A General Approach to Define Binders using Matching Logic

Xiaohong Chen and Grigore Rosu
{xc3,grosu}@illinois.edu

University of Illinois at Urbana-Champaign
August 2020

The companion technical report (containing all proof details): http://hdl.handle.net/2142/106608
Motivation: K and Matching Logic

• The K formal language semantic framework (http://kframework.org)
 • K is a language to define the formal semantics of any programming languages.
 • Language tools (parsers, interpreters, verifiers, etc.) are generated automatically by K.
 • K has been used to define the formal semantics of many real-world languages.
 • K allows users to define binders easily.

\[
\text{syntax } \textit{Exp} ::= \textit{Var} \\
\quad | \textit{Exp Exp} \\
\quad | \text{"lambda" Var "." Exp [binder]}
\]

• K definitions = Matching logic theories
Matching Logic is Expressive

• Many logical systems have been defined as matching logic theories.
 - FOL
 - Separation logic
 - Hoare logic
 - Temporal logics
 - Modal μ-calculus
 - ...
• **new** This paper studies logical systems where binders play a major role.
 - λ-calculus
 - π-calculus
 - Type systems
 - ...

![Diagram of logical systems](image-url)
Main Contribution

1. We propose a simple variant of matching logic that is more suitable to capture binders (Sections 3-4).

2. We define λ-calculus as a matching logic theory Γ^λ (Section 6).
 - **Key observation**: $\lambda x. e$ does two things: create the binding and build the term.
 - $[x: Var] e \equiv \text{intension } \exists x: Var. (x, e)$, which captures the graph of the function $x \mapsto e$ and thus captures the binding;
 - $\lambda x. e \equiv \text{lambda } [x: Var] e$, which builds the term.

3. We prove the correctness of Γ^λ in terms of the following theorems:
 a. (Conservative Extension, pp. 20, Theorem 36).
 \[\vdash_\lambda e_1 = e_2 \iff \Gamma^\lambda \vdash e_1 = e_2 \]
 b. (Deductive Completeness, pp. 20, Theorem 36).
 \[\Gamma^\lambda \models e_1 = e_2 \iff \Gamma^\lambda \vdash e_1 = e_2 \]
 c. (Representative Completeness, pp. 22, Section 8.2.2).
 For any λ-theory T, there is a matching logic model $M_T \models \Gamma^\lambda$
 such that $T \vdash_\lambda e_1 = e_2 \iff M_T \models e_1 = e_2$.
 d. (Capturing All Models, pp. 19, Lemma 32).
 For any λ-calculus (concrete ccc) model A, there is a matching logic model $M_A \models \Gamma^\lambda$
 such that $A \models_\lambda e_1 = e_2 \iff M_T \models e_1 = e_2$.

4. We generalize it to other systems with binders such as System F, pure type systems, … (Section 9).
Overview of the Talk

• A high-level overview of matching logic: Syntax and semantics.

• An example: The encoding of $\lambda x.e$ in matching logic.

• Generalization to other binders (see Section 9).
Matching Logic

• A very simple and minimal logic, serving as the foundation of K: only 7 constructs

patterns \(\varphi ::= x \mid X \mid \sigma \mid \varphi_1 \varphi_2 \mid \bot \mid \varphi_1 \rightarrow \varphi_2 \mid \exists x. \varphi \)

- element variables (ranging over individual elements)
- set variables (ranging over sets)
- (set) symbols (built-in)
- application
- propositional constraints
- quantification

• The pattern matching semantics:

A pattern \(\varphi \) is interpreted as the set \(|\varphi| \) of elements that match it.

