CS477 - Formal Software Development Methods

Verification of Sequential Programs

Grigore Roşu
(slides from José Meseguer)

Department of Computer Science
University of Illinois at Urbana-Champaign
We are now ready to consider the verification of sequential imperative programs. We will do so using a subset of the Java programming language.

Of course, for the formal verification of some properties Q about a program P in a sequential imperative language \mathcal{L} to be meaningful at all, our first and most crucial task is to make sure that the programming language \mathcal{L} has a clear and precise mathematical semantics, since only then can we settle mathematically whether a program P satisfies some properties Q.
The issue of giving a mathematical semantics to a programming language \mathcal{L} is actually nontrivial, particularly for imperative languages; it is of course much easier for a declarative language, since we can rely on the underlying logic on which such a language is based.

For example, for a Maude functional module, its mathematical semantics is given by the initial algebra of its equational theory, whereas its operational semantics is based on equational simplification with its equations, which are assumed confluent and terminating.

Some imperative languages have never been given a precise semantics; their only precise documentation may be the different compilers, perhaps inconsistent with each other.
Verification of Imperative Sequential Programs (III)

Of course, there is no reason why we cannot, if we try, give a precise mathematical semantics to a programming language. If the language is very baroque, this may of course be a big task; and if some dark corners are undocumented, a rational reconstruction of the language, making precise what nobody made clear before and perhaps got the compiler writers into trouble, may be needed. But it can be done.

Those who think otherwise, or who would prefer to live with ambiguous programming languages engage in a form of anti-mathematical irrationalism. A quite different question is whether a specific programming language is worth the effort of giving it a mathematical semantics.
In the end, giving mathematical semantics to a programming language \mathcal{L} amounts to giving a mathematical model of the language. This is typically done using some mathematical formalism: either the language of set theory, which is a de-facto universal formalism for mathematics, or some other well-defined formalism.

For sequential imperative languages equational formalisms are quite well-suited to the task. In traditional denotational semantics, a higher-order equational logic, namely the lambda calculus, is used. However, it was pointed out by a number of authors, including Joseph Goguen, that first-order equational logic is perfectly adequate for the task, and has some specific advantages.
Algebraic Semantics of Sequential Languages

The choice of first-order equational logic leads to a form of algebraic semantics of sequential imperative languages in which:

- the semantics of a programming language \mathcal{L} is axiomatized as an equational theory $T_\mathcal{L}$;
- the mathematical semantics of the language is given by the initial algebra $T_{T_\mathcal{L}}$;
- if the equations in $T_\mathcal{L}$ are confluent, this also gives an operational semantics to the language, expressed in terms of equational simplification.
Algebraic Semantics of Sequential Languages (II)

In this setting, the **program correctness question** can be formulated as follows: given a program P in a sequential imperative language \mathcal{L}, and given some properties Q about P (where Q typically involves the text of P) we say that P **satisfies** Q iff,

$$T_{T_{\mathcal{L}}}, = Q.$$

Proof-theoretically, we use an **inductive inference system**, to try to prove,

$$T_{\mathcal{L}} \vdash_{ind} Q.$$
The Syntax of Java: Types

We illustrate these ideas with a fragment of Java. This fragment includes arithmetic expressions, assignments, sequential composition and loops.

We start with defining types for this language.

fmod TYPE is
 sort Type .
 sort TypeWithOutArr .
 subsort TypeWithOutArr < Type .
 ops int boolean String : -> TypeWithOutArr .
endfm
The Syntax of Java: Names

Next we introduce names which will be the basis of variables. Please note that the equalName operator is not part of the actual Java syntax but rather an extra operator.

```plaintext
fmod NAME is ex QID .
    pr INT .
    pr STRING .
    pr BOOL .
sorts Name NameList .
subsort Qid < Name < NameList .
op _[] : Name -> Name [prec 50] .
op ‘(‘) : -> NameList .
op _,_ : NameList NameList -> NameList [assoc id: ()] .

    op equalName : Name Name -> Bool .
endfm
```
The Syntax of Java: Variables

Variables are defined this way:

```plaintext
fmod VAR-SYNTAX is ex NAME .
  sorts Var Vars .
  subsort Name < Var < Vars .
  subsort NameList < Vars .
  op _,_ : Vars Vars -> Vars [ditto] .
endfm
```
This is our definition of generic expressions. Note the lists of expressions.

```plaintext
fmod GENERIC-EXP-SYNTAX is ex VAR-SYNTAX .
    sorts Exp Exps StExp .
    subsort Var StExp < Exp < Exps .
    subsort Vars < Exps .
    op #i : Int -> Exp .
    op #s : String -> Exp .
    op #b : Bool -> Exp .
endfm
```
The Syntax of Java: Arithmetic Expressions

The arithmetic expressions are defined in the following way. In Java they are left-associative which is what the gather pattern assures.

\[
\text{fmod ARITH-EXP-SYNTAX is ex GENERIC-EXP-SYNTAX .}
\]
\[
\text{ops } +__\,-__ : \text{Exp Exp } \to \text{Exp [prec 40 gather(E e)] .}
\]
\[
\text{ops } *__\,/__/ \text{__\: Exp Exp } \to \text{Exp [prec 35 gather(E e)] .}
\]
\[
\text{op } -__ : \text{Exp } \to \text{Exp [prec 33] .}
\]
\[
\text{endfm}
\]
The Syntax of Java: Examples

Program variables, of sort \texttt{Var}, are terms of the form \texttt{’Q} with \texttt{Q} a character string such as "\texttt{foo}". They are, of course, completely different from the mathematical variables that we use in equations.

Arithmetic expressions, of sort \texttt{Exp}, are then expressions formed from variables and integer constants using the usual arithmetic operations. For example,

\begin{verbatim}
’X

#i(99)

’X + (#i(7) * ’Y)

’Z - (- ’X + (#i(12) * ’W))
\end{verbatim}
The Syntax of Java: Comparison and Bool Expressions

This defines the syntax of comparisons and boolean connectives.

```lisp
fmod REXP-SYNTAX is ex GENERIC-EXP-SYNTAX .
    ops _==_ _!=_ _<_ _<=_ _>_ _>=_ : Exp Exp -> Exp [prec 45] .
endfm

fmod BEXP-SYNTAX is ex GENERIC-EXP-SYNTAX .
endfm
```

For example, ‘X == #i(7)’ is using a comparison and a boolean connective is used in ‘X == #i(7) && B’. Both are of sort Exp.
Arrays are composed in this way and the syntax of new is straightforward.

fmod ARRAY-SYNTAX is ex TYPE .
 ex GENERIC-EXP-SYNTAX .
 op _[] : Type -> Type [prec 20] .
 op _[] : Type Exp -> Type [prec 20] .
endfm

fmod NEW-SYNTAX is ex ARRAY-SYNTAX .
 ex GENERIC-EXP-SYNTAX .
 op new_ : Type -> Exp [prec 25 gather(E)] .
endfm

As an example, int[] and int[#i(5)] are of the type integer array, and a[b] is the variable at position b in the array a. A new integer array of length 5 is defined by new int[#i(5)].
Next let us present assignments.

\[
\text{fmod \ ASSIGNM-EXP-SYNTAX is ex GENERIC-EXP-SYNTAX .}
\]
\[
\text{op _=_ : Var Exp \rightarrow StExp \ [prec \ 60] .}
\]
\endfm

An example StExp is \('X = 'Y + \#i(7) \).
The Syntax of Java: Declaration

This leads us to **declarations**.

\[
\text{fmod DECLA-RTN-SYNTAX is pr TYPE .}
\]

\[
\text{ex ASSIGNM-EXP-SYNTAX .}
\]

\[
\text{sort Declaration Declarators .}
\]

\[
\text{subsort Name < Declarators .}
\]

\[
\text{subsort StExp < Declarators .}
\]

\[
\text{op __ : Type Declarators \rightarrow Declaration [prec 70] .}
\]

endfm

A **Declarator** is for example ’X or ’X = #i(0) and so a **Declaration** would be for example int ’X = #i(0).
The Syntax of Java: Blocks

Next let us present blocks.

fmod BLOCK-SYNTAX is
 sorts Block BlockStatements .
 subsort Block < BlockStatements .
 op ; : -> Block .
 op {_} : BlockStatements -> Block .
 op __ : BlockStatements BlockStatements -> BlockStatements
 [assoc prec 125] .
endfm

Any code (i.e. any BlockStatements) can be put into a Block by means of the {_} operator.
Let us now look at statements:

```fmod
STATEMENT-SYNTAX is ex BLOCK-SYNTAX .
    pr QID .
    sort Statement .
    subsort Block < Statement < BlockStatements .
endfm
```

```fmod
EXP-STATEMENT-SYNTAX is ex STATEMENT-SYNTAX .
    ex GENERIC-EXP-SYNTAX .
    op _; : StExp -> Statement [prec 110] .
endfm
```

```fmod
DECLARATION-STATEMENT-SYNTAX is ex DECLARATION-SYNTAX .
    ex STATEMENT-SYNTAX .
    op _; : Declaration -> Statement [prec 75] .
endfm
```

A BlockStatements example is: 'X = i(0) ; int 'Y ;. }
The Syntax of Java: Conditional

Here is the definition of conditionals.

fmod IF-SYNTAX is ex STATEMENT-SYNTAX .
 ex GENERIC-EXP-SYNTAX .
endfm

An example for a Statement of this type is:

if ('X <= 'Y) 'X = #i(0) ;
 else {'X = 'Y - #i(1) ; Y = Y + #i(1) ;}
The Syntax of Java: Loops

Now we want to show the `while` and `do while` loops.

```plaintext
fmod WHILE-SYNTAX is ex STATEMENT-SYNTAX .
   ex GENERIC-EXP-SYNTAX .
endfm

fmod DO-SYNTAX is ex STATEMENT-SYNTAX .
   ex GENERIC-EXP-SYNTAX .
endfm

A loop example is:
while (’X < #i(10)) ’X = ’X + #i(1) ;
```
There are also for loops in our language.

