3.7 Denotational Semantics

Denotational semantics, also known as fixed-point semantics, associates to each programming language construct a well-defined and rigorously understood mathematical object, typically a function. These mathematical objects denote the behaviors of the corresponding language constructs, so equivalence of programs is immediately translated into equivalence of mathematical objects. The later equivalence can be then shown using the entire arsenal of mathematics, which is supposedly better understood and more well-established than that of the relatively much newer field of programming languages. There are no theoretical requirements on the nature of the mathematical domains in which the programming language constructs are interpreted, though a particular approach became quite common in practice, to an extent that it is by many identified with denotational semantics itself: choose the domains to be appropriate bottomed complete partial orders (abbreviated BCPOs; see Section 2.9), and give the denotation of recursive language constructs (including loops, recursive functions, recursive data-structures, etc.) as least fixed-points, which exist thanks to Theorem 1.

Each language requires customized denotational semantics, the same way each language required customized SOS or CHAM, etc., semantics in the previous sections in this chapter. For the sake of concreteness, below we discuss general denotational semantics notions and notations by means of our running example language, IMP. Consider, for example, arithmetic expressions in IMP (which are side-effect free). Each arithmetic expression can be thought of as the mathematical object which is to in the given state. It is a partial function and not a total one because the evaluation of some arithmetic expressions may not be defined in some states, for example due to illegal operations such as division by zero. Thus, we can define the denotation of arithmetic expressions as a total function

\[
[-] : AExp \to (State \to Int)
\]

taking arithmetic expressions to partial functions from states to integer numbers. As in all the semantics discussed in this chapter, states are themselves partial maps from names to values. In what follows we will follow a common notational simplification and will write \([a]\sigma\) instead of \([a](\sigma)\) whenever \(a \in AExp\) and \(\sigma \in State\), and similarly for other syntactic or semantic categories.

Denotation functions are defined inductively, over the structure of the language constructs. For example, if \(i \in Int\) then \([i]\) is the constant function \(i\), that is, \([i] \sigma = i\) for any \(\sigma \in State\). Similarly, if \(x \in Id\) then \([x] \sigma = \sigma(x)\). As it is the case in mathematics, if an undefined value is used to calculate another value, then the resulting value is also undefined. In particular, \([x] \sigma\) is undefined when \(x \notin \text{Dom}(\sigma)\). The denotation of compound constructs is defined in terms of the denotations of the parts. For example, \([a_1 + a_2] \sigma = [a_1] \sigma + _{\text{Int}} [a_2] \sigma\) for any \(a_1, a_2 \in AExp\) and any \(\sigma \in State\). For the same reason as above, if any of \([a_1] \sigma\) or \([a_2] \sigma\) is undefined then \([a_1 + a_2] \sigma\) is also implicitly undefined. One can also choose to explicitly keep certain functions undefined in certain states, such as the denotation of division in those states in which the denominator is zero:

\[
[a_1 / a_2] \sigma = \begin{cases}
[a_1] \sigma / _{\text{Int}} [a_2] \sigma & \text{if } [a_2] \sigma \neq 0 \\
\bot & \text{if } [a_2] \sigma = 0
\end{cases}
\]

Note that even though the case where \([a_2] \sigma\) is undefined (\(\bot\)) was not needed to be explicitly listed above (because it falls under the first case, \([a_2] \sigma \neq 0\)), it is still the case that \([a_1 / a_2] \sigma\) is undefined whenever any of \([a_1] \sigma\) or \([a_2] \sigma\) is undefined.

