
K

A REWRITE-BASED LANGUAGE

DEFINITIONAL FRAMEWORK

Grigore Rosu

CS422 – Programming Language Design

Observation

 The programming language definitional approaches discussed

so far, each with its advantages and disadvantages, have

been faithfully represented in rewriting logic and Maude

 By faithful representation we mean one which preserves everything

the original had: computation granularity (step-for-step), modularity

Rewriting Logic
Big-Step

SOS

MSOS

CHAM

Reduction Semantics

with Evaluation Contexts

Small-Step

SOS

Denotational

Semantics

Natural Questions

 (Q1) Why not use rewriting logic instead as an ideal semantic

framework for programming languages?

 Good question!

 Well, rewriting logic is so general that it is does not tell us how

to define languages in it

 All the various styles we used so far in class and corresponding each

to some well-established semantic approach stand as proof

 (Q2) Can we then develop a particular “ideal” style within

rewriting logic, namely one that has all the advantages of the

other styles at the same time overcoming their limitations?

 That was precisely the motivation for the K framework

 Whether K achieved it or not is, and will probably always be, open

The K Framework

 K started as a style within rewriting logic, but it got its own

concurrent semantics to better directly capture the intended

concurrent semantics of the defined programming languages

 K consists of two components:

 The K definitional technique can be used within any rewriting logic

setting and can be executed on any rewrite engine

 The K concurrent rewrite abstract machine, or the KRAM, brings

more concurrency to K definitions then their direct translation to

rewriting logic gives, but it has no implementation to date; we

only use it as a theoretical model for the time being (same as the

claimed concurrency of the CHAM)

Relationship Between K and SOS

 K, like other styles, borrowed from SOS the ideas of “syntax-

driven semantics” and of “configuration”. Unlike SOS,

 K is based on “rewriting” instead of “reduction”, so permission to

apply rules needs to be taken, instead of given; indeed, in rewriting

rules apply wherever they match, with no contextual restrictions

 K takes permission to apply rules by structural means (it does not

use operator strategies as rewriting logic and Maude, because

those are of limited use in K)

 K rules have no premises (only side conditions)

 In other words, the K computational model is simple and uniform:

 Apply rules wherever they match, provided the side conditions hold

Relationship Between K and MSOS

 K borrowed from MSOS the ideas of labeling semantic items

and of only mentioning in each rule those parts of the

configuration which are relevant to that rule. Unlike in MSOS,

 In K the syntactic and the semantic components are treated

uniformly, the syntax being just another part of the configuration

 In K all syntactic and semantic components are stored in units called

cells, which can be arbitrarily nested and labeled; the labels

themselves can also be rewritten in K

 K’s meaning for the non-mentioned parts of the configuration is

“they can be concurrently changed by other rule instances”; MSOS,

like SOS, is by its very nature an interleaving semantics, because

each step ends up taking place at the top of the configuration

Relationship Between K and RSEC

 K borrowed from reduction semantics with evaluation contexts

(RSEC) the basic idea of “evaluation context”. Unlike RSEC,

 K represents evaluation contexts flattened as sequences of

computational tasks, as we did in CHAM (actually we borrowed that

idea in CHAM from K, since the airlock was not powerful enough to

correctly define the evaluation strategies of IMP’s constructs)

 K does not make any attempt to be faithful to syntax; in particular,

it uniformly supports purely syntactic definitions based on

substitutions, as well as implementation-like definitions of abstract

machines based on environments, stacks, continuations, etc.

 K prefers to use its nested-cell approach to define configurations,

instead of treating the configurations as “syntax” in order to use the

same syntactic mechanisms also for reading/writing semantic info.

Relationship Between K and CHAM

 K borrowed from the CHAM the ideas of representing

configurations as possibly nested bags (or multisets) and of

heating/cooling the syntax, but in a more general setting and

without the chemical load. For example:

 K’s cells can contain not only bags, but also lists, sets and maps

 K’s rules can apply everywhere they match, not only in solutions; if

one wants to limit the application of a rule to solutions only like in

the CHAM, then one can simply mention the membrane in the rule

 K does not use any airlock, because the airlock is unnecessary when

one allows the full power of AC matching, like K does. The CHAM

had the airlock for chemical intuitions and for technical concerns that

multiset matching is not feasible. Today’s advances in rewriting

modulo AC make CHAM’s technical concern a non-issue anymore

Relationship Between K and

Denotational Semantics

 Even though K has not been inspired by denotational semantics,

both are mathematically grounded. Moreover, it should be

possible to associate a denotational semantics to any K

definition as follows (nobody did it formally so far, though):

 K, through its representation in rewriting logic, can be endowed with

an initial model semantics, which can be regarded as “the”

mathematical domain of interpretation for the language syntax

 To achieve that, we need to isolate the syntax from the rest of the

configuration and, instead, to interpret the syntax into the domain of

functions from configurations to configurations

 To define the function associated to each language construct, one

would need to “run” the K semantics, operation which can be

regarded as a fixed-point

K Definitions / K Systems

 K definitions, also called K systems, consist of:

 Configurations

 Nested and labeled associative or associative/commutative “soups”, holding all

necessary information: current computation, environments, stores, threads, etc.

