⟩, [H])

call(Tail, [x], [H] ∧ list(v : l, x), λr.[H] ∧ _, list(l, r))
call(Add, [y, x], list(l, x), λr. list(y : l, r))

call(Add′, [y, x], [H] ∧ list(l, x), λr. list _seg([y], x, r), H)

call(Swap, [x], list(a : b : l, x), λr. list(b : a : l, x))

call(Dealloc, [x], list(l, x), λr.emp)
call(Length, [x], [H] ∧ list(l, x), λr.⟨r = len(l)⟩, [H])

call(Sum, [x], [H] ∧ list(l, x), λr.⟨r = sum(l)⟩⟩, [H])

call(Reverse, [x], list(l, x), λr. list(rev(l), r))
call(Append, [x, y], list(a, x), list(b, y), λr. list(a++b, r))

call(Copy, [x], [H] ∧ list(l, x), λr. list(l, r), [H])

call(Delete, [v, x], list(l, x), λr. list(delete(v, l), r))

Table 3.1: Example list specifications

which is as compact and elegant as it can be. More specifications are given
in Table 3.1. A number of specifications assert that part of the heap is left
entirely unchanged by writing [H] ∧ P in the precondition so that H must
be exactly the portion of the heap that satisfied P , and then using H in
the conclusion as well. For example, the Copy specification lets H name
the list in the original state, and then mentions H in the postcondition to
ensure the original list is untouched, and disjoint from the returned list. The
specifications Add and Add’ show that it can be a bit more complicated to
assert that an input list is used undisturbed as a suffix of a result list. The
Add specification simply requires that result has a list containing the new
element before the previous entries, but would not forbid an implementa-
tion that reallocated all the old list nodes to new locations. Specifications
such as Length, Append, and Delete are written in terms of corresponding
mathematical functions on the lists represented in the heap. In the proofs,
reasoning about properties of those functions are separated from details of
memory layout.

When a function contains loops, proving that it meets a specification
often requires making some additional claims about configurations which
are just about to enter loops, as we saw in Section 3.1.3. We support this
with another pattern that describes the current state with some suffix of the
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function body and a description of the local variables:

stmt(code, env, Pin, Pout) = {(⟨code, (env, ef ), stk, heap, funs⟩,
{⟨return r ↷ rest, env′, stk, heap′, funs⟩ | ∀r, rest, env′, heap′.

heap′ ⊨ Pout(r), [Hf ]}) | ∀ef , stk, heap, Hf , funs . heap ⊨ Pin, [Hf ]}

Verifying that the definition of append in Fig. 3.4 meeds the specification in
Eq. (3.6) requires an auxiliary claim about the loop, which can be written

stmt(while (*(p+1) <> 0) . . . , (x 7→x, y 7→ y, p 7→ p),

(list_seg(lx, p, x), list(lp, p), list(ly, y)), (λr. list(lx++lp++ly, r))).

The patterns above were described using HIMP’s configurations, but we de-
fined similar ones for Stack and Lambda also.
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3.2 Correctness of Coinductive Program
Verification

The core of our approach is to apply generalized coinduction to a characteri-
zation of validity as a greatest fixpoint. The fixpoint theorem we have used
for most of our work is equivalent to a specialization of Bartel’s λ-coiteration
to the setting of lattices (the original work used more general categorical lan-
guage). A categorical dual of Bartel’s theorem was independently presented
in “Recursion Schemes from Comonads” [UVP01]. as a scheme for defining
recursive functions.

First we fix notation and recall standard definitions and results. Recall
from Section 3.1.3 that our specifications are sets of claims from set C×P(C),
that is elements of P(C × P(C)), where C is the set of configurations of
the target language, and that an operational semantics R ⊆ C × C over
configurations in C yields a function stepR : P(C × P(C))→ P(C × P(C)).
Our main fixpoint theorem will be stated slightly more generally, for any
powerset lattice (P(D),∪). This is the same setting used in the original
presentation of the Knaster-Tarski theorem [Tar55], and like it our result can
also be generalized to any complete lattice, and even to various categories,
but our objective here is to keep the presentation as simple and accessible
as possible without losing useful generality. Below, F and G range over
monotone functions P(D)→ P(D), and X, Y , A over sets in P(D). We lift
union and subset pointwise on functions, so (F ∪G)(X) = F (X)∪G(X) and
F ⊆ G ≡ ∀X.F (X) ⊆ G(X).

We recall a few definitions from Chapter 2. A fixpoint of F is a set A

with F (A) = A. The Knaster-Tarski theorem implies that any monotone
function F has a least and greatest fixpoint, respectively denoted µF and
νF .

A defining property of least fixpoints is induction: F (A) ⊆ A implies
µF ⊆ A for any set A. Dually, greatest fixpoints allow coinduction: A ⊆
F (A) implies A ⊆ νF for any set A. A set A is called F -stable if A ⊆ F (A).
A closure operation is a monotone function F satisfying the additional prop-
erties of being extensive (∀X,X ⊆ F (X)) and idempotent (∀X,F (F (X)) =

F (X)).
First, we justify the name of the F -closure operation F ∗ (Definition 3.4):
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Lemma 6. If F is monotone then F ∗ is the least closure operator with
F ⊆ F ∗.

Proof. First, F ∗ is a closure operator. For monotonicity, fix A ⊆ B. Then
F ∗(A) ⊆ F ∗(B) holds by induction, from F (F ∗(B)) ∪A ⊆ F (F ∗(B)) ∪B =

F ∗(B). Extensiveness holds by X ⊆ F (F ∗(X)) ∪X = F ∗(X). For idempo-
tence it suffices, given extensiveness, to show F ∗(F ∗(X)) ⊆ F ∗(X), which
follows by induction from F (F ∗(X))∪F ∗(X) = F (F ∗(X))∪F (F ∗(X))∪X =

F ∗(X).
Next, F ∗ is above F by F (X) ⊆ F (F ∗(X)) ⊆ F (F ∗(X)) ∪ X = F ∗(X).

If F ⊆ G for closure operator G, F ∗ ⊆ G by induction from F (G(X))∪X ⊆
G(G(X)) ∪G(X) ⊆ G(X), so F ∗ is the least closure operator above F .

Corollary 1. The operation −∗ is monotone. For monotone F and G, if
F ⊆ G, then G∗ is a closure operator with F ⊆ G ⊆ G∗, so F ∗ ⊆ G∗.

Now we are ready to state and prove our key coinduction theorem.

Theorem 2 (Coinduction with Rules). If G(F (A)) ⊆ F (G∗(A))2 for any A,
then X ⊆ F (G∗(X)) implies X ⊆ νF for any X.

Proof. By extensiveness, X ⊆ νF is implied by G∗(X) ⊆ νF , which fol-
lows by coinduction from G∗(X) ⊆ F (G∗(X)), which follows by induction
from G(F (G∗(X))) ∪X ⊆ F (G∗(X)). By idempotence this is equivalent to
instance G(F (G∗(X))) ∪X ⊆ F (G∗(G∗(X))) of the hypothesis.

In our program-verification setting with languages given as relations R ⊆
C×C, F is usually stepR. To verify programs, we express validR as a greatest
fixpoint:

Lemma 7. validR = ν stepR

Proof. validR is stepR-stable. Suppose (c, P ) ∈ validR. If c ∈ P then (c, P ) ∈
stepR(validR), else c has a successor d which either starts an infinite path
in R or reaches an element of P . In either case, (d, P ) ∈ validR so (c, P ) ∈
stepR(validR).

validR is the largest stepR-stable set. Fix S ⊆ stepR(S) and let (c, P ) ∈ S.
If there is an infinite path in R beginning at c then (c, P ) ∈ validR. Otherwise,

2This can be weakened to quantify only over A ⊆ νF , at the cost of compositionality.
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R is well-founded on the set of configurations reachable from c. Then by well-
founded induction (d, P ) ∈ validR for any d with c →R d and (d, P ) ∈ S. If
c ∈ P then (c, P ) ∈ validR, else by (c, P ) ∈ S ⊆ stepR(S) and the induction
hypothesis there is a successor d of c with (d, P ) ∈ validR, and thus also
(c, P ) ∈ validR.

We also need to provide some useful choices for G in Theorem 2. Fixing
F , we can see that the set of functions G that meet the condition G(F (X)) ⊆
F (G∗(X)) for all X includes F and is closed under union. This motivates
the following:

Definition 3.6. Given monotone functions F and H, we say that H is a
valid derived rule for F whenever H(F (X)) ⊆ F ((F ∪H)∗(X)) for all X.

This condition is also closed under pointwise union. Using (F∪H)∗ rather
than H∗ on the right side usefully weakens the condition. For example, the
trans function is a valid derived rule for stepR, but it is not the case that
trans(stepR(X)) ⊆ stepR(trans∗(X)). Any claim in trans(stepR(X)) is in
stepR(trans(X ∪ stepR(X))), but not necessarily in stepR(trans∗(X)).
Now we show that two useful rules meet this condition. One is the trans rule
of Definition 3.5, which was defined by

trans(S) = {(c, P ) | ∃Q.(c,Q) ∈ S ∧ ∀d ∈ Q, (d, P ) ∈ S}

and is a valid derived rule for any stepR. The other is a rule for using any
claim previously shown valid.

Definition 3.7. Function provedR is defined by

provedR(S) = S ∪ validR

For any transition relation R, provedR will be a valid derived rule for the
instance stepR with the same R.

Lemma 8. trans is a valid derived rule for stepR.

Proof. Suppose (c, P ) ∈ trans(stepR(S)). Fix Q from the definition (c,Q) ∈
stepR(S), so either c ∈ Q or (c′, Q) ∈ S for some c′ with c→R c′.
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In the first case let d be c to conclude (c, P ) ∈ stepR(S). Otherwise we
use ∀d ∈ Q, (d, P ) ∈ stepR(S) to conclude (c′, P ) ∈ trans(S ∪ stepR(S)), and
thus (c, P ) ∈ stepR(trans(S ∪ stepR(S))).

By monotonicity properties both stepR(S) and stepR(trans(S∪stepR(S)))

are contained in stepR((trans∪ stepR)
∗(S)).

Lemma 9. Function provedR is a valid derived rule for stepR.

Proof. If (c, P ) ∈ provedR(stepR(S)) either (c, P ) ∈ validR = stepR(validR)

or (c, P ) ∈ stepR(S). Note validR ∪S = provedR(S) ⊆ (provedR ∪ stepR)
∗(S).

3.2.1 Nondeterministic Languages

Theorem 2 can be used with any specifications whose validity can be charac-
terized as a greatest fixpoint, not just our partial reachability claims.

One example that may be of particular interest is an “all-paths” notion
of reachability, which constrains every execution path from an initial config-
uration rather than just requiring one good path. This can be more difficult
to work with, but is more suitable for nondeterministic languages.

Definition 3.8 (All-Path Partial Reachability). We define c ⇒∀
R P to hold

if every path from c that reaches a stuck configuration passes through set P .
More precisely, if c = γ1, . . . , γn is any execution path in R such that γn has
no successors in R, then there exists some i such that γi ∈ P .

We define valid∀
R = {(c, P ) | c ⇒∀

R P} and will prove that this is the
greatest fixpoint of

step∀
R(S) = {(c, P ) | c ∈ P

∨ (∃d.(c, d) ∈ R) ∧ ∀d.(c, d) ∈ R =⇒ (d, P ) ∈ S}

Lemma 10. valid∀
R = ν step∀

R

Proof. valid∀
R is step∀

R-stable. Suppose (c, P ) ∈ valid∀
R. If c ∈ P then also

step∀
R(valid∀

R). Otherwise, c must have at least one successor, because the
trivial path c avoids P and would otherwise lead from c to a stuck configura-
tion. If any successor d of c was not in (d, P ) then there would be some path
d = γ1, . . . , γn to a stuck configuration that avoids P , but because c ̸∈ P
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then c, γ1, . . . , γn would be a path from c to a stuck configuration that avoids
P .

valid∀
R is the largest step∀

R-stable set. Suppose X ⊆ stepforall
R (X), (c, P ) ∈

X and c = γ1, . . . , γn is a path in R from c to a stuck configuration. By
induction on n we will show that this path encounters P . If n = 1 then
c has no successors in R so (c, P ) ∈ step∀

R(X) can only hold if c ∈ P , in
which case (c, P ) ∈ valid∀

R. Otherwise, n > 1. Then we have (γ2, P ) ∈ X

by the definition of step∀
R, so by the inductive hypothesis the path γ2, . . . , γn

encounters the set P , so the path c = γ1, . . . , γn does as well. This concludes
the inductive proof. Rearranging quantifiers, we have that for any (c, P ) ∈ X

every path from c to a stuck configuration hits P , which is the definition of
(c, P ) ∈ valid∀

R.

Incidentally, the least fixpoints of stepR and step∀
R correspond to total-

correctness definitions of reachability, which lack the exceptions allowing
infinite executions to avoid the target set, but this observation is not useful
for program verification because induction principles have inclusions in the
wrong direction to be useful for showing that a specification holds.

This definition also admits transitivity, with exactly the same definition
of trans used in the one-path case.

Lemma 11. trans is also a valid derived rule for step∀
R.

Proof. Suppose (c, P ) ∈ trans(step∀
R(S)). Fix Q from the definition of trans.

Then (c,Q) ∈ step∀
R(S), so either c ∈ Q or c is not stuck and (c′, Q) ∈ S for

every c′ with c→R c′.
In the first case let d be c to conclude (c, P ) ∈ step∀

R(S). Otherwise we
use ∀d ∈ Q, (d, P ) ∈ step∀

R(S) to conclude that (c′, P ) ∈ trans(S ∪ step∀
R(S))

for every c′ with c→R c′, and thus (c, P ) ∈ step∀
R(trans(S ∪ step∀

R(S))).
By monotonicity properties both step∀

R(S) and step∀
R(trans(S∪step∀

R(S)))

are contained in step∀
R((trans∪ step∀

R)
∗(S)).

3.2.2 Modularity

Verifying a larger program demands some way of dividing the proof into
smaller lemmas, corresponding to modules of the program. The provedR

rule gives one way of handling completely self-contained components. If a
component can be verified in isolation, then proofs about the rest of the
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program can use those claims through to provedR rule rather than including
them in an single set of claims to be coinductively supported.

Another approach to modular proof uses monotonicity properties. An
inclusion of the form A ⊆ stepR((G∪ stepR)

∗(B)) where G is a valid derived
rule for stepR can be seen as an incomplete proof of specification A with
unproved assumptions B \ A. For example, A could be a function’s public
specification and loop lemmas with B also including specifications of library
functions. Two such inclusions compose by monotonicity properties to give
(A1 ∪A2) ⊆ stepR(((G1 ∪G2) ∪ stepR)

∗(B1 ∪B2)), which proves a larger set
of claims A1 ∪ A2 under a potentially smaller set of remaining assumptions
(B1 ∪ B2) \ (A1 ∪ A2). Once enough partial arguments are combined that
B ⊆ A then Theorem 2 shows the validity of all the combined claims.

3.3 Relative Completeness
We are not presenting a syntactic proof system, so we carefully consider
how to formulate relative completeness. Intuitively, we want to formulate
the condition that any desired set X of valid claims can be proven with our
approach. This is satisfied if X ⊆ validR is the conclusion of an application of
Theorem 2. However, requiring exactly this condition is too strict. Proving
a Hoare triple may necessarily require providing additional loop invariants.
Likewise, proving a specification of interest in our system may require also
making claims about loops and auxiliary functions. In our system this is
done by enlarging the original set of claims. The correct notion of relative
completeness is thus to ask whether the desired set X of valid claims is
contained in some larger set S for which we can conclude S ⊆ validR as an
application of Theorem 2.

For any set X and any choice of G we can in fact take the set validR of
all true claims. As part of showing validR is a fixpoint we established that
validR ⊆ stepR(validR). By monotonicity and extensiveness,

validR ⊆ stepR(F
∗(validR))

This leaves only the goal of showing X ⊆ S = validR.
One might complain that this is trivial, but then one should complain

all the more about a conventional relative-completeness result. Any general-
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purpose specification language is necessarily undecidable, so no syntactic
proof system can be complete. Instead, any relatively complete proof system
has a rule with a hypothesis of semantic validity in some predicate language,
and the relative-completeness argument consists of tediously showing how
to Gödel-encode validity into the predicate language, and showing that the
rules of the proof system are strong enough to make use of such a complicated
predicate. We obtain an equally strong result.
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Chapter 4

Certifying Implementation

In Chapter 3 we saw how program specifications can be proved by coinduc-
tion, and that the unreasonable effort required by naive coinduction can be
eliminated by using generalized coinduction principles. To use this mathe-
matics as the basis for a sound verification framework we also need a trust-
worthy mechanical proof checker. We meet this requirement by working
within an established proof assistant, whose existing proof-checking tool and
proof-certificate format will then also serve to check proofs about programs.

In particular we use Coq for the vast majority of our work. The higher-
order type theory supported by Coq, called the Calculus of Inductive Con-
structions, is sufficient to define the necessary functions on sets of claims and
to reason about inclusions between sets as we need for individual proofs.

It is also sufficient for proving the coinduction theorems we need, and
the admissibility of the rules such as transitivity that we use in proofs. This
gives a machine-checkable proof of the soundness of our system. Having
these lemmas proved in Coq also makes it possible to begin a proof about a
particular program by claiming that a specification is valid, and then apply
the main theorem so the remainder of the proof consists of showing the
inclusion needed to establish the stability of the specification and satisfy the
hypothesis of the main theorem.

Working within a proof assistant means on the one hand it is necessary
to define the language semantics and program-specification predicates in the
chosen system, which will be covered in Section 4.1 and Section 4.2, and on
the other hand that programmability and any other convenience features of
our chosen proof assistant can be used to automate most of the tedious parts
of any proof, as discussed in Section 4.3.

In the next chapter we show how the resulting implementation can be
used by verifying a collection of example programs and specifications.
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4.1 Defining Semantics
To verify programs in Coq, the next most foundational requirement after the
core coinduction lemmas is a semantics of the language in question. This
consists of a type of configurations and a step relation over those configura-
tions.

In Coq the most explicit way to introduce a new predicate by explicit
cases is as an inductively defined proposition. This has the form of a type
definition where the new type will belong to the universe Prop of propositions
(after supplying sufficient arguments), and each constructor of the definition
has a type ending in an instance of the type being defined.

As one of the most trivial examples, consider a transition relation over
natural numbers, where positive numbers can take a step to their predecessor
and 0 is stuck. That relation is captured in this definition:

Inductive countdown : nat → nat → Prop :=
| decrement : ∀ n, countdown (S n) n.

The first line says that countdown is a predicate over two natural num-
bers, or equivalently that countdown n m is a proposition if n and m are in
nat. The later lines introduce the constructors as lemmas of the given type,
here just decrement of type ∀ n, countdown (S n) n. Their conclusions must
be instance of the type being defined. A proposition defined by Inductive
is the smallest predicate which validates the types of all the postulated con-
structors, or equivalently countdown n m is true for some m and m only if
a term of that type can be assembled as a finite tree of applications of the
constructors.

For a programming language, assuming we already have a type cfg of
configurations, the semantics can be given as a relation

Inductive step : cfg → cfg → Prop :=
...

which will have one constructor corresponding to each rule of the semantics.
It is also allowed for the hypotheses (or arguments) of a constructor to

be other instances of the relation being defined, which nicely accommodates
the recursion necessary for defining small-step semantics.

Using these constructions, language definitions presented in familiar styles
as in Section 2.3 can be translated straightforwardly into Coq definitions.
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The translation might be automated for language definitions written in a
language-defining language which is itself formally defined. In particular,
Chapter 6 describes an automated translator we have developed.

4.1.1 Semantics Styles

Our definition of reachability is not concerned with how a transition rela-
tion is defined, only with which transitions are included in the relation. The
details of the definition affect proofs only incidentally, by affecting the dif-
ficulty of proving whether a particular step is included in the relation, or
finding successor(s) of a state, and this difficulty is completely isolated in
proof tactics for finding a step.

To evaluate the difficulty and also to demonstrate this encapsulation,
we defined the semantics of a simple IMP language in three different styles,
resulting in equivalent relations over the same syntax. Then we implemented
a proof tactic for finding the successor of a state for each semantics, and
showed that the same specification could be proved by the same proof under
each semantics, after only changing which tactic was used to find execution
steps.

The three styles were a small-step semantics, a reduction semantics, and
a K-style semantics.

The syntax was

Listing 4.1: styles.v - syntax

Inductive Exp : Set :=
BCon : bool −> Exp

| EVar : string −> Exp
| ECon : Z −> Exp
| EGt : Exp −> Exp −> Exp
| EPlus : Exp −> Exp −> Exp
with Stmt : Set :=

SAssign : string −> Exp −> Stmt
| Seq : Stmt −> Stmt −> Stmt
| SIf : Exp −> Stmt −> Stmt −> Stmt
| Skip : Stmt
| SWhile : Exp −> Stmt −> Stmt.
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The small-step semantics is shown in Listing 4.2, the reduction semantics in
Listing 4.3, and the K-style semantics in Listing 4.4.

Here is the property and the proof used in each of the three examples.

Definition Spec cfg := cfg −> (cfg −> Prop) −> Prop.

Definition loop :=
SWhile (EGt (EVar ”n”) (ECon 0%Z))
(SAssign ”n” (EPlus (EVar ”n”) (ECon (−1)%Z))).

Inductive loop_spec {code} (wrap : Stmt −> code −> code)
: Spec (code * Map string Z) :=

| loop_claim : forall store n rest,
store ~= ”n” |−> n −>
loop_spec wrap (wrap loop rest, store)

(fun c => fst c = rest
/\ exists n, snd c ~= ”n” |−> n /\ (n <= 0)%Z).

Ltac step_solver := fail.

Ltac trans_solver := solve[refine (loop_claim _ _ _);equate_maps].
Ltac run :=
first [eapply dtrans;[trans_solver|];try run

|solve[intros;apply ddone;eauto]
|eapply dstep;[step_solver|];instantiate;simpl;try run
].

Each example defines a relation, redefines step_solver as an appropriate
tactic, and uses the single command example_proof as the proof that the
specification holds under the given relation.

In a small-step semantics the semantics is defined recursively, with some
steps requiring a step to be taken in a subterm. Clauses of the relation can be
matched with the current goal by unification, but this may need to be done re-
cursively. The unification could be handled by eauto using step, exp_step,
but even modest-size code exceeds the default recursion limit of eauto, so
the corresponding definition of step_solver explicitly increases the depth
limit to 20 by writing eauto 20 with step_db.
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In an evaluation-context semantics or reduction semantics, the transition
relation itself is defined non-recursively, so only one clause from step is nec-
essary for any execution step, but the rules are written in terms of finding a
reducible expression inside of an evaluation context. This requires recursively
defining the evaluation contexts and the function for plugging a term into
a context in addition to the relation itself. Furthermore, Coq’s native uni-
fication cannot match a concrete constructor against a function application
plug c t, so it was necessary to define context-plugging as a relation instead.
This allowed a search by unification to find a suitable decomposition, with a
search of a similar depth as the small-step semantics required.

Finally, a K-style semantics generalizes the configuration by allowing a
sequence of items as the current code, where items include statements or
expressions, but also “freezers” which are like one layer of context. Extra
clauses of the transition relation handle decomposing and recomposing com-
pound expressions to focus on terms requiring evaluation. The effect is simi-
lar to expressing the term and context of a reduction semantics syntactically,
with the focused term at the head of the list and the layers of the context
following. This makes it possible for steps to be taken using only a single
constructor of the transition relation, but also to use simple unification to
find applicable rules. This may require a few more execution steps than other
styles, but the proof tactic is much simpler and the proof that a step is in
the relation is a single constructor.