An immediate use of denotational semantics is to prove properties about programs. For example, we can show that the addition operation on \(AExp\) whose denotational semantics was given above is
associative. Indeed, we can prove for any \(a_1, a_2, a_3 \in AExp \) the following equality of partial functions

\[
\left((a_1 + a_2) + a_3 \right) = \left(a_1 + (a_2 + a_3) \right)
\]

using conventional mathematical reasoning and the fact that the sum \(+_{\text{Int}}\) in the \(\text{Int} \) domain is associative. Note that denotational semantics allows us not only to prove properties about programs or fragments of programs relying on properties of their mathematical domains of interpretation, but also, perhaps even more importantly, it allows us to elegantly formulate such properties. Indeed, what does it mean for a language construct to be associative or, in general, for any desired property over programs or fragments of programs to hold? While one could use any of the operational semantics discussed in this chapter to answer this question, denotational semantics is probably the most direct means that we have seen so far in this book to state and prove program properties.

Each syntactic category is interpreted into its corresponding mathematical domain. For example, the denotations of Boolean expressions and of statements are total functions of the form:

\[
\begin{align*}
\llbracket - \rrbracket : & \ BExp \to (\text{State} \to \text{Bool}) \\
\llbracket - \rrbracket : & \ Stmt \to (\text{State} \to \text{State})
\end{align*}
\]

The former is similar to the one for arithmetic expressions above, so we do not discuss it here. The latter is more interesting and deserves to be detailed. Statements can indeed be regarded as partial functions taking states into resulting states. In addition to partiality due to illegal operations in expressions that statements may involve, such as division by zero, partiality in the denotation of statements may also occur for another important reason: loops may not terminate. For example, the statement “\(\text{while } (x <= y) \text{ do skip} \)” will not terminate in those states in which the value that \(x \) denotes is less than or equal to that of \(y \). Mathematically, we say that the function from states to states that this loop statement denotes is undefined in those states in which the loop statement does not terminate. This will be elaborated shortly, after we discuss other statement constructs.

Since \(\text{skip} \) does not change the state, its denotation is the identity function, i.e., \(\llbracket \text{skip} \rrbracket = 1_{\text{State}} \). The assignment statement updates the given state, so \(\llbracket x := a \rrbracket \sigma = \sigma[[a]_{\sigma}/x] \). Sequential composition accumulates the state changes of the denotations of the composed statements, so it is precisely the mathematical composition of the corresponding partial functions: \(\llbracket s_1 ; s_2 \rrbracket = \llbracket s_2 \rrbracket \circ \llbracket s_1 \rrbracket \). The denotation of a conditional statement “\(\text{if } b \text{ then } s_1 \text{ else } s_2 \)” in a state \(\sigma \) is either the denotation of \(s_1 \) in \(\sigma \) or that of \(s_2 \) in \(\sigma \), depending upon the denotation of \(b \) in \(\sigma \):

\[
\llbracket \text{if } b \text{ then } s_1 \text{ else } s_2 \rrbracket \sigma = \begin{cases}
\llbracket s_1 \rrbracket \sigma & \text{if } \llbracket b \rrbracket \sigma = \text{true} \\
\llbracket s_2 \rrbracket \sigma & \text{if } \llbracket b \rrbracket \sigma = \text{false} \\
\bot & \text{if } \llbracket b \rrbracket \sigma = \bot
\end{cases}
\]

The third case above was necessary, because the first two cases do not cover the entire space of possibilities and, in such situations, one may (wrongly in our context here) understand that the function is underspecified in the remaining cases rather than undefined.

The language constructs which admit non-trivial and interesting denotational semantics tend to be those which have a recursive nature. One of the simplest such constructs, and the only one we discuss here (see Section 4.7 for other recursive constructs), is IMP’s \(\text{while} \) looping construct. Thus, the question we address next is how to define the denotation functions of the form

\[
\llbracket \text{while } b \text{ do } s \rrbracket : \text{State} \to \text{State}
\]
where \(b \in B\text{Exp} \) and \(s \in Stmt \). What we want is \([\text{while } b \text{ do } s]\sigma = \sigma'\) if and only if the while loop correctly terminates in state \(\sigma' \) when executed in state \(\sigma \). Such a \(\sigma' \) may not always exist for two reasons: (1) because the denotation of \(b \) or \(s \) in some appropriate state encounters an illegal operation, and (2) because \(s \) (which may contain nested loops) or the while loop itself does not terminate. If we let \(w \) be the partial function \([\text{while } b \text{ do } s]\), then its most natural definition is:

\[
w(\sigma) = \begin{cases}
\sigma & \text{if } [b]\sigma = \text{false} \\
w([s]\sigma) & \text{if } [b]\sigma = \text{true} \\
\bot & \text{if } [b]\sigma = \bot
\end{cases}
\]

