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Abstract—Matching logic is a logic for specifying and reasoning
about structure by means of patterns and pattern matching. This
paper makes two contributions. First, it proposes a sound and
complete proof system for matching logic in its full generality.
Previously, sound and complete deduction for matching logic
was known only for particular theories providing equality and
membership. Second, it proposes matching µ-logic, an extension
of matching logic with a least fixpoint µ-binder. It is shown that
matching µ-logic captures as special instances many important
logics in mathematics and computer science, including first-order
logic with least fixpoints, modal µ-logic as well as dynamic
logic and various temporal logics such as infinite/finite-trace
linear temporal logic and computation tree logic, and notably
reachability logic, the underlying logic of the K framework for
programming language semantics and formal analysis. Matching
µ-logic therefore serves as a unifying foundation for specifying
and reasoning about fixpoints and induction, programming
languages and program specification and verification.

I. Motivation
Matching logic [1] (shortened as ML) is a first-order logic

(FOL) variant for specifying and reasoning about structure by
means of patterns and pattern matching. In the practice of
program verification, ML is used to specify static properties
of programs in reachability logic [2] (shortened as RL), which
takes an operational semantics of a programming language as
axioms and yields a program verifier that can prove any reach-
ability properties of any programs written in that language. As
a successful implementation of ML and RL, the K framework
(http://kframework.org) has been used to define the formal
semantics of various real languages such as C [3], Java [4],
JavaScript [5], and to verify complex program properties [6].

A sound and complete Hilbert-style proof system P of ML
is given in [1], whose proof of completeness is by reduction
to pure predicate logic. However, the proof system P is
only applicable to theories where a set of special definedness
symbols are given together with appropriate axioms that can
be used to define both equality and membership as derived
constructs. This leaves the question of whether there is any
proof system of ML that gives sound and complete deduction
for all theories, open. Our first contribution is to answer this
question by proposing a new proof system H of ML that is
complete without requiring definedness or any other symbols.
Our second and main contribution was stimulated by lim-

itations of RL itself as a logic to reason about dynamic
behaviors of programs. Specifically, as its name suggests,
RL can only define and reason about reachability claims. In

particular, it is not capable of expressing liveness or many
other interesting properties that temporal or dynamic logics
can naturally express. Therefore, we propose matching µ-
logic (shortened as MmL), which extends ML with a least
fixpoint µ-binder. It turns out that MmL subsumes not only
RL, but also a variety of common logics/calculi that are used
to reason about fixpoints and induction, especially for program
verification and model checking, including first-order logic
with least fixpoints (LFP) [7], modal µ-logic [8] (as well as
various temporal logics [9], [10] and dynamic logic (DL) [11]–
[13]). For each of these we prove a conservative extension
result, showing the faithfulness of our definitions.
We organize the rest of the paper as follows. We start with

a quick but comprehensive overview of ML in Section II,
and then present the new proof system H in Section III.
We present MmL in Section IV, and show how to define
recursive/co-recursive symbols as syntactic sugar in Section V.
Then we discuss how MmL subsumes all the following:
first-order logic with least fixpoints (Section VI); modal µ-
logic and its fragment logics (Section VII); reachability logic
(Section VIII). We compare with related work and conclude
the paper with a proposal of future work in Sections IX and X.

II. Matching Logic Preliminaries
Matching logic (ML) is a variant of many-sorted FOL

that makes no distinction between operation and predicate
symbols, allowing them to be uniformly used to build patterns.
Patterns define both structural and logical constraints, and are
interpreted in models as sets of elements (those that match
them). We offer a compact but comprehensive review of ML
below. A detailed discussion of ML can be found in [1].

A. Matching logic syntax
Definition 1. A matching logic signature or simply a signature
� = (S,Var,Σ) is a triple with a nonempty set S of sorts, an
S-indexed set Var = {Vars}s∈S of countably infinitely many
sorted variables denoted x:s, y:s, etc., and an (S∗ × S)-indexed
countable set Σ = {Σs1...sn ,s}s1 ,...,sn ,s∈S of many-sorted sym-
bols. When n = 0, we write σ ∈ Σλ,s and say σ is a constant
symbol. Matching logic �-patterns, or simply (�-)patterns, are
defined inductively for all sorts s, s′, s1, . . . , sn ∈ S as follows1:

1We use different primitives {→, ¬, ∀} than [1], which uses {∧, ¬, ∃}.
These are more appropriate for our new proof system H (Fig. 1 in Section III).
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ϕs F x:s ∈ Vars | ϕs → ϕs | ¬ϕs | ∀x:s′.ϕs
| σ(ϕs1, . . . , ϕsn ) if σ ∈ Σs1...sn ,s

We use PatternML(�) = {PatternML
s (�)}s∈S to denote the

S-indexed set of �-patterns generated by the above grammar
(modulo α-equivalence, see later). We feel free to drop the
signature � and simply write PatternML = {PatternML

s }s∈S .

