
1

CS522 - Programming Language Semantics

Lambda Calculus and Combinatory Logic

Grigore Roşu

Department of Computer Science

University of Illinois at Urbana-Champaign

2

In this part of the course we discuss two important and closely

related mathematical theories:

• Lambda calculus, written also λ-calculus, is a pure calculus of

functional abstraction and function application, with many

applications in logic and computer science;

• Combinatory logic shows that bound variables can be entirely

eliminated without loss of expressiveness. It has applications

both in the foundations of mathematics and in the

implementation of functional programming languages.

A good reference for these subjects is the book “The Lambda

Calculus: Its Syntax and Semantics” by H.P. Barendregt (Second

Edition, North Holland 1984). This book also contains a great

discussion on the history and motivations of these theories.

3

Lambda Calculus (λ-Calculus)

Lambda calculus was introduced in 1930s, as a mathematical

theory together with a proof calculus aiming at capturing

foundationally the important notions of function and function

application. Those years were marked by several paradoxes in

mathematics and logics. The original motivation of λ-calculus was

to provide a foundation of logics and mathematics. Even though

the issue of whether λ-calculus indeed provides a strong foundation

of mathematics is still largely open, it nevertheless turned out to be

a quite successful theory of computation.

Today, more than 70 years after its birth, λ-calculus and its

afferent subjects still fascinates computer scientists, logicians,

mathematicians and, certainly, philosophers.

4

λ-Calculus is a convenient framework to describe and explain many

programming language concepts. It formalizes the informal notion

of “expression that can be evaluated” as a λ-term, or λ-expression.

More precisely, λ-calculus consists of:

• Syntax - used to express λ-terms, or λ-expressions;

• Proof system - used to prove λ-expressions equal;

• Reduction - used to reduce λ-expressions to equivalent ones.

We will show how λ-calculus can be formalized as an equational

theory. That means that its syntax can be defined as an algebraic

signature (to enhance readability we can use the mix-fix notation);

its proof system becomes a special case of equational deduction;

and its reduction becomes a special case of rewriting (when certain

equations are regarded as rewrite rules).

5

We can therefore conclude that equational logic and rewriting also

form a strong foundational framework to describe and explain

programming language concepts. This hypothesis was practically

evaluated through several concrete definitions of languages in

CS422, a course on programming language design.

We will later see in this class that equational logic forms indeed a

strong foundation for programming language semantics, providing a

framework that supports both denotational and operational

semantics in a unified manner. Moreover, rewriting logic, which is a

natural extension of equational logics with rewrite rules, provides a

foundation for concurrent programming language semantics.

6

Even though λ-calculus is a special equational theory, it has the

merit that it is powerful enough to express most programming

language concepts quite naturally. Equational logic is considered by

some computer scientists “too general”: it gives one “too much

freedom” in how to define concepts; its constraints and intuitions

are not restrictive enough to impose an immediate mapping of

programming language concepts into it.

Personal note: I disagree with the above criticisms on

equational logic in particular, and on rewriting logic in general.

What these logics need to become a broadly accepted strong

foundation for programming languages is, in my personal view,

good methodologies to define languages (and this is what we are

developing at UIUC in several research projects and courses).

7

Syntax of λ-Calculus

Assume an infinite set of variables, or names, V . Then the syntax

of λ-expressions is (in BNF notation)

Exp ::= Var | Exp Exp | λVar.Exp

where Var ranges over the variables in V . We will use lower letters

x, y, z, etc., to refer to variables, and capital letters E, E′, E1, E2,

etc., to refer to λ-expressions. The following are therefore examples

of λ-expressions: λx.x, λx.xx, λx.(fx)(gx), (λx.fx)x.

λ-Expressions of the form λx.E are called λ-abstractions, and those

of the form E1E2 are called λ-applications. The former captures the

intuition of “function definition”, while the latter that of “function

application”. To avoid parentheses, assume that λ-application is

left associative and binds tighter than λ-abstraction.

8

Exercise 1 Define the syntax of λ-calculus in a Maude module

using mix-fix notation; then parse some lambda expressions.

Many programming language concepts, and even entire

programming languages, translate relatively naturally into

λ-calculus concepts or into λ-expressions. In particular, one can

define some transformation ϕ from functional expressions into

λ-expressions. Such a transformation ϕ would take, for example,

• variable names x to unique variables x ∈ Var;

• function declarations of the form fun x -> E to λx.ϕ(E); and

• bindings (which generalize the idea of “local declarations”

occurring in most programming languages, functional or not)

let x1 = E1 and x2 = E2 and ... and xn = En in E to

λ-expressions (λx1.λx2. · · · .λxn.ϕ(E))ϕ(E1)ϕ(E2) · · ·ϕ(En).

9

Free and Bound Variables

Variable occurrences in λ-expressions can be either free or bound.

Given a λ-abstraction λx.E, also called a binding, then the variable

x is said to be declared by the λ-abstraction, or that λ binds x in

E; also, E is called the scope of the binding.

Formally, we define the set FV(E) of free variables of E as follows:

• FV(x) = {x},

• FV(E1E2) = FV(E1) ∪ FV(E2), and

• FV(λx.E) = FV(E)− {x}.

Consider the three underlined occurrences of x in the λ-expression

(λx.λy.yxy)x. The first is called a binding occurrence of x, the

second a bound occurrence of x (this occurrence of x is bound to

the binding occurrence of x), and the third a free occurrence of x.

Expressions E with FV(E) = ∅ are called closed or combinators.