Mathematically speaking, this is a problematic definition for several reasons: (1) \(w \) is defined in terms of itself; (2) it is not clear that such a \(w \) exists; and (3) in case it exists, it is not clear that such a \(w \) is unique. To see how easily one can yield inappropriate recursive definitions of functions, we refer the reader to the discussion immediately following Theorem 1 which shows examples of recursive definitions which admit no solutions or which are ambiguous.

We next develop the mathematical machinery needed to rigorously define and reason about partial functions like the \(w \) above. A convenient interpretation of partial functions that significantly eases the understanding of the subsequent mathematics is as information or knowledge bearers. More precisely, a partial function \(\alpha : \text{State} \rightarrow \text{State} \) can be thought of as carrying knowledge about some states in \(\text{State} \), namely exactly those on which \(\alpha \) is defined. For such a state \(\sigma \in \text{State} \), the knowledge that \(\alpha \) carries is \(\alpha(\sigma) \). If \(\alpha \) is not defined in a state \(\sigma \in \text{State} \) then we can think of it as “\(\alpha \) does not have any information about \(\sigma \)”.

Recall from Section 2.9 that the set of partial functions between any two sets can be organized as a bottomed complete partial order (BCPO). In our case, if \(\alpha, \beta : \text{State} \rightarrow \text{State} \) then we say that \(\alpha \) is less informative than or as informative as \(\beta \), written \(\alpha \leq \beta \), if and only if for any \(\sigma \in \text{State} \), it is either the case that \(\alpha(\sigma) \) is not defined, or both \(\alpha(\sigma) \) and \(\beta(\sigma) \) are defined and \(\alpha(\sigma) = \beta(\sigma) \). If \(\alpha \leq \beta \) then we may also say that \(\beta \) refines \(\alpha \) or that \(\beta \) extends \(\alpha \). Then \((\text{State} \rightarrow \text{State}, \leq, \bot) \) is a BCPO, where \(\bot : \text{State} \rightarrow \text{State} \) is the partial function which is undefined everywhere.

One can think of each possible iteration of a while loop as an opportunity to refine the knowledge about its denotation. Before the Boolean expression \(b \) of the loop “while \(b \) do \(s \)” is evaluated the first time, the knowledge that one has about its denotation function \(w \) is the empty partial function \(\bot : \text{State} \rightarrow \text{State} \), say \(w_0 \). Therefore, \(w_0 \) corresponds to no information.

Now suppose that we evaluate the Boolean expression \(b \) in some state \(\sigma \) and that it is false. Then the denotation of the while loop should return \(\sigma \), which suggests that we can refine our knowledge about \(w \) from \(w_0 \) to the partial function \(w_1 : \text{State} \rightarrow \text{State} \), which is an identity on all those states \(\sigma \in \text{State} \) for which \([b]\sigma = \text{false} \) and which remains undefined in any other state.

So far we have not considered any state in which the loop needs to evaluate its body. Suppose now that for some state \(\sigma \), it is the case that \([b]\sigma = \text{true} \), \([s]\sigma = \sigma' \), and \([b]\sigma' = \text{false} \), that is, that the while loop terminates in one iteration. Then we can extend \(w_1 \) to a partial function \(w_2 : \text{State} \rightarrow \text{State} \), which, in addition to being an identity on those states on which \(w_1 \) is defined, that is \(w_1 \leq w_2 \), takes each \(\sigma \) as above to \(w_2(\sigma) = \sigma' \).