The signature � = (S,Var,Σ) is abbreviated as (S,Σ) or
just Σ when Var and S are understood or not important.
When we write a pattern, we assume it is well-formed without
explicitly specifying the necessary conditions. When σ ∈ Σλ,s
is a constant symbol, we write σ to mean the pattern σ(). We
adopt the following derived construct as syntactic sugar:

ϕ1 ∨ ϕ2 ≡ ¬ϕ1 → ϕ2 ∃x:s.ϕ ≡ ¬∀x:s.¬ϕ
ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2) >s ≡ ∃x:s.x:s
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) ⊥s ≡ ¬>s

Note that “top” >s , the pattern that matches everything (see
Proposition 5) is closed. We drop sort s whenever possible,
so we write x, y,>,⊥ instead of x:s, y:s,>s,⊥s . Standard
precedences are adopted to avoid parentheses. The scope of
“∀” and “∃” goes as far as possible to the right.

As in FOL, “∀” (and “∃”) are binders, and we adopt the
standard notions of free variables, α-renaming, and capture-
avoiding substitution. We use FV(ϕ) to denote the set of all
free variables in ϕ. When FV(ϕ) = ∅, we say ϕ is closed. We
regard patterns that are α-equivalent as the same, i.e., ϕ ≡ ϕ′
if ϕ, ϕ′ are α-equivalent. We write ϕ[ψ/x] to mean the result
of substituting ψ for every free occurrence of x in ϕ, where
α-renaming happens implicitly to prevent variable capture. We
abbreviate ϕ[ψ1/x1] . . . [ψn/xn] as ϕ[ψ1/x1, . . . ,ψn/xn].

B. Matching logic semantics
ML symbols are interpreted as relations, and thus ML

patterns evaluate to sets of elements (those “matching” them).

Definition 2. Let � = (S,Σ) be a signature. A matching logic
�-model M = ({Ms}s∈S,_M ), or just a (�-)model, consists of:
• a nonempty carrier set Ms for each sort s ∈ S;
• an interpretation σM : Ms1 × · · · ×Msn → P(Ms) for each
σ ∈ Σs1...sn ,s , where P(Ms) is the powerset of Ms .

For notational simplicity, we overload the letter M and use
it to also mean the S-indexed set of carrier sets {Ms}s∈S . The
usual FOL models are special cases of ML models, where
|σM (a1, . . . ,an)| = 1 for all a1 ∈ Ms1, . . . ,an ∈ Msn . Partial
FOL models are also special cases where |σM (a1, . . . ,an)| ≤
1, since we can capture the undefinedness of the partial
function σM on a1, . . . ,an with σM (a1, . . . ,an) = ∅.

We tactically use the same letter σM to mean its pointwise
extension, σM : P(Ms1 ) × · · · × P(Msn ) → P(Ms), defined as:

σM (A1, . . . , An) =
⋃
{σM (a1, . . . ,an) | a1 ∈ A1, . . . ,an ∈ An}

for all A1 ⊆ Ms1, . . . , An ⊆ Msn .

Proposition 3. For all Ai, A′i ⊆ Msi , 1 ≤ i ≤ n, the pointwise
extension σM has the following property of propagation:

σM (A1, . . . , An) = ∅ if Aj = ∅ for some 1 ≤ j ≤ n,

σM (A1 ∪ A′1, . . . , An ∪ A′n) =
⋃

1≤ j≤n,B j ∈{A j ,A
′
j }

σM (B1, . . . ,Bn),

σ(A1, . . . , An) ⊆ σ(A′1, . . . , A
′
n) if Ai ⊆ A′i for all 1 ≤ i ≤ n.

Definition 4. Let � = (S,Var,Σ) and let M be a �-model.
Given a function ρ : Var→ M , called an M-valuation, let its
extension ρ̄ : PatternML → P(M) be inductively defined as:
• ρ̄(x) = {ρ(x)}, for all x ∈ Vars;
• ρ̄(ϕ1 → ϕ2) = Ms \(ρ̄(ϕ1)\ ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(¬ϕ) = Ms \ ρ̄(ϕ), for all ϕ ∈ Patterns;
• ρ̄(∀x.ϕ) =

⋂
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′ ;
• ρ̄(σ(ϕ1, ..., ϕn)) = σM (ρ̄(ϕ1), ..., ρ̄(ϕn)), for σ ∈ Σs1...sn ,s;

where “\” is set difference and ρ[a/x] denotes the M-valuation
ρ′ with ρ′(x) = a and ρ′(y) = ρ(y) for all y , x.

Intuitively, a pattern is evaluated to the set of all elements
that “match” it. For example, the variable x (as a pattern)
is matched by exactly one element, ρ(x); the pattern ¬ϕ is
matched by exactly those that do not match ϕ; etc. The next
proposition shows that all derived constructs have the expected
semantics: “∧” means conjunction, “∨” means disjunction,
“>” means the total set, “⊥” means the empty set, etc.