\[
\text{fmod FOR-SYNTAX is ex STATEMENT-SYNTAX .} \\
\quad \text{ex GENERIC-EXP-SYNTAX .} \\
\quad \text{ex DECLARATION-SYNTAX .} \\
\quad \text{op for(_;_;_)}_ : \text{Exps Exp Exps Statement -> Statement [prec 110] .} \\
\quad \text{op for(_;_;_)}_ : \text{Declaration Exp Exps Statement -> Statement [prec 110] .} \\
\text{endfm}
\]
This puts all parts of the syntax together:

```plaintext
fmod JAVA-SYNTAX is
  ex ARITH-EXP-SYNTAX .
  ex REXP-SYNTAX .
  ex BEXP-SYNTAX .
  ex ARRAY-SYNTAX .
  ex NEW-SYNTAX .
  ex ASSIGNM-EXP-SYNTAX .
  ex DECLARATION-SYNTAX .
  ex DECLARATION-STATEMENT-SYNTAX .
  ex EXP-STATEMENT-SYNTAX .
  ex IF-SYNTAX .
  ex WHILE-SYNTAX .
  ex DO-SYNTAX .
  ex FOR-SYNTAX .
sort Pgm .
subsort BlockStatements < Pgm .
endfm
```
We can now take a look at a few examples and let Maude parse them using the syntax we defined.

```plaintext
parse int 'x = #i(5); int 'y = #i(4); {'x = #i(42); } 'x = 'x + 'y; .
parse int 'x = #i(5); int 'y = #i(4); {int 'x = #i(42); } 'x = 'x + 'y; .
parse int 'x = #i(0); if #b(false)
    if #b(true) 'x = #i(1);
    else 'x = #i(2); .
parse int 'a = #i(3); int 'b = #i(2); int 'c = #i(1);
    int 'd = 'a - 'b + 'c; .
parse int 'x = #i(7); int 'y = #i(5); int 't = 'x; 'x = 'y; 'y = 't; .
parse int 'n = #i(5); int 'c = #i(0); int 'x = #i(1);
    while ('c < 'n) { 'c = 'c + #i(1); 'x = 'x * 'c; } .
```
So far, we have only described the syntax of our language. To describe its semantics we must specify how the execution of such programs affects the state infrastructure containing the values for the program variables (among other information).

The state infrastructure is defined by the following modules, where we separately present the locations, environments, values, stores and continuations that make up the state.
The Infrastructure for Java: Location

A program variable will not be directly mapped to its value but to a location in the store. This leads to a two level mapping of variables to locations on the one hand and locations to values on the other. This just shows what a location is, an example location is l(17).

```plaintext
fmmod LOCATION is

  protecting INT .

  sorts Location LocationList .

  subsort Location < LocationList .

  op noLoc : -> LocationList .

  op _,_ : LocationList LocationList -> LocationList [assoc id: noLoc] .

  op l : Nat -> Location .

endfm
```
The Infrastructure for Java: Environment

This module defines what an environment is and also gives equations on how to change it.

fmod ENVIRONMENT is protecting LOCATION .
 protecting NAME .
 sort Env .
 op noEnv : -> Env .
 op [_,_,_] : Name Location -> Env .
 op __ : Env Env -> Env [assoc comm id: noEnv] .

vars X Y : Name . vars Env : Env . vars L L’ : Location .
var Xl : NameList . var Ll : LocationList .
op _[_<-_] : Env NameList LocationList -> Env .
op _[_<-_] : Env Name Location -> Env .
eq Env[() <- noLoc] = Env .
The Infrastructure for Java: Environment (II)

\[
eq ([X,L] \text{Env})[X \leftarrow L'] = ([X,L'] \text{Env}) .
\]

\[
\text{ceq} ([Y, L] \text{Env})[X \leftarrow L'] = [Y, L] (\text{Env} [X \leftarrow L'])
\]

\[
\text{if equalName}(Y, X) = \text{false} .
\]

\[
\text{eq noEnv} [X \leftarrow L'] = [X,L'] .
\]

endfm

The environment \([’X, 1(1)] [’Y, 1(2)] [’X,’Y,’Z \leftarrow 1(3),1(4),1(5)]\) evaluates thus to \([’X,1(3)] [’Y,1(4)] [’Z,1(5)]\).
Values and stores are defined like this. No equations are given for the store though (unlike for the environment).

```plaintext
fmod VALUE is
  sorts Value ValueList .
  subsort Value < ValueList .
  op noVal : -> ValueList .
endfm

fmod STORE is protecting LOCATION .
  extending VALUE .
  sort Store .
  op noStore : -> Store .
  op [_,_] : Location Value -> Store .
  op __ : Store Store -> Store [assoc comm id: noStore] .
endfm
```
The environments and stores are defined in a pretty concrete way for this language. Using a more abstract environment/store concept would have its advantages from the point of view of program verification.

A more abstract concept of environment/stores does not work nicely with the side-effects and hiding that are possible in our language though, so we settled with the concrete variant. This is also done so we can extend this subset of Java to a more complete version of Java in the future.
Within continuations all the execution context is stored. This can be viewed as “the rest of the program” which needs to be executed. The two operators shown here are the ending point of an execution. Within the semantics we will define other operators with co-domain Continuation as needed.

fmod CONTINUATION is

 sort Continuation .
 op stop : -> Continuation .
 op res : -> Continuation .
endfm
The Infrastructure for Java: Arrays

The arrays are represented this way. The array environment maps indices (of sort Int) to locations. An array is built as a(Type, [0, Loc]) for example.

fmod ARRAY-ENV is ex INT . ex LOCATION . pr TYPE .
 sort ArrayEnv .
 op noArrayEnv : -> ArrayEnv .
 op [_,_] : Int Location -> ArrayEnv .
 op __ : ArrayEnv ArrayEnv -> ArrayEnv [assoc comm id: noArrayEnv] .
endfm

fmod ARRAY is ex ARRAY-ENV . ex VALUE .
 sort Array .
 subsort Array < Value .
 op a : Type ArrayEnv -> Array .
endfm
The outputs of our language are values, wrapped in specific operators and connected as below:

\[\text{fmod OUTPUT is ex VALUE .} \]
\[\text{ex STORE .} \]
\[\text{sort Output .} \]
\[\text{op O : Value -> Output .} \]
\[\text{op O : Value Store -> Output .} \]
\[\text{op noOutput : -> Output .} \]
\[\text{op _,_ : Output Output -> Output [assoc id: noOutput] .} \]
\[\text{endfm} \]
The state is made up of state attributes which are the environment, store, output and a counter for the next free memory location each wrapped in some operator. It has the usual multiset union composition operator.

```fmod
STATE is extending ENVIRONMENT . extending STORE .
    extending CONTINUATION . ex OUTPUT .
sorts StateAttribute MyState .
subsort StateAttribute < MyState .
op empty : -> MyState .
op e : Env -> StateAttribute .
op n : Nat -> StateAttribute .
op m : Store -> StateAttribute .
op out : Output -> StateAttribute .
```
sort SuperState .
sort WrappedState .
subsort WrappedState < SuperState .
op noState : -> WrappedState .
op state : MyState -> WrappedState .
op k : Continuation -> SuperState .
op _,_ : WrappedState WrappedState -> WrappedState
 [assoc comm id: noState] .
op _,_ : SuperState SuperState -> SuperState
 [assoc comm id: noState] .
endfm

This is some more of the state which is needed because we did not want the context, i.e. the Continuation, to be part of the state but to be composable with it. So instead of having e(..), m(..), n(..), out(..), k(..) we now have state(e(..), m(..), n(..), out(..)), k(..) which is of sort SuperState.
The Infrastructure for Java: Helpers

There are a few helper functionalities which are needed that are not part of Java but which we use in our evaluation of Java code. This operator returns the value of a variable in a given state.

\[
\text{var MYS : MyState . var V : Value . var X : Name .} \\
\text{var L : Location . var Env : Env . var M : Store .} \\
\text{op __[__] : WrappedState Name -> Value .} \\
\text{eq state((MYS, e([X,L] Env), m([L,V] M)))[X] = V .}
\]
The Infrastructure for Java: Helpers (II)

These equations are needed to get non-ground term reduced in the decision procedure we use for proving properties of programs.

\[
\begin{align*}
\text{vars I J I' : Int.} \\
\text{eq 0 + I = I.} \\
\text{eq _-_*(I, J) = I + (- J).} \\
\text{eq I' * (I + J) = (I' * I) + (I' * J).}
\end{align*}
\]
The Infrastructure for Java: Helpers (III)

These operators extract the initial, guard and body parts of a loop respectively.

\[
\begin{align*}
\text{op extInit} &: \text{BlockStatements} \rightarrow \text{BlockStatements} . \\
\text{op extGuard} &: \text{BlockStatements} \rightarrow \text{Exp} . \\
\text{op extBody} &: \text{BlockStatements} \rightarrow \text{BlockStatements} . \\
\end{align*}
\]

\[
\begin{align*}
\text{var BS} &: \text{BlockStatements} . \text{var E} &: \text{Exp} . \text{var S} &: \text{Statement} . \\
\text{eq extInit(while E S)} &= ; . \\
\text{eq extInit(BS while E S)} &= BS . \\
\text{eq extBody(while E S)} &= S . \\
\text{eq extBody(BS while E S)} &= S . \\
\text{eq extGuard(while E S)} &= E . \\
\text{eq extGuard(BS while E S)} &= E . \\
\end{align*}
\]
The first two operators allow for expression and value lists on the top of a continuation. The int operator creates a value of an integer. The semantics of an integer expression is to become an integer value. This module is the foundation upon which all the following semantic equations rely. Most equations here transform non-Java syntax intermediate continuations which are created by the rules for each feature.

fmod GENERIC-EXP-SEMANTICS is protecting GENERIC-EXP-SYNTAX .
 protecting STATE .
 op _->_ : Exps Continuation -> Continuation .
 op _->_ : ValueList Continuation -> Continuation .
 op int : Int -> Value .
 op str : String -> Value .
The Semantics of Java: Generic Expressions (II)