By iterating this process, one can define a partial function \(w_k : \text{State} \rightarrow \text{State} \) for any natural number \(k \), which is defined on all those states on which the while loop terminates in at most \(k \) evaluations of its Boolean condition (i.e., \(k - 1 \) executions of its body). An immediate property of the partial functions \(w_0, w_1, w_2, \ldots, w_k \) is that they increasingly refine each other, that is, \(w_0 \leq w_1 \leq w_2 \leq \cdots \leq w_k \). Informally, the partial functions \(w_k \) approximate \(w \) as \(k \) increases; more
precisely, for any \(\sigma \in \text{State} \), if \(w(\sigma) = \sigma' \), that is, if the while loop terminates and \(\sigma' \) is the resulting state, then there is some \(k \) such that \(w_k(\sigma) = \sigma' \). Moreover, \(w_n(\sigma) = \sigma' \) for any \(n \geq k \).

But the main question still remains unanswered: how to define the denotation \(w : \text{State} \rightarrow \text{State} \) of the looping statement “while \(b \) do \(s \)?” According to the intuitions above, \(w \) should be some sort of “limit” of the (infinite) sequence of partial functions \(w_0 \leq w_1 \leq w_2 \leq \cdots \leq w_k \leq \cdots \). We next formalize all the intuitions above. Let us define the total function

\[
\mathcal{F} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})
\]

taking partial functions \(\alpha : \text{State} \rightarrow \text{State} \) to partial functions \(\mathcal{F}(\alpha) : \text{State} \rightarrow \text{State} \) as follows:

\[
\mathcal{F}(\alpha)(\sigma) = \begin{cases}
\sigma & \text{if } [b]\sigma = \text{false} \\
\alpha([s] \sigma) & \text{if } [b]\sigma = \text{true} \\
\bot & \text{if } [b]\sigma = \bot
\end{cases}
\]

The partial functions \(w_k \) defined informally above can be now rigorously defined as \(\mathcal{F}^k(\bot) \), where \(\mathcal{F}^k \) stays for \(k \) compositions of \(\mathcal{F} \), and \(\mathcal{F}^0 \) is by convention the identity function, i.e., \(1_{(\text{State} \rightarrow \text{State})} \) (which is total). Indeed, one can show by induction on \(k \) the following property, where \([s]^i \) stays for \(i \) compositions of \([s] : \text{State} \rightarrow \text{State} \) and \([s]^0 \) is by convention the identity (total) function on \(\text{State} \):

\[
\mathcal{F}^k(\bot)(\sigma) = \begin{cases}
[s]^i \sigma & \text{if there is } 0 \leq i < k \text{ s.t. } [b][s]^i \sigma = \text{false} \\
\bot & \text{otherwise}
\end{cases}
\]

We can also show that the following is a chain of partial functions

\[
\bot \leq \mathcal{F}(\bot) \leq \mathcal{F}^2(\bot) \leq \cdots \leq \mathcal{F}^n(\bot) \leq \cdots
\]

in the BCPO \((\text{State} \rightarrow \text{State}, \leq, \bot) \). As intuitively discussed above, this chain incrementally approximates the desired denotation of “while \(b \) do \(s \)”.. The final step is to realize that \(\mathcal{F} \) is a continuous function and thus satisfies the hypotheses of the fixed-point Theorem 1, so we can conclude that the least upper bound (lub) of the chain above, which by Theorem 1 is the least fixed-point \(\text{fix}(\mathcal{F}) \) of \(\mathcal{F} \), is the desired denotation of the while loop, that is,

\[
[w while b do s] = \text{fix}(\mathcal{F})
\]