10

Exercise 2 Extend your Maude definition of λ-calculus in the

previous exercise with a definition of free variables. You should

define an operation fv taking an expression and returning a set of

variables (recall how sets are defined in Maude; if you don’t

remember, ask!).

11

Substitution

Evaluation of λ-expressions is “by-substitution”. That means that

the λ-expression that is “passed” to a λ-abstraction is “copied as it

is” at all the bound occurrences of the binding variable. This will

be formally defined later. Let us now formalize and discuss the

important notion of substitution. Intuitively, E[x← E′] represents

the λ-expression obtained from E by replacing each free occurrence

of x by E′. Formally, substitution can be defined as follows:

• y[x← E′] =







E′ if y = x

y if y 6= x,

• (E1E2)[x← E′] = (E1[x← E′])(E2[x← E′]),

• (λx.E)[x← E′] = λx.E.

The tricky part is to define substitution on λ-abstractions of the

12

form (λy.E)[x← E′], where y 6= x. That is because E′ may contain

free occurrences of y; these occurrences of y would become bound

by the binding variable y if one simply defined this substitution as

λy.(E[x← E′]) (and if E had any free occurrences of x), thus

violating the intuitive meaning of binding. This phenomenon is

called variable capturing. Consider, for example, the substitution

(λy.x)[x← yy]; if one applies the substitution blindly then one gets

λy.yy, which is most likely not what one meant (since λy.x is by all

means “equivalent” to λz.x - this equivalence will be formalized

shortly - while λy.yy is not equivalent to λz.yy). There are at least

three approaches in the literature to deal with this delicate issue:

1. Define (λy.E)[x← E′] as λy.(E[x← E′]), but pay special

attention whenever substitution is used to add sufficient

conditions to assure that y is not free in E′. This approach

simplifies the definition of substitution, but complicates the

presentation of λ-calculus by having to mention “obvious”

13

additional hypotheses all the time a substitution is invoked;

2. Define substitution as a partial operation: (λy.E)[x← E′] is

defined and equal to λy.(E[x← E′]) if and only if y 6∈ FV(E′).

This may seem like the right approach, but unfortunately is

also problematic, because the entire equational definition of

λ-calculus would then become partial, which has serious

technical implications w.r.t. mechanizing equational deduction

(or the process of proving λ-expressions equivalent) and

rewriting (or reduction);

3. Define substitution as a total operation, but apply a renaming

of y to some variable that does not occur in E or E′ in case

y ∈ FV(E′) (this renaming is called α-conversion and will be

defined formally shortly). This approach slightly complicates

the definition of substitution, but simplifies the presentation of

many results later on. It is also useful when one wants to

mechanize λ-calculus, because it provides an algorithmic way

14

to avoid variable capturing:

(λy.E)[x← E′] =







λy.(E[x← E′]) if y 6∈ FV(E′)

λz.((E[y ← z])[x← E′]) if y ∈ FV(E′)
,

where z is a new variable that does not occur in E or E′. Note

that the the requirement “z does not occur in E or E′” is

stronger than necessary, but easier to state that way.

All three approaches above have their advantages and

disadvantages, and one can find many scientists defending each of

them. However, we will later on choose a totally different approach

to define λ-calculus as an executable specification, in which

substitutions play no role anymore. More precisely, we will define

λ-calculus through its translation to combinatory logic.

15

α-Conversion

In mathematics, functions that differ only in the name of their

variables are equal. For example, the functions f and g defined (on

the same domain) as f(x) = x and g(y) = y are considered

identical. However, with the machinery developed so far, there is

no way to show that the λ-expressions λx.x and λy.y are equal. It

is a common phenomenon in the development of mathematical

theories to add desirable but unprovable properties as axioms. The

following is the first meaningful equational axiom of λ-calculus,

known under the name of α-conversion:

(α) λx.E = λz.(E[x← z])

for any variable z that does not occur in E (this requirement on z

is again stronger than necessary, but it is easier to state).

16

Using the equation above, one has now the possibility to prove

λ-expressions “equivalent”. To capture this provability relation

formally, we let E ≡α E′ denote the fact that the equation E = E′

can be proved using standard equational deduction from the

equational axioms above ((α) plus those for substitution).

Exercise 3 Prove the following equivalences of λ-expressions:

• λx.x ≡α λy.y,

• λx.x(λy.y) ≡α λy.y(λx.x),

• λx.x(λy.y) ≡α λy.y(λy.y).

17

β-Equivalence and β-Reduction

We now define another important equation of λ-calculus, known

under the name of β-equivalence:

(β) (λx.E)E′ = E[x← E′]

The equation (β) tells us how λ-abstractions are “applied”.

Essentially, it says that the argument λ-expression that is passed to

a λ-abstraction is copied at every free occurrence of the variable

bound by the λ-abstraction within its scope.

We let E ≡β E′ denote the fact that the equation E = E′ can be

proved using standard equational deduction from the equational

axioms above: (α), (β), plus those for substitution. For example

(λf.fx)(λy.y) ≡β x, because one can first deduce that

(λf.fx)(λy.y) = (λy.y)x by (β) and then that (λy.y)x = x also by

18

(β); the rest follows by the transitivity rule of equational deduction.

Exercise 4 Show that (λx.(λy.x))yx ≡β y

When the equation (β) is applied only from left to write, that is, as

a rewrite rule, it is called β-reduction. We let ⇒β denote the

corresponding rewriting relation on λ-expressions. To be more

precise, the relation ⇒β is defined on α-equivalence classes of

λ-expressions; in other words, ⇒β applies modulo α-equivalence.

