Low-Level Program Verification using Matching Logic
Reachability

Dwight Guth, Andrei Stefanescu, and Grigore Rosu

University of lllinois at Urbana-Champaign

June 29, 2013

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 1/31

Motivation

@ Operational semantics as models of programming languages
@ Use operational semantics as basis for

» interpreters

» type-checking

» model-checking

» deductive program verification

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 2/31

Outline

° Language Definition

@ Matching Logic Reachability

o Program Verification

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching I

Simple Low Level Language

implemented in the K framework
standard arithmetic and logic operations
registers

load/store instructions for memory access
branching instructions

interrupts

I/O instructions

time units/operation

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 4/31

Basic Instructions

SYNTAX

SYNTAX

SYNTAX

SYNTAX

Binst ::= BOpCode Register, Exp, Exp [strict(3, 4)]
BOpCode ::=add| sub| mul | div| or| and
Exp ::= Register| #Int

Register ::= rint

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching

June 29, 2013

5/31

Load/Store Instructions

syNTAx Minst ::= load Register, Exp [strict(3)]

sYNTAX Minst ::= store Exp, Exp [strict(2, 3)]

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 6/31

Branching and Interrupt Instructions

sYNTAX JInst ;= jmp Id
sYNTAX Brinst ::= BrOpCode Id, Exp, Exp [strict(3, 4)]
sYNTAX BrOpCode ::= beq | bne | blt| ble

syNTAXx BrOpCode ::= int

syn1ax - NOpCode ::= rfi

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 7131

Sample Program with two Interrupts

main: 1i r® , #100
li r1 , #0
1li r2 , #0
int tl, #7, #10
int t2, #10, #15
jmp loop

loop: sub r® , r0 , #1
bne loop , r® , #0

halt

tl: add r1 , r1 , #1
rfi

t2: add r2 , r2 , #1
rfi

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching

June 29, 2013

8/31

Configuration

CONFIGURATION:
(load($PGM) ~ jumpTo(main)) <'Map> pgm <'Map> mem <'Map>reg
< <$T”V”NG> timing (0) weet <$INPUT> input <$INITIAL>status <'List>timers >T
(0) priority (List) stack {‘set) interrupts

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Evaluating Arithmetic Operations

RULE < rl >k (= I 12 ~) reg

12
RULE (add rl 12,13 ~) R reg
time(add) R[I2 + 13/1]

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Evaluating load/store

RULE (load rl, 12)k (~ 12— I3 ~) mem R reg
time(load) R[13/1]

RULE <store I, 12 >k M merm

time(store) M[12/1]

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Evaluating Branching Instructions

RULE < bne X,/ 12 “ VK

time(bne) ~ branch(/ # 12, X)

RULE branch(true, X)

jumpTo(X)

RULE branch(false,)

K

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Evaluating int

RULE (int X, [[2 =), (= List timers { TIMe) weet
time(int) (X, 1+ Time, I12)

int schedules an interrupt to fire I cycles after executing, and then every /2 cycles
thereafter. The timers cell stores the currently activated interrupts in a list of
tuples.

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 13/31

Evaluating rfi

_ priority

RULE < rfi ~ k { (K, Priority) > stack

time(rfi) ~ K List Priority

Restore the previously executing code from the stack cell, which also contains the
previously-executing priority to restore to the priority cell. Interrupts are
assigned numeric priority in the order they are scheduled by the program, and can

interrupt only code running at a lower priority. The main program begins executing
at priority 0.

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 14 /31

I/O Instructions

@ read/write from a number of buses

@ each time cycle, the value on each bus is updated by an external
environment

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 15/31

Time Elapsing

RULE time(O) =)k (Timing) timing
waitFor(Timing(O))
waitFor(/) “)k
updateStatus(/2) ~ updateTimers(L) ~ interrupt(L,lengthListL)
RULE
12 weet < L >timers
2 +1 List

Each instruction takes a particular number of cycles. Afterwards, the I/O buses are
updated and interrupts may fire.