Integer and string expressions become integer, respectively string, values.

\[\begin{align*}
&\text{vars } E E' : \text{Exp} \quad \text{var } E_1 : \text{Exps} \\
&\text{vars } V V' : \text{Value} \quad \text{var } V_1 V_1' : \text{ValueList} \\
&\text{var } L : \text{Location} \quad \text{var } L_1 : \text{LocationList} \\
&\text{var } I : \text{Int} \quad \text{var } K : \text{Continuation} \\
&\text{var } M : \text{Store} \quad \text{vars } \text{Env} \text{ Env}' : \text{Env} \\
&\text{var } \text{str} : \text{String} \quad \text{var } \text{MYS} : \text{MyState} \\
\end{align*} \]

\[\begin{align*}
&\text{eq } k(#i(I) \to K) = k(\text{int}(I) \to K) \\
&\text{eq } k(#s(\text{str}) \to K) = k(\text{str}(\text{str}) \to K) \\
\end{align*} \]
This makes sure that a list of expressions E_1, E_2, E_3, \ldots is evaluated in the given order and has the result V_1, V_2, V_3, \ldots where V_i is the result of E_i's evaluation. This is useful to have arguments of a function evaluated. We also always focus only on the first elements of the continuation which is enough because of the way we defined it.

\begin{align*}
\text{op } [_|_] & \rightarrow _ : \text{Exps ValueList Continuation } \rightarrow \text{Continuation} . \\
eq k((E,E',E_1) \rightarrow K) &= k(E \rightarrow [E',E_1 \mid \text{noVal}] \rightarrow K) . \\
eq k(V \rightarrow [(\mid V_1] \rightarrow K) &= k((V_1,V) \rightarrow K) . \\
eq k(V \rightarrow [E,E_1 \mid V_1] \rightarrow K) &= k(E \rightarrow [E_1 \mid V_1,V] \rightarrow K) . \\
eq k(\) \rightarrow K) &= k(\text{noVal} \rightarrow K) .
\end{align*}
Lists of locations can also be on the top of a continuation, as well as the `change` operator which will change the value at the given location to the given value. This will be helpful to define assignments when no result is needed.

\[
\text{op } _{-}\rightarrow_{-} : \text{LocationList Continuation} \rightarrow \text{Continuation}.
\]

\[
\text{op } \text{change} (_{-},_,_) \rightarrow _{-} : \text{Value Location Continuation} \rightarrow \text{Continuation}.
\]

\[
\text{eq } k(\text{noVal} \rightarrow \text{noLoc} \rightarrow K), \text{state}(m(M), \text{MYS}) = k(K), \text{state}(m(M), \text{MYS}).
\]

\[
\text{eq } k((V, Vl) \rightarrow (L, Ll) \rightarrow K), \text{state}(m([L, V'] M), \text{MYS})
\]

\[
= k(\text{change}(V, L) \rightarrow (Vl \rightarrow Ll \rightarrow K)), \text{state}(m([L, V'] M), \text{MYS}).
\]

\[
\text{eq } k(\text{change}(V, L) \rightarrow K), \text{state}(m([L, V'] M), \text{MYS})
\]

\[
= k(K), \text{state}(m([L, V] M), \text{MYS}).
\]
Here \texttt{set\&fetch} creates a second copy of the values that are assigned. Once all the values of the value list are assigned to the locations of the location list the only thing left (outside of the rest \texttt{K}) will be exactly the copy of the value list. This allows assignments where the result is also directly used afterwards.

\begin{verbatim}
 op set\&fetch__ : LocationList Continuation \rightarrow Continuation .

 eq k(Vl \rightarrow set\&fetch(Ll) \rightarrow K) = k(Vl \rightarrow Ll \rightarrow Vl \rightarrow K) .
\end{verbatim}
The Semantics of Java: Generic Expressions (VI)

Restoring environments is important. It can be done while keeping some values on top of the continuation or without such values. This will be used for the handling of blocks.

\[
\text{op } _\rightarrow_ : \text{Env Continuation } \rightarrow \text{ Continuation} .
\]

\[
\begin{align*}
\text{eq } k(Vl \rightarrow \text{Env } \rightarrow K), \text{state}(e(\text{Env}'), \text{MYS}) \\
= k(Vl \rightarrow K), \text{state}(e(\text{Env}), \text{MYS}) . \\
\text{eq } k(\text{Env } \rightarrow K), \text{state}(e(\text{Env}'), \text{MYS}) \\
= k(K), \text{state}(e(\text{Env}), \text{MYS}) .
\end{align*}
\]

\text{endfm}
The Semantics of Java: Locations

This gives the semantics for locations on the continuation and will be used to get the location of a variable.

fmod LOCATION-SEMANTICS is ex GENERIC-EXP-SEMANTICS . pr ARRAY-SYNTAX .
pr ARRAY .
op loc_ -> _ : Exp Continuation -> Continuation .
op loc -> _ : Continuation -> Continuation .
vars E E' : Exp . var L : Location . var X : Name .
var I : Int . var K : Continuation . var Env : Env .
var T : Type . var aEnv : ArrayEnv . var MYS : MyState .
eq k(loc(X) -> K), state(e([X, L] Env), MYS)
 = k(L -> K), state(e([X, L] Env), MYS) .
eq k(loc(E [E']) -> K) = k((E, E') -> loc -> K) .
eq k((a(T, [I,L] aEnv), int(I)) -> loc -> K) = k(L -> K) .
endfm
The Semantics of Java: Arithmetic Expressions

This gives the semantics for arithmetic expressions. Take for example addition, here first the two arguments are evaluated and then, if they are both integers, they are added together. All other operators are defined similarly.

```
fmod ARITH-EXP-SEMANTICS is protecting ARITH-EXP-SYNTAX .
  extending GENERIC-EXP-SEMANTICS .
  op + -> _ : Continuation -> Continuation .
  op - -> _ : Continuation -> Continuation .
  op * -> _ : Continuation -> Continuation .
  op / -> _ : Continuation -> Continuation .
  op % -> _ : Continuation -> Continuation .
  vars E E' : Exp .  var K : Continuation .  vars I I' : Int .
  vars str str' : String .
  eq k((E + E') -> K) = k((E,E') -> + -> K) .
  eq k((int(I), int(I')) -> + -> K) = k(int(I + I') -> K) .```
The Semantics of Java: Arithmetic Expressions (II)

\[
\begin{align*}
\text{eq } & k((E - E') \rightarrow K) = k((E,E') \rightarrow - \rightarrow K). \\
\text{eq } & k((\text{int}(I), \text{int}(I')) \rightarrow - \rightarrow K) = k(\text{int}(I - I') \rightarrow K). \\
\text{eq } & k((- E) \rightarrow K) = k(E \rightarrow - \rightarrow K). \\
\text{eq } & k(\text{int}(I) \rightarrow - \rightarrow K) = k(\text{int}(- I) \rightarrow K). \\
\text{eq } & k((E * E') \rightarrow K) = k((E,E') \rightarrow * \rightarrow K). \\
\text{eq } & k((\text{int}(I), \text{int}(I')) \rightarrow * \rightarrow K) = k(\text{int}(I * I') \rightarrow K). \\
\text{eq } & k((E / E') \rightarrow K) = k((E,E') \rightarrow / \rightarrow K). \\
\text{eq } & k((\text{int}(I), \text{int}(I')) \rightarrow / \rightarrow K) = k(\text{int}(I \text{ quo } I') \rightarrow K). \\
\text{eq } & k((E \% E') \rightarrow K) = k((E,E') \rightarrow \% \rightarrow K). \\
\text{eq } & k((\text{int}(I), \text{int}(I')) \rightarrow \% \rightarrow K) = k(\text{int}(I \text{ rem } I') \rightarrow K). \\
\text{endfm}
\]
The semantics of comparisons are defined similarly to those of arithmetic expressions. First evaluate the subexpressions and then compare the results. They are all defined similarly.