Given a λ-expression E, one can always apply α-conversion on E to

rename its binding variables so that all these variables have

different names which do not occur in FV(E). If that is the case,

then note that variable capturing cannot occur when applying a

β-reduction step. In particular, that means that one can follow the

first, i.e., the simplest approach of the three discussed previously to

define or implement substitution. In other words, if one renames

the binding variables each time before applying a β-reduction, then

19

one does not need to rename binding variables during substitution.

This is so convenient in the theoretical developments of λ-calculus,

that most of the works on this subject make the following

Convention. All the binding variables occurring in any given

λ-expression at any given moment are assumed to be

different. Moreover, it is assumed that a variable cannot

occur both free and bound in any λ-expression.

If a λ-expression does not satisfy the above convention then one

can apply a certain number of α-conversions and eventually

transform it into an α-equivalent one that does satisfy it.

Clearly, this process of renaming potentially all the binding

variables before applying any β-reduction step may be quite

expensive. In a more familiar setting, it is like traversing and

changing the names of all the variables in a program at each

execution step! There are techniques aiming at minimizing the

20

amount of work to be performed in order to avoid variable

captures. All these techniques, however, incur certain overheads.

One should not get tricked by thinking that one renaming of the

binding variables, at the beginning of the reduction process, should

be sufficient. It is sufficient for just one step of β-reduction, but not

for more. Consider, e.g., the closed λ-expression, or the combinator,

(λz.zz)(λx.λy.xy).

It has three binding variables, all different. However, if one applies

substitution in β-reductions blindly then one quickly ends up

capturing the variable y:

21

(λz.zz)(λx.λy.xy) ⇒β

(λx.λy.xy)(λx.λy.xy) ⇒β

λy.(λx.λy.xy)y ⇒β

λy.λy.yy

We have enough evidence by now to understand why substitution,

because of the variable capture phenomenon, is considered to be

such a tricky and subtle issue by many computer scientists.

We will later see an ingenious technique to transform λ-calculus

into combinatory logic which, surprisingly, eliminates the need for

substitutions entirely.

22

Confluence of β-Reduction

Consider the λ-expression (λf.(λx.fx)y)g. Note that one has two

different ways to apply β-reduction on this λ-expression:

1. (λf.(λx.fx)y)g ⇒β (λf.fy)g, and

2. (λf.(λx.fx)y)g ⇒β (λx.gx)y.

Nevertheless, both the intermediate λ-expressions above can be

further reduced to gy by applying β-reduction.

This brings us to one of the most notorious results in λ-calculus

(⇒∗

β is the reflexive and transitive closure of ⇒β):

Theorem. ⇒β is confluent. That means that for any λ-expression

E, if E ⇒∗

β E1 and E ⇒∗

β E2 then there is some λ-expression E′

such that E1 ⇒
∗

β E′ and E2 ⇒
∗

β E′. All this is, of course, modulo

α-conversion.

23

The confluence theorem above says that it essentially does not

matter how the β-reductions are applied on a given λ-expression. A

λ-expression is called a β-normal form if no β-reduction can be

applied on it. A λ-expression E is said to admit a β-normal form if

and only if there is some β-normal form E′ such that E ⇒∗

β E′.

The confluence theorem implies that if a λ-expression admits a

β-normal form then that β-normal form is unique modulo

α-conversion.

Note, however, that there are λ-expressions which admit no

β-normal form. Consider, for example, the λ-expression

(λx.xx)(λx.xx), say omega, known also as the divergent combinator.

It is easy to see that omega ⇒β omega and that’s the only

β-reduction that can apply on omega, so it has no β-normal form.

24

Exercise 5 Define λ-calculus formally in Maude. As we noticed,

substitution is quite tricky. Instead of assuming that the

λ-expressions that are reduced are well-behaved enough so that

variable captures do not occur during the β-reduction process, you

should define the substitution as a partial operation. In other

words, a substitution applies only if it does not lead to a variable

capture; you do not need to fix its application by performing

appropriate α-conversions. To achieve that, all you need to do is to

define the substitution of (λy.E)[x← E′] when y 6= x as a

conditional equation: defined only when y 6∈ FV(E′). Then show

that there are λ-expressions that cannot be β-reduced automatically

with your definition of λ-calculus, even though they are closed (or

combinators) and all the binding variables are initially distinct from

each other.

25

λ-Calculus as a Programming Language

We have seen how several programming language constructs

translate naturally into λ-calculus. Then a natural question arise:

can we use λ-calculus as a programming language?

The answer is yes, we can, but we first need to understand how

several important programming language features can be

systematically captured by λ-calculus, including functions with

multiple arguments, booleans, numbers, and recursion.

26

Currying

Recall from mathematics that there is a bijection between

[A×B → C] and [A→ [B → C]], where [X → Y] represents the

set of functions X → Y . Indeed, any function f : A×B → C can

be regarded as a function g : A→ [B → C], where for any a ∈ A,

g(a) is defined as the function ha : B → C with ha(b) = c if and

only if f(a, b) = c. Similarly, any function g : A→ [B → C] can be

regarded as a function f : A×B → C, where f(a, b) = g(a)(b).

This observation led to the important concept called currying,

which allows us to eliminate functions with multiple arguments

from the core of a language, replacing them systematically by

functions admitting only one argument as above. Thus, we say that

27

functions with multiple arguments are just syntactic sugar.

