
Low-Level Program Verification using Matching Logic
Reachability

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu

University of Illinois at Urbana-Champaign

June 29, 2013

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 1 / 31

Motivation

Operational semantics as models of programming languages

Use operational semantics as basis for
I interpreters
I type-checking
I model-checking
I deductive program verification

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 2 / 31

Outline

1 Language Definition

2 Matching Logic Reachability

3 Program Verification

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 3 / 31

Simple Low Level Language

implemented in the K framework

standard arithmetic and logic operations

registers

load/store instructions for memory access

branching instructions

interrupts

I/O instructions

time units/operation

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 4 / 31

Basic Instructions

syntax BInst ::= BOpCode Register,Exp,Exp [strict(3, 4)]

syntax BOpCode ::= add | sub | mul | div | or | and

syntax Exp ::= Register | #Int

syntax Register ::= rInt

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 5 / 31

Load/Store Instructions

syntax MInst ::= load Register,Exp [strict(3)]

syntax MInst ::= store Exp,Exp [strict(2, 3)]

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 6 / 31

Branching and Interrupt Instructions

syntax JInst ::= jmp Id

syntax BrInst ::= BrOpCode Id,Exp,Exp [strict(3, 4)]

syntax BrOpCode ::= beq | bne | blt | ble

syntax BrOpCode ::= int

syntax NOpCode ::= rfi

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 7 / 31

Sample Program with two Interrupts

main: li r0 , #100
li r1 , #0
li r2 , #0
int t1, #7, #10
int t2, #10, #15
jmp loop

loop: sub r0 , r0 , #1
bne loop , r0 , #0
halt

t1: add r1 , r1 , #1
rfi

t2: add r2 , r2 , #1
rfi

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 8 / 31

Configuration

configuration:〈 〈
load($PGM)y jumpTo(main)

〉
k

〈
·Map

〉
pgm

〈
·Map

〉
mem

〈
·Map

〉
reg〈

$TIMING
〉

timing 〈0〉 wcet
〈
$INPUT

〉
input

〈
$INITIAL

〉
status 〈·List 〉 timers

〈0〉 priority 〈·List 〉 stack 〈·Set 〉 interrupts

〉
T

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 9 / 31

Evaluating Arithmetic Operations

rule

〈
rI

I2

···

〉
k 〈··· I 7→ I2 ···〉 reg

rule

〈
add rI, I2, I3

time(add)

···

〉
k

〈
R

R[I2 + I3/I]

〉
reg

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 10 / 31

Evaluating load/store

rule

〈
load rI, I2

time(load)

···

〉
k 〈··· I2 7→ I3 ···〉mem

〈
R

R[I3/I]

〉
reg

rule

〈
store I, I2

time(store)

···

〉
k

〈
M

M[I2/I]

〉
mem

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 11 / 31

Evaluating Branching Instructions

rule

〈
bne X , I, I2

time(bne)y branch(I , I2,X)

···

〉
k

rule branch(true,X)

jumpTo(X)

rule branch(false, _)

·K

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 12 / 31

Evaluating int

rule

〈
int X , I, I2

time(int)

···

〉
k

〈
··· ·List

(X , I + Time, I2)

〉
timers 〈Time〉 wcet

int schedules an interrupt to fire I cycles after executing, and then every I2 cycles
thereafter. The timers cell stores the currently activated interrupts in a list of
tuples.

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 13 / 31

Evaluating rfi

rule

〈
rfiy _

time(rfi)y K

〉
k

〈
(K ,Priority)

·List

···

〉
stack

〈
_

Priority

〉
priority

Restore the previously executing code from the stack cell, which also contains the
previously-executing priority to restore to the priority cell. Interrupts are
assigned numeric priority in the order they are scheduled by the program, and can
interrupt only code running at a lower priority. The main program begins executing
at priority 0.

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 14 / 31

I/O Instructions

read/write from a number of buses

each time cycle, the value on each bus is updated by an external
environment

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 15 / 31

Time Elapsing

rule

〈
time(O)

waitFor(Timing(O))

···

〉
k 〈Timing〉 timing

rule



〈
waitFor(I)

updateStatus(I2)y updateTimers(L)y interrupt(L , lengthListL)

···

〉
k

〈
I2

I2 + I

〉
wcet

〈
L

·List

〉
timers


Each instruction takes a particular number of cycles. Afterwards, the I/O buses are
updated and interrupts may fire.