```plaintext
fmod REXP-SEMANTICS is pr REXP-SYNTAX .
 extending GENERIC-EXP-SEMANTICS .
op bool : Bool -> Value .
op == -> _ : Continuation -> Continuation .
op != -> _ : Continuation -> Continuation .
op < -> _ : Continuation -> Continuation .
op <= -> _ : Continuation -> Continuation .
op > -> _ : Continuation -> Continuation .
op >= -> _ : Continuation -> Continuation .
vars E E’ : Exp . var K : Continuation .
vars I I’ : Int . vars B B’ : Bool .
eq k(#b(B) -> K) = k(bool(B) -> K) .
```
The Semantics of Java: Comparisons (II)

\[ eq \ k((E == E') \rightarrow K) = k((E,E') \rightarrow == \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow == \rightarrow K) = k(\text{bool}(I == I') \rightarrow K) . \]
\[ eq \ k((E != E') \rightarrow K) = k((E,E') \rightarrow != \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow != \rightarrow K) = k(\text{bool}(\text{not} (I == I')) \rightarrow K) . \]
\[ eq \ k((E >= E') \rightarrow K) = k((E,E') \rightarrow >= \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow >= \rightarrow K) = k(\text{bool}(I >= I') \rightarrow K) . \]
\[ eq \ k((E > E') \rightarrow K) = k((E,E') \rightarrow > \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow > \rightarrow K) = k(\text{bool}(I > I') \rightarrow K) . \]
\[ eq \ k((E <= E') \rightarrow K) = k((E,E') \rightarrow <= \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow <= \rightarrow K) = k(\text{bool}(I <= I') \rightarrow K) . \]
\[ eq \ k((E < E') \rightarrow K) = k((E,E') \rightarrow < \rightarrow K) . \]
\[ eq \ k((\text{int}(I), \text{int}(I')) \rightarrow < \rightarrow K) = k(\text{bool}(I < I') \rightarrow K) . \]

endfm
The Semantics of Java: Boolean Expressions

The evaluation of boolean expressions is a bit more complicated, the simple case, negation, can be seen here, conjunction and disjunction follow.

\[
\text{fmod BEXP-SEMANTICS is pr BEXP-SYNTAX . ex REXP-SEMANTICS .}
\]

\[
\begin{align*}
\text{op } &! \rightarrow _ : \text{Continuation } \rightarrow \text{Continuation .} \\
\text{op } && \rightarrow _ : \text{Continuation } \rightarrow \text{Continuation .} \\
\text{op } || \rightarrow _ : \text{Continuation } \rightarrow \text{Continuation .}
\end{align*}
\]

\[
\begin{align*}
\text{vars } &E E' : \text{Exp . var } K : \text{Continuation .} \\
\text{vars } &I I' : \text{Int . vars } B B' : \text{Bool .}
\end{align*}
\]

\[
\begin{align*}
\text{eq } k((! E) \rightarrow K) &= k(E \rightarrow ! \rightarrow K) . \\
\text{eq } k(bool(B) \rightarrow ! \rightarrow K) &= k(bool(not B) \rightarrow K) .
\end{align*}
\]
The evaluation of boolean expressions needs a bit more subtlety. According to the Java Language Specification the result of a conjunction is \texttt{false} whenever the first argument evaluates to \texttt{false} and in that case the second argument is not evaluated! The definition for disjunction works similarly.

\[
\begin{align*}
\text{eq } k((E \&\& E') \rightarrow K) &= k(E \rightarrow \&\& \rightarrow (E' \rightarrow K)) . \\
\text{eq } k(\text{bool}(false) \rightarrow \&\& \rightarrow (E' \rightarrow K)) &= k(\text{bool}(false) \rightarrow K) . \\
\text{eq } k(\text{bool}(true) \rightarrow \&\& \rightarrow (E' \rightarrow K)) &= k(E' \rightarrow \&\& \rightarrow (\text{bool}(true) \rightarrow K)) . \\
\text{eq } k(\text{bool}(B) \rightarrow \&\& \rightarrow (\text{bool}(B') \rightarrow K)) &= k(\text{bool}(B' \text{ and } B) \rightarrow K) .
\end{align*}
\]

\[
\begin{align*}
\text{eq } k((E \mid\mid E') \rightarrow K) &= k(E \rightarrow \mid\mid \rightarrow (E' \rightarrow K)) . \\
\text{eq } k(\text{bool}(true) \rightarrow \mid\mid \rightarrow (E' \rightarrow K)) &= k(\text{bool}(true) \rightarrow K) . \\
\text{eq } k(\text{bool}(false) \rightarrow \mid\mid \rightarrow (E' \rightarrow K)) &= k(E' \rightarrow \mid\mid \rightarrow (\text{bool}(false) \rightarrow K)) . \\
\text{eq } k(\text{bool}(B) \rightarrow \mid\mid \rightarrow (\text{bool}(B') \rightarrow K)) &= k(\text{bool}(B' \text{ or } B) \rightarrow K) .
\end{align*}
\]
\text{endfm}
The Semantics of Java: Assignment

The definition of assignment makes use of the previously defined set&fetch and loc operators and is therefore straightforward.

fmod ASSIGNM-EXP-SEMANTICS is ex ASSIGNM-EXP-SYNTAX .
   ex GENERIC-EXP-SEMANTICS .
   ex LOCATION-SEMANTICS .
pr ARITH-EXP-SEMANTICS .
op =_ -> _ : Exp Continuation -> Continuation .
var E : Exp . var K : Continuation .
var L : Location .
var X : Var .
eq k((X = E) -> K) = k(loc(X) -> = (E) -> K) .
eq k(L -> = (E) -> K) = k(E -> set&fetch(L) -> K) .
endfm
The Semantics of Java: Arrays

Arrays are accessed in the obvious way. Giving an integer as an argument to the array, if that index is defined then the corresponding memory location is accessed and the value returned.

fmod ARRAY-SEMANTICS is ex ARRAY-SYNTAX .
ex GENERIC-EXP-SEMANTICS .
ex ARRAY .
op [] -> _ : Continuation -> Continuation .
vars E E' : Exp . var T : Type . var aEnv : ArrayEnv . var M : Store .
var I : Int . var L : Location . var V : Value . var K : Continuation .
var MYS : MyState .
eq k((E [ E' ]) -> K) = k((E, E') -> [] -> K) .
eq k((a(T, [I,L] aEnv), int(I)) -> [] -> K), state(m([L,V] M), MYS) = k(V -> K), state(m([L,V] M), MYS) .
endfm
In our subset of Java field access boils down to retrieving the value a (local) variable has, as arrays are handled separately. This also uses a previously defined helper operator.

\[
\text{fmod FIELD-SEMANTICS is ex GENERIC-EXP-SEMANTICS . ex LOCATION-SEMANTICS .}
\text{ex HELPING-OPERATORS .}
\text{var X : Name . var K : Continuation .}
\text{var MYS : MyState .}
\text{eq k(X \to K), state(MYS) = k((state(MYS)[X]) \to K), state(MYS) .}
\text{endfm}
\]
The Semantics of Java: Types

The types of declarations and values are defined this way. These are also helper operators and not part of the Java syntax.

\[\text{fmod GET-TYPES is ex TYPE . ex GENERIC-EXP-SEMANTICS . ex ARRAY-SEMANTICS . ex DECLARATION-SYNTAX .} \]
\[\text{op GetType : Declaration -> Type .} \]
\[\text{var qid : Qid . vars T : Type . var dn : Name . var E : Exp .} \]
\[\text{var I : Int . var str : String . var aEnv : ArrayEnv .} \]
\[\text{eq GetType(T qid) = T .} \]
\[\text{eq GetType(T dn[]) = GetType((T []) dn) .} \]
\[\text{eq GetType(T dn = E) = GetType(T dn) .} \]
\[\text{op GetType : Value -> Type .} \]
\[\text{eq GetType(int(I)) = int .} \]
\[\text{eq GetType(str(str)) = String .} \]
\[\text{eq GetType(a(T, aEnv)) = T .} \]
\text{endfm}
The Semantics of Java: Blocks

The semantics of blocks is that all changes to the environment that happen within the block are discarded at the end of the block. Otherwise the execution proceeds as usual.

\[
\text{fmod BLOCK-SEMANTICS is ex BLOCK-SYNTAX.}
\]

\[
\text{ex GENERIC-EXP-SEMANTICS.}
\]

\[
\text{op } _ \rightarrow_ : \text{BlockStatements Continuation } \rightarrow \text{Continuation.}
\]

\[
\text{var K : Continuation. var bs : BlockStatements. var Env : Env.}
\]

\[
\text{var MYS : MyState.}
\]

\[
\text{eq k( ; } \rightarrow \text{K) } = \text{k(K).}
\]

\[
\text{eq k({bs} } \rightarrow \text{K), state(e(Env), MYS)}
\]

\[
= \text{k(bs } \rightarrow \text{Env } \rightarrow \text{K), state(e(Env), MYS).}
\]

endfm
For declarations we first evaluate the expression that is assigned to the newly declared variable, if there is any. Then the variable is mapped to the next free location in the environment and that location is mapped to the initial value of the appropriate type in the store. If there is an assignment to the variable it is processed next, see next slide.