The execution steps to explicitly focus on a subterm or fold back up the
result can be amortized over many evaluation steps within that subterm,
unlike a small-step or reduction semantics where several layers of context
or rules of the step relation must be used in each step to reach the current
evaluation point from the root.

In summary, the reduction semantics required a function to be rewritten
as a relation, while the small-step and K-style semantics are relatively triv-
ially automated. The K-style semantics will take more steps, but each step
requires only one rule rather than a potentially deeper search. Overall, each
style seems to be reasonably easy to automate, and there is no compelling
reason to try to change the style of a semantics when translating into Coq.

Listing 4.2: IMP small-step semantics in Coq
match goal with
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|[|− context [(?n >? 0)%Z]] => destruct (Z.gtb_spec n 0)
end;
run.

(* Now three styles of semantics *)

(* First small step *)
Module small_step.

Inductive exp_step : relation (Exp * Map string Z) :=
(* Ordered so trying earlier constructors is a good idea *)
| eval_var : forall v z rest store,

store ~= v |−> z :* rest −>
exp_step (EVar v, store) (ECon z, store)

| eval_gt : forall z1 z2 store,
exp_step (EGt (ECon z1) (ECon z2), store)

(BCon (Z.gtb z1 z2), store)
| eval_plus : forall z1 z2 store,

exp_step (EPlus (ECon z1) (ECon z2), store)
(ECon (Z.add z1 z2), store)

| eval_gt_r : forall z e1 e2 store1 store2,
exp_step (e1, store1) (e2, store2) −>
exp_step (EGt (ECon z) e1, store1)

(EGt (ECon z) e2, store2)
| eval_gt_l : forall e1 e2 r store1 store2,

exp_step (e1, store1) (e2, store2) −>
exp_step (EGt e1 r, store1) (EGt e2 r, store2)

| eval_plus_r : forall z e1 e2 store1 store2,
exp_step (e1, store1) (e2, store2) −>
exp_step (EPlus (ECon z) e1, store1)

(EPlus (ECon z) e2, store2)
| eval_plus_l : forall e1 e2 r store1 store2,

exp_step (e1, store1) (e2, store2) −>
exp_step (EPlus e1 r, store1)

(EPlus e2 r, store2)
.
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Inductive step : relation (Stmt * Map string Z) :=
| exec_assign : forall v z z0 rest store,

store ~= v |−> z0 :* rest −>
step (SAssign v (ECon z), store) (Skip, (v |−> z :* rest))

| exec_seq : forall s2 store,
step (Seq Skip s2, store) (s2, store)

| exec_if : forall b t e store,
step (SIf (BCon b) t e, store)

(if b then t else e, store)
| exec_while : forall cond body store,

step (SWhile cond body, store)
(SIf cond (Seq body (SWhile cond body)) Skip, store)

| exec_assign_1 : forall e1 e2 store1 store2 v,
exp_step (e1, store1) (e2, store2) −>
step (SAssign v e1, store1) (SAssign v e2, store2)

| exec_seq_1 : forall s1 s2 store1 store2 r,

Listing 4.3: IMP reduction semantics in Coq
| exec_if_1 : forall c1 store1 c2 store2 t e,

exp_step (c1, store1) (c2, store2) −>
step (SIf c1 t e, store1) (SIf c2 t e, store2)

.

Create HintDb step_db discriminated.
Hint Extern 1 (_ ~= _) => equate_maps : step_db.
Hint Constructors step exp_step : step_db.

Ltac step_solver ::= solve[eauto 20 with step_db].

Lemma example : sound step (loop_spec Seq).
Proof. example_proof. Qed.

End small_step.

(* Now evaluation context *)
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Module evaluation_contexts.

Inductive context : Set −> Set :=
Top : context Stmt

| EGt_left : Exp −> context Exp −> context Exp
| EGt_right : Z −> context Exp −> context Exp
| EPlus_left : Exp −> context Exp −> context Exp
| EPlus_right : Z −> context Exp −> context Exp
| SAssign_2 : string −> context Stmt −> context Exp
| Seq_left : Stmt −> context Stmt −> context Stmt
| SIf_1 : Stmt −> Stmt −> context Stmt −> context Exp
.

Fixpoint plug {s : Set} (c : context s) : s −> Stmt :=
match c with
| Top => fun t => t
| EGt_left r c => fun l => plug c (EGt l r)
| EGt_right l c => fun r => plug c (EGt (ECon l) r)
| EPlus_left r c => fun l => plug c (EPlus l r)
| EPlus_right l c => fun r => plug c (EPlus (ECon l) r)
| SAssign_2 v c => fun t => plug c (SAssign v t)
| Seq_left r c => fun l => plug c (Seq l r)
| SIf_1 t e c => fun v => plug c (SIf v t e)

end.

Inductive step : relation (Stmt * Map string Z) :=
| eval_var : forall c v z rest store,

store ~= v |−> z :* rest −>
step (plug c (EVar v), store) (plug c (ECon z), store)

| eval_gt : forall c z1 z2 store,
step (plug c (EGt (ECon z1) (ECon z2)), store)

(plug c (BCon (Z.gtb z1 z2)), store)
| eval_plus : forall c z1 z2 store,

step (plug c (EPlus (ECon z1) (ECon z2)), store)
(plug c (ECon (Z.add z1 z2)), store)

| exec_assign : forall c v z z0 rest store,
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store ~= v |−> z0 :* rest −>
step (plug c (SAssign v (ECon z)), store)

(plug c Skip, (v |−> z :* rest))
| exec_seq : forall c s2 store,

step (plug c (Seq Skip s2), store) (plug c s2, store)
| exec_if : forall c b t e store,

step (plug c (SIf (BCon b) t e), store)
(plug c (if b then t else e), store)

| exec_while : forall c cond body store,
step (plug c (SWhile cond body), store)

(plug c (SIf cond (Seq body (SWhile cond body)) Skip), store)
.

Ltac split_ctx ctx t k :=
match t with
(* stop at redexes *)
| (Seq Skip ?rest) => k ctx t
| (SWhile _ _) => k ctx t
| (SIf (BCon _) _ _) => k ctx t

Listing 4.4: IMP K-style semantics in Coq
| (EPlus (ECon _) (ECon _)) => k ctx t
(* else enter *)
| (Seq ?l ?r) => let ctx’ :=

constr:(Seq_left r ctx) in split_ctx ctx’ l k
| (SIf ?c ?t ?e) => let ctx’ :=

constr:(SIf_1 t e ctx) in split_ctx ctx’ c k
| (EGt (ECon ?z) ?r) => let ctx’ :=

constr:(EGt_right z ctx) in split_ctx ctx’ r k
| (EGt ?l ?r) => let ctx’ :=

constr:(EGt_left r ctx) in split_ctx ctx’ l k
| (SAssign ?v ?e) => let ctx’ :=

constr:(SAssign_2 v ctx) in split_ctx ctx’ e k
| (EPlus (ECon ?z) ?r) => let ctx’ :=

constr:(EPlus_right z ctx) in split_ctx ctx’ r k
| (EPlus ?l ?r) => let ctx’ :=
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constr:(EPlus_left r ctx) in split_ctx ctx’ l k
end.

Ltac split_term t := let ctx := constr:Top in
split_ctx ctx t ltac:(fun c r =>
change t with (plug c r)).

Ltac step_solver ::=
match goal with
|[|− step (?t, ?store) ?P] => split_term t
end;econstructor(equate_maps).

Lemma example : sound step (loop_spec Seq).
Proof. example_proof. Qed.

End evaluation_contexts.

(* Finally k style *)

Module k_style.

Require Import List.

Inductive kitem : Set :=
| KExp : Exp −> kitem
| KStmt : Stmt −> kitem
| KFreezeZ : (Z −> kitem) −> kitem
| KFreezeB : (bool −> kitem) −> kitem
.

Inductive step : relation (list kitem * Map string Z) :=
| eval_var : forall c v z rest store,

store ~= v |−> z :* rest −>
step (KExp (EVar v) :: c, store)

(KExp (ECon z) :: c, store)
| eval_gt : forall c z1 z2 store,

step (KExp (EGt (ECon z1) (ECon z2)) :: c, store)
(KExp (BCon (Z.gtb z1 z2)) :: c, store)
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| eval_plus : forall c z1 z2 store,
step (KExp (EPlus (ECon z1) (ECon z2)) :: c, store)

(KExp (ECon (Z.add z1 z2)) :: c, store)
| exec_assign : forall c v z z0 rest store,

store ~= v |−> z0 :* rest −>
step (KStmt (SAssign v (ECon z)) :: c, store)

(KStmt Skip :: c, (v |−> z :* rest))
| exec_skip : forall c store,

step (KStmt Skip :: c, store) (c, store)
| exec_seq : forall c s1 s2 store,

4.2 Specifications
The last remaining element of mechanizing the reasoning described in Chap-
ter 3 is defining the predicates to be used in specifications, and the abbre-
viations for concisely making claims about functions. For making claims
about functions Section 3.1.6 introduced a function call which took a func-
tion definition, a set of values for actual arguments, and preconditions and
postconditions on the heap, and expanded in into a full reachability claim
over configurations by asserting that the call would evaluate to an acceptable
value with the given heap effect, while leaving the stack, local variable envi-
ronment, function environment, and any frame condition on the remainder of
the heap all remain unchanged. For the details of the HIMP configuration
we can define a corresponding abbreviation:

Definition heap_fun (R : Spec kcfg) (deps : list Defn) (d:Defn) :
forall (args : list KResult) (init_heap : MapPattern k k)
(ret : Z −> MapPattern k k), Prop :=

match d with FunDef name formals body =>
fun args init_heap ret =>

forall krest store stack heap funs mark otherfuns,
funs ~= fundefs deps (name s|−> KDefn d) :* otherfuns −>
(mark > 0)%Z −>
forall frame,
heap |= (init_heap :* litP frame) −>
R (KCfg (kra (ECall name (map KResultToExp args)) krest)
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store stack heap funs mark)
(value_heap (fun r => existsP v, constraint (r = KInt v)

:* ret v)%pattern
krest store stack frame funs mark)

end.

This is named heap_fun because it specifies a function whose only result
aside from the return value is an effect on the heap. Note that the first
argument is a specification, or a set of claims. This can be instantiated
with reaches to make a statement that a claim about a function is actually
true, or with the name of a program specification being assembled as part of
including a claim about a function in that specification.

Data structures similarly follow the plan described in Section 3.1.5. A
predicate asserting that a linked list or some other data structure exists at
a given address in the heap takes a mathematical list or tree describing the
value to be expanded, and is defined in a way that expands into more specific
claims about addresses and memory entries when part of the list is known,
and conversely can show the represented list must be empty or nonempty if
the pointer is null or not.

Fixpoint rep_seg (val : list Z) (tailp p : Z) :=
match val with
| nil => constraint (p = tailp)
| x :: xs => constraint (p <> 0) :* existsP p’,

p h|−> list_node x p’ :* rep_seg xs tailp p’
end%pattern.

Notation rep_list l := (rep_seg l 0).

The predicate rep_list corresponds to the list_seg predicate of Sec-
tion 3.1.5, which matches a heap fragment containing only length l list nodes,
with p pointing to the first, and the next pointer of the last being tailp. When
the abstract list val is nonempty, the predicate simplifies to an assertion that
a list node exists at address p, an existential quantification over the value p′

of the next pointer of that node, and an assertion that the rest of the list
segment is represented at address p′.

To see if the preconditions of another claim apply or the target of the
current reachability claim has been reached, it may be necessary to recog-
nize whether a list is represented at a given address in the heap even if the
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current description has some explicit nodes. Folding back up the predicate
to make this identification may require some specific proof automation which
is discussed further in Section 4.3.

An example which uses both of these abbreviations is a function for
prepending a value to a list. The one claim add_claim in the specification
add_spec is stated using heap_fun (Coq allows the types of constructors
such as add_claim to be written using definitions like heap_fun, as long as
the final result type of the constructor after unfolding all those definitions is
an instance of the type being defined, here add_spec). The list predicates
are used to say that in the initial heap the argument x is the address where
some list l is represented, and in the postcondition to say that the returned
value is the address of a list beginning with the value v and then continuing
with its tail being exactly the original list.

Definition add_fun := FunDef ”add” [”v”;”x”]
{{Decl ”y”;”y”<−EAlloc
;”y”<<−build_node ”v” ”x”
;SReturn ”y”}}.

Inductive add_spec : Spec kcfg :=
add_claim : forall v H x l, heap_fun add_spec nil
add_fun [Int v;Int x]
(asP H (rep_list l x))
(fun r => rep_seg (v::nil) x r :* litP H).

Lemma add_proof : sound kstep add_spec.
Proof. list_solver. Qed.

4.3 Proof Automation
In the previous sections of this chapter we have seen how language semantics
and claims about programs can be defined in Coq, and how coinduction
lemmas are stated and proved sound. Now we discuss how proof automation
is provided.

Any fully formal verification that a specification holds must address all
details of its possible executions. Handling the vast majority of this detail
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automatically is necessary for any verification approach to be usable or cost-
effective outside the most critical software, let alone to aspire to widespread
adoption.

In keeping with this need, apparent even in verifying our example pro-
grams, we have developed proof tactics proving a comfortable level of au-
tomation for coinductive program verification. A proof tactic is a procedure
for selecting and applying some lower-level proof-manipulating commands to
achieve some higher-level goal. Our proof automation is implemented in the
Ltac [Del] tactic scripting language of Coq, and by using built-in tactics that
efficiently provide less flexible sorts of automation.

In this section we describe the proof tactics we developed. Our goal in this
section is to share design principles we found useful, and to partially address
any concerns about the difficulty of automating coinductive verification by
describing our automation effort.

The examples described in the next chapter (and corresponding Coq list-
ings in Appendix B) demonstrate the effectiveness of the resulting system in
more detail. In short, for each group of examples sharing some specification
predicates connecting program states to an abstract domain, a basic tactic
was extended with support for those predicates, and then most example were
proved by a single invocation of that command. In most remaining exam-
ples the proof was finished by invoking that command, manually applying
one or two lemmas about the abstract domain, and then reinvoking proof
automation.

Our most basic design goal is for tactics to fail gracefully. When a goal
cannot be completely solved, some progress should be made, but without
committing to any choices that might preclude a successful proof, and with
goals left in a convenient and comprehensible form for the user. In particular,
our main tactics only leave goals in the form of reachability claims.

When a procedure cannot completely solve the current goal, some progress
should be made, but without committing to any choices that might preclude
a successful proof and with goals left in a convenient form, so the user is left
with a state from with manual progress may be possible. In particular, our
top-level tactics leave goals only in the form of reachability claims.

In contrast to the clear-cut language independence of the basic coinduc-
tion principles, proof automation must deal with the individual language
semantics as well as predicates introduced for writing specifications in spe-
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cific domains, so we have no theorems about reusability. Nevertheless, our
proof tactics are naturally divide into several levels of organization, which
are observed to support various degrees of re-use.

4.3.1 Main Heuristic

A fresh proof starts with a few fixed commands to introduce hypotheses,
reduce showing that a specification holds to showing that it is stable by
applying the coinduction theorem, and attempting to break the specification
down into independent reachability claims. Then the proof is continued with
our main heuristic for handling reachability claims.

Our main tactic implements a simple overall heuristic, based on the heuris-
tic used in the MatchC [RȘ12a] system. The idea is to try deal with a
reachability goal first in the ways likely to leave fewer remaining execution
steps.

The most preferred option is to support the current reachability claim by
showing that the current state actually meets the target predicate, leaving
no remaining execution steps to cover.

The next best option is to apply a claim from the current specification by
transitivity, assuming claims abstract over a significant chunk of execution
like a function call or loop.

Taking a single execution step is attempted only if none of the earlier
options were successful.

The very last option is attempting a case split, as this increases the num-
ber of subgoals to be proved, and does not even advance execution. The last
case arises mostly from condition constructs like if-statements, where execu-
tion can show that condition will reduce to a boolean constant but have only
a symbolic expression like b > 0 for the value of that boolean. A case split
is needed to reduce to a concrete true or false before execution can proceed,
and appropriate hypotheses have to be introduced to record the conditions
holding in each case.

In each of these cases, the responsible subroutine can also determine that
its case might apply but could not be completed automatically, and make
the attempt to advance the goal fail without considering the later options.
This happens for example if the current code in the configuration matches
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that of a claim from the specification, but some preconditions of that claim
could not be proved to hold.

The generic_step tactical attempts to take one action according to this
heuristic, and generic_run repeatedly uses generic_step to advance the
proof as much as possible, recursing down both goals of a case split, until
each subgoal has either been proved, intentionally left for the users, or cannot
be automatically advanced.

This top-level heuristic is implemented as a tactic parameterized by tac-
tics for the individual subtasks, and is reused between different languages by
instantiating it with different implementations of those subtactics.

Listing 4.5: generic proof heuristic
Ltac hyp_check := idtac.
Ltac generic_step trans_tac step_solver split_stuck :=

(hyp_check
||trans_tac
||(eapply dstep;[solve[step_solver]|])
||split_stuck
||fail
);instantiate;cbv beta.

Ltac generic_run trans_tac step_solver done_solver split_stuck :=
repeat (generic_step trans_tac step_solver split_stuck)
;try solve[eapply ddone;done_solver].

The hyp_check step is a debugging feature. By default it does nothing,
but hyp_check can be overridden to interrupt proof automation on a desired
condition. One use is while developing automation for new predicate, if other
supporting tactics are supposed to keep hypotheses involving the predicate
in a certain normal form, then hyp_check can be used to stop automation as
soon as an unreduced hypothesis appears. Another use is to help understand
a failed proof attempt. When the automated tactic leaves a residual goal with
an insufficient, inconsistent, or otherwise undesirable hypothesis, but may
have taken many steps since it was introduced, hyp_check can be overridden
to stop as soon as that hypothesis appears.
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4.3.2 Execution Steps

The tactics working most directly with a language definition are those for
finding execution steps from a current state. In particular, a tactic must be
effective when the next state is a completely unknown existential variable.

We avoid mentioning all the clauses of a transition relation by using
primitive tactics that approach goals in an inductively defined predicate by
trying every applicable case. The other contribution to reusability between
languages is that basic domains like maps or fixed-width integers are defined
once and shared between language definitions, so proof tactics for those do-
mains can be shared as well.

In particular, when a language definition is given as a non-recursively
defined relation datatype, as in K or abstract machine styles, the simple
tactic

econstructor(solve[side_condition_solver])

This tactic tries any constructors of the relation type that unify with the
current goal, until one is found whose side conditions are all solved by the
given side_condition_solver tactic.

A single language semantics is defined in several different styles in Sec-
tion 4.1.1, with a corresponding step tactic presented for each.

4.3.3 Specification Predicates

At an intermediate level of detail, proof automation must also handle predi-
cates used to write specification. These define higher level properties relevant
to specifications in terms of the primitive domains and predicates of the lan-
guage’s transition relation. For example, the assertion that a null-terminated
linked list starts at a given heap address and contains a specified list of values
is defined recursively in terms of basic assertions that a given heap address
contains a given value.

Our general strategy is to expand higher-level assertions as much as possi-
ble. Keeping predicates decomposed allows the simple step tactics described
in the previous subsection to work, without requiring extensions for every
new specification predicate.

For example, if a linked list containing some list l of values is represented
at p, then after learning that l is nonempty the hypothesis should be ex-
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panded to claims that p is nonnull, a list node containing the first value of
l exists at address p in the heap, and that the tail of l is represented by a
linked list at the “next” address of the list node.

For recursively defined predicates such as the list or tree representations
in Section 3.1.5 or Section 4.2, the predicates will unfold by simplification
once part of the structure of the list or tree is known, so unfolding can be im-
plemented mostly by delegating to basic tactics for decomposing existentials
and (separating) conjunctions of claims.

It is also possible that new lower-level information can imply more infor-
mation about the abstract values being represented, such as when a case split
resulting from an if test adds the assumption that the pointer representing
an abstract list l is either null or non-null.

Besides propagating information like this, it is also sometimes necessary
to decide whether a specification predicate holds (and perhaps under what
abstract arguments it holds), given some more concrete hypotheses. In par-
ticular, showing that preconditions hold to use a claim by transitivity, or
showing that the target predicate hold to finish off the current subgoal may
both require showing that some specification predicate applies in the current
state.

4.3.4 Effort

Overall, the work necessary to implement useful proof automation is almost
independent of the number of rules of the language semantics, or the number
of claims of the specifications to be solved, but depends only on the num-
ber and complexity of the domain predicates used in defining the language
language and the specification to be proved.
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Chapter 5

Evaluation

In this chapter we verify a range of example programs using the Coq im-
plementation of coinductive verification presented in the previous chapter.
Our goal here is a basic proof-of-concept, by showing that instantiating
our core theorems with operational semantics of several difference languages
does indeed give a sufficient foundation for verifying a range of example pro-
grams. We verify programs manipulating heap data structures, with the
Schorr-Waite graph marking algorithm being the most complicated.

5.1 Verified Programs
Overall statistics are presented in Table 5.1. Times were measured with the
64-bit Linux version of Coq 8.4pl2, on a laptop with a i7-3720QM processor
and 1600Mhz memory. We describe the languages, predicates, and proof
automation afterwards.

Size attempts to count content, ignoring comments, blank lines, and punc-
tuation. We also ignore some fixed lines such as imports. The specification
size includes any functions or predicates defined for a particular example in
addition to the set of claims. The proof size similarly includes any lemmas,
tactics, and proof hint declarations in addition to the main body of the proof.
The one-line proofs are those solved completely by our automation.

Proving time is measured by compiling the Coq file containing an example,
and certificate checking time is measured by rechecking the resulting proof
certificate file, while skipping checks of any included modules. Checking
a proof certificate does not require proof search or executing proof tactic
scripts.

The simple examples are those which do not use the heap. The minimum
and maximum proofs required a hint to use standard lemmas about the
min and max functions. The sum program adds numbers from 1 to n, and
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required an auxiliary lemma proving an arithmetical formula. We describe
one example in each of the remaining categories in more detail.

5.1.1 Lists

The next group of examples deals with linked lists. We implement a list node
as a record value containing the integer value of that node, and the address
of the rest of the list (which is 0 to represent empty lists).

Here is a statement which returns a copy of an input list, leaving the
input list unchanged.

if (x == 0)
{ return 0 }

else
{ y := alloc
; *y := {val = x->val, next = 0}
; iterx := x->next
; itery := y
; while (not (iterx == 0))
{ node := alloc
; *node := {val = iterx->val; next = 0}
; *itery := {val = itery->val; next = node}
; iterx := iterx->next
; itery := itery->next
}

; return y
}

Using abbreviated notation, the desired specification is

(<k> copy_code </k>
<store>... "p" |-> p ...</store>
<heap> asP hlist (rep_list A p), hrest </heap>
...)
=>

(exists p2,
<k> return p2 </k>
<store> _ </store>
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<heap> rep_list A p2, hlist, hrest </heap>
...)

This says that if the code is executed in a state where the store binds program
variable p to the address of a linked list in the heap holding the sequence
of values in the abstract list A, it can only return with the address of a
freshly-allocated copy of the list, and the rest of the heap unchanged.