Proposition 5. The following propositions hold:
• ρ̄(>s) = Ms and ρ̄(⊥s) = ∅;
• ρ̄(ϕ1 ∧ ϕ2) = ρ̄(ϕ1) ∩ ρ̄(ϕ2);
• ρ̄(ϕ1 ∨ ϕ2) = ρ̄(ϕ1) ∪ ρ̄(ϕ2);
• ρ̄(ϕ1↔ ϕ2) = Ms\(ρ̄(ϕ1)4 ρ̄(ϕ2)), for ϕ1, ϕ2 ∈ Patterns;
• ρ̄(∃x.ϕ) =

⋃
a∈Ms′

ρ[a/x](ϕ), for all x ∈ Vars′;
where “4” is set symmetric difference.

Definition 6. We say a matching logic pattern ϕ holds in M ,
written M �ML ϕ, if ρ̄(ϕ) = M for all ρ : Var→ M . Let Γ be a
set of patterns, called axioms. We write M �ML Γ iff M �ML ϕ
for all axioms ϕ ∈ Γ. We write Γ �ML ϕ iff M �ML ϕ for all
models M �ML Γ. When Γ is empty, we abbreviate Γ �ML ϕ as
�ML ϕ, and say that ϕ is valid. This is, a pattern is valid iff it is
matched by all elements in all models. We call the pair (�,Γ)
a matching logic �-theory, or simply a (�-)theory. Model M
is said to be a model of the theory (�,Γ) iff M �ML Γ.

C. Important notations

Several mathematical instruments of practical importance,
such as definedness, totality, equality, membership, set con-
tainment, functions and partial functions, and constructors, can
all be defined using patterns. We give a compact summary of
the definitions and notations that are needed in this paper.

Definition 7. For any (not necessarily distinct) sorts s, s′, let us
consider a unary symbol d_es′s ∈ Σs,s′ , called the definedness
symbol, and the pattern/axiom dx:ses′s , called (Definedness).
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We define totality “b_cs′s ”, equality “=s′s ”, membership “∈s′s ”,
and set containment “⊆s′s ” as derived constructs:

bϕcs
′

s ≡ ¬d¬ϕe
s′

s ϕ1 =
s′

s ϕ2 ≡ bϕ1 ↔ ϕ2c
s′

s

x ∈s
′

s ϕ ≡ dx ∧ ϕes
′

s ϕ1 ⊆
s′

s ϕ2 ≡ bϕ1 → ϕ2c
s′

s

and feel free to drop the (not necessarily distinct) sorts s, s′.

The (Definedness) axiom ensures that (d_es′s )M (a) = Ms′

in all models M for all a ∈ Ms . Therefore, for all valuations
ρ, we have ρ̄(dϕes

′

s ) = Ms′ if ρ̄(ϕ) , ∅, and ρ̄(dϕes
′

s ) = ∅

otherwise. That is, dϕes′s says, in the sort universe s′, if ϕ is
defined or not in its sort universe s. We can prove all constructs
in Definition 7 have the expected semantics: ρ̄(bϕcs′s ) = Ms′ if
ρ̄(ϕ) = Ms , and ρ̄(bϕcs

′

s ) = ∅, otherwise; ρ̄(ϕ1 =
s′
s ϕ2) = Ms′

if ρ̄(ϕ1) = ρ̄(ϕ2), and ρ̄(ϕ1 =
s′
s ϕ2) = ∅ otherwise; etc.

Functions and partial functions can be defined by axioms:

(Function) ∃y . σ(x1, . . . , xn) = y

(Partial Function) ∃y . σ(x1, . . . , xn) ⊆ y

(Function) requires σ(x1, . . . , xn) contains exactly one ele-
ment and (Partial Function) requires it contains at least one
element (recall y is evaluated to a singleton set). For brevity,
we use the function notation σ : s1 × · · · × sn → s to mean we
automatically assume the (Function) axiom of σ. Similarly,
partial functions are written as σ : s1 × · · · × sn ⇀ s.

Constructors are extensively used in building programs and
data, as well as semantic structures to define and reason about
languages and programs. They can be defined in the “no junk,
no confusion” spirit [14]. Let � = (S,Σ) be a signature, let
C = {ci ∈ Σs1

i ...s
mi
i ,si

| 1 ≤ i ≤ n} ⊆ Σ be a set of constructor
symbols, and consider the following axioms/patterns:

(No Junk) for all sorts s ∈ S:∨
ci ∈C with si=s

∃x1
i :s1

i . . . ∃xmi

i :smi

i . ci(x1
i , . . . , x

mi

i )

(No Confusion I) for all i , j and si = sj :
¬(ci(x1

i , . . . , x
mi

i ) ∧ cj(x1
j , . . . , x

m j

j ))

(No Confusion II) for all 1 ≤ i ≤ n:
(ci(x1

i , . . . , x
mi

i ) ∧ ci(y1
i , . . . , y

mi

i ))

→ ci(x1
i ∧ y1

i , . . . , x
mi

i ∧ ymi

i )

Intuitively, (No Junk) says everything is constructed; (No
Confusion I) says different constructs build different things;
and (No Confusion II) says constructors are injective. We
refer to the the last two axioms as (No Confusion).