Remarks. First, note that we indeed want the least fixed-point of \(\mathcal{F} \), and not some arbitrary fixed-point of \(\mathcal{F} \), to be the denotation of the while statement. Indeed, any other fixed-points would define states in which the while loop is intended to be undefined. To be concrete, consider the simple IMP while loop “\(\text{while} \ not(k <= 10) \ do \ k := k + 1 \)” whose denotation is defined only on those states \(\sigma \) with \(\sigma(k) \leq 10 \) and, on those states, it is the identity. That is,

\[
[w \text{while} \ not(k <= 10) \ do \ k := k + 1](\sigma) = \begin{cases}
\sigma & \text{if } \sigma(k) \leq 10 \\
\bot & \text{otherwise}
\end{cases}
\]

Consider now another fixed-point \(\gamma : \text{State} \rightarrow \text{State} \) of its corresponding \(\mathcal{F} \). While \(\gamma \) must still be the identity on those states \(\sigma \) with \(\sigma(k) \leq 10 \) (indeed, \(\gamma(\sigma) = \mathcal{F}(\gamma)(\sigma) = \sigma \) for such \(\sigma \in \text{State} \)), it is not enforced to be undefined on any other states. In fact, it can be shown that the fixed-points of \(\mathcal{F} \) are
precisely those \(\gamma \) as above with the additional property that \(\gamma(\sigma) = \gamma(\sigma') \) for any \(\sigma, \sigma' \in \text{State} \) with \(\sigma(k) > 10, \sigma'(k) > 10, \) and \(\sigma(x) = \sigma'(x) \) for any \(x \neq k \). Such a \(\gamma \) can be, for example, the following:

\[
\gamma(\sigma) = \begin{cases}
\sigma & \text{if } \sigma(k) \leq 10 \\
\iota & \text{otherwise}
\end{cases}
\]

where \(\iota \in \text{State} \) is some arbitrary but fixed state. It is clear that such \(\gamma \) fixed-points are “too informative” for our purpose here, since we want the denotation of the while loop to be undefined in all states in which the loop does not terminate. Any other fixed-point of \(F \) which is strictly more informative that \(\text{fix}(F) \) is simply too informative.

Second, note that the chain \(\bot \leq F(\bot) \leq F^2(\bot) \leq \cdots \leq F^n(\bot) \leq \cdots \) can be stationary in some cases, but in general it is not. For example, when the loop is well-defined and terminates in any state in some fixed maximum number of iterations which does not depend on the state, its denotation is the (total) function in which the chain stabilizes (which in that case is its lub and, by Theorem [1], the fixed-point of \(F \)). For example, the chain corresponding to the loop “while (1 <= k and k <= 10) do k := k + 1” stabilizes in 12 steps, each step adding more states to the domain of the corresponding partial function until nothing can be added anymore: at step 1 all states \(\sigma \) with \(\sigma(k) > 100 \) or \(\sigma(k) < 1 \), at step 2 those with \(\sigma(k) = 10 \), at step 3 those with \(\sigma(k) = 9, \ldots, \) at step 11 those with \(\sigma(k) = 1 \); then no other state is added at step 12, that is, \(F^{12}(\bot) = F^{11}(\bot) \). However, this chain is not stationary in general. For example, the loop “while (k <= 0) do k := k + 1” terminates in any state, but there is no bound on the number of iterations. Consequently, there is no \(n \) such that \(F^n(\bot) = F^{n+1}(\bot) \). Indeed, the later has strictly more information than the former: \(F^{n+1} \) is defined on all those states \(\sigma \) with \(\sigma(k) = -n \), while \(F^n \) is not.