For this program, repeating rep_list A p in the postcondition would
not be a strong enough specification, because it would allow moving inter-
mediate nodes in the input list, but the copy operation should be usable as
a subroutine even in code that holds pointers to intermediate nodes in the
input list. The asP pattern binds the variable hlist to the exact subheap
that satisfies the pattern rep_list A p, which allows specifying that the
input list is unchanged.

We have not implemented this abbreviated notation. Our complete speci-
fication also includes a claim about the loop, whose precondition asserts that
a non-empty initial segment of the list has been copied, and itery holds the
address of the last list node in the copied segment.

The complete proof script for this example is

Proof. list_solver.
rewrite app_ass in * |-.
list_run. Qed.

We see associativity of list append was not automatically applied. When the
automated solver paused, it left a goal we abbreviate as

(<k> return v </k>
<heap> rep_list ((A++[x])++y::B) v , H </heap>
...)

=>
(exists p2,
<k> return p2 </k>
<heap> rep_list (A++x::y::B) p2 , H </heap>
...)

The abstract list is described with an unexpectedly associated append, but
the current state does satisfy the target. It was not necessary to automate
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reasoning about associativity or to manually complete this branch of the
proof. After reassociating the expression membership in the target set can be
shown automatically, and this is the first thing attempted when the list_run
tactic resumes automation.

The three examples with three-line proof required this assistance with
associativity. The delete example removes all copies of a value from a linked
list. The specification defined the desired operation as a Coq function, and
we did not automate reasoning about it.

The Bedrock [Chla] example SinglyLinkedList.v verifies a module defin-
ing length, reverse, and append functions on linked lists. It takes approxi-
mately 150 seconds to prove, and 50s to recheck. Our results in Table 5.1 may
be an unfair comparison as Bedrock’s language can only store a scalar value
in a heap location and our code as presented in this section keeps an entire
structure at an address. For a more even comparison we modified the pro-
gram and specification to expect the value and next pointers at consecutive
addresses. To ensure no undesired functional was used, we made a modified
copy of our main language with records and built-in memory allocation re-
moved, under the bytewise directory in our development. However, rather
than costing performance, the ability to make a single-field update without
copying the other field actually improved performance. The modified exam-
ples can be verified in respectively 6.5, 13, and 15 seconds. Rechecking these
proof certificates take 1.7, 2.4, and 2.6 seconds.

5.1.2 Trees

The next data structure we deal with is a binary tree. Tree nodes are im-
plemented as records containing a value and the addresses of left and right
children.

Two examples flatten a binary tree into a linked list by a preorder traver-
sal, deallocating the input tree.

One implementation is a recursive helper function which flattens a tree
onto the front of a given list

(<k> flatten_code </k>
<store>... "t" |-> t , "l" |-> l ...</store>
<heap>rep_tree T t, rep_list A l, H</heap>
...)
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=>
(exists v,
<k> return v </k>
<heap>rep_list (tree2list T ++ A) v, H</heap>
...)

Flattening is defined as a Coq function tree2list. This implementation was
easily verified.

A more interesting implementation avoids recursion by using an explicit
stack, implemented as a linked list of pointers to subtrees. To specify this list,
the list predicate is generalized. Instead of just taking a list of integers, the
generalized predicate takes a list of any type, plus a representation predicate
for that type, and asserts that the values in the abstract list are represented
by the corresponding numbers in the concrete list, along with some possibly-
empty subheaps. Instantiating this with the representation predicate for
trees gives a predicate rep_gen_list rep_tree trees for a stack of trees.
Here is the full Coq specification of the loop:

loop_claim : ∀ ts t l s tn lv ln sn,
heap_loop tree_to_list_spec tree_to_list_def 0
(”t” s 7→ KInt t ⋆ ”l” s 7→ KInt l ⋆ ”s” s 7→ KInt s
⋆ ”tn” s 7→ tn ⋆ ”ln” s 7→ ln ⋆ ”sn” s 7→ sn)

(rep_prop_list (fun t p ⇒ constraint (p ̸= 0) ⋆ rep_tree t p) ts s
⋆ rep_list lv l)

(rep_list (trees2List (rev ts) ++ lv))

The proof of the height function required some assistance with the max
function. The (exhaustive) find function required a manual case split on the
results of looking for the target value in the left subtree. The recursive flatten
function required more substantial assistance because we did not provide
automation for the generalized list predicate.

5.1.3 Schorr-Waite

Our experiments so far demonstrate that our coinductive verification ap-
proach applies across languages in different paradigms, and can handle usual
heap programs with a high degree of automation. Here we show that we
can also handle the famous Schorr-Waite graph marking algorithm [SW67],
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which is a well-known verification challenge, “The Schorr-Waite algorithm
is the first mountain that any formalism for pointer aliasing should climb”
[Bor00]. To give the reader a feel for what it takes to mechanically verify
such an algorithm, previous proofs in [MN05] and [HM] required manually
produced proof scripts of about 470 and, respectively, over 1400 lines and
they both used conventional Hoare logic. In comparison, our proof is 516
lines. We admit that size is not always a fair comparison of proofs; we only
mention these numbers to imply that our novel coinductive verification ap-
proach need not sacrifice proof size to eliminate the need for a Hoare logic of
a language; proofs based on operational semantics may even be less tedious.

The implementation of Schorr-Waite that we verified is based on [Gri79].
We define graphs by extending the definition of trees by additionally allowing
a child of a node in the abstract tree to be a reference back to some existing
node, in addition to an explicit subtree or a null pointer for a leaf. To specify
that graph nodes are at their original addresses after marking, we include
an address along with the mark flag in the abstract data structure in the
pattern

grph(leaf,m, p′) = ⟨p′ = 0⟩
grph(backref(p),m, p′) = ⟨p′ = p⟩
grph(node(p,l,r),m,p′) = ⟨p′=p⟩

⋆∃pl,pr.p 7→[m,pl,pr] ⋆ grph(l,m,pl) ⋆ grph(r,m,pr)

The overall specification is call(Mark, [p], grph(G, 0, p), λr.grph(G, 3, p)).
To describe the intermediate states in the algorithm, including the clever

pointer-reversal trick used to encode a stack, we define another data structure
for the context, in zipper style. A position into a tree is described by it’s
immediate context, which is either the the topmost context, or the point
immediately left or right of a sibling tree, in a parent context. These are
represented by nodes with intermediate values of the mark field, with one field
pointing to the sibling subtree and the other pointing to the representation
of the rest of the context.

stack(Top, p) = ⟨p = 0⟩
stack(LeftOf(r, k), p) = ∃pr, pk.p 7→[1, pr, pk], grph(r, 0, pr), stack(k, pk)
stack(RightOf(l, k), p) = ∃pl, pk.p 7→[2, pk, pl], stack(k, pk), grph(l, 3, pl)
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This is the second data structure needed to specify the main loop. When
it is entered, there are only two live local variables, one pointing to the next
address to visit and the other keeping context. The next node can either
be the root of an unmarked subtree, with the context as stack, or the first
node in the implicit stack when ascending after marking a tree, with the
context pointing to the node that was just finished. For simplicity, we write
a separate claim for each case.

stmt(Loop, (p 7→ p, q 7→ q), (grph(G, 0, p), stack(S, q)), λr.grph(plug(G,S), 3))

stmt(Loop, (p 7→ p, q 7→ q), (stack(S, p), grph(G, 3, q)), λr.grph(plug(G,S), 3))

The application of all the semantic steps was handled entirely automati-
cally, the manual proof effort being entirely concerned with reasoning about
the predicates above, for which no proof automation was developed.
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Size (lines) Time (s)
Example Code Spec. Proof Prove Check

Simple
undefined 2 3 1 3.5 2.0
average3 2 5 1 4.0 1.2

min 3 4 2 3.6 1.0
max 3 4 2 3.6 1.0

multiply 9 7 1 12.4 2.4
sum(rec) 6 8 6 5.5 1.3
sum(iter) 5 12 6 8.1 1.5

Lists
head 1 6 1 2.6 1.2

tail 1 6 1 2.5 1.1
add 4 16 1 4.5 1.4

swap 9 13 1 19.6 4.2
dealloc 4 7 1 8.5 1.8

length(rec) 4 12 1 7.8 1.9
length(iter) 5 17 1 9.4 2.0

sum(rec) 6 7 1 9.3 2.1
sum(iter) 5 11 1 12.6 2.3

reverse 7 11 3 22.0 3.7
append 7 12 3 22.3 4.3

copy 13 23 3 101.5 15.5
delete 15 60 35 83.3 10.8

Trees
height 8 7 3 26.7 4.2

size 5 7 1 11.4 2.5
find 5 12 2 20.9 3.2

mirror 6 16 1 24.2 5.6
dealloc 14 33 1 33.8 6.8

flatten(rec) 10 18 1 43.7 8.5
flatten(iter) 28 35 28 270.7 49.6

Schorr-Waite
tree 14 91 116 105.1 14.4

graph 14 91 203 232.9 34.4

Table 5.1: Proof statistics
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Chapter 6

Translating Semantics

To verify code with our Coq implementation, a semantics of the target pro-
gramming language is needed as a Coq definition. For easy access to more
languages, and as a step towards making program verification more accessi-
ble, we wish to develop automatic translators of language definitions from
user-friendly semantics-engineering tools into Coq definitions. Any system
with a sufficiently precise semantics and a collection of interesting language
definitions would be an attractive source. Working in the FSL group at UIUC,
our own K framework was a natural first choice, but familiarity was hardly
the only motivation. Language definitions available in K include C [HER],
Java [BR], JavaScript [Bod+; PȘR], Python [Gut13], and PHP [FM].

The language of the K framework has many convenient features for speci-
fying programming languages. Fortunately for the task of translation, many
of these features are translated away by the K compiler. The current K im-
plementation is based on an intermediate language called KORE, which is
designed to be as simple as possible while still being to able to faithfully
express anything expressible in the full K language (accepting concision and
readability as costs).

The terms of a KORE definition consists of labeled tree, drawing from
a defined set of label names, with values of some additional primitive types
allowed at the leaves. The transitions are described by a set of rewrite rules,
which use pattern matching and boolean side conditions. The only com-
plexity in pattern matching is that some labels may be declared associative
(optionally with unit), and matching should be done modulo associativity.
Auxiliary functions may also be defined by giving a set of evaluation rules,
which are expected to be total.

The Coq translation defines the labels and terms of a definition, relying
on a library of Coq implementations of the primitive types and functions.
Pattern matching is translated to make as much use as possible of Coq’s
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unification support, so concrete labels in the left hand side of a rule are left
as part of a pattern. Associative matching is accommodated by replacing
any portion of a pattern that may require associativity with a fresh variable
and addition another side condition capturing the matching.

The relations defining functions are separately translated, but because K
functions are not checked for totality and Coq functions must pass a syntactic
totality check it is currently left to the user to define a Coq function equivalent
to the K functions.
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Chapter 7

Reachability Logic

A predecessor and direct inspiration for coinductive verification is Reachabil-
ity Logic. This is a proof system for proving partial reachability claims over
any language semantics given as a collection of rewrite rules, using either the
open-path semantics of claims from Definition 3.1, or the all-path semantics
from Definition 3.8.

This gives a portion of the language independence of coinductive verifica-
tion, imposing only the additional restriction that the semantics be given in
the syntax of rewrite rules rather than allowing any approach to defining a
transition relation (provided the result captures divergence in a useful way).

Before and besides developing coinductive verification I was also involved
in the reachability logic project, and in particular developed Coq proofs of
the soundness for the proof systems.

Having such a soundness proof makes it conceivable to build a certifying
implementation of the proof system on top of a proof assistant, but an explicit
syntactic set of rules is more cumbersome to work with.

Proving soundness of the reachability logic proof system required an deep
embedding, because some global properties of the set of rules are used to
prevent using coinductive assumptions before it can be soundly allowed. In
a deep embedding the syntax of well-formed proof trees is explicitly defined,
and the soundness theorem states that the reachability claim at the root of
any legal tree is correct. This theorem can only be used by assembling tree
fragments, instead of allowing free use of other Coq-supported reasoning. In
contrast, a shallow embedding would have a lemma with the same shape as
each proof rule of a system, more like coinductive verification where access
to coinductive claims is controlled solely by whether the goal has the form
c ∈ step(derived(X)) or c ∈ derived(X).
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Step∃ :
|= φ→ ∃FreeVars(φl).φl

|= ∃c (φ[c/□] ∧ φl[c/□]) ∧ φr → φ′

}
for some φl ⇒∃ φr ∈ S

S,A ⊢C φ⇒∃ φ′

Step∀ :
|= φ→

∨
φl⇒∃φr ∈ S ∃FreeVars(φl) φl

|= ∃c (φ[c/□] ∧ φl[c/□]) ∧ φr → φ′ for each φl ⇒∃ φr ∈ S
S,A ⊢C φ⇒∀ φ′

Transitivity :

S,A ⊢C φ1 ⇒Q φ2 S,A ∪ C ⊢ φ2 ⇒Q φ3

S,A ⊢C φ1 ⇒Q φ3

Circularity :

S,A ⊢C∪{φ⇒Qφ′} φ⇒Q φ′

S,A ⊢C φ⇒Q φ′

Axiom :

φ⇒Q φ′ ∈ A
S,A ⊢C φ⇒Q φ′

Reflexivity :
·

S,A ⊢ φ⇒Q φ

Consequence :

|= φ1 → φ′
1 S,A ⊢C φ′

1 ⇒Q φ′
2 |= φ′

2 → φ2

S,A ⊢C φ1 ⇒Q φ2

Case Analysis :

S,A ⊢C φ1 ⇒Q φ S,A ⊢C φ2 ⇒Q φ

S,A ⊢C φ1 ∨ φ2 ⇒Q φ

Abstraction :

S,A ⊢C φ⇒Q φ′ X ∩ FreeVars(φ′) = ∅
S,A ⊢C ∃X φ⇒Q φ′

We make the standard assumption that the free variables of φl ⇒∃ φr in the
Step proof rule are fresh (e.g., disjoint from those of φ⇒∀ φ′.

Figure 7.1: Reachability Logic proof system

7.1 Proof System
The earliest versions were presented in [RȘ12b; RȘ12a]. The form shown
here is one of the most developed versions which presents a unified set of
rules combining one-path and all-path semantics, as presented in [Ște+] and
the accompanying technical report. The only earlier work presenting an
incomparably strong variant is [Roș+13], where the notion of divergence in
partial reachability is extended to consider operational divergence, allowing
semantics to use conditional rewrite rules.

Of these rules we can see that Consequence, Case Analysis and
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Abstraction are subsumed in coinductive verification by simple logical
reasoning on the preconditions of the set of claims being proved. Step and
Reflexivity correspond to using the two cases in the definition of our step
function, Axiom to taking advantage of the properties of −∗ to appeal to
one of the claims of our specification, and Transitivity alone corresponds
to actually using an enhancement.

Notice the Circularity rule allows introducing new claims at any point
throughout a proof, and adding the rule to the subscript C on the sequent
rather than into the set A of accepted claims prevents appealing to the new
claim before at least one Step is taken.

Showing that this system is subsumed by coinductive verification relies
on another presentation of the proof system which is also presented in the
source work, called Set Circularity, which in fact corresponds more closely
to the K implementation of reachability logic proving.

7.2 Set Circularity
In the set circularity form of a proof, a proof consists of a forest of trees, the
Circularity rule may not be used, and the initial set C of circularities of
each proof tree can be any subset of the set of conclusions of the trees in the
forest, rather than necessarily empty. When such a forest can be assembled,
all the claims at the root of trees in the proof forest are simultaneously valid.

This was proved to be a valid derived rule, in the sense that any proof
in this form can be translated to yield a legal tree as in Fig. 7.1 for any of
the conclusions (in particular, starting with an empty set C of circularities),
and any proof tree in that form can be translated into a set circularity proof
(eliminating uses of the Circularity rule), whose set of conclusions includes
that of the original tree.

A fully detailed proof that set circularity proofs are valid is given in
[Roș+12]. Putting aside the sometimes-delicate handling of the Reflexiv-
ity rule, the general intuition is that uses of Circularity can be removed
from a proof forest (possibly a single-tree forest) by making the subtree rooted
at a use of Circularity a new tree of the forest, adding the relevant claim
to the set C assumed at the root of the parent tree, and removing that use
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of Circularity in the parent, now that the hypothesis is no weaker than
the conclusion, because the claim will already be in A or C at that point.

Conversely, a set circularity proof forest can be expanded into a single
tree for any of the conclusions by starting to copy the tree for the desired
conclusion, except beginning with an empty set C instead of the set from
the forest, remembering at each point which of those desired claims is still
not available in the current set A ∪ C in the copy, inserting an appeal to
Circularity whenever the current claim is one of the desired claims, and
recursively beginning to copy another tree of the forest whenever a use of
Axiom appeals to one of the still missing claims.

7.3 Equivalence
Given a set circularity proof, the set of claims at the roots of trees can be
gathered into a specification for a coinductive proof. Noting that these claims
are only in C at the root of each tree, and Axiom can use claims only from
A ensures that a step has been taken according to the language semantics
before any claims of the specification have been used. Thus we can translate
each step of the proof into a step in a coinductive proof of that set of claims.
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Chapter 8

Future Work

This chapter describes opportunities for future work, along with preliminary
results in the suggested directions.

8.1 Alternative Specification Semantics
The majority of our mechanized proof use the one-path partial reachability
predicate defined in Definition 3.2, but proof by generalized coinduction can
be used with any style of specification claims whose correctness can be defined
as a greatest fixpoint.

We have not verified any significant code under such alternate predicates,
but our Coq development does include proofs that a few additional notations
of specification can be proved coinductively, and that transitivity and other
principles can also be used with each of these.

These includes the all-path partial reachability of Definition 3.8, whose
characterization as the greatest fixpoint of step∀

R is proven, along with a proof
that it is compatible with exactly the same transitivity (Definition 3.5) and
pre-proved (Definition 3.7) rules which are valid for one-path reachability.

A further generalization restricts partial reachability by also parameteriz-
ing over an additional “invariant” relation restricting what steps are permit-
ted to occur before encountering the target set.

The all-path “until” definition says until c I P is satisfied if no possible
execution from c can become stuck or take a step not included in relation T

before encountering a state satisfying P .

CoInductive until c (I : relation cfg) (P : cfg → Prop) : Prop :=
| rdone : P c → until c I P
| rstep : (∃ c’, cstep c c’) → (∀ c’, cstep c c’ → I c c’)
→ (∀ c’, cstep c c’ → until c’ I P) → until c I P.
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Definition sound (Rules : Spec) : Prop :=
∀ c I P, Rules c I P → until c I P.

Inductive derived (X : Spec)
c (I : relation cfg) (P : cfg → Prop) : Prop :=

| drule : X c I P → derived X c I P
| ddone : P c → derived X c I P
| dstep : (∃ c’, cstep c c’) → (∀ c’, cstep c c’ → I c c’)
→ (∀ c’, cstep c c’ → derived X c’ I P) → derived X c I P

| dstrong : ∀ (I’ : cfg → cfg → Prop), (∀ a b, I’ a b → I a b)
→ derived X c I’ P → derived X c I P

| dtrans’ : ∀ Q, derived X c I Q → (∀ c’, Q c’ → derived X c’ I P)
→ derived X c I P.

Lemma proved_sound (Rules : Spec) :
(∀ c I P, Rules c I P → step (derived Rules) c I P) → sound Rules.

These examples were partially motivated by the appearance of relations
in Rely-Guarantee [Jon81] reasoning, as well as other potential specifications
that require controlling the entire course of execution, such as ensuring the
a program for a microcontroller never exceeds the maximum stack size.

8.2 Combining Semantics
The reduced effort to obtain a proof system for an operational semantics may
be even more useful when considering modifications to the semantics being
used rather than formalizing completely new languages.

One simple modification to a semantics is to ensure termination by brute
force, by merely adding a counter as a new component of the state and
decrementing it on each transition. With this amendment any specification
is forced to describe also an upper bound on execution time, and proves both
total correctness and that the time bound is respected.

Another sort of modification would be combining the semantics of a lan-
guage with a formal model of a system the program interfaces with, such as
a file system, a network, or perhaps some physical hardware.
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Making small modification should make it easier to re-use specification
predicate and proof tactics from other verification efforts based on the same
language.

8.3 Larger Examples
The programs verified so far are aimed as a proof of concept, to demonstrate
that the strong sense of language independence which is apparent in the
mathematics did not come at an unacceptable cost in expressiveness or au-
tomatability. The Schorr-Waite graph marking algorithm shows some degree
of difficulty, but none of the examples are very large.

A particularly interesting task in connection with the last proposal might
be verifying a filesystem, as much of the real difficulty comes from accounting
for the behavior and failure modes of the disk.

8.4 Sound Translations
In our current implementation there is are no proofs that the result of auto-
matically translating a K definition into a Coq transition is faithful. Manu-
ally verifying the translation currently requires understanding the Coq defi-
nition of the semantics, and checking it against the intended behavior of the
K semantics.

The necessary effort and the necessary experience with Coq could be
greatly reduced given a Coq formalization of the semantics of K itself. Then
a Coq definition of a language could be obtained by translating only the
syntax tree of the definition, and applying the definition of K. This would
require only checking that the syntax was correctly transliterated.

Even if a translation in the current direct style remains necessary for
efficiency or readability, it could be proven equivalent to a more easily trusted
translation.

8.5 Additional Sources of Semantics
Several tools besides K define and encourage the development of language
semantics in machine-readable forms. The PLT-Redex [FFF09] framework
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has been used to define several large languages including Python [Pol+13]
and JavaScript [GSK10]. The Lem [Mul+14] and Ott [Sew+07] systems can
already generate Coq definitions, but we have not yet attempted to use the
resulting definitions.

8.6 Additional Types and Predicates
Our definitions and specifications should be able to use any types or pred-
icates definable in Coq. So far our examples have mostly used definitions
from the Coq standard library, but for more complicated domains we hope
to make use of other formalization work in Coq. Two libraries of particular
interest are the IEEE-compatible floating point numbers of the Flocq [BM11]
library, and the (concurrent) separation algebras of [DHA09].

8.7 Higher-Order Specifications
For specifying code such has higher-order functions or just-in-time code gen-
erators it would be natural for the target predicate of a claim to make some
further reachability claims about the execution behavior of function values
or compiled code being returned.

These postconditions could be written by directly referring to validity of
the claims, but at best that would require giving a separate and earlier proof
about the code being returned. Ideally any reachability claims made in the
postcondition could be established coinductively along with any other claims
in the specification.

A partial answer in this direction is to make a higher-order specification
a function parameterized over a predicate to use in place of validity inside of
state predicates that wish to make claims about execution.

To accommodate functions returning higher-order functions, it seems
preferable to split the parameter into two predicates, and insure the the
specification is monotone in one and anti-monotone in the other. This ac-
commodates re-usable definitions of higher-order specifications by switching
the arguments passed to negative positions.
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Unfortunately, we have not yet found any entirely satisfactory coinduc-
tion principles for establishing the soundness of a specification which takes a
reachability predicate as a parameter.

8.8 Typed Functional Languages
Our experiments with Lambda served to demonstrate that we could deal with
closures and other functional language features so long as the specifications
remained simple, but in the absence of a satisfactory approach for stating and
proving claims about higher-order functions we are ill-equipped to investigate
functional programming languages more deeply.