D. Defining first-order logic in matching logic
Given a FOL signature (S,Σ,Π) with function symbols Σ

and predicate symbols Π, the syntax of FOL is given by:

ts F x ∈ Vars | f (ts1, . . . , tsn ) with f ∈ Σs1...sn ,s

ϕ F π(ts1, . . . , tsn ) with π ∈ Πs1...sn | ϕ→ ϕ | ¬ϕ | ∀x.ϕ

To subsume the syntax, we define a ML signature �FOL =

(SFOL,ΣFOL), where SFOL = S∪{Pred} contains a distinguished

sort Pred, and ΣFOL = { f : s1 × · · · × sn → s | f ∈ Σs1...sn ,s}

∪ {π : s1 × · · · × sn → Pred | π ∈ Πs1...sn } contains FOL
function symbols as ML functions and FOL predicate symbols
as ML functions that return Pred. Let ΓFOL be the resulting
�FOL-theory. Notice that we use the function notations so ΓFOL

contains the (Function) axioms for all symbols in ΣML.

Proposition 8. For all FOL formulas ϕ, we have ϕ is a �FOL-
pattern of sort Pred and �FOL ϕ if and only if ΓFOL �ML ϕ.

E. Matching logic proof system P with definedness symbols
ML has a conditional sound and complete Hilbert-style

proof system, which we refer to as P in this paper. We refer
readers to [1] for details (see also Fig. 3). Here we denote its
provability relation as Γ `P ϕ. The proof system P can prove
all patterns ϕ that are valid in Γ under the condition that
Γ contains definedness symbols and (Definedness) axioms.
In fact, many proof rules in P use the equality “=” and
membership “∈” constructs, both of which are defined using
the definedness symbols. This means P is not applicable at
all to any theories that do not contain definedness symbols.
We wrap up this subsection by reviewing the soundness

and completeness theorem of P. In Section III, we propose a
new ML proof system H that is sound and complete without
requiring the theories to contain definedness symbols.

Theorem 9 (Soundness and Completeness of P). For all
theories Γ containing the definedness symbols and axioms
(Definition 7) and all patterns ϕ, we have Γ �ML ϕ iff Γ `P ϕ.

III. A New Proof System of Matching Logic
Our first main contribution in this paper is a new ML

proof system H that is sound and complete without requiring
definedness symbols and axioms, and thus extends the com-
pleteness result in [1], re-stated in Theorem 9.
We first need the following definition of context:

Definition 10. A context C is a pattern with a distinguished
placeholder variable �. We write C[ϕ] to mean the result of
replacing � with ϕ without any α-renaming, so free variables
in ϕ may become bound in C[ϕ], different from capture-
avoiding substitution. A single symbol context has the form
Cσ ≡ σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn) where σ ∈ Σs1...sn ,s and
ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn are patterns of appropriate sorts. A
nested symbol context is inductively defined as:
• � is a nested symbol context, called the identity context;
• if Cσ is a single symbol context, and C is a nested symbol
context, then Cσ[C[�]] is a nested symbol context.

Intuitively, a context C is a nested symbol context iff the path
to � in C contains only symbols and no logic connectives.

The proof system H (Fig. 1, above the double line) has
13 proof rules that are divided into four categories. The first
category consists of the Łukasiewicz complete axiomatization
of propositional logic [15] (four rules). The second cate-
gory completes the (complete) axiomatization of first-order
logic [16] (three rules). The third category contains four rules
that capture the property of propagation (Proposition 3). The
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(Proposition1) ϕ1 → (ϕ2 → ϕ1)
(Proposition2) (ϕ1 → (ϕ2 → ϕ3)) → (ϕ1 → ϕ2) → (ϕ1 → ϕ3)
(Proposition3) (¬ϕ1 → ¬ϕ2) → (ϕ2 → ϕ1)

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2
(Variable Substitution) ∀x.ϕ→ ϕ[y/x]
(∀) ∀x.(ϕ1 → ϕ2) → (ϕ1 → ∀x.ϕ2) if x < FV(ϕ1)

(Universal Generalization)
ϕ

∀x.ϕ
(Propagation⊥) Cσ[⊥] → ⊥
(Propagation∨) Cσ[ϕ1 ∨ ϕ2] → Cσ[ϕ1] ∨ Cσ[ϕ2]
(Propagation∃) Cσ[∃x.ϕ] → ∃x.Cσ[ϕ] if x < FV(Cσ[∃x.ϕ])

(Framing)
ϕ1 → ϕ2

Cσ[ϕ1] → Cσ[ϕ2]

(Existence) ∃x. x
(Singleton Variable) ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where C1 and C2 are nested symbol contexts.