 Computations

 Special list structures extending abstract syntax

 Rules

 Can be structural or computational

 Structural rules allow for re-arrangements of the configuration, in particular of

the computations (we call some of these structural rules heating/cooling rules,

inspired from the CHAM)

 Computational rules are those performing actual computational steps

Configurations

 Nested and labeled cells holding any algebraic structure,

including sets, multisets, lists, maps, etc.

 For example, the configuration of IMP consists of a top-level cell

holding a computation (explained shortly) cell and a state cell:

 Here is a concrete cell holding and empty computation and an

empty state (dots, possibly qualified, are the units of lists, sets,

maps). Both notations below are supported by our implementation

of K (which compiles into Maude):

 K configurations obey the following general syntax:

 Each cell has a label (possibly empty, as the whitespace cell
name above indicates) and can contain anything, including a
bag of other cells. Lists, sets, bags, and maps are assumed
“builtin” and can be used whenever desired. They all have the
dot “.” as unit, which can be qualified with the corresponding
sort name to avoid confusion if desired or needed

Syntax of Configurations

A * means that type

of cell can appear

multiple times

Configuration of CHALLENGE

Computations

 Computations are list terms of special “builtin” sort K, which

have the following form (curved arrow reads “followed by” or

“and then”):

 They extend the syntax of the language and of its evaluation

contexts with the “followed by” construct

 Examples

K Rules

 So far, we only introduced special K syntax, namely syntax

used for configurations and syntax used for computations

 K definitions, or K systems, consist of syntax as above plus a

set of K rules that operate on this syntax by iteratively

transforming terms until they cannot be rewritten anymore

 K rules can be

 Structural, which have no computational meaning and whose role is

to rearrange the term so that computational rules can apply; and

 Computational, which define the computational steps that irreversibly

modify, or evolve, the configuration

K Heating/Cooling Rules

 A special category of K structural rules is particularly

common in K definitions, namely the heating/cooling rules

 Typically reversible

 Typically used to define evaluation strategies

Computational Classes

 Heating/cooling rules lead to classes of computations

(equivalence classes if rules are reversible), for example:

Strictness Notation

 We prefer to annotate syntax as follows:

 Which desugars into heating/cooling rules:

Example: K Annotated Syntax of IMP

K Rules in Their Full Generality

 The heating/cooling rules above are very particular

 In general, K rules can match a pattern and modify only parts of it:

 Example: the K semantics of variable assignment in IMP:

 The _ and the … stand for “whatever”

 The former is just an ordinary nameless variable (like in Prolog)

 The latter used when the cell holds an associative or an associative and

commutative “soup”, case in which it also includes its top-level construct

Discussion on K Rules

 The notation for K rules generalizes usual notation for deduction rules

 Consider a logic and associate it a signature adding syntax for the meta-
logical terms: sorts Theory and Sequent for theories and sequents, operation

 _ _ : Theory × Sentence Sequent

 Now K rules where the pattern p is taken to be empty and the number n of
terms above the line is taken to be 1 and the sort of the term above the line
is Set[Sequent] while the sort of the term below the line is Sequent become
nothing but conventional deduction rules in the considered logic

 When p is empty and n is 1, we prefer to use the conventional rewrite
notation, with arrows (or similar) instead of a horizontal line

 K rules are equivalent with (but more compact than) conventional
rewrite rules when one is not interested in concurrency

 K rules are like transactions: modified parts are read-write, rest of
the pattern is read-only; concurrent rules can share the read-only

Complete K Semantics of IMP

Concurrency in K

 The remaining slides are optional

 They explain why and how K systems achieve “more true

concurrency” than other frameworks

 The slides are quite metaphorical; if interested in the formal

details, then please check the paper

 “An Overview of the K Semantic Framework” in Journal of Logic and

Algebraic Programming, Volume 79, Issue 6, August 2010, Pages

397-434

Why Explicit Data Sharing?

Example: Resource Sharing

O2

• We want photosynthesis to apply concurrently

in spite of the fact that the sun is shared by all

rule instances (that is, rules overlap!)

O2

O2 O2

Why Explicit Data Sharing?

Example: Resource Sharing

Why Explicit Data Sharing?

Example: Mutual Exclusion

• Access to critical resource (water faucet here)

cannot be concurrent, by design.

• Takes two steps to get two glasses of water, in

spite of potential for concurrent execution

Why Explicit Data Sharing?

Example: Mutual Exclusion

Step 1

Why Explicit Data Sharing?

Example: Mutual Exclusion

Step 2

• As conventional rewrite rules, the two rules above
are identical (leaf -> face, sun -> water, …)

• Yet, we want them to have totally different
meaning wrt concurrency semantics!

Conventional Rewrite Rules Are Not

Expressive Enough for Concurrency

O2

Example of K Rule

Resource Sharing

O2

.

The dot “.” is the unit of both bags and lists

Example of K Rule

Resource Sharing – Alternative rule

O2

Example of K Rule

Mutual Exclusion

.

Rewriting Modulo … Insufficient

O2
No way to rearrange soup so that
one can apply two rules
concurrently; one cannot use
idempotency of sun, as
“unexpected” concurrent behaviors
could happen if other rules were
around, e.g., an “eclipse” rule; think
of sun as a shared store.

Special Support for Lists and Bags in K

O2

.
Desugared into a finite

number of multiset

equivalent rules

O

2

.

O2 O2

Special Support for Lists and Bags in K

O

2

.