If we make progress on the previous proposal, we will of course wish to
specify and verify higher-order functions in their natural habitat. A more
open question is whether or how reasoning in terms of types and reachability
claims might be combined.

A very simple case is the use of type-based abstraction boundaries to
protect implementations of abstract data types. It suffices to verify code in
the defining module operates correctly on the type, and the type system can
then be relied upon to extend that guarantee to know that any value of that
type appearing anywhere in well-typed code does in fact respect the internal
invariants the implementing module defined.

8.9 Comparison with Axiomatic Semantics
In Section 5.1 we demonstrated a range of programs that can be success-
fully coinductively verified with reasonable effort. We believe this sufficiently
demonstrated that coinductive verification is not inherently intractable com-
pared to other approaches. However, it is still be interesting to establish a
more precise comparison between the proofs of various approaches.

Overall, there are three levels of integration at which axiomatic seman-
tics rules might be combined with coinductive verification. We will show
that coinductive verification can subsume axiomatic semantics in each of
these ways, and at the same time demonstrate that proofs are already simple
enough that scarcely anything is gained by explicitly introducing Hoare-style
rules.
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In [RȘ] it was shown that a Hoare logic for a simple imperative language
was equivalent to a methodological use of the Reachability Logic proof sys-
tem. The first step was to show how a Hoare triple can be expressed as a
reachability claim, by adding components to a pattern to handle framing and
allow references to program variables.

Using the rule proved, a coinductive proof can appeal to any reachability
claim that is somehow independently known to be valid. In particular, if we
have a sound axiomatic semantics for a language and a translation from it’s
conclusions into reachability claims, we can use the axiomatic semantics as
once source of true claims.

Another form of integration is proving the soundness of rules of an ax-
iomatic semantics using coinductive verification. To do this we would write
a specification where each claims conclusion is the conclusion of some rule
of the axiomatic semantics, and those claims have hypotheses asserting the
validity of reachability claims corresponding to the hypotheses of that proof
rule.

The most intimate integration would be trying to make axiomatic seman-
tics rules available in the middle of a coinductive proof, just as transitivity
can be used, with the hypotheses left to be established according to the cur-
rent specification rather than switching to independent subproofs claiming
validity.

This would require proving that the desired proof rules are valid derived
rules for validity with the instance of stepR for the chosen language, like
Lemma 8 proved trans is a valid derived rule for any instance stepR.
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Chapter 9

Related Work

Now we discuss related work. We believe this work is unique in that it
explicitly establishes the soundness of a specified program as the conclusion
of a coinductive argument. The most relevant related work thus divides
mostly into two categories, namely program verification systems that address
goals similar to ours while using different foundations, and work presenting
powerful coinduction principles of the sort we required, developed for other
application. We also mention a few other ways which coinduction has been
used in connection with program specification or verification, in applications
quite unlike our proof.

9.1 Current Verification Systems
The prominent tools Why [FP] and Boogie [Lei08; Bar+06], are explicitly
used and promoted as “Intermediate Verification Languages”, for developing
verification tools by translation into the supported languages and specifi-
cations of this system. For example, Frama-C and Krakatoa respectively
support C and Java by translation through Why, and Spec# and Havoc
respectively support C# and C by translation through Boogie.

These systems are however less foundational, lacking proofs of soundness
for translations of full languages.

Both Why and Boogie are based around verification condition generators
for a particular programming language, passing the verification conditions
on to SMT solvers or proof assistants.

Another tool is Bedrock [Chla; Chlb], which is a foundational verifier
implemented in Coq for a machine-level language, with any successful verifi-
cation resulting in a Coq proof that the specification holds, relying only on
the definitions of the programming language, the specification language, and
the soundness of Coq. The basic proof system is organized around a verifica-
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tion condition generator, proved sound against a fixed operational semantics
for the primitive language.

However, Bedrock allows significant language extensions, accepting new
language constructs defined as a package of a translation from the new con-
struct into previously defined features, a verification condition generation
function for the new constructs, and a proof of soundness of the verification
condition generator with respect to the desugaring. Taking advantage of this
flexibility, Bedrock has been used to implement a cooperative threading sys-
tem, an HTML server, and an in-memory database. A design goal is nearly-
complete proof automation, which is provided with powerful heuristics and
support for extending the automation with lemmas for handling new defini-
tions. This is generally quite effective, though at a cost in proof compilation
time, and results in low textual overhead for full functional verification.

In contrast to these systems, we do not need to develop and prove sound-
ness of an intermediate such as a translator or verification condition generator
to offer a proof system and machine-checked proof of soundness for a new
operational semantics.

9.2 Verification from Operational Semantics
The verification in ACL2 of code in simplified [Moo99] and JVM [LM04]
bytecode was carried out by reasoning directly on an operational semantics
defined as an interpreter-like function for advancing a configuration by one
step. Without the benefit of coinduction, their approach required that each
specification claim include a precise calculation of the number of interpreter
steps the starting state needs to reach the target state.

Another approach also explored in ACL2 translated program specifica-
tions into a proposed invariant, such that showing the resulting property to
be an invariant will prove that the original specification holds. To carry out
this approach it is necessary to put a limit on the transition system being
explored so that execution cannot proceed past the state where the postcon-
dition is supposed to be called.

With an invariant giving predicates over individual states there is only
a limited ability to connect arguments on entry to a function with an ex-
pected postcondition at the exit. For non-recursive functions it is sufficient
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to fix or quantify over the arguments before fixing the invariant and initial
state, but this breaks down when recursive functions are considered. The
suggested approach to handle recursion is to write a program-specific and
semantics-specific function that can dig around in the call stack and local
variables values to reconstruct the original arguments to a function call from
the residual state remaining when it returns.

9.3 Reachability Logic
Reachability logic [Roș+13] is a closely related approach to program verifica-
tion which explicitly aims for the same notion of language independence as
we pursue in this work, and has a circularity proof rule with a coinductive
flavor. This system is presented in detail in Chapter 7

In particular I contributed to the development of the logic, participating
in then discussions and experiments with different forms of proof rules that
lead the the current versions of these systems. I was also primarily responsible
for the mechanized proofs of soundness of reachability logic. Coinductive
program verification was inspired by trying isolate the smallest essential use
of coinduction from those proofs of soundness of reachability logic.

The practicality of this approach was demonstrated in [Ște+16], adding an
implementation of the proof system to the K framework, and using previously
and independently developed semantics of real-world languages such as C,
Java, and JavaScript.

Coinductive verification is more general in a few ways. One is that reach-
ability logic requires an operational semantics to be presented as a set of
rewrite rules instead of any sort of definition of a relation. Another is that
using a generalized coinduction theorem as the basis for reasoning allows ef-
fectively adding new proof rules independently, by proving them compatible
with the step function as in Definition 3.6, rather than needing to update
a central soundness proof. Finally, coinduction is also applicable for other
notions of specification as long as they can be defined as a greatest fixpoint,
including all-path partial reachability and the other examples presented in
Section 8.1. The reachability logic proof system has a variant for proving all-
path partial reachability, but that required an alternate proof of soundness of
the entire system (which uses an incompatible induction argument to handle
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the Circularity rule). Coinductive verification does require checking that
extra reasoning principles like trans(Definition 3.5) are compatible with a
new notion of specification

9.4 Separation Logic
Separation logic is a prominent body of work which is not in competition
with our approach. We are free to use any predicates we like in writing spec-
ifications, and separation logic provides a convenient language for describing
data structures. The key idea is to use a logic that accounts for locality or
independence. The separating disjunction P ⋆Q asserts not just that P and
Q are both true, but that they are true on disjoint portions of memory. This
means that when P describes a mutable data structure, we can be sure that
Q will still hold on its portion of the heap after modifying the data structure
described by P . If we merely asserted P ∧ Q we would need additional as-
sertions about sharing, otherwise we might have for example two linked lists
with a common tail, with the contents seen in one list potentially changed
by removing an entry from the other list.

Separation logic need not be presented as part of a program logic, and is
studied in its own right in terms of separation algebras [COY07], especially for
concurrency. Important uses for concurrency include describing lock-guarded
invariants in concurrent separation logic, or ensuring writes happen only to
uniquely-referenced objects with share accounting [DHA09].

Our verification examples already specify the heap portion of configura-
tions with a pattern language using ideas from separation logic. Rather than
separately defining a syntax and satisfaction relation, we follow Bedrock (and
our own inclination to work with semantics instead of syntax) and define the
⋆ operator directly as a higher-order predicate asserting that a heap splits
into disjoint subheaps satisfying the two argument predicates.

9.5 Other Coinduction Schemata
The generalized coinduction theorem we use is a specialization of the prin-
ciple introduced under the name λ-coiteration by Bartels [Bar04]. This was
stated and proved in categorical language, and described for use as a princi-
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ple proving bisimilarity. The categorical dual of this theorem was described
as a recursion scheme for functional programming in [UVP01].

An attractive development we were unable to take advantage of was the
principle of “parameterized coinduction” presented in [Hur+13]. This allows
a coinductive proof of x ≤ νf to enlarge x as needed as the proof proceeds,
rather than requiring a sufficiently large set of claims to be made upfront
to meet a stability condition like x ≤ f(x). This is done by showing how
to define for any monotone f a corresponding function Gf satisfying all the
following properties:

∀x.x ≤ Gf (x)

∀x.f(Gf (x)) ≤ Gf (x)

Gf (⊥) ≤ νf∀xy.x ≤ f(Gf (y ∧ x)) =⇒ x ≤ Gf (y)

Unfortunately this did not seem to be compatible with the sort of extension
allowed in the previous results, which we rely on to allow proof rules such as
transitivity.

The recent paper “Coinduction all the Way Up” [Pou16] presents a quite
general result including both sorts of extensions. As we propose for future
work, it looks quite promising as a replacement for the coinduction theorem
we have been using. This work shows that associated to any monotone func-
tion f on a lattice there is an associated “companion function” t, definable
as a simple least upper bound, which has many properties for coinductively
proving x ≤ νf .

It’s properties include

t(⊥) ≤ νf

x ≤ t(x)

x ≤ f(t(y ∧ x)) =⇒ x ≤ t(y)

x ≤ g(t(y)) ∧ g ≤ t =⇒ x ≤ t(y)

The condition g ≤ t is implied by several known conditions for using g as
an enhancement in coinduction under a function f , including the condition
f(g∗(x)) ≤ g(f(x)) of the Theorem 2 this work uses. Using this result it
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would not be necessary to fix the entire set of claims nor the “derived rules”
to be used before beginning a proof.

Several generalizations over the simplest form of coinduction which are
nonetheless too weak for nicely verifying programs seem to be folklore. For
example, Isabelle/HOL’s standard library offers this lemma mono(f) ∧ A⊆
f(µx. f(x) ∪ A ∪ νf) =⇒ A⊆ν(f).

9.6 Other Uses of Coinduction in Program
Verification

The earliest work we are aware of which uses greatest fixpoints in connection
with program verification is by Edmund M. Clarke in [Cla77]. This paper
gives a definition of weakest precondition and strongest postcondition trans-
formers for Hoare-style partial correctness triples that defines some cases as
greatest fixpoints.

In [LG09] Xavier Leroy and Hervé Grall give a big-step semantics for
possibly nonterminating programs, simply by taking the greatest fixpoint
of the clauses of a big-step semantics rather than the least fixpoint. This
means nonterminating configurations are also included in the relation, with
membership shown by infinite trees of rules.

Dafny [Lei10] is a programming language with an integrated specification
language, using Boogie and Z3 for verification. It is intended to allow spec-
ifying and verifying full functional correctness, within a relatively familiar
object-oriented imperative language. It has been extended with support for
coinductive datatypes and predicates, suitable for cases such as lazy defini-
tions, indefinite streams, and specifying interactive systems. [Rus13].

A number of dependently typed functional programming languages or
proof assistants allow coinductively defining data types, in particular Coq.
Other related languages such as Adga and Idris have similar support. We
used Coq’s native notion of coinduction in proving the soundness of our
generalized coinduction principle.

The verification of programs written in JVM bytecodes in ACL [LM04]
was carried out by reasoning directly about execution using a function cal-
culating the next state of the abstract machine. However, without the use
of coinduction it was necessary to reason extensively about termination, and
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in fact each specification had to include a formula for the exact number of
execution steps the code in question would take.
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Chapter 10

Conclusion

We have presented a language independent program verification framework,
which gives a sound proof system when instantiated with an operational
semantics, without requiring any proof of soundness or defining any interme-
diates such as verification condition generators. The resulting system allows
proofs straightforwardly following control flow, and is amenable to proof au-
tomation.

We have proved the core theorems in a proof assistant, and working atop
those definitions to verify a program results in a machine checkable proof
certificate in the in the logic of the proof assistant that the desired claims
are true in the provided operational semantics.

The key observation is that a characterization of partial correctness claims
allows proofs by coinduction, and that although using the simplest coinduc-
tion principle is utterly infeasible, using a generalized coinduction theorem
gives an improved coinduction principle that can actually show reasonably
small sets of claim correct.

As desired from a sound program verification system, believing that code
is correct requires believing only that the formalized claim adequately cap-
tures the desired behavior, that the operational semantics correctly describes
the intended language, and that the logic and proof checker of Coq are cor-
rect, and no hardware errors invalided the execution of the proof checker. In
particular, it is not necessary to examine either the given code nor the text
of a purported proof to conclude that the specification holds.

In contrast to our language independence, state-of-the art program ver-
ifiers such as Why [FP], Bedrock [Chlb] or Boogie [Lei08] directly target a
single language, using a proof system and soundness proof developed by ex-
perts. Additional language may be handled by translations targeting these
systems, but showing this is sound would require giving an additional proof
of the faithfulness of these translation.
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With our approach, a language designer or other interested party need
only develop and validate an operational semantics to have a sound proof
system. It is neither necessary to design a proof system, nor prove it’s sound-
ness. We hope this will contribute to making program verification more
widely accessible.
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Appendix A

Example Coq Session

Here include an example session with the command-line Coq interpreter,
including it’s responses to show all the information the tool can maintain
instead of the user needing to track, and gradually building up rudimentary
proof automation by recognizing and encapsulating repetitive portions of the
proof.

Now we will repeat the example proof in Coq.
First we define the code of the program, naming the loop statement here

as well. We also define a state predicate which says the current code is empty
and the variable s will have a desired value.

Coq < Definition loop := While (Not (Eq (PostDec "n") (Con 0)))
Coq < (Assign "s" (Add (Var "s") (Var "n"))).

Coq < Definition code := Seq (Assign "s" (Con 0)) loop.

Coq <
Coq < Definition s_result (k:Z) := (fun (cfg' : cfg) =>
Coq < let (code,env) := cfg' in code = Skip
Coq < /\ Env.MapsTo "s" k env).

With these definitions we state our specification.
In Coq the most natural way to define a set of claims is extensionally, as

a predicate accepting the desired claims. Definitions by cases corresponds
most directly to an inductive definition with a constructor for each case.
This definition introduces new propositions spec c P, which only hold
in the cases covered by sum_claim and loop_claim. The sum_claim con-
structor covers cases where the code of the current configuration c is code,
the environment of c maps variable n to integer n, and the predicate P is
s_result(n(n− 1)/2). The loop_claim constructor covers cases where the
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code if loop, the environment defines varibables n and s, and the goal predi-
cate is s_result(s+ n(n− 1)/2). As an inductively defined predicate, these
are the only cases which can be used to prove spec c P holds.

Coq < Inductive spec : Spec imp.cfg :=
Coq < | sum_claim : forall n env,
Coq < Env.MapsTo "n" n env ->
Coq < spec (code, env) (s_result ((n * (n-1))/ 2))
Coq < | loop_claim : forall n s env,
Coq < Env.MapsTo "n" n env ->
Coq < Env.MapsTo "s" s env ->
Coq < spec (loop, env) (s_result (s + (n * (n-1))/ 2)).

To prove the specification holds, we need to show that reaches c P is
true whenver spec c P holds. Using an abbreviation from the proof module,
this is stated as

Coq < Lemma example : sound imp_step spec.
1 subgoal

============================
sound imp_step spec

To begin proving this by coinduction we apply the theorem proved_sound,
the mechanized version of a generalized coinduction theorem.

Coq < apply proved_sound.
1 subgoal

============================
forall (x : cfg) (P : cfg -> Prop),
spec x P -> step imp_step (trans imp_step spec) x P

This leaves a proof goal equivalent to X ⊆ step(step∗(X)). Now we
simply need to show this implication, with no further mention of reaches,
or need to directly consider specific (possibly infinite) complete execution
traces.
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We begin the proof by splitting into cases. The tactic destruct makes
case distinctions, and the form destruct 1 examines the first unnamed ar-
gument in the conclusion, after raising the variables of a surrounding forall
to hypotheses.

Coq < destruct 1.
2 subgoals

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
step imp_step (trans imp_step spec) (code, env)
(s_result (n * (n - 1) / 2))

subgoal 2 is:
step imp_step (trans imp_step spec) (loop, env)

(s_result (s + n * (n - 1) / 2))

The first goal corresponds to sum_claim, the second to loop_claim. The
“bullet” * declares we will be proving the cases separately, restricts attention
to the first goal, and enforces the division by making Coq report an error
unless another * appears at exactly the point where this case has been re-
solved an we need to move on to the next. (The idtac tactic explicitly does
nothing, and is included here for some tools used to typeset this example).

Coq < * idtac.
1 focused subgoal (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
step imp_step (trans imp_step spec) (code, env)
(s_result (n * (n - 1) / 2))

We must start by using one of the cases of step. We are not already at the
goal, so we must take an execution step. This corresponds to the constructor
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sstep of step. The commands eapply sstep tries to prove the current
goal as an application of sstep, leaving its hypotheses nas new subgoals. If
arguments mentioned in the hypotheses cannot be determined by unification
with the current goal, then eapply fills them with existential variables, which
are placeholders that can be refined towards specific formulas as the proof
proceeds. In this case we get one existential variable, for the configuration
after the execution step.

Coq < eapply sstep.
2 focused subgoals (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
imp_step (code, env) ?39

subgoal 2 is:
trans imp_step spec ?39 (s_result (n * (n - 1) / 2))

To show that a step is valid we can explicitly apply cases from the defini-
tion of the step relation. With an existential variable as the second argument
of imp_step, this simultaneously refine the shape of the successor state. Re-
calling the definition of code, the rules we need are seq1 to step in the first
statement of Seq, and then assign to execute the assignment (the expression
is already a constant).

Coq < apply step_seq1.
2 focused subgoals (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
imp_step (Assign "s" (Con 0), env) (?46, ?45)

subgoal 2 is:
trans imp_step spec (Seq ?46 loop, ?45)

(s_result (n * (n - 1) / 2))
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Coq < apply step_assign.
1 focused subgoal (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
trans imp_step spec (Seq Skip loop, Env.add "s" 0 env)
(s_result (n * (n - 1) / 2))

We see, especially in the second goal, that matching the goal to be proved
against the rules being used refined the successor state from a complete
unknown into an expression with no more existential variables.

We can also see that explicitly choosing which execution rules to use at
each step will be tiresome on all but the tiniest examples, so it is time to use
more automation.

The eauto tactic takes a collection of lemmas and tries to solve a goal
by using them as by eapply, using a depth-first search to explore choices
between the lemmas whose conclusions unify with the goal. The particular
form eauto using imp_step uses all the constructors of imp_step as possible
lemmas. We undo the two explicit rule applications above and use eauto.

Coq < Undo 2.
2 focused subgoals (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
imp_step (code, env) ?39

subgoal 2 is:
trans imp_step spec ?39 (s_result (n * (n - 1) / 2))

Coq < eauto using imp_step.
1 focused subgoal (unfocused: 1)

n : Z
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env : Env.t Z
H : Env.MapsTo "n" n env
============================
trans imp_step spec (Seq Skip loop, Env.add "s" 0 env)
(s_result (n * (n - 1) / 2))

Chosing to take a step and finding the step can be combined into a single
command using one of the compound forms of Coq’s tactic language.

Coq < eapply dstep;[eauto using imp_step| ].
1 focused subgoal (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
trans imp_step spec (loop, Env.add "s" 0 env)
(s_result (n * (n - 1) / 2))

Now that execution from the overall claim has reached the loop we should
conclude by using the loop claim, and wait until we are supporting the loop
claim to consider the execution of the loop.

The current claim is actually equivalent to an instance of loop_claim, but
Coq’s unification procedure does not automatically determine this (because it
would require considering computation after matching s with 0). Instead, we
use loop_claim by transitivity to slightly delay reasoning about the target
predicates. To prove the hypotheses of loop_claim about variable bindings
in the environment we use the map_lookup tactic which was defined alongside
the environment type.

Coq < eapply dtrans.
2 focused subgoals (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
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spec (loop, Env.add "s" 0 env) ?76
subgoal 2 is:
forall k' : cfg,
?76 k' -> trans imp_step spec k' (s_result (n * (n - 1) / 2))

Coq < apply loop_claim;map_lookup.
1 focused subgoal (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
============================
forall k' : cfg,
s_result (0 + n * (n - 1) / 2) k' ->
trans imp_step spec k' (s_result (n * (n - 1) / 2))

After using any claim by transitivity, we are left with a goal where the
current configuration is represented only as a fresh variable known to satisfy
the target predicate of the instance of the claim that was just used.

In this case that hypothesis and the current target predicate are the
same except for equivalent expressions for the expected value of s, so we can
conclude by choosing the “done” case and showing the current state meets
the current target predicate.

Luckily Coq’s libraries happened to choose the definition of addition that
lets 0 + x reduce to x by computation (while x+ 0 = x must be proved as a
lemma), and Coq’s logic allows convertible terms to be used interchangeably,
so we use the assumption tactic, which attempts to conclude a subproof by
finding a hypothesis equivalent with the goal.

Coq < intros;apply ddone.
1 focused subgoal (unfocused: 1)

n : Z
env : Env.t Z
H : Env.MapsTo "n" n env
k' : cfg
H0 : s_result (0 + n * (n - 1) / 2) k'
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============================
s_result (n * (n - 1) / 2) k'

Coq < assumption.
This subproof is complete, but there are still unfocused goals.
1 subgoal

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
============================
step imp_step (trans imp_step spec) (loop, env)

(s_result (s + n * (n - 1) / 2))

Now we proceed to the second claim.

Coq < * idtac.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
============================
step imp_step (trans imp_step spec) (loop, env)

(s_result (s + n * (n - 1) / 2))

Coq < eapply sstep;[eauto using imp_step|].
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
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============================
trans imp_step spec
(If (Not (Eq (PostDec "n") (Con 0)))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n"))))) Skip, env)

(s_result (s + n * (n - 1) / 2))

Coq < eapply dstep;[eauto using imp_step|].
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
============================
trans imp_step spec

(If (Not (Eq (Con n) (Con 0)))
(Seq (Assign "s" (Add (Var "s") (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n"))))) Skip,

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

We see that eauto did not find a second execution step. Evaluating the
condition of the if statment will also require rules from imp_cond_step for
evaluating conditional expressions, and rules from imp_exp_step for evaluat-
ing numerical expressions. These could be explicitly listed with eauto using
imp_step, imp_cond_step, imp_exp_step, but with even just three types
this is getting unwieldy. It’s time to start controlling the automatic proof
search.

Besides listing explicit lemmas or types with a using clause, it is also
possible to group a collection of lemmas and other sorts of “hints” into a
named hint database, which can be used like eauto with imp_steps, and
incrementally extended with more hints. A hint database named imp_steps
was created alongside the definition of the imp semantics. Here is how we
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insure it contains all rules of the three evaluation relations, and use eauto
with the hint database to find the step.