3.7.1 The Denotational Semantics of IMP

Figure 3.50 shows the complete denotational semantics of IMP. There is not much to comment on the denotational semantics of the various IMP language constructs, because they have already been discussed above. Note though that the denotation of conjunction captures the desired short-circuited semantics, in that the second conjunct is evaluated only when the first evaluates to \text{true}. Also, note that the denotation of programs is still a total function for uniformity (in spite of the fact that some programs may not be well-defined or may not terminate), but one into the BCPO \(\text{State} \); thus, the denotation of a program which is not well-defined is \(\bot \). Finally, note that, like in the big-step SOS of IMP in Section 3.2.2 we ignore the non-deterministic evaluation strategies of the + and / arithmetic expression constructs. In fact, since the denotations of the various language constructs are \textit{functions}, non-deterministic constructs cannot be handled in denotational semantics the same way they were handled in operational semantics. There are ways to deal with non-determinism and concurrency in denotational semantics by means of introducing powerset functions that collect all possible behaviors of a construct in a set, but those are more complex and lead to inefficient interpreters when executed, so we do not consider them in this book. We limit ourselves to denotational semantics of deterministic languages.

As already mentioned, one of the major benefits of denotational semantics is that it allows us to formulate and prove properties about programming languages and about programs. We next discuss several such properties and propose some exercises.

Let us calculate the denotation of the statement “\(x := 1 ; y := 2 ; x := 3 \)”, i.e., the function \([x := 1 ; y := 2 ; x := 3] \). Applying the denotation of sequential composition twice, we obtain \([x := 3] \circ [y := 2] \circ [x := 1] \). Applying this composed function on a state \(\sigma \), one
Arithmetic expression constructs

\[\langle AExp \rangle \Rightarrow (\text{State} \rightarrow \text{Int}) \]

\[[i]\sigma = i \]

\[[x]\sigma = \sigma(x) \]

\[[a_1 + a_2]\sigma = [a_1]\sigma +_{\text{int}} [a_2]\sigma \]

\[[a_1 / a_2]\sigma = \begin{cases}
[a_1]\sigma /_{\text{int}} [a_2]\sigma & \text{if} \ [a_2]\sigma \neq 0 \\
\bot & \text{if} \ [a_2]\sigma = 0
\end{cases} \]

Boolean expression constructs

\[\langle BExp \rangle \Rightarrow (\text{State} \rightarrow \text{Bool}) \]

\[[t]\sigma = t \]

\[[a_1 \leq a_2]\sigma = [a_1]\sigma \leq_{\text{int}} [a_2]\sigma \]

\[[\neg b]\sigma = \neg_{\text{bool}}([b]\sigma) \]

\[[b_1 \text{ and } b_2]\sigma = \begin{cases}
[b_2]\sigma & \text{if} \ [b_1]\sigma = \text{true} \\
\text{false} & \text{if} \ [b_1]\sigma = \text{false} \\
\bot & \text{if} \ [b_1]\sigma = \bot
\end{cases} \]

Statement constructs

\[\langle Stmt \rangle \Rightarrow (\text{State} \rightarrow \text{State}) \]

\[[\text{skip}]\sigma = \sigma \]

\[[x := a]\sigma = \sigma([a]\sigma / x) \]

\[[s_1 ; s_2]\sigma = [s_2][s_1]\sigma \]

\[[\text{if } b \text{ then } s_1 \text{ else } s_2]\sigma = \begin{cases}
[s_1]\sigma & \text{if} \ [b]\sigma = \text{true} \\
[s_2]\sigma & \text{if} \ [b]\sigma = \text{false} \\
\bot & \text{if} \ [b]\sigma = \bot
\end{cases} \]

\[[\text{while } b \text{ do } s] = \text{fix}(\mathcal{F}), \quad \text{where } \mathcal{F} : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State}) \text{ defined as} \]

\[\mathcal{F}(\alpha)(\sigma) = \begin{cases}
\alpha([s]\sigma) & \text{if} \ [b]\sigma = \text{true} \\
\sigma & \text{if} \ [b]\sigma = \text{false} \\
\bot & \text{if} \ [b]\sigma = \bot
\end{cases} \]

Programs

\[\langle Pgm \rangle \Rightarrow \text{State} \]

\[[\text{vars } xl ; s] = [s](xl \rightarrow 0) \]

Figure 3.50: \text{DENOT(IMP)}: The denotational semantics of IMP.
gets \((x := 3) \circ (y := 2) \circ (x := 1)\) equals \(\sigma[1/x][2/y][3/x]\); let us denote the later state by \(\sigma'\). By the definition of function update, one can easily see that \(\sigma'\) can be defined as

\[
\sigma'(z) = \begin{cases}
3 & \text{if } z = x \\
2 & \text{if } z = y \\
\sigma(z) & \text{otherwise,}
\end{cases}
\]

which is nothing but \(\sigma[2/y][3/x]\).