```plaintext
fmod DECLARATION-SEMANTICS is ex DECLARATION-STATEMENT-SYNTAX .
 ex GENERIC-EXP-SEMANTICS . ex GET-TYPES . ex BLOCK-SEMANTICS .
 op _ -> _ : Declaration Continuation -> Continuation .
 var T : Type . var K : Continuation . var dn : Name .
 var E : Exp . var Env : Env . var V : Value . var N : Int .
 var M : Store . var qid : Qid . var dc : Declaration .
 var bs : BlockStatements . var MYS : MyState .
 eq k((dc ;) -> K) = k(dc -> K) .
 eq k(((dc ;) bs) -> K) = k(dc -> bs -> K) .
```
The Semantics of Java: Declarations (II)

For this we also need to be able to get the name out of a declaration and define the initial values of any type, as in Java, unlike C/C++, a '0' value is assigned to each newly declared variable. GetName and alloc will be defined next.

\[
\begin{align*}
\text{eq } & k((T \ dn = E) \to K) = k(E \to (T \ dn) \to K) . \\
\text{eq } & k((T \ dn) \to K), \ state(e(Env), n(N), m(M), MYS) = \\
& k(K), \ state(e(Env[GetName(dn) <- l(N)]), n(N + 1), \\
& \quad m(M[l(N), alloc(GetType(T \ dn))]), MYS) . \\
\text{eq } & k(V \to (T \ dn) \to K), \ state(e(Env), n(N), m(M), MYS) = \\
& k(change(V, l(N)) \to K), \\
& \quad state(e(Env[GetName(dn) <- l(N)]), n(N + 1), \\
& \quad \quad m(M[l(N), alloc(GetType(T \ dn))]), MYS) .
\end{align*}
\]
The Semantics of Java: Declarations (III)

This defines the helpers \texttt{GetName} and \texttt{alloc}.

\begin{verbatim}
  op GetName : Name -> Qid .
  eq GetName(qid) = qid .
  eq GetName(dn[]) = GetName(dn) .
  op alloc : Type -> Value .
  eq alloc(int) = int(0) .
  eq alloc(String) = str("") .
  eq alloc(T[]) = a(T[], noArrayEnv) .
endfm
\end{verbatim}
The Semantics of Java: Output

Outputs are gathered in the output state attribute in the order in which they are printed.

fmod OUTPUT-METHOD is ex GENERIC-EXP-SEMANTICS .
  pr OUTPUT .
  op print -> _ : Continuation -> Continuation .
  var E : Exp . var V : Value . var K : Continuation .
  var O : Output . var MYS : MyState .
  op System.out.print : Exp -> Exp .
  eq k((System.out.print(E)) -> K) = k(E -> print -> K) .
  eq k(V -> print -> K), state(out(O), MYS)
    = k(K), state(out(0,0(V)), MYS) .
endfm
The Semantics of Java: New

We only have arrays to worry about for the new operator, as we do not use objects. Here we define some helping operators.

fmod NEW-SEMANTICS is ex NEW-SYNTAX . pr GENERIC-EXP-SEMANTICS . ex GET-TYPES . ex DECLARATION-SEMANTICS . ex BLOCK-SEMANTICS .

op GetArrayType : Type -> Type .
op GetExps : Type -> Exps .

var K : Continuation . var Vl : ValueList . var array : Array .
var aEnv : ArrayEnv . vars I N : Int . var V : Value .
var M : Store . var MYS : MyState . var Inotzero : NzInt .
var TnoArr : TypeWithOutArr . var T : Type . var E : Exp .

eq GetArrayType(T[E]) = GetArrayType(T) [] .
eq GetArrayType(T[]) = GetArrayType(T) [] .
eq GetArrayType(TnoArr) = TnoArr .
eq GetExps(T[E]) = GetExps(T), E .
eq GetExps(T[]) = GetExps(T) .
eq GetExps(TnoArr) = () .
Now this defines how a new array is created and initialized.

\[
\text{op new\text{Array} \_ -> \_ : Type Continuation -> Continuation}.
\]

\[
\text{op new\text{Array} (\_,\_,\_) -> \_ : Array ValueList Int Continuation -> Continuation}.
\]

\[
\text{eq } k((\text{new } T) \rightarrow K) = k(\text{GetExps}(T) \rightarrow \text{new\text{Array} (Get\text{ArrayType}(T))} \rightarrow K).
\]

\[
\text{eq } k((\text{int}(I), Vl) \rightarrow \text{new\text{Array} (T) \rightarrow K})
\]

\[
= k(\text{new\text{Array}(a(T, no\text{ArrayEnv}), Vl, I) \rightarrow K}).
\]

\[
\text{eq } k(\text{noVal} \rightarrow \text{new\text{Array}(int) \rightarrow K}) = k(\text{int}(0) \rightarrow K).
\]

\[
\text{eq } k(\text{noVal} \rightarrow \text{new\text{Array}(String) \rightarrow K}) = k(\text{str}("") \rightarrow K).
\]

\[
\text{eq } k(\text{noVal} \rightarrow \text{new\text{Array}(T[]) \rightarrow K}) = k(a(T[]), no\text{ArrayEnv}) \rightarrow K).
\]

\[
\text{eq } k(\text{new\text{Array}(array, Vl, 0) \rightarrow K}) = k(\text{array} \rightarrow K).
\]

\[
\text{eq } k(\text{new\text{Array}(a(T[]), a\text{Env}, Vl, I\text{notzero}) \rightarrow K}) =
\]

\[
= k(Vl \rightarrow \text{new\text{Array}(T) \rightarrow (new\text{Array}(a(T[]), a\text{Env}), Vl, (I\text{notzero} - 1)) \rightarrow K)).
\]

\[
\text{eq } k(V \rightarrow \text{new\text{Array}(a(T, a\text{Env}), Vl, I) \rightarrow K}), \text{state}(m(M), n(N), MYS) =
\]

\[
k(\text{new\text{Array}(a(T, ([I, 1(N)] a\text{Env})), Vl, I) \rightarrow K),
\]

\[
\text{state}(m(M[1(N), V]), n(N + 1), MYS).
\]

\text{endfm}
The Semantics of Java: Statements

A list of statements, called BlockStatements is split apart into the first statement and the rest of the list of statements. With this and the definition of declarations we never need to consider sequential compositions of statements but can focus on one statement at a time.

fmod STATEMENT-SEMANTICS is ex STATEMENT-SYNTAX .
   ex BLOCK-SEMANTICS .
   var st : Statement . var bs : BlockStatements .
   var K : Continuation .
   eq k((st bs) -> K) = k(st -> bs -> K) .
endfm

An example of this is ’x = ’x + ’Y ; ’y = ’y * ’y ; -> K
which is transformed to ’x = ’x + ’Y ; -> ’y = ’y * ’y ; -> K
The Semantics of Java: Statements (II)

An assignment as a statement is executed and afterwards the resulting value, which is the one of the right-hand side expression, is dropped.

\[
\text{fmod } \text{EXP-STATEMENT-SEMANTICS is ex EXP-STATEMENT-SYNTAX . }
\]
\[
\text{ex GENERIC-EXP-SEMANTICS .}
\]
\[
\text{ex STATEMENT-SEMANTICS .}
\]
\[
\text{var SE : StExp . var K : Continuation . var Vl : ValueList .}
\]
\[
\text{eq k((SE ; ) -> K) = k(SE -> ; -> K) .}
\]
\[
\text{eq k(Vl -> ; -> K) = k(K) .}
\]
endfm
The Semantics of Java: Conditionals

Conditionals first evaluate their condition and then execute the correct branch.

```fmod IF-SEMANTICS is ex IF-SYNTAX . ex GENERIC-EXP-SEMANTICS .
ex STATEMENT-SEMANTICS . ex BEXP-SEMANTICS .
 var E : Exp . vars St St' : Statement . var K : Continuation .
 eq k((if E St else St') -> K) = k(E -> ? (St, St') -> K) .
 eq k((if E St) -> K) = k(E -> ? (St, ;) -> K) .
 eq k(bool(true) -> ? (St, St') -> K) = k(St -> K) .
 eq k(bool(false) -> ? (St, St') -> K) = k(St' -> K) .
endfm```

An example for this is if #b(true) ’x = ’x + #i(1) ; -> K becomes #b(true) -> ? (’x = ’x + #i(1) ;, ;) -> K which in turn becomes ’x = ’x + #i(1) ; -> K.
The Semantics of Java: Loops

While loops make use of the conditional to decide whether the loop needs to be executed once more.

```plaintext
fmod WHILE-SEMANTICS is ex WHILE-SYNTAX . ex GENERIC-EXP-SEMANTICS .
  ex STATEMENT-SEMANTICS . ex IF-SEMANTICS .
  var E : Exp . var St : Statement . var K : Continuation .
  eq k((while E St) -> K) = k(E -> ?({St while E St}, ;) -> K) .
endfm
```
The do_while_ and for loops are transformed into while loops and handled accordingly.

fmod DO-SEMANTICS is ex DO-SYNTAX . ex GENERIC-EXP-SEMANTICS .
 ex STATEMENT-SEMANTICS . ex WHILE-SEMANTICS .
var E : Exp . var St : Statement . var K : Continuation .
eq k((do St while E ;) -> K) = k(St -> (while E St) -> K) .
endfm

fmod FOR-SEMANTICS is ex FOR-SYNTAX . ex GENERIC-EXP-SEMANTICS .
 ex DECLARATION-SEMANTICS . ex STATEMENT-SEMANTICS .
 ex WHILE-SEMANTICS . ex EXP-STATEMENT-SYNTAX .
var E : Exp . vars Se Se' : StExp . var St : Statement .
var K : Continuation . var dc : Declaration .
eq k((for (Se ; E ; Se') St) -> K)
 = k((Se ; while (E) { St Se' ; }) -> K) .
eq k((for (dc ; E ; Se') St) -> K)
 = k((dc ; while (E) { St Se' ; }) -> K) .
endfm
The full Java subset we are defining is constituted by all the given submodules.

\texttt{fmod JAVAX is ex JAVA-SYNTAX .}
\begin{itemize}
 \item ex ARITH-EXP-SEMANTICS . ex REXP-SEMANTICS .
 \item ex BEXP-SEMANTICS . ex ASSIGNM-EXP-SEMANTICS .
 \item ex ARRAY-SEMANTICS . ex FIELD-SEMANTICS .
 \item ex BLOCK-SEMANTICS . ex DECLARATION-SEMANTICS .
 \item ex NEW-SEMANTICS . ex STATEMENT-SEMANTICS .
 \item ex EXP-STATEMENT-SEMANTICS . ex IF-SEMANTICS .
 \item ex WHILE-SEMANTICS . ex DO-SEMANTICS .
 \item ex FOR-SEMANTICS . ex OUTPUT .
\end{itemize}
The initial state is defined as a convenience as follows.

\[
\text{op initial : } \rightarrow \text{WrappedState} . \\
\text{eq initial } = \text{state(e(noEnv), m(noStore), n(0), out(noOutput))} .
\]

\[
\text{var MYS : MyState . var M : Store . var N : Nat . var X : Name} . \\
\text{var I : Int . var BS : BlockStatements . var E : Exp . var V : Value} . \\
\text{var B : Bool . var Env : Env . var O : Output} .
\]
The Semantics of Java: Completion (III)

From a state and an expression (Exp) or code (BlockStatements) the following executable SuperState variants are created.

\[
\begin{align*}
\text{op } _ | _ _ : \text{WrappedState BlockStatements } & \rightarrow \text{ SuperState } \left[\text{gather}(E \ e)\right]. \\
\text{op } _ | _ _ : \text{WrappedState Exp } & \rightarrow \text{ SuperState } \left[\text{gather}(E \ e)\right]. \\
\text{eq (state(MYS) | BS) } & = (\text{state(MYS)}, k(\text{BS } \rightarrow \text{ stop})). \\
\text{eq (state(MYS) | E) } & = (\text{state(MYS)}, k(\text{E } \rightarrow \text{ stop})). \\
\text{eq (state(MYS), k(V \rightarrow \text{ stop})) } & = \text{state(MYS)}.
\end{align*}
\]

\[
\begin{align*}
\text{eq (state(MYS), k(stop)) } & = \text{state(MYS)}.
\end{align*}
\]
The Semantics of Java: Completion (IV)

Evaluating a variable in a given state is done in this way. Boolean expressions can also be evaluated and their result be returned.

\[
\begin{align*}
\text{op evalInt : WrappedState Var} & \rightarrow \text{Int} . \\
\text{eq evalInt(state(MYS), X) = int-val(state(MYS)[X])} . \\
\text{op evalTst : SuperState} & \rightarrow \text{Bool} . \\
\text{op evalTst : WrappedState Exp} & \rightarrow \text{Bool} . \\
\text{eq evalTst(state(e(Env), m(M), n(N), out(O)), E)} & = \text{evalTst(state(e(Env), m(M), n(N), out(O)), k(E \rightarrow \text{res}))} . \\
\text{eq evalTst(state(MYS), k(bool(B) \rightarrow \text{res}))} & = B .
\end{align*}
\]
The following is necessary because we need specific starting states for proving properties with the ITP. It creates a starting state with some known variables which are mapped to generic values, representative of whatever is there (only \texttt{int} currently).