Coq < Hint Constructors
Coq < imp_step imp_cond_step imp_exp_step : imp_steps.

Coq < eauto with imp_steps.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
============================
trans imp_step spec
(If (Not (Eq (Con n) (Con 0)))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

With improved automation, we would like a tactic to take many sim-
ple steps automatically. We also saw that when the tactic eauto using
imp_step did not find a step, it left that subgoal alone. A failure would also
have undone eapply dstep instead of leaving the overall proof committed
to taking a step.

Even worse, the second remaining subgoal is a reachability claim to which
dstep could be applied again, despite the current configuration being a bare
existential variable, so a careless attempt to automatically take many steps
might go into an infinite loop.

We require a tactic to completely succeed using the compound expression
solve[tac], which applies tac, but fails also if leaves any remaining subgoals.
Combining this with repeat tac which applies tac until it fails, we write
a tactic for automatically taking as many execution steps as can be taken
completely automatically.

Coq < repeat(eapply dstep;[solve[eauto with imp_steps]|]).
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1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
============================
trans imp_step spec
(If (BCon (negb (n =? 0)))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

This tactic successfully carried the proof to a point where a case distinc-
tion is needed. The if condition has been evaluated to a boolean, but the
boolean is expressed symbolically as negb (n =? 0). We need to split
into cases where the expression is a literal true or false, but we should add
hypotheses expressing the conditions in forms more convienient for further
reasoning.

Our final proof automation handles this case, but here we handle it man-
ually.

Coq < destruct (Z.eqb_spec n 0).
2 focused subgoals (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
e : n = 0
============================
trans imp_step spec
(If (BCon (negb true))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
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(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n"))))) Skip,

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))
subgoal 2 is:
trans imp_step spec
(If (BCon (negb false))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

The function Z.eqb_spec has a specially designed return type so making
this case distinction replaces the expression n =? 0 with true or false
while adding a hypothesis n = 0 or n <> 0.

In the n = 0 case we use the hypothesis to replace n with 0 everywhere,
and then automatic execution carries past the loop to the end of the code.

Coq < subst n.
2 focused subgoals (unfocused: 0)

s : Z
env : Env.t Z
H0 : Env.MapsTo "s" s env
H : Env.MapsTo "n" 0 env
============================
trans imp_step spec
(If (BCon (negb true))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (0 - 1) env) (s_result (s + 0 * (0 - 1) / 2))

subgoal 2 is:
trans imp_step spec
(If (BCon (negb false))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
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Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Coq < repeat(eapply dstep;[solve[eauto with imp_steps]|]).
2 focused subgoals (unfocused: 0)

s : Z
env : Env.t Z
H0 : Env.MapsTo "s" s env
H : Env.MapsTo "n" 0 env
============================
trans imp_step spec (Skip, Env.add "n" (0 - 1) env)
(s_result (s + 0 * (0 - 1) / 2))

subgoal 2 is:
trans imp_step spec

(If (BCon (negb false))
(Seq (Assign "s" (Add (Var "s") (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n"))))) Skip,

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Coq < eapply ddone;split;[reflexivity|map_lookup].
2 focused subgoals (unfocused: 0)

s : Z
env : Env.t Z
H0 : Env.MapsTo "s" s env
H : Env.MapsTo "n" 0 env
============================
s = s + 0 * (0 - 1) / 2

subgoal 2 is:
trans imp_step spec

(If (BCon (negb false))
(Seq (Assign "s" (Add (Var "s") (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n"))))) Skip,

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Coq < auto with zarith.
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1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(If (BCon (negb false))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

The target predicate is a conjunction of two assertions, namely that the
current code equals Skip, which is obviously true, and that the current en-
vironment assigns variable s the expected value. We see that map_lookup
leaves an arithmetic equation to be solved when the actual and expected val-
ues don’t unify. The zarith database includes a lemma necessary for auto
to handle the equation.

In the n ̸= 0 case we will need to execute through the body of the loop
to reach a state where the loop_claim claim can be used. We again begin
by automatically taking many steps.

Coq < repeat (eapply dstep;[solve[eauto with imp_steps]|]).
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
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(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n")))),
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Now the step that is not automatically taken is looking up variable s
to begin evaluating the expression s+n of the assignment. The imp_steps
database only contains rules from the step relations of imp.

Manually applying all the appropriate rules leaves the hypothesis that we
need to be able to handle automatically.

Coq < eapply dstep;
Coq < [apply step_seq1,step_assign1,step_add1,step_var|].
2 focused subgoals (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
Env.MapsTo "s" ?317 (Env.add "n" (n - 1) env)

subgoal 2 is:
trans imp_step spec

(Seq (Assign "s" (Add (Con ?317) (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n")))),
Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

This lookup can be handled by the map_lookup tactic. Hint databases
can also contain instructions to apply arbitrary tactics, not just hints to
apply lemmas or constructors. These are specified along with a pattern de-
scribing goals where it is worthwhile to try using the tactic. After registering
map_lookup in the imp_steps database to be used on MapsTo goals, the
hypothesis is completed automatically.
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Coq < Hint Extern 1 (Env.MapsTo _ _ _)
Coq < => (map_lookup;solve[auto with zarith]) : imp_steps.

Coq < eauto with imp_steps.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(Seq (Assign "s" (Add (Con s) (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n")))),

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

With this addition additional variable lookups are handled automatically.

Coq < repeat (eapply dstep;[solve[eauto with imp_steps]|]).
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(If (BCon (negb (n - 1 =? 0)))

(Seq (Assign "s" (Add (Var "s") (Var "n")))
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))))) Skip,
Env.add "n" (n - 1 - 1)
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(Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env)))
(s_result (s + n * (n - 1) / 2))

Unfortunately this went too far, and entered the while loop again rather
than stopping at the loop to allow using loop_claim.

One solution is to check whether any claim of the specification might
apply before taking any execution steps. We could try to automatically use
a claim with a tactic like

eapply dtrans;[eapply loop_claim;solve[eauto with imp_steps]|].

but automatic execution should if a claim potentially applies, even if manual
assistance might be required to show that all its hypotheses hold.

Instead, we can conclude the claim couldn’t possibly apply if

eapply dtrans;[eapply loop\_claim|]

fails. Manually specifying the number of steps to reach the state just before
loop is reached, and using try tac to turn a failure into leaving the goal
unchanged, we see that this test fails until the loop is reached, and succeeds
at the loop.

Coq < Undo 1.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(Seq (Assign "s" (Add (Con s) (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n")))),

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Coq < do 3 (eapply dstep;[solve[eauto with imp_steps]|]).
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1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(Seq Skip

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n")))),

Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))
(s_result (s + n * (n - 1) / 2))

Coq < try (eapply dtrans;[eapply loop_claim|]).
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec

(Seq Skip
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n")))),
Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))
(s_result (s + n * (n - 1) / 2))

Coq < eapply dstep;[solve[eauto with imp_steps]|].
1 focused subgoal (unfocused: 0)

n : Z
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s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))),
Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))
(s_result (s + n * (n - 1) / 2))

Coq < try (eapply dtrans;[eapply loop_claim|]).
3 focused subgoals (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
Env.MapsTo "n" ?640
(Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))

subgoal 2 is:
Env.MapsTo "s" ?639
(Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))

subgoal 3 is:
forall k' : cfg,
s_result (?639 + ?640 * (?640 - 1) / 2) k' ->
trans imp_step spec k' (s_result (s + n * (n - 1) / 2))

To move onto taking an evaluation step if attempting to apply a claim
fails, we use the tactic syntax tac1 || tac2, which tries the first tactic, and
uses the second only if the first failed or made no changes to the goal. To
break out of the repeat loop if the application succeds, we use the tactic
fail 1 which creates a “failure at level 1”, which breaks past the first sur-
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rounding construct that ususally catches a failure (here ||). We undo the
manual tests and try the improved tactic.

Coq < Undo 4.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(Seq (Assign "s" (Add (Con s) (Var "n")))

(While (Not (Eq (PostDec "n") (Con 0)))
(Assign "s" (Add (Var "s") (Var "n")))),

Env.add "n" (n - 1) env) (s_result (s + n * (n - 1) / 2))

Coq < repeat ((eapply dtrans;[eapply loop_claim|];fail 1)
Coq < ||(eapply dstep;[solve[eauto with imp_steps]|])).
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
trans imp_step spec
(While (Not (Eq (PostDec "n") (Con 0)))

(Assign "s" (Add (Var "s") (Var "n"))),
Env.add "s" (s + (n - 1)) (Env.add "n" (n - 1) env))
(s_result (s + n * (n - 1) / 2))

This stops right at the point where loop_claim might apply.
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Coq < eapply dtrans;[eapply loop_claim;eauto with imp_steps|].
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
============================
forall k' : cfg,
s_result (s + (n - 1) + (n - 1) * (n - 1 - 1) / 2) k' ->
trans imp_step spec k' (s_result (s + n * (n - 1) / 2))

Coq < destruct k';intros;eapply ddone.
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
n0 : n <> 0
s0 : Stmt
t : Env.t Z
H1 : s_result (s + (n - 1) + (n - 1) * (n - 1 - 1) / 2) (s0, t)
============================
s_result (s + n * (n - 1) / 2) (s0, t)

Coq < destruct H1;split;[assumption|map_lookup].
1 focused subgoal (unfocused: 0)

n : Z
s : Z
env : Env.t Z
H : Env.MapsTo "n" n env
H0 : Env.MapsTo "s" s env
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n0 : n <> 0
s0 : Stmt
t : Env.t Z
H1 : s0 = Skip
H2 : Env.MapsTo "s" (s + (n - 1) + (n - 1) * (n - 1 - 1) / 2) t
============================
s + (n - 1) + (n - 1) * (n - 1 - 1) / 2 = s + n * (n - 1) / 2

We invoke the claim, and deal with most of the proof that the goal is met,
leaving only a numerical equation to be solved. That’s a separate issue from
illustrating program verification, so we extract the statement into a lemma
and omit the proof.

Coq < Lemma sum_ind_algebra : forall s n,
Coq < s + (n-1) + (n-1) * (n - 1 - 1) / 2 = s + n * (n-1) / 2.

Coq < Qed.

Coq < apply sum_ind_algebra.
No more subgoals.

Coq < Qed.

This concludes the proof.
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Appendix B

Selected Coq Code

This appendix includes key Coq code from our mechanically checked devel-
opments. A full disctribution including a build system and some further files
is available from

http://fsl.cs.illinois.edu/coinduction/.

This document should also contain an archive as a PDF attachment.
Our two main objectives in selecting the code for these appendices are to

present the program proofs corresponding to Table 3.1, and to show that the
definitions presented in mathematical notation in this paper are faithfully
reflected in the mechanically checked development, and vice versa. We also
wished to include the definition of the example languages.

The remainder of this chapter presents the statement and proofs of the
core core definitions and theorems of our proof system, the Coq definitions of
the representation predicates and specification abbreviations described ear-
lier, and then also the full specification proved for the Schorr-Waite algorithm
(in Appendix B.2.3).

In Appendix B.3 we give the definitions of the configurations and tran-
sition relations of the example languages. We also show the definitions of
maps and primitive map patterns, to conclude the supporting code.

Appendix B.4 gives the complete text of the verifications of each of the
example programs, in each language.

B.1 Core Proof System
The following code is the Coq module which defines reachability (reaches)
validity of a set of claims (sound), and the main proof principle used for
verification (proved-sound). Language independence of the results is shown
in the most concrete way with this file, which is compiled once to a Coq
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object file and imported unchanged into every and imported unchanged into
every program verification in any of our example languages. For perfor-
mance reasons we define a single inductive type trans which is equivalent to
(step−R ∪ trans∪ proved)∗.

Set Implicit Arguments.

Section relations.
Variables (cfg : Set) (cstep : cfg −> cfg −> Prop).

Definition Spec : Type := cfg −> (cfg −> Prop) −> Prop.

CoInductive reaches (k : cfg) (P : cfg −> Prop) : Prop :=
| rdone : P k −> reaches k P
| rstep : forall k’, cstep k k’ −> reaches k’ P −> reaches k P.

Definition sound (Rules : Spec) : Prop :=
forall x P, Rules x P −> reaches x P.

Inductive step (X : Spec) (k : cfg) (P : cfg −> Prop) : Prop :=
| sdone : P k −> step X k P
| sstep : forall k’, cstep k k’ −> X k’ P −> step X k P.

CoFixpoint stable_sound (Rules : Spec)
(Hstable : forall x P, Rules x P −> step Rules x P)
: sound Rules := fun x P H => match Hstable _ _ H with
| sdone pf => rdone _ _ pf
| sstep k’ Hstep H’ =>

rstep Hstep (stable_sound Hstable _ _ H’)
end.

Inductive trans (X : Spec) (k : cfg) (P : cfg −> Prop) : Prop :=
| ddone : P k −> trans X k P
| dtrans’ : forall Q, trans X k Q −>

(forall k’, Q k’ −> trans X k’ P) −> trans X k P
| drule : X k P −> trans X k P
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| dstep : forall k’, cstep k k’ −> trans X k’ P −> trans X k P.
(* The desired transivity rule. Violates positivity rules,

so the dtrans’ constructor used Mendler style *)
Definition dtrans (X : Spec) (k : cfg) (P Q : cfg −> Prop)
(rule : X k Q) (rest : forall k’, Q k’ −> trans X k’ P) :=
@dtrans’ X k P Q (drule _ _ _ rule) rest.

Lemma trans_stable (Rules : Spec) :
(forall x P, Rules x P −> step (trans Rules) x P)
−> (forall x P, trans Rules x P −> step (trans Rules) x P).

Proof. induction 2;eauto using step;
destruct IHtrans;eauto using step,dtrans’. Qed.

Lemma proved_sound (Rules : Spec) :
(forall x P, Rules x P −> step (trans Rules) x P)
−> sound Rules.

Proof. unfold sound;intros;eapply stable_sound;
[apply trans_stable|apply drule];eassumption. Qed.

Using these definitions, all the proofs of programs in Appendix B.4 begin
by directly claiming the correctness of the specification using sound and
then immediately apply proved-sound to move from the correctness claim
to showing an inclusion in the coinductive style.

B.2 Representation Predicates
In this section we show the definitions of all the notation we used to simplify
writing specifications, for each of the programming languages. The descrip-
tions of heap data structures are fairly similar, while abbreviations for making
claims about function definitions or statements in function bodies are more
affected by the differences between languages.

B.2.1 HIMP

Here is the definition of lists used in the HIMP examples. The primary defi-
nition is that of list segments, complete lists are defined as a segment ending
in a zero pointer. The values of HIMP include records with named fields,
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which can be used to store structures such as list nodes at a single address
in the heap. Stack explores a lower-level representation, using consecutive
addresses to store fields of structures.

Require Export himp_claims.
Require Export patterns.

(** A list node in memory *)
Notation list_node val next :=
(KStruct (Struct (”val” s|−> KInt val :* ”next” s|−> KInt next))).

(** And some abbreviations for code working with list nodes *)
Notation arr_val v := (EProject (ELoad (EVar v)) ”val”).
Notation arr_next v := (EProject (ELoad (EVar v)) ”next”).
Notation build_node v p := (EBuild (”val” s|−> v :* ”next” s|−> p)).

Fixpoint rep_seg (val : list Z) (tailp p : Z) : MapPattern k k :=
match val with
| nil => constraint (p = tailp)
| x :: xs => constraint (p <> 0) :* existsP p’,

p h|−> list_node x p’ :* rep_seg xs tailp p’
end%pattern.

Notation rep_list l := (rep_seg l 0).

Here are the abbreviations used for writing specifications. The function
loop-tails helps make auxiliary claims about the loops in a definition, with-
out needing to explicitly name or repeat the loops. Note the claim extends
from the loop all the way to the end of the function (if there are loops after
the one being describe, the specification will need another auxiliary claim
covering that loop).

Require Export patterns.
Require Export proof.
Require Export himp_steps.

(* Environment or record entry, taking a string and kitem*)
Notation ”x␣’s|−>’␣y” :=
(mapItem (kra (KId x) kdot) (kra (y : kitem) kdot))
(at level 50, no associativity) : Map.
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(* Heap entry, from an integer key and kitem value *)
Notation ”x␣’h|−>’␣y” :=
(mapItem (kra (KInt x) kdot) (kra (y : kitem) kdot))
(at level 50, no associativity) : Map.

Notation ”x␣’h|−>’␣y” :=
(itemP (kra (KInt x) kdot) (kra (y : kitem) kdot))
(at level 50, no associativity) : MapPattern.

(* Notations to help unify typed and untyped maps *)
Notation load_field v f := (EProject (ELoad (EVar v)) f).
(*
Notation funEntry name args body :=

(name%string s|−> FunDef name args body).
*)

Definition value_heap ret krest store stack frame funs mark
: kcfg −> Prop := fun c’ => match c’ with
| KCfg k’ store’ stack’ heap’ funs’ mark’ =>

exists r’, k’ = kra r’ krest /\ store’ ~= store
/\ stack’ = stack /\ heap’ |= ret r’ :* litP frame
/\ funs’ ~= funs /\ (mark’ >= mark)%Z

end.

Definition heap_fun (R : Spec kcfg) (d:Defn) :
forall (args : list KResult) (init_heap : MapPattern k k)
(ret : Z −> MapPattern k k), Prop :=

match d with FunDef name formals body =>
fun args init_heap ret =>

forall krest store stack heap funs mark otherfuns,
funs ~= name s|−> KDefn d :* otherfuns −>
(mark > 0)%Z −>
forall frame,
heap |= (init_heap :* litP frame) −>
R (KCfg (kra (ECall name (map KResultToExp args)) krest)

store stack heap funs mark)
(value_heap (fun r => existsP v, constraint (r = KInt v)
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:* ret v)%pattern
krest store stack frame funs mark)

end.

Definition return_heap ret stack frame funs mark : kcfg −> Prop :=
fun c’ => match c’ with
| KCfg k’ store’ stack’ heap’ funs’ mark’ =>

exists r’ krest, k’ = kra (KStmt (SReturn r’)) krest
/\ stack’ = stack /\ heap’ |= ret r’ :* litP frame
/\ funs’ ~= funs /\ (mark’ >= mark)%Z

end.

Definition suffix_claim (R : Spec kcfg)
(body : k) (init_store : Map k k)
(init_heap : MapPattern k k)
(final_heap : Z −> MapPattern k k) : Prop :=

forall stack store store_rest heap frame funs mark,
store ~= init_store :* store_rest −>
heap |= (init_heap :* litP frame) −>
(mark > 0)%Z −>

R (KCfg body store stack heap funs mark)
(return_heap (fun r => existsP v, constraint (r = ECon v)

:* final_heap v)%pattern
stack frame funs mark).

Fixpoint loop_tails (s : Stmt) (rest : k) : list k :=
match s with
| Seq s1 s2 => loop_tails s1 (kra s2 rest) ++ loop_tails s2 rest
| SIf _ s1 s2 => loop_tails s1 rest ++ loop_tails s2 rest
| SWhile _ s’ => (kra s rest) :: loop_tails s’ (kra s rest)
| _ => nil

end.

Definition body (def : Defn) :=
match def with FunDef _ _ body => body end.
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Definition heap_loop (R : Spec kcfg) (def : Defn) (n : nat) :
Map k k −> MapPattern k k −> (Z −> MapPattern k k) −> Prop :=
suffix_claim R (nth n (loop_tails (body def) kdot) kdot).

B.2.2 Stack

Here is the definition of lists used in the Stack examples. This definition uses
two consecutive addresses for a list node, demonstrating that we can also
handle lower-level reasoning.

Require Import stack.
Require Import patterns.

Fixpoint rep_seg lst (tailp p : Z) : MapPattern Z Z :=
match lst with

| nil => constraint (p = tailp)
| x :: xs => constraint (p <> 0) :* existsP p’,

p |−> x :* (p + 1) |−> p’ :* rep_seg xs tailp p’
end%pattern.

Notation rep_list l := (rep_seg l 0).

Here are the abbreviations used for making specifications. The depen-
dent type stk-pat is used to allow specifications to describe the stack using
predicates taking separate arguments for each expected stack entry, instead
of repeating list-destructuring code in each claim.

Require Import patterns.
Require Import stack.

Set Implicit Arguments.

Fixpoint min_length (n : nat) {A} (l : list A) : Prop :=
match n, l with
| O, _ => True
| S _, nil => False
| S n’, _ :: l’ => min_length n’ l’

end.
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Fixpoint stk_pat (n : nat) : Type :=
match n with
| O => MapPattern Z Z
| S n’ => Z −> stk_pat n’

end.
Fixpoint stk_pat_app {n} (P : stk_pat n) (stk : list Z) :=

match n return stk_pat n −> MapPattern Z Z with
| O => fun P => P
| S n’ => fun P =>

match stk with
| nil => constraint False
| x :: stk’ => stk_pat_app (P x) stk’

end
end P.

Definition fun_claim (spec : cfg −> (cfg −> Prop) −> Prop) name body
num_in (pre : stk_pat num_in) num_out (post : stk_pat num_out) :=
forall rest stk rstk heap frame funs otherfuns mark,
funs ~= name |−> body :* otherfuns −>
min_length num_in stk −>
mark > 0 −>
heap |= stk_pat_app pre stk :* litP frame −>
spec (Cfg (Call name :: rest) stk rstk heap funs mark)

(fun c’ => match c’ with
| Cfg code’ stk’ rstk’ heap’ funs’ mark’ =>
code’ = rest /\ min_length num_out stk’
/\ skipn num_in stk = skipn num_out stk’
/\ heap’ |= stk_pat_app post stk’ :* litP frame
/\ rstk = rstk’
/\ funs ~= funs’
/\ mark’ >= mark’

end).

Fixpoint loops’ i k : list (list Inst) :=
match i with
| If thn els =>
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let fix loops l k :=
match l with
| nil => nil
| i :: l => loops’ i (l++k) ++ loops l k

end
in loops thn k ++ loops els k

| While cond body =>
(i::k)::nil

| _ => nil
end.

Fixpoint loops (l : list Inst) : list (list Inst) :=
match l with
| nil => nil
| i :: l’ => loops’ i l’ ++ loops l’

end.

Definition loop_claim (spec : cfg −> (cfg −> Prop) −> Prop) ix code
num_in (pre : stk_pat num_in) num_out (post : stk_pat num_out) :=
forall stk rstk heap frame funs mark,
min_length num_in stk −>
heap |= stk_pat_app pre stk :* litP frame −>
mark > 0 −>
spec (Cfg (nth ix (loops code) nil) stk rstk heap funs mark)

(fun c’ => match c’ with
| Cfg code’ stk’ rstk’ heap’ funs’ mark’ =>

(exists rest’, code’ = Ret :: rest’)
/\ min_length num_out stk’
/\ skipn num_in stk = skipn num_out stk’
/\ heap’ |= stk_pat_app post stk’ :* litP frame
/\ rstk = rstk’
/\ funs ~= funs’
/\ mark’ >= mark’

end).
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Lambda

Here is the definition of lists used in the Lambda examples. Unlike the earlier
languages, lists are described as holding any value, not just integers. We use
the value Nil to indicate the end of lists, rather than the zero address.

Require Import lambda.
Require Import patterns.

Fixpoint list_seg l (tailp p : val) : MapPattern loc val :=
match l with
| nil => constraint (tailp = p)
| v :: vs => existsP l, constraint (p = Addr l) :*

existsP p’, l |−> Pair v p’ :* list_seg vs tailp p’
end%pattern.