Similarly, we can show that \([\text{if } y <= z \text{ then } x := 1 \text{ else } x := 2 ; x := 3]\) is the function taking states \(\sigma\) defined in \(x, y\) and \(z\) to \(\sigma[3/x]\).

Exercise 92. State and prove the (correct) distributivity property of division over addition, using the denotational semantics of the two constructs defined in Figure 3.50.

Exercise 93. Prove the equivalence of statements of the form “\((\text{if } b \text{ then } s_1 \text{ else } s_2) ; s\)” and “\(\text{if } b \text{ then } (s_1 ; s) \text{ else } (s_2 ; s)\)”.

Exercise 94. Prove that the functions \(F\) associated to IMP while loops (see Figure 3.50) satisfy the hypotheses of the fixed-point Theorem 7, so that the denotation of the loops is indeed well-defined. Also, prove that the partial functions \(w_k : \text{State} \rightarrow \text{State}\) defined as

\[
w_k(\sigma) = \begin{cases}
[s]^i\sigma & \text{if there is } 0 \leq i < k \text{ s.t. } [b][s][i]^i\sigma = \text{false} \\
\bot & \text{and } [b][s][j]^j\sigma = \text{true} \text{ for all } 0 \leq j < i \\
\sigma & \text{otherwise}
\end{cases}
\]

are well-defined, that is, that if an \(i\) as above exists then it is unique. Then prove that \(w_k = F^k(\bot)\).

3.7.2 Denotational Semantics in Rewriting Logic

In order to formalize and execute denotational semantics one needs to formalize and execute the fragment of mathematics that is used by the denotation functions. How much mathematics is being used by the denotation functions is open-ended; the denotation of some new language constructs may indeed involve mathematics that was not necessary for the definition of other language constructs, so that mathematics needs to be formalized. We here limit ourselves to the mathematical domain already formalized in Section 2.9.5 which allows us to define and execute higher-order functions and fixed-points for them.

Denotational Semantics of IMP in Rewrite Logic

Figure 3.51 shows a direct representation of the denotational semantics of IMP in Figure 3.50 using the mathematical domain of higher-order functions and fixed-points for them that we formalized in rewriting logic (actually in its membership equational fragment) in Section 2.9.5.

Denotational Semantics of IMP in Maude

Figure 3.52 shows the Maude module corresponding to the rewrite theory in Figure 3.51.
sort:
 Syntax // generic sort for syntax

subsorts:
 AExp, BExp, Stmt, Pgm < Syntax // syntactic categories fall under Syntax
 Int, Bool, State < CPO // basic domains are regarded as CPOs

operation:
 _ : Syntax → [CPO] // denotation of syntax

equations:
 // Arithmetic expression constructs:
 [I] = fun$_{CPO}$ σ → I
 [X] = fun$_{CPO}$ σ → σ(X)
 [A$_1$ + A$_2$] = fun$_{CPO}$ σ → (app$_{CPO}$([A$_1$],σ) +$_{int}$ app$_{CPO}$([A$_2$],σ))
 [A$_1$ / A$_2$] = fun$_{CPO}$ σ → if$_{CPO}$(app$_{CPO}$([A$_2$],σ) /=$_{Bool}$ 0,
 app$_{CPO}$([A$_1$],σ) /$_{int}$ app$_{CPO}$([A$_2$],σ), ⊥)