(Set Variable Substitution)
ϕ

ϕ[ψ/X]
(Pre-Fixpoint) ϕ[µX . ϕ/X] → µX .ϕ

(Knaster-Tarski)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ

Fig. 1. Sound and complete proof system H of matching logic (above the double line) and the proof system Hµ of matching µ-logic

fourth category contains two technical proof rules that are
needed for the completeness result of H . Notice that unlike
P, all proof rules in H are general rules and do not depend
on any special symbols such as the definedness symbols.

Definition 11. Let Γ be an axiom set and ϕ be a pattern.
As usual, we write Γ `H ϕ iff ϕ can be proved by the proof
system H with the patterns in Γ as additional axioms.

There are two interesting observations about H . Firstly, the
(Framing) rule allows us to lift the result of local reasoning
through any symbol contexts, and thus supports compositional
reasoning in ML. Secondly, the three propagation axioms plus
the (Framing) rule inspire a close relationship between ML
and modal logics, where the ML symbols and the modal logic
modalities are dual to each other, as illustrated below:

Proposition 12. Let σ ∈ Σs1...sn ,s and define its “dual” as
σ̄(ϕ1, . . . , ϕn) ≡ ¬σ(¬ϕ1, . . . ,¬ϕn). Then we have:
• (K): `H σ̄(ϕ1 → ϕ′1, . . . , ϕn → ϕ′n) → (σ̄(ϕ1, . . . , ϕn) →
σ̄(ϕ′1, . . . , ϕ

′
n)); and

• (N): `H ϕi implies `H σ̄(ϕ1, . . . , ϕi, . . . , ϕn).
In particular, when n = 1, we obtain the normal modal logic
(K) rule and (N) rule [17].

We present some important properties about the proof
system H . The first one is the soundness theorem.

Theorem 13 (Soundness of H ). Γ `H ϕ implies Γ �ML ϕ.

The second property is a version of deduction theorem,
which requires definedness symbols and axioms.

Theorem 14 (Deduction Theorem of H ). Let Γ be an axiom
set containing definedness symbols and axioms (see Defini-
tion 7), and let ϕ,ψ be two patterns. If Γ ∪ {ψ} `H ϕ and
the proof does not use (Universal Generalization) on free
variables in ψ, then Γ `H bψc → ϕ. In particular, if ψ is
closed, then Γ∪{ψ} `H ϕ implies Γ `H bψc → ϕ. Notice that
bψc is an abbreviation of bψcss′ if ϕ has sort s and ψ has sort
s′. Also, the reverse theorem holds: Γ `H bψc → ϕ implies
Γ ∪ {ψ} `H ϕ, without any additional conditions.

The verbose condition about (Universal Generalization)
in Theorem 14 also appears in the deduction theorem in FOL
(see, for example, [16]). Notice that we can not conclude Γ `H
ψ → ϕ in general. The theorem is proved by an induction on
the length of the proof, but we here instead give an intuitive
semantic explanation. Suppose Γ∪ {ψ} �ML ϕ for some closed
pattern ψ (so we can ignore valuations). Then for all models
M �ML Γ, if ψ holds then ϕ also holds. This actually means
M �ML bψc → ϕ, as bψc is evaluated to the empty set if ψ
does not hold in M . Note that M �ML ψ → ϕ is too strong
as a conclusion, for it requires the valuation of ψ is always
contained in ϕ, even in models M where ψ does not hold.

The third property is that we can prove all proof rules in
P using the new proof system H , with definedness axioms
as additional axioms. This immediately gives us the following
completeness result of H as a corollary of Theorem 9.

Theorem 15. For all axiom sets Γ containing (Definedness)
axioms and all patterns ϕ, we have Γ �ML ϕ implies Γ `H ϕ.

Finally, we state our main completeness result for H :
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Theorem 16 (Completeness of H ). �ML ϕ implies `H ϕ.

The proof of Theorem 16 is rather complex (see Ap-
pendix D). We drew inspiration from Blackburn and Tza-
kova [18], who proved a completeness result for a version of
hybrid modal logic with the ∀-binder, using a mixture of modal
and first-order techniques: the idea of canonical models from
modal logic and the idea of witnessed sets from first-order
logic. Theorem 16 can be seen as a nontrivial generalization
of the completeness result in [18]. Specifically, we extend the
hybrid modal logic of [18] in two directions. First, we consider
multiple sorts, each coming with its own universe of worlds
and logical infrastructure; the approach in [18] has only one
sort, that of “formulae”. Second, we allow arbitrarily many
modal operators of arbitrary arities (see Proposition 12); the
approach in [18] only considers the usual, unary “necessity”
modal operator �_ (and its dual ^_). Polyadic, non-hybrid
(i.e., without ∀-binder) variants of modal logic are known (see,
e.g., [19]), but at our knowledge our work in this paper is the
first to combine polyadic modal operators and FOL quantifiers.