Notation rep_list l := (list_seg l Nil).

Unlike Stack and HIMP, Lambda has neither named functions nor dedi-
cated looping constructs. A re-usable function is given as a closed lambda-
expression.

Specifications will make a claim about a state that is executing the func-
tion body in an environment containing values for all the expected arguments
- under the evaluation order of Lambda this is approximately the earliest point
where all arguments have been reduced to values.

Recursion is implemented with a fixpoint combinator. By the time argu-
ments reach the body of the function, the fixpoint will have expanded into
a closure (closed over other closures) constructed from pieces of the fixpoint
combinator, its argument, and the environment when the fixpoint combina-
tor itself was reduces. To assist in writing such a specification, the fix-env
function expands into the necessary closure, and tail environment.

Require Import patterns.
Require Import proof.
Require Import lambda.

Definition fix_env (body:exp) (env0:list val) : list val :=
Closure (((Var 1) (Var 1)) (Var 0))
(Env (Closure strict_worker
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(Env (Closure body (Env env0)::nil))::nil))
::env0.

Definition evals F m k post : cfg −> Prop :=
fun c’ => match c’ with
| Cfg (Val v) s’ m’ k’ =>
s’ |= post v :* litP F /\ k’ = k /\ (m’ >= m)%Z

| _ => False
end.

Definition exp_val (R : Spec cfg) c e pre post :=
forall s F m k, s |= pre :* litP F −>
R (Cfg (Exp c (Env e)) s m k) (evals F m k post).

B.2.3 Schorr-Waite

Here is the code of the Schorr-Waite implementation to be proved.

Require Import graph.

Definition schorr_waite_loop :=
SWhile (”p” <> 0)
{{ ”t” <− ”p”−>>”left”
; ”p” <<− build_tree (”p”−>>”val” + 1)

(”p”−>>”right”) ”q”
; SIf ((”p”−>>”val” = 3)

|| ((”t” <> 0) && (”t”−>>”val” = 0)))
{{ ”q” <− ”p” ; ”p” <− ”t” }}
{{ ”q” <− ”t” }}

}}.
Definition schorr_waite_code :=
SIf (”root” = 0) SReturnVoid
{{ Decl ”p”
; Decl ”q”
; Decl ”t”
; ”p”<−”root”
; ”q”<−0
; schorr_waite_loop
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; SReturnVoid
}}.

Definition schorr_waite_def :=
FunDef ”schorr_waite” [”root”] schorr_waite_code.

The specification of the algorithm is given in terms of representations
predicates describing a marked graph in terms of a depth-first traversal tree,
and the stack in terms of zippers into that tree. Here are the abstract types,
the representation predicates, and the specification.

(* Represent a graph reachable from a single point by the
depth−first traversal, as a tree with backlinks allowed *)

Inductive dfs_tree (zs : list Z) : list Z −> Set :=
| Null : dfs_tree zs zs
| Ref : forall z, In z zs −> dfs_tree zs zs
| Node : forall phere zs’ zs’’, ~In phere zs −>

dfs_tree (phere::zs) zs’ −> dfs_tree zs’ zs’’
−> dfs_tree zs zs’’.

Inductive dfs_tree_ctx (ls : list Z)
: list Z −> list Z −> list Z −> Set :=
| LeftOf : forall phere ls’ rs rs’ rs’’, ~In phere ls’
−> dfs_tree_ctx ls ls’ rs’ rs’’ −> dfs_tree rs rs’
−> dfs_tree_ctx ls (phere::ls’) rs rs’’

| RightOf : forall phere ls’ ls’’ rs rs’, ~In phere ls’
−> dfs_tree (phere::ls’) ls’’ −> dfs_tree_ctx ls ls’ rs rs’
−> dfs_tree_ctx ls ls’’ rs rs’

| Top : forall rs, dfs_tree_ctx ls ls rs rs.
Fixpoint plug {ls ls’ rs rs’} (c : dfs_tree_ctx ls ls’ rs rs’)
: dfs_tree ls’ rs −> dfs_tree ls rs’ :=
match c with
| LeftOf phere _ _ _ _ n path r =>

fun t => plug path (@Node _ phere _ _ n t r)
| RightOf phere _ _ _ _ n l path =>

fun t => plug path (@Node _ phere _ _ n l t)
| Top _ => fun t => t
end.
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Definition dfs_tree_addr {zs} {zs’} (t : dfs_tree zs zs’) : Z :=
match t with
| Null => 0%Z
| Ref addr _ => addr
| Node addr _ _ _ _ _ => addr

end.
Fixpoint rep_dfs_tree (v : Z) {zs} {zs’} (t : dfs_tree zs zs’)

: MapPattern k k :=
match t with
| Null => emptyP
| Ref z _ => emptyP
| Node p _ _ _ l r => constraint (p <> 0) :*

p h|−> tree_node v (dfs_tree_addr l) (dfs_tree_addr r)
:* rep_dfs_tree v l :* rep_dfs_tree v r

end%pattern.

Definition dfs_tree_ctx_addr {ls ls’ rs rs’}
(c : dfs_tree_ctx ls ls’ rs rs’) : Z :=
match c with
| LeftOf phere _ _ _ _ _ _ _ => phere
| RightOf phere _ _ _ _ _ _ _ => phere
| Top _ => 0%Z
end.

Fixpoint rep_dfs_ctx {ls ls’ rs rs’}
(ctx : dfs_tree_ctx ls ls’ rs rs’) : MapPattern k k :=
match ctx with
| Top _ => emptyP
| LeftOf phere _ _ _ _ _ path rtree =>

constraint (phere <> 0)
:* phere h|−> tree_node 1 (dfs_tree_addr rtree)

(dfs_tree_ctx_addr path)
:* rep_dfs_ctx path :* rep_dfs_tree 0 rtree

| RightOf phere _ _ _ _ _ ltree path =>
constraint (phere <> 0)

:* phere h|−> tree_node 2 (dfs_tree_ctx_addr path)
(dfs_tree_addr ltree)
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:* rep_dfs_tree 3 ltree :* rep_dfs_ctx path
end%pattern.

(* At some points in the loop, q points at the path and
p at an unmarked (non−Ref, non−Null) tree. At other points,
p is at the root of the path and q is holding one of the
finished subtrees of that node *)

Definition isWellMarked (descending : bool) (p q : Z)
{ls ls’ rs rs’} (tree : dfs_tree ls’ rs)
(path : dfs_tree_ctx ls ls’ rs rs’) : Prop :=
if descending then p <> 0
/\ match tree with Node _ _ _ _ _ _ => True | _ => False end
/\ p = dfs_tree_addr tree /\ q = dfs_tree_ctx_addr path
else p = dfs_tree_ctx_addr path /\ q = dfs_tree_addr tree.

Inductive schorr_waite_spec : Spec kcfg :=
schorr_waite_claim : forall c,
kcell c = kra schorr_waite_code kdot −>
forall {zs’} (t : dfs_tree nil zs’),
store c ~= ”root” s|−> KInt (dfs_tree_addr t) −>

forall hframe, heap c |= rep_dfs_tree 0 t :* hframe −>
schorr_waite_spec c (fun c’ => exists rest,

kcell c’ = kra SReturnVoid rest
/\ stk_equiv (stack c) (stack c’)
/\ functions c ~= functions c’
/\ heap c’ |= rep_dfs_tree 3 t :* hframe)

| schorr_waite_loop_claim : forall c rest,
kcell c = kra schorr_waite_loop rest −>
forall r t p q, store c ~= ”root” s|−> r :* ”t” s|−> t

:* ”p” s|−> KInt p :* ”q” s|−> KInt q −>
forall descending {ls’ rs rs’} tree

(path : dfs_tree_ctx nil ls’ rs rs’),
isWellMarked descending p q tree path −> forall hframe,
heap c |= rep_dfs_tree (if descending then 0 else 3) tree

:* rep_dfs_ctx path :* hframe −>
schorr_waite_spec c (fun c’ =>
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kcell c’ = rest
/\ stk_equiv (stack c) (stack c’)
/\ functions c ~= functions c’
/\ heap c’ |= rep_dfs_tree 3 (plug path tree) :* hframe).

B.3 Language Definitions
Here we present the syntax and operational semantics of the three main
languages we used in verification examples, the imperative HIMP, the stack-
based Stack, and the simplified functional language Lambda.

B.3.1 Stack

The definition of the stack language is shortest. This begins by defining
the basic instructions, and using them to define some common stack ma-
nipulations under standard Forth names. Next is the definition of the full
configuration, and the transition relation which actually gives the operations
semantics. Unlike standard Forth, the control structures are part of the gram-
mar, the generalized Dup and Roll take the offset as an immediate constant
rather than reading from the stack, and Roll rotates the stack in the oppo-
site of the standard direction (which is more convenient in terms of Coq’s
list library).

Require Export maps.
Require Export ZArith.
Require Export String.
Require Export List.

Open Scope string_scope.
Open Scope list_scope.
Open Scope Z.

Inductive Inst : Set :=
| Dup : nat −> Inst
| Roll : nat −> Inst
| Drop
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| Push : Z −> Inst
| Binop : (Z −> Z −> Z) −> Inst
| While : list Inst −> list Inst −> Inst
| If : list Inst −> list Inst −> Inst
| Load
| Store
| Call : string −> Inst
| Ret : Inst
| Alloc : nat −> Inst
| Dealloc : Inst.

Definition Swap := Roll 1.
Definition Over := Dup 1.
Definition Nip := Swap::Drop::nil.
Definition Rot := Roll 2::Roll 2::nil.
Definition Plus1 := Push 1::Binop Z.add::nil.

Structure cfg := Cfg {
code : list Inst;
stack : list Z;
rstack : list (list Inst);
heap : Map Z Z;
functions : Map string (list Inst);
alloc_next : Z
}.

(* Compute a map for initial bindings in Alloc,
with some extra work to make a pretty term *)

Definition offset (base :Z) (n : nat) : Z :=
match n with
| O => base
| _ => (base + Z.of_nat n)%Z

end.
Fixpoint init n ix base : Map Z Z :=

match n with
| O => mapEmpty
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| S O => offset base ix |−> 0%Z
| S n’ => offset base ix |−> 0%Z :* init n’ (S ix) base

end.

Local Notation basic_step step
code stk heap mark
code2 stk2 heap2 mark2:=

(forall rstk funs,
step (Cfg code stk rstk heap funs mark)

(Cfg code2 stk2 rstk heap2 funs mark2)).
Local Notation inst_step step inst stk stk2 :=
(forall rest heap mark, basic_step step
(inst::rest) stk heap mark rest stk2 heap mark).

Generalizable Variables n x y stk.
Inductive stack_step : cfg −> cfg −> Prop :=
| dup : ‘(inst_step stack_step (Dup n)

stk (nth_default 0 stk n :: stk))
| roll : ‘(inst_step stack_step (Roll n)

(x::stk) (firstn n stk ++ x :: skipn n stk))
| drop : ‘(inst_step stack_step Drop

stk (tl stk))
| push : ‘(inst_step stack_step (Push x)

stk (x :: stk))
| binop : forall f, ‘(inst_step stack_step (Binop f)

(x :: y :: stk) (f y x :: stk))
| while : forall test body rest stk h m, basic_step stack_step

(While test body::rest) stk h m
(test++If (body++While test body::nil) nil::rest) stk h m

| ifz : forall x t f rest stk h m, basic_step stack_step
(If t f::rest) (x::stk) h m
((if Zneq_bool x 0 then t else f)++rest) stk h m

| load : forall x rest stk v heap heap’ mark,
heap ~= x |−> v :* heap’ −> basic_step stack_step
(Load::rest) (x::stk) heap mark

rest (v::stk) (x|−> v :* heap’) mark
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| store : forall p v rest stk v’ heap heap’ mark,
heap ~= p |−> v’ :* heap’ −> basic_step stack_step
(Store::rest) (p::v::stk) heap mark

rest stk (p |−> v :* heap’) mark
| alloc1 : forall n rest stk heap m, basic_step stack_step

(Alloc n::rest) stk heap m
rest (m::stk) (init n 0 m :* heap) (Z.of_nat n + m)%Z

| dealloc : forall rest x v stk heap heap’ mark,
heap ~= x |−> v :* heap’ −> basic_step stack_step
(Dealloc::rest) (x::stk) heap mark

rest stk heap’ mark
| call : forall f body rest stk rstk heap funs funs’ mark,

funs ~= f |−> body :* funs’ −> stack_step
(Cfg (Call f::rest) stk rstk heap funs mark)
(Cfg body stk (rest::rstk) heap funs mark)

| ret : forall rest rbody stk rstk heap funs mark, stack_step
(Cfg (Ret::rest) stk (rbody::rstk) heap funs mark)
(Cfg rbody stk rstk heap funs mark).

Arguments nth_default / : simpl nomatch.

B.3.2 Lambda

The definition of the Lambda language is based on Matt Might’s presentation
of Felleisen’s CESK machine.

Require Export maps.
Require Export ZArith.
Require Export List.

Open Scope list_scope.

Definition loc : Set := Z.
Inductive val : Set :=
| Closure (body : exp) (context : env)
| Num : nat −> val
| Addr : loc −> val
| Pair : val −> val −> val
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(* Primitive functions *)
| Inc | Dec | Plus | Plus1 (x:nat)
| Eq | Eq1 (a:val)
| Nil | Cons | Cons1 (a:val) | Car | Cdr
with exp : Set :=
| App (f x : exp)
| Lit (v : val)
| Var (ix : nat)
| Lam (body : exp)
| Closed (e : exp)
| If (c t e : exp)
| Seq (a b : exp)
| Ref (e : exp) | Dealloc (v : exp)
| Deref (e : exp) | Assign (v : exp) (e : exp)
with env : Set := Env : list val −> env.

Coercion App : exp >−> Funclass.
Coercion Lit : val >−> exp.

Definition Let := (Lam (Lam ((Var 0) (Var 1)))).
Definition strict_worker : exp := (Var 1)
((Closed (Lam (Lam (((Var 1) (Var 1)) (Var 0))))) (Var 0)).

Definition strict_fix : exp :=
Closed (Lam ((Lam ((Var 0) (Var 0))) (Lam strict_worker))).

Local Ltac eq_assums := pose eq_nat_dec;pose Z_eq_dec;
pose list_eq_dec;decide equality.

Fixpoint val_eq_dec (x y:val) : {x=y}+{x<>y}
with exp_eq_dec (x y:exp) : {x=y}+{x<>y}
with env_eq_dec (x y:env) : {x=y}+{x<>y}.
eq_assums. eq_assums. eq_assums.
Defined.

Inductive control : Set := Val (v : val)
| Exp (e : exp) (env : env).
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Inductive cont : Set :=
Top

| AppFun (e’ : exp) (scope : env) (k : cont) (* app fun [] e’ *)
| AppArg (v’ : val) (k : cont) (* app arg v’ [] *)
| RefVal (k : cont) (* ref [] *)
| SeqCtx (e : exp) (scope : env) (k : cont) (* [] ; e *)
| DerefTgt (k : cont) (* ! [] *)
| AssignTgt (e : exp) (scope : env) (k : cont) (* [] := e *)
| AssignVal (l : loc) (k : cont) (* l := [] *)
| DeallocCtx (k : cont) (* dealloc [] *)
| IfCond (t e : exp) (scope : env) (k : cont).

Inductive cfg : Set :=
Cfg {code:control

;heap:Map loc val
;mark:loc
;ctx:cont}.

Fixpoint get (ix : nat) {A} (l : list A) : option A :=
match ix, l with
| _, nil => None
| O, cons v _ => Some v
| S ix’, cons _ l’ => get ix’ l’

end.
Definition getEnv (ix : nat) (p : env) :=

match p with
| Env l => get ix l

end.
Definition extend (x : val) (p : env) : env :=

match p with
| Env l => Env (x :: l)

end.

Definition apply (f : val) (v : val) : option control :=
match f with
| Closure e p’ => Some (Exp e (extend v p’))
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| Inc => match v with
| Num n => Some (Val (Num (S n)))
| _ => None
end

| Dec => match v with
| Num n => Some (Val (Num (pred n)))
| _ => None
end

| Plus => match v with
| Num n => Some (Val (Plus1 n))
| _ => None
end

| Plus1 x => match v with
| Num n => Some (Val (Num (x+n)))
| _ => None
end

| Eq => Some (Val (Eq1 v))
| Eq1 x => Some (if val_eq_dec x v then Val (Num 0)

else Val Nil)
| Cons => Some (Val (Cons1 v))
| Cons1 a => Some (Val (Pair a v))
| Car =>

match v with
| Pair a _ => Some (Val a)
| _ => None

end
| Cdr =>

match v with
| Pair _ b => Some (Val b)
| _ => None

end
| Pair _ _ => None
| Nil => None
| Num _ => None
| Addr _ => None

end.

143



Definition isNil v :=
match v with
| Nil => true
| _ => false

end.

Inductive lam_step : cfg −> cfg −> Prop :=
| enter_function : forall e0 e1 p s m k,

lam_step (Cfg (Exp (App e0 e1) p) s m k)
(Cfg (Exp e0 p) s m (AppFun e1 p k))

| enter_argrgument : forall v s e p m k,
lam_step (Cfg (Val v) s m (AppFun e p k))

(Cfg (Exp e p) s m (AppArg v k))
| eval_call : forall v s f k m r, apply f v = Some r −>

lam_step (Cfg (Val v) s m (AppArg f k))
(Cfg r s m k)

| eval_lit : forall v p s m k,
lam_step (Cfg (Exp (Lit v) p) s m k)

(Cfg (Val v) s m k)
| eval_lam : forall e p s m k,

lam_step (Cfg (Exp (Lam e) p) s m k)
(Cfg (Val (Closure e p)) s m k)

| eval_var : forall i p v s m k, get i p = Some v −>
lam_step (Cfg (Exp (Var i) (Env p)) s m k)

(Cfg (Val v) s m k)
| enter_seq : forall e e’ p s m k,

lam_step (Cfg (Exp (Seq e e’) p) s m k)
(Cfg (Exp e p) s m (SeqCtx e’ p k))

| eval_seq : forall v e p s m k,
lam_step (Cfg (Val v) s m (SeqCtx e p k))

(Cfg (Exp e p) s m k)
| enter_if : forall c t e p s m k,

lam_step (Cfg (Exp (If c t e) p) s m k)
(Cfg (Exp c p) s m (IfCond t e p k))

| eval_if_nil : forall v s t e p m k, isNil v = true −>
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lam_step (Cfg (Val v) s m (IfCond t e p k))
(Cfg (Exp e p) s m k)

| eval_if_nonnil : forall v s t e p m k, isNil v = false −>
lam_step (Cfg (Val v) s m (IfCond t e p k))

(Cfg (Exp t p) s m k)
| enter_ref : forall e p s m k,

lam_step (Cfg (Exp (Ref e) p) s m k)
(Cfg (Exp e p) s m (RefVal k))

| eval_ref : forall v s m k,
lam_step (Cfg (Val v) s m (RefVal k))

(Cfg (Val (Addr m)) (m|−>v :* s) (m+1) k)%Z
| enter_dealloc : forall e p s m k,

lam_step (Cfg (Exp (Dealloc e) p) s m k)
(Cfg (Exp e p) s m (DeallocCtx k))

| eval_dealloc : forall l s x s’ m k, s ~= l|−>x :* s’ −>
lam_step (Cfg (Val (Addr l)) s m (DeallocCtx k))

(Cfg (Val Nil) s’ m k)
| enter_deref : forall e p s m k,

lam_step (Cfg (Exp (Deref e) p) s m k)
(Cfg (Exp e p) s m (DerefTgt k))

| eval_deref : forall l v s s’ m k, s ~= l|−>v :* s’ −>
lam_step (Cfg (Val (Addr l)) s m (DerefTgt k))

(Cfg (Val v) s m k)
| enter_assign_target : forall t e p s m k,

lam_step (Cfg (Exp (Assign t e) p) s m k)
(Cfg (Exp t p) s m (AssignTgt e p k))

| enter_assign_val : forall l p e’ s m k,
lam_step (Cfg (Val (Addr l)) s m (AssignTgt e’ p k))

(Cfg (Exp e’ p) s m (AssignVal l k))
| eval_assign : forall l v s w s’ m k, s ~= l|−>w :* s’ −>

lam_step (Cfg (Val v) s m(AssignVal l k))
(Cfg (Val v) (l|−>v :* s’) m k)

| close_exp : forall e v s m k,
lam_step (Cfg (Exp (Closed e) v) s m k)

(Cfg (Exp e (Env nil)) s m k).
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B.3.3 HIMP

For HIMP, we show only the syntax. The greater size is due in part to
attempting to exactly follow the syntax of a K definition. The auxiliary
functions are used to help implement subsorting, simple constructors are not
sufficient if there are multiple paths of injections from one sort to another.
HIMP also defines nicer notation for programs using Coq’s notation system.
This syntax can be seen in the example proofs in Appendix B.4.

Require Export ZArith.
Require Export String.
Require Export List.
Require Export maps.

Global Open Scope Z_scope.
Global Open Scope string_scope.
Global Open Scope list_scope.

Set Implicit Arguments.

Inductive Defn : Set :=
FunDef : string −> list string −> Stmt −> Defn

with Exp : Set :=
BCon : bool −> Exp

| EVar : string −> Exp
| ECon : Z −> Exp
| EValStruct : sval −> Exp
| ExpUndef : Undef −> Exp
| ENeg : Exp −> Exp
| EMult : Exp −> Exp −> Exp
| EPlus : Exp −> Exp −> Exp
| EMinus : Exp −> Exp −> Exp
| EProject : Exp −> string −> Exp
| EDiv : Exp −> Exp −> Exp
| BLe : Exp −> Exp −> Exp
| BLt : Exp −> Exp −> Exp
| BEq : Exp −> Exp −> Exp
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| BAnd : Exp −> Exp −> Exp
| BOr : Exp −> Exp −> Exp
| EAlloc : Exp
| EBuild : Map k k −> Exp
| ECall : string −> list Exp −> Exp
| ELoad : Exp −> Exp
| BNot : Exp −> Exp
| HOLE_Exp : Exp
with Frame : Set :=

frame : k −> Map k k −> Frame
with kitem : Set :=

KBool : bool −> kitem
| KDefn : Defn −> kitem
| KExp : Exp −> kitem
| KExps : list Exp −> kitem
| KFrame : Frame −> kitem
| KFrames : list Frame −> kitem
| KId : string −> kitem
| KIds : list string −> kitem
| KInt : Z −> kitem
| KMap : Map k k −> kitem
| KPgm : list Defn −> kitem
| KStmt : Stmt −> kitem
| KStruct : sval −> kitem
| KUndef : Undef −> kitem
| KFreeze : kitem −> kitem
with KResult : Set :=

Bool : bool −> KResult
| Int : Z −> KResult
| VStruct : sval −> KResult
| VUndef : Undef −> KResult
with Stmt : Set :=

HAssign : Exp −> Exp −> Stmt
| SAssign : string −> Exp −> Stmt
| Seq : Stmt −> Stmt −> Stmt
| HDealloc : Exp −> Stmt
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| Decl : string −> Stmt
| SIf : Exp −> Stmt −> Stmt −> Stmt
| Jump : Exp −> Stmt
| SReturnVoid : Stmt
| SReturn : Exp −> Stmt
| SCall : string −> list Exp −> Stmt
| Skip : Stmt
| SWhile : Exp −> Stmt −> Stmt
with sval : Set :=

Struct : Map k k −> sval
with Undef : Set :=

undef : Undef
with k : Set := kdot | kra : kitem −> k −> k
.