From now on we may write λ-expressions of the form λxyz · · · .E as

shorthands for their uncurried versions λx.λy.λz. · · · .E. With this

convention, λ-calculus therefore admits multiple-argument

λ-abstractions. Note, however, that unlike in many familiar

languages, curried functions can be applied on fewer arguments.

For example, (λxyz.E)E′ β-reduces to λyz.(E[x← E′]). Also,

since λ-application was defined to be left-associative,

(λxyz.E)E1E2 β-reduces to λz.((E[x← E1])[y ← E2]).

Most functional languages today support curried functions. The

advantage of currying is that one only needs to focus on defining

the meaning or on implementing effectively functions of one

argument. A syntactic desugaring transformer can apply

uncurrying automatically before anything else is defined.

28

Church Booleans

Booleans are perhaps the simplest data-type that one would like to

have in a programming language. λ-calculus so far provides no

explicit support for booleans or conditionals. We next show that

λ-calculus provides implicit support for booleans. In other words,

the machinery of λ-calculus is powerful enough to simulate

booleans and what one would normally want to do with them in a

programming language. What we discuss next is therefore a

methodology to program with “booleans” in λ-calculus.

The idea is to regard a boolean through a “behavioral” prism: with

a boolean, one can always choose one of any two objects – if true

then the first, if false then the second. In other words, one can

identify a boolean b with a universally quantified conditional “for

any x and y, if b then x else y”. With this behavior of

29

booleans in mind, one can now relatively easily translate booleans

and boolean operations in λ-calculus:

true := λxy.x

false := λxy.y

if-then-else := λxyz.xyz

and := λxy.(x y false)

Exercise 6 Define the other boolean operations (including at least

or, not, implies, iff, and xor) as λ-expressions.

This encoding for booleans is known under the name of Church

booleans. One can use β-reduction to show, for example, that and

true false ⇒β false. Therefore, and true false ≡β false.

One can show relatively easily that the Church booleans have all

the desired properties of booleans. Let us, for example, show the

associativity of and:

30

and (and x y) z ≡β x y false z false

and x (and y z) ≡β x (y z false) false

Obviously, one cannot expect the properties of booleans to hold for

any λ-lambda expressions. Therefore, in order to complete the

proof of associativity of and, we need to make further assumptions

regarding the “booleanity” of x, y, z. If x is true, that is λxy.x,

then both right-hand-side λ-expressions above reduce to y z

false. If x is false, that is λxy.y, then the first reduces to false

z false which further reduces to false, while the second reduces

to false in one step.

Exercise 7 Prove that the Church booleans have all the properties

of booleans (the Maude command “show module BOOL” lists them).

We may often introduce “definitions” such as the above for the

Church booleans, using the symbol :=. Note that this is not a

“meta” binding constructor on top of λ calculus. It is just a way

31

for us to avoid repeating certain frequent λ-expressions; one can

therefore regard them as “macros”. Anyway, they admit a simple

translation into standard λ-calculus, using the usual convention for

translating bindings. Therefore, one can regard the λ-expression

“and true false” as syntactic sugar for

(λand.λtrue.λfalse. and true false)

((λfalse.λxy. x y false)(λxy.y))(λxy.x)(λxy.y).

32

Pairs

λ-calculus can also naturally encode data-structures of interest in

most programming languages. The idea is that λ-abstractions, by

their structure, can store useful information. Let us, for example,

consider pairs as special cases of “records”.

Like booleans, pairs can also be regarded behaviorally: a pair is a

“black-box” that can store any two expressions and then allow one

to retrieve those through appropriate projections.

Formally, we would like to define λ-expressions pair, 1st and 2nd

in such a way that for any other λ-expressions x and y, it is the

case that 1st (pair x y) and 2nd (pair x y) are β-equivalent

33

to x and y, respectively.

Fortunately, these can be defined quite easily:

pair := λxyb.bxy,

1st := λp. p true, and

2nd := λp. p false.

The idea is therefore that pair x y gets evaluated to the

λ-expression λb.bxy, which “freezes” x and y inside a λ-abstraction,

together with a handle, b, which is expected to be a Church

boolean, to “unfreeze” them later. Indeed, the first projection, 1st,

takes a pair and applies it to true hereby “unfreezing” its first

component, while the second projection applies it to false to

“unfreeze” its second component.

34

Church Numerals

Numbers and the usual operations on them can also be defined as

λ-expressions. The basic idea is to regard a natural number n as a

λ-expression that has the potential to apply a given operation n

times on a given starting λ-expression. Therefore, λ-numerals, also

called Church numerals, take two arguments, “what to do” and

“what to start with”, and apply the first as many times as the

intended numeral on the second. Intuitively, if the action was

“successor” and the starting expression was “zero”, then one would

get the usual numerals. Formally, we define numerals as follows:

0λ := λsz.z

1λ := λsz.sz

2λ := λsz.s(sz)

3λ := λsz.s(s(sz)) ...

35

With this intuition for numerals in mind, one can now easily define

a successor operation on numerals:

succ := λnsz.ns(sz)

The above says that for a given numeral n, its successor “succ n”

is the numeral that applies the operation s for n times starting

with sz. There may be several equivalent ways to define the same

intended meaning. For example, one can also define the successor

operation by applying the operation s only once, but on the

expression nsz; therefore, one can define succ’ := λnsz.s(nsz).

One may, of course, want to show that succ and succ’ are equal.

An interesting observation is that they are not equal as

λ-expressions. To see it, one can apply both of them on the

λ-expression λxy.x: one gets after β-reduction λsz.s and,

respectively, λsz.ss. However, they are equal when applied on

Church numerals:

36

Exercise 8 Show that for any Church numeral nλ, both succ nλ

and succ’ nλ represent the same numeral, namely (n + 1)λ.