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Outline

@ Matching Logic Reachability

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching I

Matching Logic

@ Logic for specifying static properties of program configuration and
reasoning about them (generalizes separation logic)
@ Extends first-order logic with patterns
» Special predicates which are configuration terms with variables
» Configurations satisfy patterns iff they match them

@ Parametric in a model of program configurations (which is axiomatized)

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 18/31

Matching Logic Reachability Rules
(ICALP’12, OOPSLA’12, LICS’12)

@ “Rewrite” rules over matching logic patterns:

p=¢

@ Semantics: any concrete configuration satisfying ¢ and terminating
reaches a configuration satisfying ¢’, in the transition system induced
by the operational semantics

@ Since patterns generalize terms, matching logic reachability rules
capture term rewriting rules

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 19/831

Operational Semantics and Axiomatic Semantics as
Reachability Rules

@ Operational semantics rule | = r if b is syntactic sugar for
reachability rule IAb = r

@ Hoare triple encoded in a reachability rule with the empty code in the
right-hand-side

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching

June 29, 2013 20/31

Reachability Logic

@ Language-independent proof system for deriving sequents of the form

Arco=¢

@ A(axioms) and C(circularities) are sets of eachability rules

@ Intuitively, symbolic execution with operational semantics + reasoning
with cyclic behaviors

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 21/31

Proof System for Reachability

Axiom :

p=>¢ €A

Arco=¢

Transitivity :

Atrcpr =92 AUC g2 = g3

Logic Framing :
Arcop=>¢ ¥ is a (patternless) FOL formula
Arcohy =g Ny

Consequence :
Eeoio¢) Arcei=¢ Edp—oe

A tc o1 =3 A tc o1 = @2
Reflexivity : Case Analysis :
[Atrcpr=¢ Atrcpp=¢
Aroe=¢ ArcprVe=g
Circularity : Abstraction :

A Feulp=y) ¢ = 9‘7/
Arco=y¢

Arco=¢ X N FreeVars(¢') =0
ArcIXp=¢

drei Stefanescu, and Grigore Rdeow-Level Program Verification using Matching June 29, 2013 22/31

Traditional vs Our Approach

@ Traditional proof systems: language-specific

{yne#0}s{yl
{y}while(e)s{y A e =0}

@ Our proof system: language-independent

Circularity : Transitivity :
A Feulg=y) ¢ = ¢ A ke o1 = @2 AVUC F 2= 3
Arco=¢ A ke p1 = @3

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 23/31

Soundness and Completeness

@ Sound (partial correct) with respect to the transition system induced by
the semantics

@ Relatively complete under some weak assumtions about the
configuration model (it can express Gdédel g function)

@ Proofs size comparable with Hoare logic (FM’12)

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 24 /31

Outline

o Program Verification

Verifier for a Low-level Language

@ Derives program specifications from the operational semantics using
the proof system
@ Implemented in the K framework as a set of rules added to the
operational semantics
@ Reasoning required by the Consequence proof rule
» Maude, for structural matching
» Z3, for arithmetic constraints

@ Automated (the user only provides the specifications)

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 26/31

Sample program properties

@ Upper bounds for the total number of cycles simple programs take to
execute (computing the sum of the first "n" numbers, sorting an array,

etc)

@ Correctness of programs manipulating 1/0 buses

@ Upper bound for the number of cycles a program with interrupts takes
to terminate

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 27/31

Sample Program with two Interrupts

main: 1i r® , M:Int
li r1 , #0
1li r2 , #0
int tl, #7, #10
int t2, #10, #15
jmp loop

loop: sub r® , r0 , #1
bne loop , r® , #0

halt

tl: add r1 , r1 , #1
rfi

t2: add r2 , r2 , #1
rfi

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching

June 29, 2013

28/31

Invariant

< $ >k <$>pgm <0>pnon(y ('Lisr)slack
K

<0»—> N 1+- R1 2 R2 >reg
R e I]

(~add =1 rfi > 2 ~)iming Time) wcet <(t1. T1.,10) (t2, T2 ,15)>vmers
Time + D

RULE when

N>OATI> Time AT2> Time AD>0AD =3+ N-+ 1-+max (0.3« (| LTI |)) 4 max (0.3 « (| C=T2Time))

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching |

Invariant

Invariant derives pgm and k cell contents from placement in program
Invariant depends on timing parameters: side condition uses integer 3
Current time is Time

N remaining loop iterations

All remaining loop iterations plus interrupts last D cycles

Next interrupts occur at T1 and T2

Invariant depends on timer frequency: 10 and 15 in denominators
Priority and stack derived from invariant beginning in normal code
Number of remaining interrupts derived from fixed-point equations

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching June 29, 2013 30/31

Conclusions

@ K definition of a low-level language
@ Matching logic verifier constructed from the K definition

@ Proofs of upper bound of the number of execution cycles and of
correctness

Dwight Guth, Andrei Stefanescu, and Grigore Rd-ow-Level Program Verification using Matching

June 29, 2013 31/31

	Language Definition
	Matching Logic Reachability
	Program Verification