Definition KResultToExp (x : KResult) : Exp :=
match x with
| Bool i => BCon i
| Int i => ECon i
| VStruct i => EValStruct i
| VUndef i => ExpUndef i
end.

Definition KResultFromExp (x : Exp) : option KResult :=
match x with
| BCon i => Some (Bool i)
| ECon i => Some (Int i)
| EValStruct i => Some (VStruct i)
| ExpUndef i => Some (VUndef i)
| _ => None
end.

Definition KResultToK (x : KResult) : kitem :=
match x with
| Bool i => KBool i
| Int i => KInt i
| VStruct i => KStruct i
| VUndef i => KUndef i
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end.
Definition KResultFromK (x : kitem) : option KResult :=

match x with
| KBool i => Some (Bool i)
| KInt i => Some (Int i)
| KStruct i => Some (VStruct i)
| KUndef i => Some (VUndef i)
| _ => None
end.

Definition ExpToK (x : Exp) : kitem :=
match x with
| BCon i => KBool i
| EVar i => KId i
| ECon i => KInt i
| EValStruct i => KStruct i
| ExpUndef i => KUndef i
| _ => KExp x
end.

Definition ExpFromK (x : kitem) : option Exp :=
match x with
| KBool i => Some (BCon i)
| KExp i => Some i
| KId i => Some (EVar i)
| KInt i => Some (ECon i)
| KStruct i => Some (EValStruct i)
| KUndef i => Some (ExpUndef i)
| _ => None
end.

Require Export himp_syntax.

(* Notations and coercions to make syntax nicer *)
Coercion EVar : string >−> Exp.
Coercion ECon : Z >−> Exp.
Coercion BCon : bool >−> Exp.
Coercion ExpToK : Exp >−> kitem.
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Coercion KDefn : Defn >−> kitem.

Delimit Scope code with code.

Notation ”{{␣s1␣;␣..␣;␣sn␣}}” :=
(Seq s1%code .. (Seq sn%code Skip) ..) (at level 5) : code.

Notation ”t␣<−␣e” := (SAssign t e)
(at level 100, e at level 200, no associativity) : code.

Notation ”e1␣<<−␣e2” := (HAssign e1 e2)
(at level 100, e2 at level 200, no associativity) : code.

Infix ”+” := EPlus : code.
Infix ”=” := BEq : code.
Notation ”x␣<>␣y” := (BNot (BEq (x : Exp) (y : Exp))) : code.
Infix ”&&” := BAnd : code.
Infix ”||” := BOr : code.
Notation ”v␣−>>␣f” := (EProject (ELoad (v : Exp)) f)
(at level 10, no associativity) : code.

Bind Scope code with Exp.
Bind Scope code with Stmt.

Arguments SWhile (c b)%code.
Arguments SIf (c t e)%code.
Arguments SReturn e%code.
Arguments FunDef name%string args%list body%code.

B.4 List Example Proofs
The rest of this document gives proofs of the example programs. Each file
has a rigid style, first defining the source code, then the specification, and
then giving the proof.

The code is sometimes split across several definitions. This is mostly done
in Lambda, which lacks an equivalence of the convenient loop abbreviations
of, to name subterms for easy reference in the specifications. In some of
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the larger HIMP programs this is done for performance reason, to allow the
definitions to stay folded until needed.

The specification is writing as an inductively defined predicate with one
constructor per claim, using the specification abbreviations. It is preceded
by the definition of auxiliary functions, if any are needed. Most specifications
use only list functions from Coq’s standard library. The exceptions are all
three delete examples, the length programs for Stack and HIMP, and the
sum program of lambda.

The proof generally consists of simply asserting that the specification
holds in the language. The text of the proof is written between Proof. and
Qed., and is just a single invocation of the automatic proof tactic. If any
auxiliary lemmas were required they are proved immediately before the final
correctness lemma.

B.4.1 Examples in Stack

Head

Require Import list_examples.

Definition head_code := Load::Ret::nil.

Inductive head_spec : Spec cfg :=
head_claim : forall H x l, fun_claim head_spec
”head” head_code
1 (fun p => asP H (rep_list (x::l) p))
1 (fun p => constraint (p = x) :* litP H).

Lemma head_proof : sound stack_step head_spec.
Proof. list_solver. Qed.

Tail

Require Import list_examples.

Definition tail_code := Plus1++Load::Ret::nil.

Inductive tail_spec : Spec cfg :=
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tail_claim : forall H x y l, fun_claim tail_spec
”tail” (Plus1++Load::Ret::nil)
1 (fun p => asP H (rep_seg (x::nil) y p :* rep_list l y))
1 (fun p => constraint (p = y) :* litP H).

Lemma tail_proof : sound stack_step tail_spec.
Proof. list_solver. Qed.

Add

Require Import list_examples.

Definition add_code :=
Alloc 2::Swap::Over::Store::Swap::Over::Plus1++Store::Ret::nil.

Inductive add_spec : Spec cfg :=
add_claim : forall x H p l, fun_claim add_spec
”add” add_code
2 (fun a b => constraint (a = x) :* constraint (b = p)
:* asP H (rep_list l b))

1 (fun r => rep_seg (x::nil) p r :* litP H).

Lemma add_proof : sound stack_step add_spec.
Proof. list_solver. Qed.

Swap

Require Import list_examples.

Definition swap_code :=
Dup 0::Load::Over::Plus1++Load::Dup 0::Load
::Roll 2::Store::Over::Store::Ret::nil.

Inductive swap_spec : Spec cfg :=
swap_claim : forall x y t, fun_claim swap_spec
”swap” swap_code
1 (rep_seg (x::y::nil) t) 1 (rep_seg (y::x::nil) t).

Lemma swap_proof : sound stack_step swap_spec.
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Proof. list_solver. Qed.

Dealloc

Require Import list_examples.

Definition dealloc_code :=
While (Dup 0::nil) (Dup 0::Plus1++Swap::Dealloc

::Dup 0::Load::Swap::Dealloc::nil)
::Drop::Ret::nil.

Inductive dealloc_spec : Spec cfg :=
dealloc_claim : forall l, fun_claim dealloc_spec
”dealloc” dealloc_code 1 (rep_list l) 0 emptyP

|loop_claim : forall l, loop_claim dealloc_spec
0 dealloc_code 1 (rep_list l) 0 emptyP.

Lemma dealloc_proof : sound stack_step dealloc_spec.
Proof. list_solver. Qed.

Length Recursive

Require Import list_examples.

Definition length_code :=
Dup 0::If (Plus1++Load::Call ”length”::Plus1) nil::Ret::nil.

Fixpoint zlength {A} (l : list A) :=
match l with
| nil => 0
| _ :: l’ => 1 + zlength l’

end.
Inductive length_spec : Spec cfg :=
length_claim : forall H l, fun_claim length_spec
”length” length_code
1 (fun p => asP H (rep_list l p))
1 (fun n => constraint (n = zlength l) :* litP H).

Lemma length_proof : sound stack_step length_spec.
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Proof. list_solver. Qed.

Length Iterative

Require Import list_examples.

Definition length_code :=
Push 0::Swap::While (Dup 0::nil)
(Swap::Plus1++Swap::Plus1++Load::nil)::Drop::Ret::nil.

Fixpoint zlength {A} (l : list A) :=
match l with
| nil => 0
| _ :: l’ => (1 + zlength l’)

end.
Inductive length_spec : Spec cfg :=
length_claim : forall H l, fun_claim length_spec
”length” length_code
1 (fun p => asP H (rep_list l p))
1 (fun n => constraint (n = zlength l) :* litP H)

|loop_claim : forall H l n, loop_claim length_spec
0 length_code
2 (fun p k => constraint (k = n) :* asP H (rep_list l p))
1 (fun k’ => constraint (k’ = n + zlength l) :* litP H).

Lemma length_proof : sound stack_step length_spec.
Proof. list_solver. Qed.

Sum Recursive

Require Import list_examples.

Definition sum_code :=
Dup 0::If (Dup 0::Load::Swap::Plus1++Load

::Call ”sum”::Binop Zplus::nil) nil
::Ret::nil.

Definition sum := fold_right Zplus 0.
Inductive sum_spec : Spec cfg :=
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sum_claim : forall H l, fun_claim sum_spec
”sum” sum_code
1 (fun p => asP H (rep_list l p))
1 (fun n => constraint (n = sum l) :* litP H).

Lemma sum_proof : sound stack_step sum_spec.
Proof. list_solver. Qed.

Sum Iterative

Require Import list_examples.

Definition sum_code :=
Push 0::Swap::While (Dup 0::nil)
(Swap::Over::Load::Binop Zplus::Swap::Plus1++Load::nil)

::Drop::Ret::nil.

Definition sum := fold_right Zplus 0.
Inductive sum_spec : Spec cfg :=
sum_claim : forall H l, fun_claim sum_spec
”sum” sum_code
1 (fun p => asP H (rep_list l p))
1 (fun n => constraint (n = sum l) :* litP H)

|loop_claim : forall H n l, loop_claim sum_spec
0 sum_code
2 (fun p k => constraint (k = n) :* asP H (rep_list l p))
1 (fun k => constraint (k = n + sum l) :* litP H).

Lemma sum_proof : sound stack_step sum_spec.
Proof. list_solver. Qed.

Reverse

Require Import list_examples.

Definition reverse_code :=
Push 0::While (Over::nil)
(Dup 1::Plus1++Load::Swap::Dup 2::Plus1++Store::Swap::nil)

::Swap::Drop::Ret::nil.
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Inductive reverse_spec : cfg −> (cfg −> Prop) −> Prop :=
reverse_claim : forall l, fun_claim reverse_spec
”reverse” reverse_code
1 (rep_list l) 1 (rep_list (rev l))

|loop_claim : forall lx lp, loop_claim reverse_spec
0 reverse_code
2 (fun p x => rep_list lx x :* rep_list lp p)
1 (rep_list (rev_append lx lp)).

Lemma reverse_proof : sound stack_step reverse_spec.
Proof. list_solver;
rewrite <− rev_alt in * |−;
list_run. Qed.

Append

Require Import list_examples.

Definition append_code :=
Over::If (Over::While (Plus1++Dup 0::Load::Dup 0::nil) Nip
::Drop::Store::nil) Nip::Ret::nil.

Inductive append_spec : cfg −> (cfg −> Prop) −> Prop :=
| append_claim : forall lx ly, fun_claim append_spec
”append” append_code
2 (fun y x => rep_list lx x :* rep_list ly y)
1 (rep_list (lx++ly))

| loop_claim : forall lx a lp ly, loop_claim append_spec
0 append_code
3 (fun p y x => constraint (p <> 0) :*

rep_list ly y :* rep_seg lx p x :* p |−> a :*
existsP p’, p + 1 |−> p’ :* rep_list lp p’)

1 (rep_list (lx++a::lp++ly)).

Lemma append_proof : sound stack_step append_spec.
Proof. list_solver;
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rewrite app_ass in * |− *;
list_run. Qed.

Copy

Require Import list_examples.

Definition init_head :=
Over::Load::Over::Store::Swap::Plus1++Load::nil.

Definition copy_code := Dup 0::
If (Alloc 2::Swap::Over::init_head++

While (Dup 0::nil)
(Swap::Alloc 2::Dup 0::Rot++Plus1++Store::init_head)

::Swap::Plus1++Store::nil) nil
::Ret::nil.

Inductive copy_spec : Spec cfg :=
copy_claim : forall H l, fun_claim copy_spec
”copy” copy_code
1 (fun p => asP H (rep_list l p))
1 (fun r => rep_list l r :* litP H)

|loop_claim : forall H l1 x v l, loop_claim copy_spec
0 copy_code
3 (fun y q r => constraint (q <> 0)

:* rep_seg l1 q r :* q |−> x :* q+1 |−> v
:* asP H (rep_list l y))

1 (fun r => rep_list (l1++x::l) r :* litP H).

Lemma copy_proof : sound stack_step copy_spec.
Proof. list_solver;
rewrite app_ass in * |−;
list_run. Qed.

Delete

Require Import list_examples.

Fixpoint delete v l :=
match l with
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| nil => nil
| (x :: l’) => if Z.eqb x v

then delete v l’
else x :: delete v l’

end.
Arguments delete v l : simpl nomatch.

Definition z_test_eq (a b : Z) := if Z.eqb a b then 1 else 0.

Definition delete_code :=
Swap::While (Dup 0::If (Dup 0::Load::Dup 2::Binop z_test_eq::nil)

(Dup 0::nil)::nil)
(Dup 0::Dealloc::Plus1++Dup 0::Load::Swap::Dealloc::nil)

::Dup 0::If
(Swap::Over::
While (Dup 0::Plus1++Load::Dup 0::nil)
(Dup 0::Load::Dup 3::Binop z_test_eq
::If (Over::Plus1++Store::nil) Nip::nil)

::Drop::Drop::Drop::nil)
(Swap::Drop::nil)

::Ret::nil.

Inductive delete_spec : Spec cfg :=
delete_claim : forall l v, fun_claim delete_spec
”delete” delete_code
2 (fun v’ p => constraint (v’=v) :* rep_list l p)
1 (rep_list (delete v l))

|init_loop : forall l v, loop_claim delete_spec
0 delete_code
2 (fun p v’ => constraint (v’=v) :* rep_list l p)
1 (rep_list (delete v l))

|run_loop : forall A x v B , loop_claim delete_spec
1 delete_code
3 (fun p v’ r => constraint (v’=v) :* rep_seg A p r

:* constraint (p <> 0) :* p |−> x :* constraint (x <> v)
:* existsP q, (p+1) |−> q :* rep_list B q)
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1 (rep_list (A++x::delete v B)).

Ltac eqb_solve := intros; match goal with [|− context [?a =? ?b]]
=> destruct (Z.eqb_spec a b);intuition congruence end.

Lemma z_test_eql : forall z v, z_test_eq z v = 0 <−> z <> v.
Proof. unfold z_test_eq;eqb_solve. Qed.
Lemma z_test_neq : forall z v, z_test_eq z v <> 0 <−> z = v.
Proof. unfold z_test_eq;eqb_solve. Qed.
Lemma delete_eq v x l : x = v −> delete v (x::l) = delete v l.
Proof. unfold delete;eqb_solve. Qed.
Lemma delete_ne v x l : x<>v −> delete v (x::l) = x::delete v l.
Proof. unfold delete;eqb_solve. Qed.

Create HintDb delete_rules discriminated.
Hint Rewrite z_test_eql z_test_neq app_ass : delete_rules.
Hint Rewrite delete_eq delete_ne using assumption : delete_rules.

Lemma delete_proof : sound stack_step delete_spec.
Proof. list_solver;repeat progress
(autorewrite with delete_rules in * |− *;list_run). Qed.

B.4.2 Examples in Lambda

Head

Require Import list_examples.

Definition head_body := Car (Deref (Var 0)).

Inductive head_spec : Spec cfg :=
head_claim : forall H x l r env, exp_val head_spec
head_body (Addr r::env)
(asP H (rep_list (x::l) (Addr r)))
(fun v => constraint (v = x) :* litP H).

Lemma heap_proof : sound lam_step head_spec.
Proof. list_solver. Qed.
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Tail

Require Import list_examples.

Definition tail_body := Cdr (Deref (Var 0)).

Inductive tail_spec : Spec cfg :=
tail_claim : forall H r y x l env, exp_val tail_spec
tail_body (Addr r::env)
(asP H (rep_list l y :* list_seg (x::nil) y (Addr r)))
(fun v => constraint (v = y) :* litP H).

Lemma tail_proof : sound lam_step tail_spec.
Proof. list_solver. Qed.

Add

Require Import list_examples.

Definition add_body := Ref (Cons (Var 1) (Var 0)).

Inductive add_spec : Spec cfg :=
add_claim : forall x r env, exp_val add_spec
add_body (r::x::env) emptyP (list_seg (x::nil) r).

Lemma add_proof : sound lam_step add_spec.
Proof. list_solver. Qed.

Swap

Require Import list_examples.

Definition swap_body :=
Let (Deref (Var 0)) (Lam
(Seq (Assign (Var 1) (Cons (Car (Deref (Cdr (Var 0))))

(Cdr (Var 0))))
(Seq (Assign (Cdr (Var 0)) (Cons (Car (Var 0))

(Cdr (Deref (Cdr (Var 0))))))
(Var 1)))).
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Inductive swap_spec : Spec cfg :=
swap_claim : forall x y l r env, exp_val swap_spec
swap_body (r::env)
(rep_list (x::y::l) r)
(rep_list (y::x::l)).

Lemma swap_proof : sound lam_step swap_spec.
Proof. list_solver. Qed.

Dealloc

Require Import list_examples.

Definition dealloc_body :=
(If (Var 0) (Let (Deref (Var 0)) (Lam
(Seq (Dealloc (Var 1))

((Var 2) (Cdr (Var 0))))))
Nil).

Inductive dealloc_spec : Spec cfg :=
dealloc_claim : forall l r env, exp_val dealloc_spec
dealloc_body (r::fix_env (Lam dealloc_body) env)
(rep_list l r) (fun v => constraint (v = Nil)).

Lemma dealloc_proof : sound lam_step dealloc_spec.
Proof. list_solver. Qed.

Length

Require Import list_examples.

Definition length_body :=
If (Var 0) (Inc ((Var 1) (Cdr (Deref (Var 0))))) (Num 0).

Inductive length_spec : Spec cfg :=
length_claim : forall H l r env, exp_val length_spec
length_body (r::fix_env (Lam length_body) env)
(asP H (rep_list l r))
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(fun v => constraint (v = Num (length l)) :* litP H).

Lemma length_proof : sound lam_step length_spec.
Proof. list_solver. Qed.

Sum

Require Import list_examples.

Definition sum_body :=
If (Var 0) (Let (Deref (Var 0)) (Lam
(Plus (Car (Var 0)) ((Var 2) (Cdr (Var 0))))))
(Num 0).

Fixpoint num_list l := match l with
| nil => True
| Num _ :: l’ => num_list l’
| _ => False
end.

Fixpoint nsum l := match l with
| nil => 0
| Num n :: l’ => n + nsum l’
| _ => 0
end.

Inductive sum_spec : Spec cfg :=
sum_claim : forall H l r env, exp_val sum_spec
sum_body (r::fix_env (Lam sum_body) env)
(asP H (rep_list l r) :* constraint (num_list l))
(fun v => constraint (v = Num (nsum l)) :* litP H).

Lemma sum_proof : sound lam_step sum_spec.
Proof. list_solver. Qed.

Reverse

Require Import list_examples.

Definition rev_app_body :=
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(If (Var 0)
(Let (Deref (Var 0)) (Lam
(Seq (Assign (Var 1) (Cons (Car (Var 0)) (Var 2)))

((Var 3) (Var 1) (Cdr (Var 0))))))
(Var 1)).

Definition list_rev_app :=
strict_fix (Lam (Lam (Lam rev_app_body))).

Definition list_rev_body := list_rev_app Nil (Var 0).
Definition list_rev := Lam list_rev_body.

Inductive reverse_spec : Spec cfg :=
rev_claim : forall l pl env, exp_val reverse_spec
list_rev_body (pl::env)
(rep_list l pl)
(rep_list (rev l))

|rev_app_claim : forall k l pk pl env, exp_val reverse_spec
rev_app_body (pl::pk::fix_env (Lam (Lam rev_app_body)) env)
(rep_list k pk :* rep_list l pl)
(rep_list (rev_append l k)).

Lemma reverse_proof : sound lam_step reverse_spec.
Proof. list_solver;
rewrite <− rev_alt in * |− ;
list_run. Qed.

Append

Require Import list_examples.

Definition list_app_nonempty_body :=
Let (Deref (Var 0)) (Lam
(If (Cdr (Var 0))

((Var 2) (Cdr (Var 0)))
(Assign (Var 1) (Cons (Car (Var 0)) (Var 3))))).

Definition list_app_nonempty :=
strict_fix (Lam (Lam list_app_nonempty_body)).

Definition list_app_body :=
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If (Var 1) (Seq (list_app_nonempty (Var 1)) (Var 1)) (Var 0).
Definition list_app := Lam (Lam list_app_body).

Inductive append_spec : Spec cfg :=
append_claim : forall lx ly px py env, exp_val append_spec
list_app_body (py::px::env)
(rep_list lx px :* rep_list ly py)
(rep_list (lx++ly))

|append_nonempty_claim : forall x lx px p ly py env,
exp_val append_spec list_app_nonempty_body

(Addr p::fix_env (Lam list_app_nonempty_body) (py::env))
(p |−> Pair x px :* rep_list lx px :* rep_list ly py)
(fun _ => rep_list(x::lx++ly) (Addr p)).

Lemma append_proof : sound lam_step append_spec.
Proof. list_solver. Qed.

Copy

Require Import list_examples.

Definition copy_body :=
(If (Var 0) (Let (Deref (Var 0)) (Lam
(Ref (Cons (Car (Var 0)) ((Var 2) (Cdr (Var 0)))))))

Nil).

Inductive copy_spec : Spec cfg :=
copy_claim : forall H l pl env, exp_val copy_spec
copy_body (pl::fix_env (Lam copy_body) env)
(asP H (rep_list l pl))
(fun r => rep_list l r :* litP H).

Lemma copy_proof : sound lam_step copy_spec.
Proof. list_solver. Qed.

Delete

Require Import list_examples.
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Definition delete_body :=
(If (Var 0)
(Let (Deref (Var 0)) (Lam
(If (Eq (Var 3) (Car (Var 0)))

(Seq (Dealloc (Var 1)) ((Var 2) (Cdr (Var 0))))
(Seq (Assign (Var 1) (Cons (Car (Var 0))

((Var 2) (Cdr (Var 0)))))
(Var 1)))))

Nil).

Fixpoint delete v l :=
match l with
| nil => nil
| x :: l’ => if val_eq_dec v x then delete v l’

else x::delete v l’
end.

Inductive delete_spec : Spec cfg :=
delete_claim : forall v l pl env, exp_val delete_spec
delete_body (pl::fix_env (Lam delete_body) (v::env))
(rep_list l pl) (rep_list (delete v l)).

Lemma delete_proof : sound lam_step delete_spec.
Proof. list_solver.
simpl;destruct (val_eq_dec v v0);list_run. Qed.

B.4.3 Examples in HIMP

Head

Require Import list_examples.

Definition head_def := FunDef ”head” [”x”]
(SReturn (”x”−>>”val”)).

Inductive head_spec : Spec kcfg :=
head_claim : forall p H x l, heap_fun head_spec
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head_def [Int p]
(asP H (rep_list (x::l) p))
(fun r => constraint (r=x) :* litP H).

Lemma head_proof : sound kstep head_spec.
Proof. list_solver. Qed.

Tail

Require Import list_examples.

Definition tail_def := FunDef ”tail” [”x”]
(SReturn (”x”−>>”next”)).

Inductive tail_spec : Spec kcfg :=
tail_claim : forall H p x y l, heap_fun tail_spec
tail_def [Int p]
(asP H (rep_seg (x::nil) y p :* rep_list l y))
(fun r => constraint (r = y) :* litP H).

Lemma tail_proof : sound kstep tail_spec.
Proof. list_solver. Qed.

Add

Require Import list_examples.