Hint. Induction on the structure of nλ.

One can also define addition as a λ-abstraction, e.g., as follows:

plus := λmnsz.ms(nsz)

One of the most natural questions that one can and should ask

when one is exposed to a new model of natural numbers, is whether

it satisfies the Peano axioms. In our case, this translates to

whether the following properties hold:

plus 0λ mλ ≡β mλ , and

plus (succ nλ) mλ ≡β succ (plus nλ mλ).

Exercise 9 Prove that Church numerals form indeed a model of

natural numbers, by showing the two properties derived from

Peano’s axioms above.

37

Exercise 10 Define multiplication on Church numerals and prove

its Peano properties.

Hint. Multiplication can be defined several different interesting

ways.

Exercise 11 Define the power operator (raising a number to the

power of another) using Peano-like axioms. Then define power on

Church numerals and show that it satisfies its Peano axioms.

Interestingly, Church numerals in combination with pairs allow us

to define certain recursive behaviors. Let us next define a more

interesting function on Church numerals, namely one that

calculates Fibonacci numbers. More precisely, we want to define a

λ-expression fibo with the property that fibo nλ β-reduces to the

n-th Fibonacci number. Recall that Fibonacci numbers are defined

recursively as f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

38

The trick is to define a two-number “window” that “slides” through

the sequence of Fibonacci numbers until it “reaches” the desired

number. The window is defined as a pair and the sliding by moving

the second element in the pair on the first position and placing the

next Fibonacci number as the second element. The shifting

operation needs to be applied as many times as the index of the

desired Fibonacci number:

start := pair 0λ 1λ,

step := λp . pair (2nd p) (plus (1st p) (2nd p)),

fibo := λn . 1st (n step start).

We will shortly discuss a technique to support recursive definitions

of functions in a general way, not only on Church numerals.

39

Another interesting use of the technique above is in defining the

predecessor operation on Church numerals:

start := pair 0λ 0λ,

step := λp . pair (2nd p) (plus 1λ (2nd p)),

pred := λn . 1st (n step start).

Note that pred 0λ ≡β 0λ, which is a slight violation of the usual

properties of the predecessor operation on integers.

The above definition of predecessor is computationally very

inefficient. Unfortunately, there does not seem to be any better way

to define this operation on Church numerals.

Subtraction can now be defined easily:

sub := λmn. n predm.

Note, again, that negative numbers are collapsed to 0λ.

40

Let us next see how relational operators can be defined on Church

numerals. These are useful to write many meaningful programs. We

first define a helping operation, to test whether a number is zero:

zero? := λn . n (and false) true.

Now the “less than or equal to” (leq), the “larger than or equal

to” (geq), and the “equal to” (equal) can be defined as follows:

leq := λmn . zero? (sub m n),

geq := λmn . zero? (sub n m),

equal := λmn . and (leq m n) (geq m n).

41

Adding Built-ins

As we have discussed, λ-calculus is powerful enough to define many

other data-structures and data-types of interest. As it is the case

with many other, if not all, pure programming paradigms, in order

to be usable as a reasonably efficient programming language,

λ-calculus needs to provide “built-ins” comprising efficient

implementations for frequent data-types and operations on them.

We here only discuss the addition of built-in integers to λ-calculus.

We say that the new λ-calculus that is obtained this way is

enriched. Surprisingly, we have very little to do to enrich λ-calculus

with builtin integers: we only need to define integers as

λ-expressions. In the context of a formal definition of λ-calculus as

an equational theory in Maude or any other similar language that

already provides efficient equational libraries for integers, one only

42

needs to transform the already existing definition of λ-calculus, say

mod LAMBDA is

sort Exp .

...

endm

into a definition of the form

mod LAMBDA is

including INT .

sort Exp .

subsort Int < Exp .

...

endm

importing the builtin module INT and then stating that Int is a

subsort of Exp. This way, integers can be used just like any other

λ-expressions. One can, of course, write now λ-expressions that are

not well formed, such as the λ application of one integer to

43

another: 7 5. It would be the task of a type checker to catch such

kind of errors. We here focus only on the evaluation, or reduction,

mechanism of the enriched calculus (so we would “catch” such

ill-formed λ-expressions at “runtime”.

β-reduction is now itself enriched with the rewriting relation that

the builtin integers come with. For example, in INT, 7 + 5 reduces

to 12; we write this 7 + 5⇒ 12. Then a λ-expression λx.7 + 5

reduces immediately to λx.12, without applying any β-reduction

step but only the reduction that INT comes with.

Moreover, β-reduction and INT-reduction work together very

smoothly. For example, (λyx.7 + y)5 first β-reduces to λx.7 + 5 and

then INT-reduces to λx.12. In order for this to work, since integers

are now constructors for λ-expressions as well, one needs to add

one more equation to the definition of substitution:

I[x← E′] = I, for any integer I.

44

Recursion

To understand recursion, one must first understand recursion.

Unknown.

Recursion almost always turns out to be a subtle topic in

foundational approaches to programming languages. We have

already seen the divergent combinator

omega := (λx.xx)(λx.xx),

which has the property that omega ⇒β omega · · ·, that is, it leads

to an “infinite recursion”. While omega has a recursive behavior, it

does not give us a principial way to define recursion in λ-calculus.