IV. From Matching Logic to Matching µ-Logic
In this section, we extend ML with the least fixpoint µ-

binder. We call the extended logic matching µ-logic (MmL),
and study its syntax, semantics, and proof system. Many
definitions, notations, and properties of ML that are introduced
in Section II and III also work for MmL, so we only focus on
parts where they differ to prevent redundancy.

A. Matching µ-logic syntax
Definition 17. A matching µ-logic signature � = (S,Var,Σ)
or simply a signature is the same as a matching logic signature
except that Var = EVar ∪ SVar is now a disjoint union of
two S-indexed sets of variables: the element variables denoted
as x:s, y:s, etc. in EVar, and the set variables denoted as
X:s,Y :s, etc in SVar. Matching µ-logic �-patterns, or simply
�-patterns or just patterns, are defined inductively by the
following grammar for all sorts s, s′ ∈ S:

ϕs F x:s ∈ EVars | X:s ∈ SVars | · · ·
| µX:s.ϕs if ϕs is positive in X:s,

where the “. . . ” part is the same as in ML. We say ϕs
is positive in X:s if every free occurrence of X:s is under
an even number of negations, where for counting negations
the formula ϕ1 → ϕ2 is interpreted as ¬ϕ1 ∨ ϕ2. We let
Pattern(�) = {Patterns}s∈S denote the set of all matching
µ-logic �-patterns and feel free to drop the signature �.

From now on, we automatically assume we are talking about
MmL unless we explicitly say otherwise.

Intuitively, element variables are like ML variables in that
they are evaluated to elements, while set variables are evalu-
ated to subsets. The least fixpoint pattern µX:s. ϕs gives the
least solution (under the subset relation) of the equation X:s =
ϕs of set variable X:s, and the condition of positive occurrence
guarantees the existence of such a least solution. The notion of
free variables, α-renaming, and capture-avoiding substitution

are extended to set variables and the µ-binder. The dual version
of the least fixpoint µ-binder is the greatest fixpoint ν-binder,
defined as νX:s.ϕs ≡ ¬µX:s.¬ϕs[¬X:s/X:s], given that ϕs
is positive in X:s, (which implies that ¬ϕs[¬X:s/X:s] is also
positive in X:s, justifying the definition).

B. Matching µ-logic semantics
We first review a variant of the Knaster-Tarski theorem [20]:

Theorem 18 (Knaster-Tarski). Let M be a nonempty set and
F : P(M) → P(M) be a monotone function, i.e., F (A) ⊆
F (B) for all subsets A ⊆ B of M . Then F has a unique least
fixpoint µF and a unique greatest fixpoint νF , where:

µF =
⋂
{A ∈ P(M) | F (A) ⊆ A},

νF =
⋃
{A ∈ P(M) | A ⊆ F (A)}.

We call A a pre-fixpoint of F whenever F (A) ⊆ A, and a
post-fixpoint of F whenever A ⊆ F (A).

MmL models are exactly ML models where sorts are asso-
ciated with their carrier sets and symbols are interpreted as
relations. Valuations are extended such that element variables
are mapped to elements and set variables are mapped to
subsets. Patterns are evaluated the same way for the ML
constructs, but extended with the valuation of least fixpoint
patterns µX:s. ϕ as the true least fixpoints in models. Formally:

Definition 19. Let � = (S,Var,Σ) be a signature with
Var = EVar ∪ SVar, and M = ({Ms}s∈S,_M ) be a �-model.
A valuation ρ : Var → (M ∪ P(M)) is a function such that
ρ(x) ∈ Ms for all x ∈ EVars and ρ(X) ∈ P(Ms) for all
X ∈ SVars . Its extension ρ̄ : Pattern → P(M) is defined as
in Definition 4, extended with:
• ρ̄(x) = {ρ(x)} for all x ∈ EVars;
• ρ̄(X) = ρ(X) for all X ∈ SVars;
• ρ̄(µX . ϕ) = µFϕ,X for all X:SVars , where Fϕ,X (A) =
ρ[A/X](ϕ) for all A ⊆ Ms .

Here ρ[A/X] denotes the valuation ρ′ such that ρ′(X) = A
and ρ′(Y ) = ρ(Y ) for all Y , X . Notice that we need to verify
that Fϕ,X is monotone. This is done by using the fact that ϕ is
positive in X , and we omit the verification details. The notions
M � ϕ, Γ � ϕ, and M � Γ for all MmL models M , patterns ϕ,
and axiom sets Γ are defined in the expected way.

Proposition 20. For all axiom sets Γ of matching logic
patterns (without µ) and all matching logic patterns ϕ (without
µ), we have Γ �ML ϕ if and only if Γ � ϕ.