Definition add_fun := FunDef ”add” [”v”;”x”]
{{Decl ”y”;”y”<−EAlloc
;”y”<<−build_node ”v” ”x”
;SReturn ”y”}}.

Inductive add_spec : Spec kcfg :=
add_claim : forall v H x l, heap_fun add_spec
add_fun [Int v;Int x]
(asP H (rep_list l x))
(fun r => rep_seg (v::nil) x r :* litP H).

Lemma add_proof : sound kstep add_spec.
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Proof. list_solver. Qed.

Swap

Require Import list_examples.

Definition swap_def := FunDef ”swap” [”x”]
{{Decl ”p”; ”p” <− ”x”
;”x” <− arr_next ”x”
;”p”<<−build_node (arr_val ”p”) (arr_next ”x”)
;”x”<<−build_node (arr_val ”x”) ”p”
;SReturn ”x”}}.

Inductive swap_spec : Spec kcfg :=
swap_claim : forall a b l xv, heap_fun swap_spec
swap_def [Int xv]
(rep_list (a::b::l) xv)
(rep_list (b::a::l)).

Lemma swap_proof : sound kstep swap_spec.
Proof. list_solver. Qed.

Dealloc

Require Import list_examples.

Definition dealloc_def := FunDef ”dealloc” [”x”]
{{Decl ”y”
;SWhile (”x” <> 0)
{{”y”<−arr_next ”x”;HDealloc ”x”;”x”<−”y”}}

;SReturn 0}}.

Inductive dealloc_spec : Spec kcfg :=
dealloc_claim : forall l x, heap_fun dealloc_spec
dealloc_def [Int x] (rep_list l x) (fun r => emptyP)
|loop_claim : forall l xv yv, heap_loop dealloc_spec
dealloc_def 0 (”x” s|−> KInt xv :* ”y” s|−> yv)
(rep_list l xv) (fun r => emptyP).
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Lemma dealloc_proof : sound kstep dealloc_spec.
Proof. list_solver. Qed.

Length Recursive

Require Import list_examples.

Definition length_def := FunDef ”length” [”x”]
(SIf (”x” = 0)
(SReturn 0)
(SReturn (1 + ECall ”length” [arr_next ”x”]))).

Inductive length_spec : Spec kcfg :=
length_claim : forall H l x, heap_fun length_spec
length_def [Int x]
(asP H (rep_list l x))
(fun r => constraint (r = zlength l) :* litP H).

Lemma length_proof : sound kstep length_spec.
Proof. list_solver. Qed.

Length Iterative

Require Import list_examples.

Definition length_def := FunDef ”length” [”x”]
{{Decl ”l”;”l”<−0
;SWhile (”x”<>0) {{”l”<−”l”+1; ”x”<− arr_next ”x”}}
;SReturn ”l”}}.

Inductive length_spec : Spec kcfg :=
length_claim : forall H x l, heap_fun length_spec
length_def [Int x]
(asP H (rep_list l x))
(fun r => constraint (r = zlength l) :* litP H)

|loop_claim : forall H k x l, heap_loop length_spec
length_def 0 (”x” s|−> KInt x :* ”l” s|−> KInt k)
(asP H (rep_list l x))
(fun r => constraint (r = k + zlength l) :* litP H).
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Lemma length_proof : sound kstep length_spec.
Proof. list_solver. Qed.

Sum Recursive

Require Import list_examples.

Definition sum_def := FunDef ”sum_recursive” [”x”]
(SIf (”x”=0)
(SReturn 0)
(SReturn (arr_val ”x”

+ ECall ”sum_recursive” [arr_next ”x”]))).

Inductive sum_spec : Spec kcfg :=
sum_claim : forall H l x, heap_fun sum_spec
sum_def [Int x]
(asP H (rep_list l x))
(fun r => constraint (r = sum l) :* litP H).

Lemma sum_proof : sound kstep sum_spec.
Proof. list_solver. Qed.

Sum Iterative

Require Import list_examples.

Definition sum_def := FunDef ”sum” [”x”]
{{Decl ”s”;”s”<−0
;SWhile (”x”<>0) {{”s”<−”s”+arr_val ”x”; ”x”<−arr_next ”x”}}
;SReturn ”s”}}.

Inductive sum_spec : Spec kcfg :=
sum_claim : forall H l x, heap_fun sum_spec
sum_def [Int x]
(asP H (rep_list l x))
(fun r => constraint (r = sum l) :* litP H)

|loop_claim : forall k H l x, heap_loop sum_spec
sum_def 0 (”s” s|−> KInt k :* ”x” s|−> KInt x)
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(asP H (rep_list l x))
(fun r => constraint (r = k + sum l) :* litP H).

Lemma sum_proof : sound kstep sum_spec.
Proof. list_solver. Qed.

Reverse

Require Import list_examples.

Definition reverse_def := FunDef ”reverse” [”x”]
{{Decl ”p”;Decl ”y”; ”p”<−0
;SWhile (”x”<>0)
{{”y”<−arr_next ”x”
;”x”<<−build_node (arr_val ”x”) (EVar ”p”)
;”p”<−”x”
;”x”<−”y”}}

;SReturn ”p”}}.

Inductive reverse_spec : Spec kcfg :=
reverse_claim : forall l x, heap_fun reverse_spec
reverse_def [Int x] (rep_list l x) (rep_list (rev l))
|loop_claim : forall A B x p v, heap_loop reverse_spec
reverse_def 0 (”x” s|−> KInt x :* ”p” s|−> KInt p :* ”y” s|−> v)
(rep_list A x :* rep_list B p) (rep_list (rev_append A B)).

Lemma reverse_proof : sound kstep reverse_spec.
Proof. list_solver.
rewrite <− rev_alt in * |− .
list_run. Qed.

Append

Require Import list_examples.

Definition append_def := FunDef ”append” [”x”;”y”]
(SIf (”x” = 0)
(SReturn ”y”)
{{Decl ”p”;”p” <− ”x”
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;SWhile (”p”−>>”next” <> 0) (”p”<− ”p”−>>”next”)
;”p” <<− build_node (”p”−>>”val”) ”y”
;SReturn ”x” }}).

Inductive append_spec : Spec kcfg :=
append_claim : forall lx x ly y, heap_fun append_spec
append_def [Int x; Int y]
(rep_list lx x :* rep_list ly y)
(fun r => rep_list (lx++ly) r)

|loop_claim : forall lx x ly y lp p, p <> 0 −>
heap_loop append_spec append_def 0
(”x” s|−> KInt x :* ”y” s|−> KInt y :* ”p” s|−> KInt p)
(rep_seg lx p x :* rep_list lp p :* rep_list ly y)
(rep_list (lx++lp++ly)).

Lemma append_proof : sound kstep append_spec.
Proof. list_solver.
rewrite app_ass in * |− *.
list_run. Qed.

Copy

Require Import list_examples.

(* Splitting the code into several definitions
reduces proof time by reducing the size of
terms at any single point in the proof *)

Definition copy_loop :=
SWhile (”iterx”<>0)
{{”node”<−EAlloc
;”node”<<−build_node (arr_val ”iterx”) 0
;”itery”<<−build_node (arr_val ”itery”) ”node”
;”iterx”<−arr_next ”iterx”
;”itery”<−arr_next ”itery”
}}.

Definition copy_tail :=
{{”y”<−EAlloc;”y”<<−build_node (arr_val ”x”) 0
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;”iterx”<−arr_next ”x”
;”itery”<−”y”
;copy_loop
;SReturn ”y”}}%code.

Definition copy_def := FunDef ”copy” [”x”]
{{Decl ”y”;Decl ”iterx”;Decl ”itery”;Decl ”node”
;SIf (”x”=0) (SReturn 0) copy_tail}}.

Inductive copy_spec : Spec kcfg :=
copy_claim : forall H l x, heap_fun copy_spec
copy_def [Int x]
(asP H (rep_list l x))
(fun r => rep_list l r :* litP H)

|loop_claim : forall x n A y v itery H B iterx,
heap_loop copy_spec copy_def 0

(”x” s|−> x :* ”node” s|−> n :* ”y” s|−> KInt y
:* ”iterx” s|−> KInt iterx :* ”itery” s|−> KInt itery)

(constraint (itery <> 0) :* rep_seg A itery y
:* itery h|−> list_node v 0 :* asP H (rep_list B iterx))
(fun r => rep_list (A ++ v :: B) r :* litP H).

Lemma copy_proof : sound kstep copy_spec.
Proof. list_solver.
rewrite app_ass in * |− .
list_run. Qed.

Delete

Require Import list_examples.

(* Splitting the code into several definitions
reduces proof time by reducing the size of
terms at any single point in the proof *)

Definition delete_loop2 :=
(SWhile (arr_next ”y”<>0)
(Seq (”z”<−arr_next ”y”)

(SIf (arr_val ”z”=”v”)
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(Seq (”y”<<−build_node (arr_val ”y”) (arr_next ”z”))
(HDealloc ”z”))

(”y”<−”z”))))%code.
Definition delete_tail1 :=
{{SIf (”x”=0) (SReturn 0) Skip
;Decl ”z”
;”y”<−”x”
;delete_loop2
;SReturn ”x”}}%code.

Definition delete_def := FunDef ”delete” [”x”;”v”]
(Seq (Decl ”y”)
(Seq (SWhile ((”x”<>0) && (arr_val ”x”=”v”))
{{”y”<−arr_next ”x”;HDealloc ”x”;”x”<−”y”}})
delete_tail1))%code.

Fixpoint delete (v : Z) (l : list Z) : list Z :=
match l with
| nil => nil
| (x :: l’) => if Z_eq_dec v x then delete v l’

else x :: delete v l’
end.

Arguments delete v l : simpl nomatch.

Inductive delete_spec : Spec kcfg :=
delete_claim : forall l x v, heap_fun delete_spec
delete_def [Int x;Int v] (rep_list l x) (rep_list (delete v l))
|loop1_claim : forall l x v y, heap_loop delete_spec
delete_def 0 (”x” s|−> KInt x :* ”v” s|−> KInt v :* ”y” s|−> y)
(rep_list l x) (rep_list (delete v l))

|loop2_claim : forall v A x yv B y z, heap_loop delete_spec
delete_def 1 (”x” s|−> KInt x :* ”v” s|−> KInt v

:* ”y” s|−> KInt y :* ”z” s|−> z)
(rep_seg A y x :* constraint (y <> 0) :* existsP q,
y h|−> list_node yv q :* constraint (yv <> v) :* rep_list B q)
(rep_list (A++yv::delete v B)).
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Lemma delete_eq : forall v l, delete v (v :: l) = delete v l.
Proof. unfold delete;intros;destruct (Z.eq_dec v v);congruence. Qed.
Lemma delete_ne : forall v z l, v<>z −> delete v (z::l) = z::delete v l.
Proof. unfold delete;intros;destruct (Z.eq_dec v z);congruence. Qed.

Lemma delete_proof : sound kstep delete_spec.
Proof. list_solver;
rewrite ?delete_eq, ?delete_ne by congruence;
try rewrite app_ass in * |−;
list_run. Qed.
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Appendix C

Sorts in K Semantics

In this appendix we review definitions of order-sorted algebra, which is the
inspiration for the user-visible K system. The foundational semantics of K
definitions is based on unsorted terms, but the specification language includes
a sort system used for parsing and overloading which is heavily inspired by
order-sorted algebra.

One aim of the translation tool is to provide an option to attempt to
translate different sorts of a K definition into different types in Coq, to re-
semble the user’s view of the languages as closely as possible. The chief
difficulty here is mimicking the subsorting allowed in order-sorted algebra.
Where then is only one path between a pair of sorts in the subsorting rela-
tionship this can be translated simply into a wrapper constructor injecting
one type into another, but when there are multiple routes to inject one sort
into another a more complicated translation was needed. This generated con-
structors for one preferred path, and used functions to assist in implementing
other injections.

C.1 Order-Sorted Algebra
The terms of a Kdefinition can be understood as an instance of order-sorted
algebra, which we review here, following the presentation of Gougen in
[GM92]. In general terms, an order-sorted algebra consists of a collection
of values and operations over those values which are described by a certain
order-sorted signature. Basic concerns in the study of order-sorted algebras
include finding algebras corresponding to a signature, and studying the rela-
tionship between different algebras described by a signature, or the algebras
of related signatures.

Order-sorted algebra is the basis of a number of programming and mod-
elling languages, such as Maude [Cla+03] and the OBJ [Gog+88] family.
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Order-sorted algebra are a strict generalization of multi-sorted algebra, which
corresponds more directly to primitive data-type definitions in more lan-
guages, especially proof assistants and functional programming languages.
In the task of translating a K definition to a formal definition in a theorem
prover, a large portion of the work to generate a definition of terms and con-
figurations of the semantics consists of translating an order-sorted definition
into a mutli-sorted definition. Now we recall the formal definitions of order-
sorted and multi-sorted algebras, beginnning with multi-sorted algebras.

C.1.1 Multi-Sorted Algebra

Definition C.1. A multisorted signature Σ is a tuple (S, F, w) consisting of

• A set S, whose elements are called Sorts.

• A set F , whose elements are called function symbols

• A function w : F → S×S∗ assigning to each function symbol f a term
(r, as) in S×S∗ which is called the arity of f , with r and as respectively
called the result and arguments of f (or of the arity of f). The variable
σ is conventinally used for arities. An arity (r, (a1, . . . , an)) may also
be written a1 ⋆ · · · ⋆ an → r, giving → r when the arguments of the
arity is the empty sequence. Referring to a function symbol as f : σ

asserts that f has arity σ.

Definition C.2. A multi-sorted algebra over a signature Σ, also known as a
Σ-algebra, is a tuple (D, ρ) giving an interpretation of the sorts and functions
of the signature.

• D is an S-indexed family of sets (not necessarily disjoin)

• ρ assigns to each f F an appropriate function – when f has result r

and arguments a1, . . . , an, ρ(f) is a function Da1 × · · · ×Dan → Dr.

A (closed) term over a multi-sorted signature Σ of sort s is inductively
defined as a tree with node labels from F , where the root label f has result s,
and the sequence t1, . . . , tn of subtrees has the same length (possibly empty)
as the arguments a1, . . . , an, and child ti is a term of sort ai. The s-indexed
set of closed terms over signature Σ is denoted by TΣ.
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A collection V ar of variables for a signature Σ is an S-indexed family of
(countably) infinite and pairwise disjoint sets. An element of Xs in a family
of variables X is called a variable of sort s. We write x : s for some element
of V ars.

An open term over a multi-sorted signature Σ is defined similarly, but
also admits any variable of sort s as an open term of sort s. The s-indexed
set of open terms over signature Σ and variables X is denoted TΣ(X).

Given any Σ-algebra, ρ extends to closed terms in the obvious way, send-
ing a tree with root label f and subtrees t1, . . . , tn to ρ(f)(ρ(t1), . . . , ρ(tn)).
Interpreting an open term over a set X of variables requires an environment
sending each variable to a value in the appropriate domain. Formally, an
environment Γ : X → D is an s-indexed function sending any x : s ∈ Xs to
some value Γ(x : s) ∈ Ds. Then we define ρ†(Γ) : TΣ → D which sends any
variable x : s to Γ(x : s) and handles a function symbol with ρ as for closed
terms.

Definition C.3. A multi-sorted signature with equations, Σ= = (S, F, w,Q),
extends a mutli-sorted signature Σ with an additional component, a set of
equations Q. An equation is a pair a =s b of two open terms over Σ, both of
sort s.

Definition C.4. A Σ=-algbra is a Σ-algebra which additionally satisfies all
the equations - for any a =s b ∈ Q and any valuation Γ, ρ†(Γ)(a) = ρ†(Γ)(b)

in set Ds.

C.1.2 Order-Sorted Algebra

Order-sorted algebra generalizes multi-sorted algebra by allowing a subsort-
ing relationship between sorts, and overloading function symbols with mul-
tiple related arities. For example, we might have a sort Pos for positive
integers, declared to a be a subsort of a sort Int for any integers, and declare
a function plus to have multiple arities Int ⋆ Int→ Int and Pos ⋆ Pos→ Pos.

Definition C.5. An order-sorted signature is a tuple Σ = (S,R, F, w) where

• S is again a set of sorts.

• R is a preorder over S. We write s1 ≤ s2 to mean (s1, s2) ∈ R when
an order-sorted signature R is understood. This extends to sequences,
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defining a⃗ ≤ b⃗ to hold iff sequences a and b have the same length and
ai ≤ bi for corresponding entries.

• F is again a set of function symbols.

• w assigns arities to function symbols. Generalizing the multisorted
case, w may assign multiple arities. Formally, w is a relation from F

to (S × S∗) which includes at least one entry for each f in F . In the
order-sorted case, writing f : σ indictate that σ is one of the arities
assigned to f by w. If w assigns multiple arities to a function symbol f ,
those arities must obey some simple coherence conditions: If f : a⃗→ r1

and f : b⃗→ r2, then the arguments a⃗ and b⃗ must have the same length,
and additionally if a⃗ ≤ b⃗ then r1 ≤ r2.

An order-sorted term is an inductively defined tree over labels, where the
root function symbol in a tree of sort s must have some signature f : a⃗→ s′

such that the subtrees are valid terms of sorts a⃗.
An open term additionally allow a base case for a term of sort s to consist

of a variable x : s′ with s′ ≤ s.
Allowing a choice of signature in the definition of a term suggests that a

given tree of labels may be assigned several sorts. This is indeed possible

Example C.1. Consider a signature with

• Four sorts, A,B,X, Y , with A ≤ B the only subsort relationship

• Nullary function symbols a, b with arities a :→ A and b :→ B, and
a binary function symbol f with two arities f : A ⋆ B → X and
f : B ⋆ A→ Y .

The only requirement for this to be a well-formed signature is that the arities
for f are coherent, which holds because vectors AB and BA are unrelated in
the subsort relation. In this signature, the term f(a, a) can be assigned sort
X or Y .

To avoid this possibility, some further conditions may be imposed which
suffice to guarantee that any valid term has a unique least sort which it can
be validly assigned.

178



Definition C.6. An arity a⃗ → r is applicable to a sequence b⃗ of argument
sorts if b⃗ ≤ a⃗, and a function symbol is applicable to a sequence of argument
sorts if any of its arities are applicable.

A function symbol f is regular if given argument sorts a⃗ to which it is
applicable there is some least arity f : b⃗ → s of f which is applicable, least
in the sense that if c⃗→ r′ is any other applicable arity then b⃗ ≤ c⃗, and thus
by coherence r ≤ r′.

A function symbol f is pre-regular if given argument sorts a⃗ to which it
is applicable there is some applicable arity f : b⃗ → s such that any other
applicable arity f : c⃗→ s′ has s ≤ s′.

It is proven in Gougen [GM92] that if every function symbol in a singature
is at least pre-regular then any valid term has a unique least sort, and that
any pre-regular function symbol can be made regular by merely declaring
additional arities, without changing the set of terms of each sort admitted
by the signature.

Continuing Example C.1 we see that f is not pre-regular, a symbol g

with arities g : AB → X and g : BA → X would be pre-regular but not
regular (consider AA to see that regularity fails), and a symbol h with artities
h : AB → X and h : BA→ X but also AA→ X would indeed be regular.

There are two ways to define an algebra over an order-sorted signature,
one which is simpler and one which allows a more flexible interpretation of
subsorting.

Definition C.7 (Order-sorted Algebra, by inclusion). An algebra by inclu-
sion for a signature Σ consists of a set D which will represent all terms and
a sort-indexed family of subsets of D, {Ds}s∈S such that s ≤ s′ implies
Ds ⊆ Ds′ . 1 For each function symbol f there is an associated partial func-
tion Ff : Dk ⇀ D for appropriate k. For any declared arity f : a⃗ → s, the
function Ff is total on the set Da1 × · · · ×Dak , with image contained in Ds.

An alternate definition does not require interpreting subsorting by set
inclusion. This is useful when modeling order-sorted algebras in program-
ming languages or theorem provers without a native notion of inclusion or
subsorting between separate types.

1If the sort graph has multiple (undirected) connected components, this definition can
be slightly refined to replace the single D with independent domain sets for each connected
component.
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Definition C.8 (Order-sorted Algebra, by injection). An algebra by injec-
tion for a signature Σ consists of a sort-indexed family of sets {Ds}s∈S, and
a collection of injective functions is

′
s for each (s, s′) ∈ R, such that a ≤ b ≤ c

implies icb(i
b
a(x)) = ica(x) for any x ∈ Da. For each arity f : a⃗→ s there is a

function Ff :⃗a→s : Da1 × · · · ×Dak → Ds. These functions are subject to the
coherence condition that if f : b⃗ → r1 and f : c⃗ → r2 are two arities of a
function symbol f with and there are some a⃗ and s with a⃗ ≤ b⃗, a⃗ ≤ c⃗ and
r1 ≤ s, r2 ≤ s, then for any x⃗ ∈ Da⃗,

isr1(Ff :⃗b→r1
(ib1a1(x1), . . . , i

bk
ak
(xk))) = isr2(Ff :⃗c→r2(i

c1
a1
(x1), . . . , i

ck
ak
(xk)))

These definitions are equivalent
Any algebra according to Definition C.7 induces an algebra according

to Definition C.8 simply by letting the collection {Ds}s∈S of subsets of the
universe serve as the domains of the models, implementing the injections by
inclusions, and letting each signature-specific function Ff :⃗a→s be the restric-
tion of Ff to the appropriate domains.

The converse direction requires a quotient construction to construct a
suitable universe from an algebra according to Definition C.8. Let D be the
disjoint union of the domains, {(s, x) | s ∈ S, x ∈ DS}, quotiented by the
equivalence which relates (s, x) and (s′, y) if is′s (x) = y or iss′(y) = x. The
unsorted interpreteation Ff of a function symbol is a partial function defined
on any tuple of arguments falling under any signature f : a⃗→ r, with result
given by Ff :⃗a→r. The coherence conditions in Definition C.8 ensure that the
result is unique, and the definition respects equivalence classes.

C.1.3 Multi-Sorted Encoding

An order-sorted signature can be faithfully encoded into a multi-sorted theory
with equations, using function symbols and relations corresponding to the
injection-based definition of an algebra in Definition C.8.

The resulting singature has

• The same set S of sorts as the order-sorted signature.

• A set of function symbols with two families of operations. There is one
function symbol iba for each (a, b) ∈ R, and one symbol f a⃗→s for each
arity f : a⃗→ s in the order-sorted signature.
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• A function symbols iba has arity a → b, a function symbol f a⃗→s has
arity a⃗→ s.

• For each a ≤ b ≤ c there is an equation icb(i
b
a(x : a)) =c i

c
a(x : a), and

for each function symbol f in the order-sorted signature a family of
conditions as above: Given arities f : b⃗ → r1, f : c⃗ → r2, and a sort
sequence a⃗ and sort s such that a⃗ ≤ b⃗, a⃗ ≤ c⃗ and r1 ≤ s, r2 ≤ s, there
is an equation

isr1(Ff :⃗b→r1
(ib1a1(x1 : a1), . . . , i

bk
ak
(xk : ak)))

=s i
s
r2
(Ff :⃗c→r2(i

c1
a1
(x1 : a1), . . . , i

ck
ak
(xk : ak)))

Comparing the definitions, we see that a collection of sets and functions
is a multi-sorted algebra according to Definition C.4 of the translated theory
if and only if it is an order-sorted algebra according to Definition C.4 of the
original order-sorted signature.
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