But what is a “recursion”? Or to be more precise, what is a

“recursive function”? Let us examine the definition of a factorial

function, in some conventional programming language, that one

45

would like to be recursive:

function f(x) {

if x == 0 then 1 else x * f(x - 1)

}

In a functional language that is closer in spirit to λ-calculus the

definition of factorial would be:

let rec

f(x) = if x == 0 then 1 else x * f(x - 1)

in f(3) .

Note that the “let rec” binding is necessary in the above

definition. If we used “let” instead, then according to the

“syntactic sugar” transformation of functional bindings into

λ-calculus, the above would be equivalent to

(λ f . f 3)

(λ x . if x == 0 then 1 else x * f(x - 1)) ,

46

so the underlined f is free rather than bound to λ f, as expected.

This also explains in some more foundational way why a functional

language would report an error when one uses “let” instead of

“let rec”.

The foundational question regarding recursion in λ-calculus is

therefore the following: how can one define a λ-abstraction

f := <begin-exp ... f ... end-exp>,

that is, one in which the λ-expression “refers to itself” in its scope?

Let us put the problem in a different light. Consider instead the

well-formed well-behaved λ-expression

F := λ f . <begin-exp ... f ... end-exp>,

that is, one which takes any λ-expression, in particular a

λ-abstraction, and “plugs” it at the right place into the scope of

47

the λ-expression that we want to define recursively.

The question now translated to the following one: can we find a fix

point f of F, that is, a λ-expression f with the property that

F f ≡β f ?

Interestingly, λ-calculus has the following notorious and surprising

result:

Fix-Point Theorem. For any λ-expression F , there is some

λ-expression X such that FX ≡β X.

One such X is the λ-expression (λx.F (xx))(λx.F (xx)). Indeed,

X = (λx.F (xx))(λx.F (xx))

≡β F ((λx.F (xx))(λx.F (xx)))

= FX.

48

The fix-point theorem above suggests defining the following famous

fixed-point combinator:

Y := λF.(λx.F (xx))(λx.F (xx)).

With this, for any λ-expression F , the λ-application Y F becomes

the fix-point of F ; therefore, F (Y F) ≡β (Y F). Thus, we have a

constructive way to build fix-points for any λ-expression F . Note

that F does not even need to be a λ-abstraction.

Let us now return to the recursive definition of factorial in

λ-calculus enriched with integers. For this particular definition, let

us define the λ-expression:

F := λf.λx.(if x == 0 then 1 else x * f(x - 1))

The recursive definition of factorial is therefore the fix-point of F,

that is, Y F. It is such a fixed-point λ-expression that the “let rec”

49

functional language construct in the definition of factorial refers to!

Let us experiment with this λ-calculus definition of factorial, by

calculating factorial of 3:

(Y F) 3 ≡β

F (Y F) 3 =

(λf.λx.(if x == 0 then 1 else x * f(x - 1))) (Y F) 3 ⇒β

if 3 == 0 then 1 else 3 * (Y F)(3 - 1) ⇒

3 * ((Y F) 2) ≡β

...

6 * ((Y F) 0) ≡β

6 * (F (Y F) 0) =

6 * ((λf.λx.(if x == 0 then 1 else x * f(x - 1))) (Y F) 0) ⇒β

6 * if 0 == 0 then 1 else 0 * (Y F)(0 - 1) ⇒

6 * 1 ⇒

6

50

Therefore, λ-calculus can be regarded as a simple programming

language, providing support for functions, numbers,

data-structures, and recursion. It can be shown that any

computable function can be expressed in λ-calculus in such a way

that its computation can be performed by β-reduction. This means

that λ-calculus is a “Turing complete” model of computation.

There are two aspects of λ-calculus that lead to complications

when one wants to implement it.

One is, of course, the substitution: efficiency and correctness are

two opposing tensions that one needs to address in any direct

implementation of λ-calculus.

The other relates to the strategies of applying β-reductions: so far

we used what is called full β-reduction, but other strategies include

normal evaluation, call-by-name, call-by-value, etc. There are

51

λ-expressions whose β-reduction does not terminate under one

strategy but terminates under another. Moreover, depending upon

the strategy of evaluation employed, other fix-point combinators

may be more appropriate.

Like β-reduction, the evaluation of expressions is confluent in many

pure functional languages. However, once a language allows side

effects, strategies of evaluation start playing a crucial role; to avoid

any confusion, most programming languages “hardwire” a

particular evaluation strategy, most frequently “call-by-value”.

We do not discuss strategies of evaluation here. Instead, we

approach the other delicate operational aspect of λ-calculus,

namely the substitution. In fact, we show that it can be completely

eliminated if one applies a systematic transformation of

λ-expressions into expressions over a reduced set of combinators.

52

More precisely, we show that any closed λ-expression can be

systematically transformed into a λ-expression build over only the

combinators K := λxy.x and S := λxyz.xz(yz), together with the

λ-application operator. For example, the “identity” λ-abstraction

λx.x is going to be SKK; indeed,

SKK ≡β λz.Kz(Kz) = λz.(λxy.x)z(Kz) ≡β λz.z ≡α λx.x.

Interestingly, once such a transformation is applied, one will not

need the machinery of λ-calculus and β-reduction anymore. All

we’ll need to do is to capture the “contextual behavior” of K and

S, which can be defined equationally very elegantly: KXY = X

and SXY Z = XZ(Y Z), for any other KS-expressions X , Y , Z.

Before we do that, we need to first discuss two other important

aspects of λ-calculus: η-equivalence and extensionality.