 // Boolean expression constructs:
 [T] = fun$_{CPO}$ σ → T
 [A$_1$ <= A$_2$] = fun$_{CPO}$ σ → (app$_{CPO}$([A$_1$],σ) ≤$_{int}$ app$_{CPO}$([A$_2$],σ))
 [not B] = fun$_{CPO}$ σ → (not$_{Bool}$ app$_{CPO}$([B],σ))
 [B$_1$ and B$_2$] = fun$_{CPO}$ σ → if$_{CPO}$(app$_{CPO}$([B$_1$],σ), app$_{CPO}$([B$_2$],σ), false)

 // Statement constructs:
 [skip] = fun$_{CPO}$ σ → σ
 [X := A] = fun$_{CPO}$ σ → σ[app$_{CPO}$([A],σ)/X]
 [S$_1$; S$_2$] = fun$_{CPO}$ σ → app$_{CPO}$([S$_2$], app$_{CPO}$([S$_1$],σ))
 [if B then S$_1$ else S$_2$] = fun$_{CPO}$ σ → if$_{CPO}$(app$_{CPO}$([B],σ),
 app$_{CPO}$([S$_1$],σ), app$_{CPO}$([S$_2$],σ))
 [while B do S] = fix$_{CPO}$(fun$_{CPO}$ α → fun$_{CPO}$ σ →
 if$_{CPO}$(app$_{CPO}$([B],σ), app$_{CPO}$(α, app$_{CPO}$([S],σ)), σ))

 // Programs:
 [vars Xl ; S] = app$_{CPO}$([S], (Xl → 0))

Figure 3.51: $R_{DENOT}(IMP)$: The denotational semantics of IMP in rewriting logic.
mod IMP-SEMANTICS-DENOTATIONAL is including IMP-SYNTAX + STATE + CPO.

sort Syntax.
subsorts AExp BExp Stmt Pgm < Syntax.
subsorts Int Bool State < CPO.

op [[_]] : Syntax -> CPO. --- Syntax interpreted in CPOs

var X : Id. var Xl : List{Id}. var I : Int. var A1 A2 A : AExp.
var T : Bool. var B1 B2 B : BExp. var S1 S2 S : Stmt.
ops sigma alpha : -> CPOVar.

eq [[I]] = funCPO sigma -> I.

eq [[X]] = funCPO sigma -> sigma(X).

eq [[A1 + A2]] = funCPO sigma -> (appCPO([[A1]],sigma) +Int appCPO([[A2]],sigma)).

eq [[A1 / A2]] = funCPO sigma -> ifCPO(appCPO([[A2]],sigma) /=Bool 0, appCPO([[A1]],sigma) /Int appCPO([[A2]],sigma), undefined).

eq [[T]] = funCPO sigma -> T.

eq [[A1 <= A2]] = funCPO sigma -> (appCPO([[A1]],sigma) <=Int appCPO([[A2]],sigma)).

eq [[not B]] = funCPO sigma -> (notBool appCPO([[B]],sigma)).

eq [[B1 and B2]] = funCPO sigma -> ifCPO(appCPO([[B1]],sigma),appCPO([[B2]],sigma),false).

eq [[skip]] = funCPO sigma -> sigma.

eq [[X := A]] = funCPO sigma -> sigma[appCPO([[A]],sigma) / X].

eq [[S1 ; S2]] = funCPO sigma -> appCPO([[S2]],appCPO([[S1]],sigma)).

eq [[if B then S1 else S2]]
 = funCPO sigma -> ifCPO(appCPO([[B]],sigma),appCPO([[S1]],sigma),appCPO([[S2]],sigma)).

eq [[while B do S]]
 = fixCPO(funCPO alpha
 -> funCPO sigma
 -> ifCPO(appCPO([[B]],sigma),appCPO(alpha,appCPO([[S]],sigma)),sigma)).

eq [[(vars Xl ; S)]] = appCPO([[S]],(Xl |-> 0)).
endm

Figure 3.52: The denotational semantics of IMP in Maude