Towards a Unified Theory of
Operational and Axiomatic Semantics

Grigore Rosu and Andrei Stefanescu
University of lllinois, USA

OPERATIONAL SEMANTICS

o 9

Operational Semantics

Easy to define and understand
— Can be regarded as formal “implementations”

Require little mathematical knowledge

— Great introductory topics in PL courses

Scale up well
— C (>1000 rules), Java, Scheme, Verilog, ..., defined

Executable, so testable

— C semantics tested against real benchmarks

Operational Semantics of IMP %
- Sample Rules -

1£(i) sy else sh = s if i #0

1£(0) sy else s, = 5

while(e) s = if(e) s;while(e) selse skip
proc() = body where “proc() body”

Operational Semantics of IMP %
- Sample Rules -

May need to be completed “all the way to top”,
into rules between configurations:

(C, o) 1£(i) syelsesy | = (C, o)[s1] i i#0

Operational Semantics %
- Bottom Line (well-known) -

We can operationally define any programming
languages only with rewrite rules of the form

[= rifb

|II

where [, are “top-level” configuration terms,
and b is a Boolean side condition

Unfortunately ...

* Operational semantics considered
inappropriate for program reasoning

* Proofs based on operational semantics are
low-level and tedious

— Have to formalize and work with transition system
— Induction on structure, number of steps, etc.

AXIOMATIC SEMANTICS

(HOARE LOGIC) % @

Axiomatic Semantics %

* Focused on reasoning

* Programming language captured as a formal
proof system that allows to derive triples

{¢} code {y/}

7 ~

Precondition Postcondition

Axiomatic Semantics %

* Not easy to define and understand, error-
prone

— Not executable, hard to test; require program
transformations which may lose behaviors, etc.

Hr{yAe+#0})s{y)
H + {ytwhile(e)s{y A e =0)

H U {y}proc() {¢'} + {¢} body {¢'}
H + {¢}proc() {¥}

State-of-the-art in
Certifiable Verification

Define an operational semantics, which acts as
trusted reference model of the language

Define an axiomatic semantics, for reasoning

Prove the axiomatic semantics sound for the
operational semantics

Now we have trusted verification ...

... but the above needs to be done for each
language individually; at best uneconomical

Unified Theory of Programming
- (Hoare and Jifeng) -

Framework where various semantics of the
same language coexist, with systematic
relationships (e.g., soundness) proved

Then use one semantics or another ...

This still requires two or more semantics for
the same language (C semantics took >2years)

Uneconomical, people will not do it

Unified Theory of Programming
- Our Approach -

* Underlying belief

— A language should have only one semantics, which
should be easy, executable, and good for program
reasoning. One semantics to rule them all.

* Approach

— Devise language-independent proof system that
takes operational semantics “as is” and derives
any reachability property (including Hoare triples).

Matching Logic

* Logic for reasoning about structure

 Matching logic: extend FOL with patterns

— Special predicates which are open configuration
terms, whose meaning is “can you match me?”

* Examples of patterns:

e . SUM
(if i s 50, oyNi#0 /

ds ((s:=0; while(nh>0)(s:=s+n; n:=n-1),
(s> s, n—>n))An >y 0)

<Skip, (S = 11 %[y (l“’l T Int 1)/[nr29 nt O)>

Reachability Rule

* Pair of patterns, with meaning “reachability”

o = ¢

* Reachability rules generalize both operational
semantics rules and Hoare triples

Operational Semantics Rules are
Reachability Rules

Operational semantics rule
[= rifb
is syntactic sugar for reachability rule

IAND = r

We can associate a transition system to any set of
reachability rules, and define validity; see paper

SEe=¢

Hoare Triples are
Reachability Rules

Hoare triple

{¢} code (¢}

is syntactic sugar for reachability rule

AXcoge({code, (TXcode> A lﬁx)
= ElXcode(<s’k1pa (TXCOde> A %()

... but there are better ways to specify program
properties; see the paper

Reasoning about Reachability

* Having generalized the elements of both
operational and axiomatic semantics, we now
want a proof system for deriving reachability

rules from reachability rules:

Arp=¢

Reachability Proof System
- 9 language-independent rules -

Rules of operational nature Rules of deductive nature
Reflexivity : Case Analysis :
: Arpr =@ Arp =0
Argp=9¢ ArppVe =g
Axiom : Logic Framing :
ov=>¢ €A Arp=¢ W 1s a (patternless) FOL formula
Arp=¢ AroANY =9 AN
Substitution : Consequence :
Arp=¢ 0 : Var — Ts(Var) E o1 — ¢ A+] = ¢, E ¢, = ¢
A F(‘)((,O)ﬁﬁ((p,) A F @1 = @
Transitivity : Abstraction :
A= o A= 3 Arp=¢ X N FreeVars(e') =0
A Fep = @3 ArdX o= ¢

Rule for circular behavior
A rp=2" 9" AUlp= ¢} F" = ¢
Arp=¢

Circularity :

Rule 1
Reflexivity

AFp= 0

Rule 2
Axiom

o =>¢ € A
AFrp= 0

Rule 3
Substitution

Arp=¢
6 : Var — 7 s(Var)

A +O(p) = 0(¢)

Rule 4
Transitivity

A F = ¢
A F @y = @3

A F e = @3

Rule 5
Case Analysis

Arp =09
Arpr=> 09

Ao V=g

Rule 6
Logic Framing

Arp=¢
Y 18 a (patternless) FOL formula

AroANY =@ ANY

Rule 7
Consequence

=<P1‘**¢]
A F) = ¢

= ¢, = ¥

A F e = ¢

Rule 8
Abstraction

Arp=¢
X N FreeVars(¢') = 0

ArAX = ¢

Rule 9
Circularity

ﬂ|_902>+90//
AUlp= ¢} F¢" = ¢

Arp=¢

Main Result
Soundness

r \
Theorem: If S F ¢ = ¢’ derivable with

the nine-rule proof system, then S E ¢ = ¢’
J

.

Conclusion

Proof system for reachability
Works with any operational semantics, as is
Requires no other semantics of the language

Unlike Hoare logics, which are language-specific,
our proof system is

— Language-independent (takes language as axioms)
— Proved sound only once, for all languages

Has been implemented in MatchC and works
Can change the way we do program verification