53

η-Equivalence

Let us consider the λ-expression λx.Ex, where E is some

λ-expression that does not contain x free. Intuitively, λx.Ex does

nothing but wraps E: when “called”, it “passes” its argument to E

and then “passes” back E’s result. When applied on some

λ-expression, say E′, note that λx.Ex and E behave the same.

Indeed, since E does not contain any free occurrence of X , one can

show that (λx.Ex)E′ ≡β EE′. Moreover, if E is a λ-abstraction,

say λy.F , then λx.Ex = λx.(λy.F)x ≡β λx.F [y ← x]. The latter is

α-equivalent to λy.F , so it follows that in this case λx.Ex is

β-equivalent to E.

Even though λx.Ex and E have similar behaviors in applicational

contexts and they can even be shown β-equivalent when E is a

λ-abstraction, there is nothing to allow us to use their equality as

54

an axiom in our equational inferences. In particular, there is no

way to show that the combinator λx.λy.xy is equivalent to λx.x.

To increase the proving capability of λ-calculus, still without

jeopardizing its basic intuitions and applications, we consider its

extension with the following equation:

(η) λx.Ex = E,

for any x 6∈ FV(E). We let E ≡βη E′ denote the fact that the

equation E = E′ can be proved using standard equational

deduction from all the equational axioms above: (α), (β), (η), plus

those for substitution. The relation ≡βη is also called

βη-equivalence. The λ-calculus enriched with the rule (η) is also

called λ + η.

55

Extensionality

Extensionality is a deduction rule encountered in several branches

of mathematics and computer science. It intuitively says that in

order to prove two objects equal, one may first “extend” them in

some rigorous way. The effectiveness of extensionality comes from

the fact that it may often be the case that the extended versions of

the two objects are easier to prove equivalent.

Extensionality was probably first considered as a proof principle in

set theory. In “naive” set theory, sets are built in a similar fashion

to Peano numbers, that is, using some simple constructors

(together with several constraints), such as the empty set ∅ and the

list constructor {x1, ..., xn}. Thus, {∅, {∅, {∅}}} is a well-formed set.

With this way of constructing sets, there may be the case that two

56

sets with “the same elements” have totally different representations.

Consequently, it is almost impossible to prove any meaningful

property on sets, such as distributivity of union and intersection,

etc., by just taking into account how sets are constructed. In

particular, proofs by structural induction are close to useless.

Extensionality is often listed as the first axiom in any

axiomatization of set theory. In that context, it basically says that

two sets are equal iff they have the same elements. Formally,

If x ∈ S = x ∈ S′ for any x, then S = S′.

Therefore, in order to show sets S and S′ equal, one can first

“extend” them (regarded as syntactic terms) by applying them the

membership operator. In most cases the new task is easier to prove.

57

In λ-calculus, extensionality takes the following shape:

(ext) If Ex = E′x for some x 6∈ FV(EE′), then E = E′.

Therefore, two λ-abstractions are equal if they are equal when

applied on some variable that does not occur free in any of them.

Note that “for some x” can be replaced by “for any x” in ext. We

let E ≡βext E′ denote the fact that the equation E = E′ can be

proved using standard equational deduction using (α) and (β),

together with ext. The λ-calculus extended with ext is also called

λ + ext.

The following important result says the extensions of λ-calculus

with (η) and with ext are equivalent:

Theorem. λ + η is equivalent to λ + ext.

Proof. In order to show that two mathematical theories are

equivalent, one needs to show two things: (1) how the syntax of one

58

translates into the syntax of the other, or in other words to show

how one can mechanically translate assertions in one into assertions

in the other, and (2) that all the axioms of each of the two theories

can be proved from the axioms of the other, along the

corresponding translation of syntax. In our particular case of λ + η

and λ + ext, syntax remains unchanged when moving from one

logic to another, so (1) above is straightforward. We will shortly

see another equivalence of logics, where (1) is rather involved.

Regarding (2), all we need to show is that under the usual

λ-calculus with (α) and (β), the equation (η) and the principle of

extensionality are equivalent.

Let us first show that (η) implies ext. For that, let us assume that

Ex ≡βη E′x for some λ-expressions E and E′ and for some variable

x 6∈ FV(EE′). We need to show that E ≡βη E′:

E ≡βη λx.Ex ≡βη λx.E′x ≡βη E′.

59

Note the use of ≡βη in the equivalences above, rather than just ≡β .

That is because, in order to prove the axioms of the target theory,

λ + ext in our case, one can use the entire calculus machinery

available available in the source theory, λ + η in our case.

Let us now prove the other implication, namely that ext implies

(η). We need to prove that λx.Ex ≡βext E for any λ-expression E

and any x 6∈ FV(E). By extensionality, it suffices to show that

(λx.Ex)x ≡βext Ex, which follows immediately by β-equivalence

because x is not free in E. �

60

Combinatory Logic

Even though λ-calculus can be defined equationally and is a

relatively intuitive framework, as we have noticed several times by

now, substitution makes it non-trivial to implement effectively.

There are several approaches in the literature addressing the subtle

problem of automating substitution to avoid variable capture, all

with their advantages and disadvanteges. We here take a different

approach. We show how λ-expressions can be automatically

translated into expressions over combinators, in such a way that

substitution will not even be needed anymore.

A question addressed by many researchers several decades ago, still

interesting today and investigated by many, is whether there is any

simple equational theory that is entirely equivalent to λ-calculus.

Since λ-calculus is Turing complete, such a simple theory may

61

provide a strong foundation for computing.