\begin{verbatim}
 op any-int : Int \to Int .
 op any-loc : Int \to Location .
 op ctxState : BlockStatements WrappedState \to WrappedState .
 op ctxState : BlockStatements Int WrappedState \to WrappedState .
 op ctxState : BlockStatements \to WrappedState .
 eq ctxState(B:BlockStatements)
 = ctxState(B:BlockStatements,
 state(e(noEnv), n(0), m(noStore), out(noOutput))) .
 eq ctxState((B:BlockStatements), state(e(Env), n(N), m(M), out(O)))
 = ctxState((B:BlockStatements), 0,
 state(e(Env), n(N), m(M), out(O))) .
\end{verbatim}
This finalizes the starting state creation for use with the ITP.

\[
\text{eq } \text{ctxState}((\text{int } X ; B:\text{BlockStatements}), I, \\
\text{state}(e(\text{Env}), n(N), \text{out}(O), m(M))) \\
= \text{ctxState}(B:\text{BlockStatements}, I + 1, \\
\text{state}(e([X, \text{any-loc}(I)] \text{Env}), n(N), \text{out}(O), \\
\quad m([\text{any-loc}(I), \text{int}(\text{any-int}(I))] M))) .
\]

\[
\text{eq } \text{ctxState}((\text{int } X ;), I, \text{state}(e(\text{Env}), n(N), m(M), \text{out}(O))) \\
= \text{state}(e([X, \text{any-loc}(I)] \text{Env}), n(N), \text{out}(O), \\
\quad m([\text{any-loc}(I), \text{int}(\text{any-int}(I))] M)) .
\]

\[
\text{op } \text{int-val} : \text{Value} \rightarrow \text{Int} .
\]

\[
\text{eq } \text{int-val}(\text{int}(I)) = I .
\]

endfm
An Interpreter

The above functional module has given a precise axiomatization of our chosen subset of Java that is sufficient for reasoning and program verification purposes. But it has done more than that. Since the semantic equations are ground confluent, the above equations have also given an operational semantics to this language.

Indeed, we can describe the execution of the language by algebraic simplification with the equations from left to right.

Therefore, the above equations have in essence given us an interpreter for our language.
As a reminder, you can create an initial state by just writing `initial`, you can then execute some code, say `bs` from that state with `initial | bs`.

Make sure to use parentheses around `bs`, otherwise there will be parsing problems. If you now don’t want to see the complete resulting state but only the value of a specific variable ’x then `(initial | bs)[’x]` will do that for you.

Mind that this gives you a value, so if you expect to see a 42 you will get a `int(42)` which is the integer value used by our language.
Some examples are:

```
red (initial | (int 'x = #i(5) ; int 'y = #i(4) ;
    { 'x = #i(42) ; } 'x = 'x + 'y ;)))['x'] .
```

```
red (initial | (int 'x = #i(5) ; int 'y = #i(4) ;
    {int 'x = #i(42) ; } 'x = 'x + 'y ;)))['x'] .
```

which return

rewrites: 86 in 10ms cpu (10ms real) (8600 rewrites/second)
result Value: int(46)

respectively, because of shadowing of the assignment to 'x in the block,

rewrites: 86 in 0ms cpu (0ms real) (~ rewrites/second)
result Value: int(9)
red (initial | (int ’x = #i(0) ; if #b(false)
 if #b(true) ’x = #i(1) ;
 else ’x = #i(2) ;)) [’x] .

This is interesting because it shows us how the dangling else problem is solved in this particular implementation.

According to the Java Language Specification an else block belongs to the innermost if part, unless parentheses show otherwise. The result in this case is:

rewrites: 18 in 0ms cpu (0ms real) (~ rewrites/second)
result Value: int(0)

It would have been int(2) if the else was attributed (wrongly) to the outer if.
red (initial | (int 'a = #i(3); int 'b = #i(2); int 'c = #i(1);
 int 'd = 'a - 'b + 'c ;))['d] .

With this example, which returns

rewrites: 241 in 0ms cpu (0ms real) (~ rewrites/second)
result Value: int(2)

we have shown the left-associativity of arithmetic operators. With right-associativity the result would have been 0.
An Interpreter (VI)

red (initial | (int 'x = #i(7); int 'y = #i(5);
 int 't = 'x; 'x = 'y; 'y = 't ;))['x'] .
red (initial | (int 'x = #i(7); int 'y = #i(5);
 int 't = 'x; 'x = 'y; 'y = 't ;))['y'] .

A simple swap example indeed swaps the values of 'x and 'y, the results are 5, respectively 7, as expected.

red (initial | (int 'n = #i(5); int 'c = #i(0); int 'x = #i(1);
 while ('c < 'n) { 'c = 'c + #i(1); 'x = 'x * 'c ; })] ['x] .

Finally this computes the factorial of 5 and thus returns:

rewrites: 416 in 0ms cpu (0ms real) (~ rewrites/second)
result Value: int(120)
Formal Reasoning

In fact, the equational axiomatization of our language is much more than an interpreter.

Since we have axiomatized the language as an equational theory, we can do inference about our programs using such a theory.

In fact, since the semantic equations are ground-confluent, such equational reasoning is mechanically supported by the Maude system. Therefore, we can do a substantial amount of formal reasoning about programs in our language, even without using induction.
We may reason about some properties of a given program. In general, of course, such reasoning may require induction, but in some cases plain equational deduction will deliver the goods.

Consider, for example, the following informal specification of a swap program, swapping the values of, say, variables 'X and 'Y, namely, that for any state the values in 'X and 'Y should have been swapped after execution.
Actually we cannot do that for any state but only for states in which 'X and 'Y are already declared. Such a state is created by
\texttt{ctxState((int 'X ; 'int 'Y ;))}. The fact that this represents any state with 'X and 'Y declared results from the generic values put into both variable’s locations.

Whether other variables are declared or not does not matter, as long as a candidate for the swap program does not use other variables without declaring them first. This is verified with a quick look at the semantics.
This correctness specification can be made mathematically precise as the equations:

\[
\begin{align*}
\text{ctxState}((\text{int 'X ; int 'Y ;}) | (\text{swap}))['X] &= \text{ctxState}((\text{int 'X ; int 'Y ;}))[\text{'Y}] \\
\text{ctxState}((\text{int 'X ; int 'Y ;}) | (\text{swap}))['Y] &= \text{ctxState}((\text{int 'X ; int 'Y ;}))[\text{'X}]
\end{align*}
\]

Consider now a possible candidate for our swap program, namely the program,

\[
\text{int 'T = 'X ; 'X = 'Y ; 'Y = 'T ;}
\]
Formal Reasoning (V)

We can verify that this program meets its specification just by equational simplification as follows,

reduce in JAVAX :
ctxState((int 'X ; int 'Y ;)) | (int 'T = ’X ; ’X = ’Y ; ’Y = ’T ;)[’X]
== ctxState((int 'X ; int ’Y ;))[’Y] .
rewrites: 112 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true

reduce in JAVAX :
ctxState((int ’X ; int ’Y ;)) | (int ’T = ’X ; ’X = ’Y ; ’Y = ’T ;)[’Y]
== ctxState((int ’X ; int ’Y ;))[’X] .
rewrites: 112 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true
Recall the specification of correctness for the program \texttt{swap} to swap the value of variable \texttt{'X} and variable \texttt{'Y} that we have already discussed. With \(S \) taking the place of
\(\texttt{ctxState((int 'X ; int 'Y ;))} \), but with the universal quantification implicitly limited to states of that form we get the specification,

\[
(\forall I : \text{Int})(\forall J : \text{Int})(\forall S : \text{State})(S)[{'}Y{]} = \text{int}(I) \land (S)[{'}X{]} = \text{int}(J)
\]

\[
\Rightarrow (S \mid (\text{swap}))[{'}X{]} = \text{int}(I) \land (S \mid (\text{swap}))[{'}Y{]} = \text{int}(J)
\]

Here we have the implicit precondition that we are starting in a state where \texttt{'X} and \texttt{'Y} are declared as described above.
We shall call the equation

\[(S)[’Y] = \text{int}(I) \land (S)[’X] = \text{int}(J)\]

which is assumed to hold \textit{before} the execution of the program, the \textit{precondition}.

Note that this equation has a \textit{single occurrence} of the state variable \(S\) in each equation, and can be thought of as a \textit{state predicate}, having the integer variables \(I\) and \(J\) as \textit{parameters}.
Postconditions

Consider in the above specification the equation

\[(S \mid (\text{swap}))['X'] = \text{int}(I) \land (S \mid (\text{swap}))['Y'] = \text{int}(J)\]

which is supposed to hold after the execution of a program. This can also be viewed as a state predicate, namely the state predicate

\[(\dagger) \ (S)[’X] = \text{int}(I) \land (S)[’Y] = \text{int}(J)\]

applied not to \(S\), but instead to the state \(S \mid (\text{swap})\) after the execution. We call \((\dagger)\) the postcondition. Note that it also has the integer variables \(I\) and \(J\) as extra parameters.
This example suggests a general notion of “state predicate,” intuitively a property that holds or doesn’t hold of a state, perhaps relative to some extra data parameters. Since in our language the only data are integers, such parameters must be integer variables. Therefore, for our language we can define a state predicate as a conjunction of equations

\[t_1 = t'_1 \land \ldots \land t_n = t'_n \]

in a module extending JAVAX, such that the set \(V \) of variables in all terms in the equations has at most one variable \(S \) of sort \texttt{State}, which possibly appears more than once, and the remaining variables are all of sort \texttt{Int}.
State Predicates (II)

How general is this definition of state predicate?

One can of course generalize things further, by allowing an arbitrary first-order formula (with the same condition on its variables V) instead of just a conjunction of equations. Also, the notion extends naturally to other sequential languages which may have other data structures besides integers.