C. Example: capturing precisely term algebras
Many approaches to specifying formal semantics of pro-

gramming languages are applications of initial algebra seman-
tics [21]. In this subsection, we show how term algebras, a
particular example of initial algebras, can be precisely captured
using MmL patterns as axioms. For simplicity, we discuss only
single-sorted term algebras, but the result can be extended to
the many-sorted settings without any major technical difficul-
ties using the techniques introduced in Section V.
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Definition 21. Let � = ({Term},�) be a signature with one
sort Term and at least one constant symbol. A �-term or simply
a term is inductively defined as follows:

t F c ∈ Σλ,Term | c(t1, . . . , tn) for c ∈ ΣTerm...Term,Term

The �-term algebra T� = ({T�Term},_T� ) consisting of:
• a carrier set T�Term containing all �-terms;
• a function cT� : T�Term × · · · × T�Term → T�Term for all
symbols c ∈ ΣTerm...Term,Term defined as cT� (t1, . . . , tn) =
c(t1, . . . , tn).

Proposition 22. Let � = ({Term},Σ) be a signature with one
sort Term and at least one constant symbol. Define a �-theory
Γterm
�

with (Function) and (No Confusion) axioms2 for all
symbols in Σ, plus the following axiom:

(Inductive Domain) µD.
∨
c∈Σ

c(D, . . . ,D)

Then for all �-models M � Γterm
�

, M is isomorphic to T�. In
addition, for all extended signatures �+ ⊇ � and �+-models
M � Γterm

�
, we have M

��
�
is isomorphic to T�, where M

��
�
is

the reduct model of M over the sub-signature �.

Intuitively, the (Inductive Domain) axiom forces that for
all models M , the carrier set MTerm must be the the smallest set
that is closed under all symbols in Σ, while the (Function)
and (No Confusion) axioms forces all symbols in Σ to be
interpreted as injective functions, and different constructors
construct different terms.

Proposition 22 immediately tells us that MmL cannot have
a proof system that is both sound and complete, because one
can capture precisely the model (N,+,×) of natural numbers
with addition and multiplication with MmL axioms, and the
model (N,+,×), by Gödel’s first incompleteness theorem [22],
is not axiomatizable.

Proposition 23. Let � = ({Nat}, {0 ∈ Σλ,Nat, succ ∈ ΣNat,Nat})
and the �-theory Γterm

�
be defined as in Proposition 22, where

the (Inductive Domain) takes the following form:

(Inductive Domain) µD . 0 ∨ succ(D)

Let the signature �N extend � with two functions:

plus : Nat × Nat→ Nat mult : Nat × Nat→ Nat

and the �N-theory ΓN extend Γterm
�

with the standard axioms:

plus(0, y) = y plus(s(x), y) = s(plus(x, y))
mult(0, y) = 0 mult(s(x), y) = plus(y,mult(x, y))

Then, ΓN captures precisely (N,+,×), meaning that for all
models M � ΓN, M is isomorphic to (N,+,×).

We finish this subsection by comparing Proposition 22
with the nontrivial result that the term algebra T� has a
complete axiomatization in FOL where the only predicate
symbol is equality [23]. We refer to this complete FOL

2See Section II-C.

axiomatization as ΓFOL(T�). This means that for all FOL
formulas ϕ, ΓFOL(T�) �FOL ϕ if and only if T� �FOL ϕ. This
result is weaker than Proposition 22, because by Löwenheim-
Skolem theorem [24], the FOL theory ΓFOL(T�) has models
of arbitrarily large cardinalities (if � contains at least one
non-constant constructors), meaning that there are models
M �FOL ΓFOL(T�) with strictly more elements than T�, and
thus cannot be isomorphic to T�. It is just the case that M (and
all FOL models of ΓFOL(T�)) satisfies exactly the same FOL
formulas as T�, known in literature as elementary equivalence.
Proposition 22, on the other hand, shows that the MmL theory
Γterm
�

captures T� up to isomorphism.

D. Matching µ-logic proof system

Proposition 23 implies that MmL cannot have a sound and
complete proof system. The best we can do then is to aim
for a proof system that is good enough in practice. We take
the ML proof system H and extend it with three additional
proof rules (see Fig. 1). Rules (Pre-Fixpoint) and (Knaster-
Tarski) are standard proof rules about least fixpoints as in
modal µ-logic [8]. Rule (Set Variable Substitution) allows
us to prove from ` ϕ any substitution ` ϕ[ψ/X] for X ∈ SVar.
Note the condition that X is a set variable is crucial. In general,
we cannot prove from ` ϕ that ` ϕ[ψ/x] for x ∈ EVar,
because it does not hold semantically. As shown in [1], it
only holds when ψ is functional, that is, when ψ evaluates to
a singleton set. Indeed, suppose that ψ is not functional, say it
is the pattern 0∨succ(0) over the signature of natural numbers
in Proposition 23, which evaluates to a set of two elements.
Then we can pick ϕ to be the tautology ∃y . x = y, and then
ϕ[ψ/x] becomes ∃y . ψ = y, which states that ψ evaluates to
a singleton set (the valuation of y), which is a contradiction.