Combinatory logic was invented by Moses Shönfinkel in 1920. The

work was published in 1924 in a paper entitled “On the building

blocks of mathematical logic”. Combinatory logic is a simple

equational theory over two sorts, Var and Exp with Var < Exp, a

potentially infinite set x, y, etc., of constants of sort Var written

using lower-case letters, two constants K and S of sort Exp, one

application operation with the same syntax and left-associativity

parsing convention as in λ-calculus, together with the two equations

KXY = X ,

SXY Z = XZ(Y Z),

quantified universally over X , Y , Z of sort Exp. The constants K

and S are defined equationally in such a way to capture the

intuition that they denote the combinators λxy.x and λxyz.xz(yz),

respectively. The terms of the language, each of which denoting a

62

function, are formed from variables and constants K and S by a

single construction, function application. For example,

S(SxKS)yS(SKxK)z is a well-formed term in combinatory logic,

denoting some function of free variables x, y, and z.

Let CL be the equational theory of combinatory logic above. Note

that a function FV returning the “free” variables that occur in a

term in combinatory logic can be defined in a trivial manner,

because there are no “bound” variables in CL. Also, note that the

extensionality principle from λ-calculus translates unchanged to CL:

(ext) If Ex = E′x for some x 6∈ FV(EE′), then E = E′.

Let CL + ext be CL enriched with the principle of extensionality.

The following is a landmark result:

Theorem. λ + ext is equivalent to CL + ext.

Proof. Let us recall what one needs to show in order for two

63

mathematical theories to be equivalent: (1) how the syntax of one

translates into the syntax of the other; and (2) that all the axioms

of each of the two theories can be proved from the axioms of the

other, along the corresponding translation of syntax.

Let us consider first the easy part: λ + ext implies CL + ext. We

first need to show how the syntax of CL + ext translates into that

of λ + ext. This is easy and it was already mentioned before: let K

be the combinator λxy.x and let S be the combinator λxyz.xz(yz).

We then need to show that the two equational axioms of CL + ext

hold under this translation: they can be immediately proved by

β-equivalence. We also need to show that the extensionality in CL

+ ext holds under the above translation: this is obvious, because

it is exactly the same as the extensionality in λ + ext.

64

Let us now consider the other, more difficult, implication. So we

start with CL + ext, where K and S have no particular meaning

in λ-calculus, and we need to define some map that takes any

λ-expression and translates it into an expression in CL.

To perform such a transformation, let us add syntax for

λ-abstractions to CL, but without any of the equations of

λ-calculus. This way one can write and parse λ-expressions, but

still have no meaning for those. The following ingenious bracket

abstraction rewriting system transforms any uninterpreted

λ-expression into an expression using only K, S, and the free

variables of the original λ-expression:

65

1. λx.ρ⇒ [x]ρ

2. [x]y ⇒







SKK if x = y

Ky if x 6= y

3. [x](ρρ′)⇒ S([x]ρ)([x]ρ′)

4. [x]K ⇒ KK

5. [x]S ⇒ KS

The first rule removes all the λ-bindings, replacing them by

corresponding bracket expressions. Here ρ and ρ′ can be any

expressions over K, S, variables, and the application operator, but

also over the λ-abstraction operator λ . : Var→ Exp. However,

note that rules 2-5 systematically elliminate all the brackets.

Therefore, the “bracket abstraction” rules above eventually

transform any λ-expression into an expression over only K, S,

66

variables, and the application operator.

The correctness of the translation of λ + ext into CL + ext via

the bracket abstraction technique is rather technical: one needs to

show that the translated versions of equations in λ can be proved

(by structureal induction) using the machinery of CL + ext.

Exercise 12 (Technical) Prove the correctness of the translation

of λ + ext into CL + ext above.

We do not need to understand the details of the proof of

correctness in the exercise above in order to have a good intuition

on why the bracket abstraction translation works. To see that, just

think of the bracket abstraction as a means to associate equivalent

λ-expressions to other λ-abstractions, within the framework of

λ-calculus, where K and S are their corresponding λ-expressions.

As seen above, it eventually reduces any λ-expression to one over

only combinators and variables, containing no explicit

67

λ-abstractions except those that define the combinators K and S.

To see that the bracket abstraction is correct, we can think of each

bracket term [x]E as the λ-expression that it was generated from,

λx.E, and then show that each rule in the bracket abstraction

transformation is sound within λ-calculus. For example, rule 3 can

be shown by extensionality:

(λx.ρρ′)z ≡β (ρ[x← z])(ρ′[x← z]) ≡β ((λx.ρ)z)((λx.ρ′)z)) ≡β

(λxyz.xz(yz))(λx.ρ)(λx.ρ′)z = S(λx.ρ)(λx.ρ′)z, so by

extensionality, λx.ρρ′ ≡βext S(λx.ρ)(λx.ρ′).

This way, one can prove the soundness of each of the rules in the

bracket abstraction translation. As one may expect, the tricky part

is to show the completeness of the translation, that is, that

everything one can can do with λ-claculus and ext can also do with

with its “sub-calculus” CL + ext. This is not hard, but rather

technical.

68

Exercise 13 Define the bracket abstraction translation above

formally in Maude. To do it, first define CL, then add syntax for

λ-abstraction and bracket to CL, and then add the bracket

abstraction rules as equations (which are interpreted as rewrite

rules by Maude). Convince yourself that substitution is not a

problem in CL, by giving an example of a λ-expression which would

not be reducible with the definition of λ-calculus in Exercise 5, but

whose translation in CL can be reduced with the two equations in CL.