However, in practice the notion is quite general; among other things because, using an equationally defined equality predicate, we can express arbitrary Boolean combinations of equations as a single equation.
Note that, although a state predicate has at most one variable, say S, of sort State, it is perfectly possible for S to be mentioned more than once. For example,

\[S[’X] = S[’Y] \]

is a perfectly acceptable state predicate; and S could likewise appear in several conjuncts of a state predicate.
Hoare Triples

The above example of our specification for swap is paradigmatic of a general way of specifying properties of a sequential imperative program p by means of a Hoare triple (after C.A.R. Hoare)

$$\{A\} p \{B\}$$

where A and B are state predicates, called, respectively, the precondition, and postcondition of the triple.

In this notation, the specification of swap becomes rephrased as,

$$\{(S)[’Y] = \text{int}(I) \land (S)[’X] = \text{int}(J)\}$$

swap

$$\{(S)[’X] = \text{int}(I) \land (S)[’Y] = \text{int}(J)\}$$
Given our algebraic approach to the semantics of imperative programs, this is all just an (indeed very useful) *façon de parler* about an ordinary first-order property satisfied by the initial model of our language, namely the initial algebra $T_{JAVA\text{x}}$.

Therefore, we define the partial correctness of a program p with respect to a Hoare triple by the equivalence,

\[
T_{JAVA\text{x}} \models \{A\} p \{B\} \iff
T_{JAVA\text{x}} \models (\forall V) A \land ((S \mid p) : \text{WrappedState}) \Rightarrow (B(S/S \mid p)).
\]

Note that p terminates iff $(S \mid p) : \text{WrappedState}$.
In our swap example this becomes,

\[T_{JAVA} \models (\forall I : Int)(\forall J : Int)(\forall S : State)(S)['Y] = \text{int}(I) \land (S)['X] = \text{int}(J) \]

\[\land (S \mid \text{swap}) : \text{WrappedState} \]

\[\Rightarrow (S \mid (\text{swap}))[X] = \text{int}(I) \land (S \mid (\text{swap}))[Y] = \text{int}(J). \]

which is just our original correctness condition with the addition of the termination condition \((S \mid \text{swap}) : \text{WrappedState}\). What we mean by partial correctness, as opposed to total correctness is that termination, rather than being always required, becomes an additional assumption needed for the postcondition to hold.

Of course, since swap was a terminating program, this was superfluous in that case, but it is not superfluous when iterations are involved.
An important contribution of Hoare was to propose his triples as a compositional logic of programs, by giving a collection of inference rules based on the structure of the program text to decompose proof of correctness of more complex programs into proofs for simpler subprograms.

For example, to prove the correctness of a sequential composition $p \; q$ he gave the rule,

$$
\begin{align*}
\{A\} \; p \; \{B\} & \rightarrow \{B\} \; q \; \{C\} \\
\{A\} \; p \; q & \rightarrow \{C\}
\end{align*}
$$

which can be easily justified by analyzing the semantics of the triples.

Compositionality: Hoare Logic
Compositionality: Hoare Logic (II)

Also a very useful rule, of easy justification, is the consequence rule,

\[
\frac{A \Rightarrow A_1 \quad \{A_1\} \mathbf{p} \{B_1\} \quad B_1 \Rightarrow B}{\{A\} \mathbf{p} \{B\}}
\]

Another rule of easy justification is the rule for the skip program ; , that, rephrased in our terms, takes the form,

\[
\{A\} ; \{A\}.
\]
All the Hoare rules mentioned so far are quite generic, in the sense that they will apply to many languages. But note that there isn’t a single Hoare logic: different programming languages may have somewhat different Hoare rules, depending on their semantics.

In our Java fragment the fact that tests may have side effects makes it necessary to give slightly more subtle Hoare rules for conditionals and loops than those originally proposed by Hoare for those two constructs, because Hoare did not contemplate side-effecting tests in his original language.
Indeed, for conditionals we need to work a little harder. Here, \(\text{evalTst}(S, \text{TE})\) gives the boolean which the evaluation of the test expression \(\text{TE}\) in state \(S\) returns. With \(|\) we create an operator which separates the ”execution” of a test expression from the rest of the program. It is not possible to use the usual concatenation \(__\) because the test expression is not of the same sort, but using the \(|\) operator it can be evaluated first, so its side effects change the state, and then the result gets thrown away and the execution continues as usual.

\[
\{ A \land (\text{evalTst}(S, t) = \text{true}) \} t \mid p \{ B \} \{ A \land (\text{evalTst}(S, t) = \text{false}) \} t \mid q \{ B \} \\
{A} \text{ if } t p \text{ else } q \{ B \}
\]
The above captures the usual semantics of if, just as in simpler languages, but in contrast here we have this $t \mid$ in front of the execution of the two branches of the conditional in the respective cases. It is not enough here to know that t evaluated to either true or false, which is what the two properties assure, but also t needs to have been executed for its possible side effects to take effect and change the state. This Hoare rule still simplifies things as we now do not have to take a decision based on the test value anymore but we just have to have the test expression executed. One could also give a sequential composition rule for \mid additionally. The extra effort here is necessary because of side effects!
The Loop Rule and Invariants

A very important rule is the proof rule for the partial correctness of **while loops**. Here we face the same problem as with conditionals because the loop condition can also have side effects. It takes the form,

\[
\{ A \land (\text{evalTst}(S,t) = \text{true}) \} \; t \mid p \; \{ A \} \quad \{ A \land (\text{evalTst}(S,t) = \text{false}) \} \; t \; \{ A \land (\text{evalTst}(S,t) = \text{false}) \}
\]

\[
\{ A \} \; \text{while} \; t \; p \; \{ A \land (\text{evalTst}(S,t) = \text{false}) \}
\]

It requires a somewhat more involved justification. The state predicate \(A \) is called an **invariant** of the loop. Note that, by the partial correctness interpretation of Hoare triples, the holding of the postcondition implicitly depends on the termination assumption for the loop.
Consider again our factorial program. To prove its correctness, intuitively that it correctly computes the factorial function, we first need to define mathematically such a function, by adding to Int an error supersort Int? of Int, a function,

\[
\text{op } _! : \text{Int } \rightarrow \text{Int?}.
\]

and equations,

\[
\begin{align*}
\text{var I : Int}. \\
\text{eq } 0 ! &= 1. \\
\text{ceq } I ! &= I \times (I - 1)! \text{ if } 0 < I.
\end{align*}
\]

Of course, the factorial function is not defined for negative numbers, so that a program may not even terminate if the original input is negative.
Therefore, we should give the requirement that the input variable
’N is nonnegative as a precondition, yielding the specification,

\[(S[’N] = \text{int}(I)) \land (0 \leq I = \text{true})\] factp \[S[’X] = \text{int}(I !)\].

The above specification takes the point of view of a customer who
specifies properties of the desired program. An implementer may
then give to the customer the following factp program:

’C = #i(0) ; ’X = #i(1) ;
while (’C < ’N) { ’C = ’C + #i(1) ; ’X = ’X * ’C ; }
Factorial Example (III)

The question, then, is how to prove this program correct. To do so we can:

- use the Hoare logic rules, which we have justified, and
- use inductive reasoning, since the correctness of Hoare triples reduces to satisfaction of first-order formulas in the initial model T_{JAVA}.
Justification of the Loop Rule

We have justified other rules in Hoare’s logic, but we still need a justification for the soundness of the loop rule,

\[\{ A \wedge (\text{evalTst}(S, t) = \text{true}) \} t \mid p \{ A \} \quad \{ A \wedge (\text{evalTst}(S, t) = \text{false}) \} t \{ A \wedge (\text{evalTst}(S, t) = \text{false}) \} \]

\[\{ A \} \text{ while } t \ p \ \{ A \wedge (\text{evalTst}(S, t) = \text{false}) \} \]
Observations and Lemmas

We approach the justification of the loop rule by means of some observations and auxiliary lemmas that will place us in a good position to prove its soundness.

First Observation: All terms of sort WrappedState have a canonical form by the equations.

Second Observation: Using the assumption that the semantic rules of JAVAX are ground confluent, for any ground terms s of sort WrappedState and p of sort BlockStatements we have,

\[
E \vdash (\forall \emptyset) s \mid p : \text{WrappedState} \\
\iff (\exists ! s' \in T_{\text{JAVAX,WrappedState}}) s \mid p \rightarrow^* E s',
\]

where E are the equations of JAVAX.
Observations and Lemmas (II)

Lemma: For any ground terms s_0 of sort WrappedState, t of sort Exp (and assuming it will evaluate to a boolean value), and p of sort BlockStatements, if we have,

$$E \vdash (\forall \emptyset) s_0 \mid \text{while} \ t \ p : \text{WrappedState}$$

then any rewriting sequence, $s_0 \mid \text{while} \ t \ p \rightarrow^*_{E} s'$ with $s' \in T_{\text{JAVAX,WrappedState}}$ must be of the form,

$$s_0 \mid \text{while} \ t \ p \rightarrow^+_{E} s_1, (\text{while} \ t \ p \rightarrow \text{stop}) \rightarrow^+_{E} \ldots \rightarrow^+_{E} s_n, (\text{while} \ t \ p \rightarrow \text{stop}) \rightarrow^+_{E} s'$$

with $n \geq 0$, with s_i of sort WrappedState, $0 \leq i \leq n$, with $s_n \mid t \rightarrow^+_{E} s'$ and $E \vdash (\forall \emptyset) \text{evalTst}(s_n, t) = \text{false}$. In general we cannot guarantee that $E \vdash (\forall \emptyset) \text{evalTst}(s', t) = \text{false}$ holds, but in
the case we look at later, it will hold, as detailed there. Also, for $0 \leq i < n$,

- $s_i, k(t \rightarrow p \rightarrow \text{stop}) \xrightarrow{*}_E s_{i+1}$

- $E \vdash (\forall \emptyset) \text{evalTst}(s_i, t) = \text{true}$.
Observations and Lemmas (III)

Proof: By induction on the number n of different occurrences of expressions of the form s_i, $k(\text{while } t \rightarrow \text{ stop})$, with s_i of sort WrappedState, $0 \leq i \leq n$, that appear in the sequence $s_0 | \text{while } t \rightarrow \ E \ s'$. q.e.d.

