
Matching Logic
A New Program Verification Approach

Grigore Rosu and Andrei Stefanescu

University of Illinois at Urbana-Champaign

(work started in 2009 with Wolfram Schulte at MSR)



Usable Verification …

• Relatively clear objectives:

– Better tools, more connected, more user friendly

– Teach students verification early

– Get the best from what we have

• But … could it be that, after 40 years of program 
verification, we still lack the right semantically 
grounded program verification foundation?



Current State-of-the-Art

Consider some programming language, L

• Formal semantics of L
– Typically skipped: considered expensive and useless

• Model checkers for L
– Based on some adhoc encodings of L

• Program verifiers for L
– Based on some other adhoc encodings of L

• Runtime verifiers for L
– Based on yet another adhoc encodings of L

• …



Semantic Gap

• Why would I trust any of these tools for L ?

• How do they relate to L ?

• What is L ?

• Example: the C (very informal) manual implies 
that (x=0)+(x=0) is undefined

– Yet, all C verifiers we looked into “prove” it = 0



Ideal Scenario

• Have one formal definition of L which serves 
all the semantic and verification purposes

L

Execution of L programs
(use for extensive testing) 

Model checking of L programs 

Proving L programs correct

…



Our Approach

• Define languages using the K framework

– A rewrite based framework which generalizes 
both evaluation contexts and the CHAM

• A programming language is a K system

– Algebraic signature (syntax + configuration)

– K rewrite rules (make read/write parts explicit)

• “Compile” K to different back-ends

– To OCAML for efficient interpreters (experimental)

– To Maude for execution, debugging, verification



KernelC



Matching Logic

• Builds upon operational semantics
– We use K, but in principle can work with any op 

semantics: a formal notion of configuration is necessary

– With K, we do not modify anything in the original sem!

• Extends the PL semantics with matching logic 
specifications, or patterns; for example,

specifies all configurations in which program variable 
root points to a tree T in the heap



Demo



Highlights

• Matching logic builds upon giants’ shoulders

– Matching and rewriting “modulo” have been 
researched extensively; efficient algorithms (Maude) 
despite its complexity (NP complete w/o constraints)

– Mathematical universe axiomatized using well 
understood and developed algebraic specification



Matching is Powerful

• The underlying rewrite machinery of K works 
by means of matching
– So programming language semantics, which is 

most of the matching logic rules, is matching

• Pattern assertion reduces to matching

• Framing reduces to matching

• Separation reduces to matching

• Nothing special needs to be done for 
separation or for framing!



K and Matching Logic Scale

• We defined several real languages so far

– Complete: C (C99), Scheme

– Large subsets: Verilog, Java 1.4

– In work: X10, Haskell, JavaScript

• And tens of toy or paradigmatic languages

• We next give an overview of the C definition

– Defined by Chucky Ellison (PhD at UIUC)



Configuration of C

57 leaf cells
63 nested cells

Heap



Statistics for the C definition

• Syntactic constructs: 173

• Total number of rules: 812

• Total number of lines: 4688

• Has been tested on thousands of C programs 
(several benchmarks, including the gcc torture 
test – passed 95% so far)



Conclusion and Future Work

• Formal verification should start with a formal, 
executable semantics of the language

• Once a well-tested formal semantics is available, 
developing program verifiers should be an easy 
task, available to masses

• Matching logic aims at the above

• It makes formal semantics useful!

• It additionally encourages developing formal 
semantics to languages, which in K is easy and fun