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 16 / 31

Outline

1 Language Definition

2 Matching Logic Reachability

3 Program Verification

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 17 / 31

Matching Logic

Logic for specifying static properties of program configuration and
reasoning about them (generalizes separation logic)
Extends first-order logic with patterns

I Special predicates which are configuration terms with variables
I Configurations satisfy patterns iff they match them

Parametric in a model of program configurations (which is axiomatized)

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 18 / 31

Matching Logic Reachability Rules
(ICALP’12, OOPSLA’12, LICS’12)

“Rewrite” rules over matching logic patterns:

ϕ⇒ ϕ′

Semantics: any concrete configuration satisfying ϕ and terminating
reaches a configuration satisfying ϕ′, in the transition system induced
by the operational semantics

Since patterns generalize terms, matching logic reachability rules
capture term rewriting rules

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 19 / 31

Operational Semantics and Axiomatic Semantics as
Reachability Rules

Operational semantics rule l ⇒ r if b is syntactic sugar for
reachability rule l ∧ b ⇒ r

Hoare triple encoded in a reachability rule with the empty code in the
right-hand-side

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 20 / 31

Reachability Logic

Language-independent proof system for deriving sequents of the form

A `C ϕ⇒ ϕ′

A(axioms) and C(circularities) are sets of eachability rules

Intuitively, symbolic execution with operational semantics + reasoning
with cyclic behaviors

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 21 / 31

Proof System for Reachability

Axiom :

ϕ⇒ ϕ′ ∈ A

A `C ϕ⇒ ϕ′

Logic Framing :

A `C ϕ⇒ ϕ′ ψ is a (patternless) FOL formula
A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Transitivity :

A `C ϕ1 ⇒ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

Consequence :

|= ϕ1 → ϕ′1 A `C ϕ
′
1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2

Reflexivity :
·

A `∅ ϕ⇒ ϕ

Case Analysis :

A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ

Circularity :

A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Abstraction :

A `C ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅
A `C ∃X ϕ⇒ ϕ′

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 22 / 31

Traditional vs Our Approach

Traditional proof systems: language-specific

{ψ ∧ e , 0} s {ψ}
{ψ} while(e) s {ψ ∧ e = 0}

Our proof system: language-independent

Circularity :

A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Transitivity :

A `C ϕ1 ⇒ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 23 / 31

Soundness and Completeness

Sound (partial correct) with respect to the transition system induced by
the semantics

Relatively complete under some weak assumtions about the
configuration model (it can express Gödel β function)

Proofs size comparable with Hoare logic (FM’12)

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 24 / 31

Outline

1 Language Definition

2 Matching Logic Reachability

3 Program Verification

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 25 / 31

Verifier for a Low-level Language

Derives program specifications from the operational semantics using
the proof system

Implemented in the K framework as a set of rules added to the
operational semantics
Reasoning required by the Consequence proof rule

I Maude, for structural matching
I Z3, for arithmetic constraints

Automated (the user only provides the specifications)

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 26 / 31

Sample program properties

Upper bounds for the total number of cycles simple programs take to
execute (computing the sum of the first "n" numbers, sorting an array,
etc)

Correctness of programs manipulating I/O buses

Upper bound for the number of cycles a program with interrupts takes
to terminate

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 27 / 31

Sample Program with two Interrupts

main: li r0 , M:Int
li r1 , #0
li r2 , #0
int t1, #7, #10
int t2, #10, #15
jmp loop

loop: sub r0 , r0 , #1
bne loop , r0 , #0
halt

t1: add r1 , r1 , #1
rfi

t2: add r2 , r2 , #1
rfi

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 28 / 31

Invariant

rule



〈
$

·K

〉
k 〈$〉 pgm 〈0〉 priority

〈
·List

〉
stack

〈
0 7→ N

0

1 7→ R1(
R1 + max

(
0,

⌈
(D−T1+Time)

10

⌉)) 2 7→ R2(
R2 + max

(
0,

⌈
(D−T2+Time)

15

⌉))
〉

reg

〈··· add 7→ 1 rfi 7→ 2 ···〉 timing

〈
Time

Time + D

〉
wcet

〈
(t1, T1

_

, 10) (t2, T2

_

, 15)
〉

timers


when

N > 0 ∧ T1 > Time ∧ T2 > Time ∧ D > 0 ∧ D = 3 ∗ N + 1 + max
(
0, 3 ∗

(⌈
(D−T1+Time)

10

⌉))
+ max

(
0, 3 ∗

(⌈
(D−T2+Time)

15

⌉))

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 29 / 31

Invariant

Invariant derives pgm and k cell contents from placement in program

Invariant depends on timing parameters: side condition uses integer 3

Current time is Time

N remaining loop iterations

All remaining loop iterations plus interrupts last D cycles

Next interrupts occur at T1 and T2

Invariant depends on timer frequency: 10 and 15 in denominators

Priority and stack derived from invariant beginning in normal code

Number of remaining interrupts derived from fixed-point equations

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 30 / 31

Conclusions

K definition of a low-level language

Matching logic verifier constructed from the K definition

Proofs of upper bound of the number of execution cycles and of
correctness

Dwight Guth, Andrei Ştefănescu, and Grigore Roşu (University of Illinois at Urbana-Champaign)Low-Level Program Verification using Matching Logic Reachability June 29, 2013 31 / 31

	Language Definition
	Matching Logic Reachability
	Program Verification