Notation: given a program p, we use the notation p^n, working also for programs composed of an `Exp t` and `BlockStatements p'`, $p = t | p'$, to mean:

- $p^0 = ;$
- $p^{n+1} = p | p^n$

We use composition with $- | -$ instead of composition with $-$ because the internal types in p need not match, i.e. $(t | p')^2 = (t | p' | t | p')$ and not $(t | p' \ t | p')$ where $p' \ t$ would be illegal.
Corollary: For any ground terms s_0 of sort \texttt{WrappedState}, t of sort \texttt{Exp}, and p of sort \texttt{BlockStatements}, if we have,

$$E \vdash (\forall \emptyset) s_0 \mid \text{while } t \ p : \text{WrappedState}$$

then there is an $n \geq 0$ such that:
Observations and Lemmas (IV)

- $E \vdash (\forall \emptyset) \; s_0 \mid \text{while } t \; p = s_0 \mid (t \mid p)^n \mid t$
- $E \vdash (\forall \emptyset) \; \text{evalTst}(s_0 \mid (t \mid p)^i, t) = true, \; 0 \leq i < n$
- $E \vdash (\forall \emptyset) \; \text{evalTst}(s_0 \mid (t \mid p)^n, t) = false$.
Proof of Soundness of the Loop Rule

Theorem: The loop rule is sound.

Proof: We have to prove that the assumption

\[
\{ A \land (\text{evalTst}(S,t) = \text{true}) \} \quad t \mid p \quad \{ A \} \\
\{ A \land (\text{evalTst}(S,t) = \text{false}) \} \quad t \mid p \quad \{ A \land (\text{evalTst}(S,t) = \text{false}) \}
\]

implies

\[
(\dagger) \quad \{ A \} \quad \text{while} \quad t \mid p \quad \{ A \land (\text{evalTst}(S,t) = \text{false}) \}
\]

By the semantics of Hoare triples applied to (\dagger), we only need to show,

\[
T_{\text{JAVAX}} \models (\forall V) \ A \land (S|\text{loop}):\text{WrappedState} \Rightarrow A(S/S \mid \text{loop}) \land (\text{evalTst}(S \mid \text{loop},t) = \text{false}),
\]
Proof of Soundness of the Loop Rule (II)

where, by definition, loop = \texttt{while t p. Putting aside the termination assumption \(((S|\text{loop}):\text{WrappedState})\) we have,

\[(\dagger) \quad T_{\text{JAVA}} \models (\forall V) A \Rightarrow A(S/S | \text{loop}) \land (\text{evalTst}(S | \text{loop},t) = \text{false}),\]

But, by definition of satisfaction of a universally quantified formula in an initial algebra, this is equivalent to proving, from the above assumption,

\[(\forall s \in T_{\text{JAVA},\text{WrappedState}}) T_{\text{JAVA}} \models (\forall V \setminus \{S\}) A(S/s) \Rightarrow A(S/s | \text{loop}) \land (\text{evalTst}(s | \text{loop},t) = \text{false})\]

That is, for each \(s \in T_{\text{JAVA},\text{WrappedState}},\) we have to show,

\[(b) \quad T_{\text{JAVA}} \models (\forall V \setminus \{S\}) A(S/s) \Rightarrow A(S/s | \text{loop}) \land (\text{evalTst}(s | \text{loop},t) = \text{false}).\]
Proof of Soundness of the Loop Rule (III)

By the termination assumption and the last corollary we know that, for each ground substitution \(\theta : V - \{s\} \rightarrow T_{\Sigma_{\text{JAVAX}}} \), if

\[
(\star) \quad T_{\text{JAVAX}} \models (\forall \emptyset) (\theta(A(S/s))),
\]

then there is an \(n \geq 0 \) such that:

1. \(E \vdash (\forall \emptyset) s \mid \text{loop} = s \mid (t \mid p)^n \mid t \)
2. \(E \vdash (\forall \emptyset) \text{evalTst}(s \mid (t \mid p)^i, t) = \text{true}, \quad 0 \leq i < n \)
3. \(E \vdash (\forall \emptyset) \text{evalTst}(s \mid (t \mid p)^n, t) = \text{false}. \)

We also know that (4) \(E \vdash (\forall \emptyset) \text{evalTst}(s \mid (t \mid p)^n \mid t, t) = \text{false} \) holds if \(A \) holds. That is because (3) tells us that the test is false in that state and then with the second assumption we see that the test will stay false after being executed. At the positions where we
use (4) A holds.

Since (1) and (4) take care of the implication of the second conjunct in (b) (A is on the left-hand side of the implication), we have reduced the whole matter to showing that, if (⋆) holds, then we must have,
Proof of Soundness of the Loop Rule (IV)

\[(\dagger) \ T_{JAVAX} \models \theta(A(S/s|(t|p)^n|t)).\]

But this now follows by substitutivity from the first assumption and (1)–(3), by the chain of implications, where the last step requires (4) and the second assumption (A obviously holds).

\[
T_{JAVAX} \models \theta(A(S/s)) \Rightarrow \theta(A(S/s)) \land \text{evalTst}(s, t) = true \Rightarrow \theta(A(S/s|t|p)) \land \text{evalTst}(s|t|p, t) = true \ldots
\]

\[
\Rightarrow \theta(A(S/s|(t|p)^{n-1})) \land \text{evalTst}(s|(t|p)^{n-1}, t) = true
\]

\[
\Rightarrow \theta(A(S/s|(t|p)^n)) \land \text{evalTst}(s|(t|p)^n, t) = false \Rightarrow \theta(A(S/s|(t|p)^n|t))
\]

q.e.d.
The latest version (with support for this Java subset) of the ITP downloadable from

http://banyan.cs.uiuc.edu/itp

has an extension of the list of commands of the ITP specifically designed to support Hoare logic reasoning in our Java fragment. To prove a Hoare triple

\[\{P\} \text{foo} \{Q\} \]

using this tool, one gives a javax command.
Essentially, what the \texttt{javax} command does is to \textit{translate} the Hoare triple goal into its semantically equivalent inductive theorem proving goal.

For example, a goal consisting of the Hoare triple

\[
\{P\} \text{foo} \{Q\}
\]

is translated into the (universally quantified) ITP goal

\[
P \Rightarrow Q(S/(S| \text{foo}))
\]

where S is the distinguished variable of sort \texttt{WrappedState}.
We can illustrate the use of the `javax` command with an absolute value program `absx`. We define the module `absx.maude` as follows:

```plaintext
fmod ABSX-JAVA is
  including JAVAX .
  op absolute : Int -> Int .
  var I : Int .
  ceq absolute(I) = I if I >= 0 = true .
  ceq absolute(I) = - I if I >= 0 = false .
  ops absx-init absx : -> BlockStatements .
  eq absx-init = (int 'X ; int 'Z ;) .
  eq absx = if (#i(0) <= 'X) ('Z = 'X ;) else ('Z = - 'X ;) .
endfm

Note that, in addition to defining `absx` and `absx-init`, we have also defined the `absolute` auxiliary function.
```
The point is that using the `javax` command we can now give our desired Hoare triple directly to the ITP. We do so by: (1) loading `java-es.maude` and `absx.maude`; (2) loading `itp-tool.maude`; and (3) giving the `javax` command:

```
(javax ABSX-JAVA :
  --- specification constants
  (I:Int)
  --- precondition
  ((S:WrappedState[’X]) = (int(I:Int)))
  --- program
  absx-init
  absx
  --- postcondition
  ((S:WrappedState[’Z]) = (int(absolute(I:Int))))
.)
```
An Example (III)

The ITP then responds by translating this Hoare triple into the semantically equivalent ITP goal:

```plaintext
label-sel: absx@0

A{I:Int}( (state(e(['X',any-loc(0)]['Z',any-loc(1)]),n(0),m([any-loc(0),int(any-int(0))][any-loc(1),int(any-int(1))]),out(noOutput))[‘X] = int(I:Int))
  =>
  (state(e(['X',any-loc(0)]['Z',any-loc(1)]),n(0),m([any-loc(0),int(any-int(0))][any-loc(1),int(any-int(1))]),out(noOutput)) |(if #i(0)<= ‘X ‘Z = ‘X ; else ‘Z = - ‘X ;)[‘Z]
  = int(absolute(I:Int))))
```

+--+
An Example (IV)

Giving the `auto` command we then obtain:

Maude> (auto .)

==
label-sel: absx@0
==

(k(bool(0 <= I*Int)-> ?(’Z = ’X ;,’Z = – ’X ;)-> stop),state(e([’X,any-loc(0)][’Z,any-loc(1)]),m([any-loc(0),int(I*Int)] [any-loc(1),int(any-int(1))]),n(0),out(noOutput))) [’Z] = int(absolute(I*Int))

==
We can now give the following split command:

```
Maude> (split on (0 <= (I*Int)) .)
```

```
(\lambda\text{absx@1.0} .
\lambda e([\text{'X},\text{any-loc}(0)][\text{'Z},\text{any-loc}(1)]),m([\text{any-loc}(0),\text{int}(I*Int)][\text{any-loc}(1),\text{int}(\text{any-int}(1))]),n(0),out(noOutput)))[\text{'Z}]= \text{int}(\text{absolute}(I*Int))
```
An Example (VI)

Using the **auto** command discharges this goal, leaving only the other identical goal in the split:

Maude> (auto .)

===
label: absx@2.0
===

(k(60 <= I*Int)-> ?(’Z = ’X ;,’Z = - ’X ;)-> stop),state(e([’X,any-loc(0)] [’Z,any-loc(1)]),m([any-loc(0),int(I*Int)][any-loc(1),int(any-int(1))]),n(0),out(noOutput)))’Z = int(absolute(I*Int))
An Example (VII)

Which is again discharged by the `auto` command:

Maude> (auto .)

q.e.d

++++++++++++++++++++++++++++++

Maude>