• A matching logic model \(M \) consists of:
 - a nonempty carrier set \(M \);
 - a binary application function \(a \cdot b : M \times M \rightarrow \mathcal{P}(M) \);
 - a symbol interpretation \(\sigma_M \subseteq M \) for every symbol \(\sigma \);
 - given a valuation \(\rho \) such that \(\rho(x) \in M \) and \(\rho(X) \subseteq M \), we define pattern interpretation \(|\varphi|_\rho \) as (see right)

\[
|x|_\rho = \{ \rho(x) \} \quad |X|_\rho = \rho(X) \quad |\sigma|_\rho = \sigma_M \\
|\bot|_\rho = \emptyset \\
|\varphi_1 \rightarrow \varphi_2|_\rho = M \setminus (|\varphi_1|_\rho \setminus |\varphi_2|_\rho) \\
|\varphi_1 \varphi_2|_\rho = \bigcup_{a_1 \in |\varphi_1|_\rho, a_2 \in |\varphi_2|_\rho} a_1 \cdot a_2 \\
|\exists x. \varphi|_\rho = \bigcup_{a \in M} |\varphi|_{\rho[a/x]}
\]
Matching Logic Theories

- We use a theory Γ to axiomatically define the “target” systems/models.
- A theory has two components:
 - A set of symbols;
 - A set of patterns called axioms, which axiomatize/define the behaviors of the symbols;
 - We also introduce notations (syntactic sugar) so formulas/expressions of the other systems become well-formed patterns verbatim.
- M is a model of Γ, if all axioms ψ in Γ hold in M, i.e., $|\psi|_{\rho} = M$ for all valuations ρ.

In Section 4, we define the matching logic theories of equality $\varphi_1 = \varphi_2$, membership $x \in \varphi$, sorts, functions $f: s_1 \times \cdots \times s_n \to s$, pairs $\langle \varphi_1, \varphi_2 \rangle$, power sets 2^s of sort s. Then, we use them to define the theories of λ-calculus, System F, etc.
Theory of λ-Calculus: Γ^λ

λ-calculus syntax: $e ::= x \mid e_1 e_2 \mid \lambda x. e$

α-equivalent representations:

- $\lambda x_1. e[x_1/x]$
- $\lambda x_2. e[x_2/x]$
- $\lambda x_3. e[x_3/x]$
- \ldots

Argument-value pairs:

- $\langle x_1, e[x_1/x] \rangle$
- $\langle x_2, e[x_2/x] \rangle$
- $\langle x_3, e[x_3/x] \rangle$
- \ldots

The set of all pairs (graph): $\exists x: Var. \langle x, e \rangle$ The binding of x in e is created by the \exists-binder of matching logic.

The set of all pairs, intensionalized:

- intension $\exists x: Var. \langle x, e \rangle$

Thus, the set $\exists x: Var. \langle x, e \rangle$ is treated as one element, avoiding pointwise intension (see Section 4.4).

We introduce notation $[x: Var] e \equiv$ intension $\exists x: Var. \langle x, e \rangle$

The matching logic encoding of $\lambda x. e$ is $\text{lambda} [x: Var] e$ where lambda is a normal symbol/constructor.
Theory Γ^λ and Its Correctness

λ-calculus \rightarrow encoding \rightarrow matching logic (within theory Γ^λ)

- variables: x \rightarrow x
- application: $e_1 e_2$ \rightarrow $e_1 e_2$
- abstraction: $\lambda x. e$ \rightarrow $\lambda x. e \equiv \text{lambda} [x: \text{Var}] e$
- beta-deduction: $(\lambda x. e)e' = e[e'/x]$ \rightarrow $(\lambda x. e)e' = e[e'/x]$

equivalence: $\vdash_{\lambda} e_1 = e_2$ if and only if $\Gamma^\lambda \vdash e_1 = e_2$ if and only if $\Gamma^\lambda \models e_1 = e_2$

- lambda-calculus reasoning
- matching logic reasoning
- matching logic semantic validity
Conclusion

• We proposed a general approach to defining binders in matching logic, which is the minimal logical foundation of the K framework.

• We proposed a simple variant of matching logic (only 7 constructs);

• We studied untyped λ-calculus thoroughly and gave the encoding $\lambda x. e \equiv \text{lambda}[x:Var] e$. We proved the correctness.

• In the paper, we gave a systematic treatment of binders in many other systems such as System F, pure type systems, and π-calculus.

The companion technical report (containing all proof details): http://hdl.handle.net/2142/106608