We let Hµ denote the extended 16-rule proof system in
Fig. 1, and from here on we write Γ ` ϕ instead of Γ `Hµ ϕ.

Theorem 24 (Soundness of Hµ). Γ ` ϕ implies Γ � ϕ.

E. Instance: Peano arithmetic

The purpose of this subsection is to illustrate the power of
the two proof rules (Pre-Fixpoint) and (Knaster-Tarski), by
showing that they derive the (Induction) axiom schema in the
FOL axiomatization of Peano arithmetic [25], [26]:

(Induction) ϕ(0) ∧ ∀x.(ϕ(x) → ϕ(succ(x))) → ∀x.ϕ(x)

where ϕ(x) is a FOL formula with a distinguished variable x.
We encode the FOL syntax of Peano arithmetic following

the technique in Section II-D, that is, we define a signature
�Peano = ({Nat,Pred},ΣN) where ΣN is defined in Proposi-
tion 23 that contains the functions 0, succ,plus,mult, and let
ΓPeano contain the same equations as axioms as ΓN. Notice
that the only �Peano-patterns of sort Pred are those built from
equalities between two patterns of sort Nat.

Proposition 25. Under the above notations, we have:

Γ
Peano ` ϕ(0) ∧ ∀x.(ϕ(x) → ϕ(succ(x))) → ∀x.ϕ(x).
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V. Defining Recursive Symbols as Syntactic Sugar

Intuitively, the least fixpoint pattern µX .ϕ specifies a re-
cursive set that satisfies the equation X = ϕ, where ϕ may
contain recursive occurrences of X . For example, the pattern
µX . 0 ∨ succ(succ(X)) specifies the set of all even numbers,
which conceptually defines a recursive constant symbol:

even ∈ ΣNat,Nat even =lfp 0 ∨ succ(succ(even)).

Here, “=lfp” is merely a notation, meaning that we want even
to be the least set that satisfies the equation (since the total
set is always a trivial solution).

The challenge is how to generalize the above and define
recursive non-constant symbols. For example, suppose we want
to define a symbol collatz ∈ ΣNat,Nat as follows:

collatz(n) =lfp

n ∨ (even(n) ∧ collatz(n/2)) ∨ (odd(n) ∧ collatz(3n + 1))

with the intuition that collatz(n) gives the set of all numbers in
the Collatz sequence3 starting from n. However, the µ-binder
in MmL can only be applied on set variables, not on symbols,
so the following attempt is syntactically wrong:

collatz(n) = µσ(n) . // µ can only bind a set variable
n ∨ (even(n) ∧ σ(n/2)) ∨ (odd(n) ∧ σ(3n + 1))

One possible solution could be to extend MmL with the
above syntax and allow the µ-binder to quantify symbol
variables, not only over set variables. The semantics and
proof system could be extended accordingly. This is exactly
how first-order logic with least fixpoints extends FOL [7].
But do we really have to? After all, our proof rules (Pre-
Fixpoint) and (Knaster-Tarski) in Fig. 1 are nothing but
a logical incarnation of the Knaster-Tarski theorem, which
has been repeatedly demonstrated to serve as a solid if not
the main foundation for recursion. Therefore, we conjecture
that the H proof system in Fig. 1 is sufficient in practice,
and thus would rather resist extending MmL. That is, we
conjecture that it should be possible to define one’s desired
approach to recursion/induction/fixed-points using ordinary
MmL theories; as an analogy, in Section II-C we showed
how we can define definedness, totality, equality, membership,
containment, functions, partial functions, etc. (see [1] for
more) as theories, without a need to extend matching logic.

In particular, we can solve the recursive symbol chal-
lenge above by using the principle of currying-uncurrying to
“mimic” the unary symbol collatz ∈ ΣNat,Nat with a constant
symbol collatz ∈ Σλ,Nat⊗Nat, where Nat⊗Nat is the product sort
(defined later; the intuition is that Nat ⊗ Nat has the product
set N × N as its carrier set), and thus reducing the challenge
of defining a least relation in [N→ P(N)] to defining a least
subset of P(N × N), without the need to extend the logic.

3A Collatz sequence starting from n ≥ 1 is obtained by repeating the
following procedure: if n is even then return n/2; otherwise, return 3n + 1.

A. Principle of currying-uncurrying and product sorts
The principle of currying-uncurrying [27], [28] is used in

various settings (e.g., simply-typed lambda calculus [29]) as
a means to reduce the study of multi-argument functions to
the simpler single-argument functions. We here present the
principle in its adapted form that fits best with our needs.

Proposition 26. Let Ms1, . . . ,Msn ,Mt be nonempty sets. The
principle of currying-uncurring means the isomorphism

P(Ms1 × · · · × Msn × Mt )
curry
−−−−−−⇀↽−−−−−−
uncurry

[Ms1 × · · · × Msn → P(Mt )]

defined for all a1 ∈ Ms1, . . . ,an ∈ Msn , b ∈ Mt, α ⊆ Ms1 × · · ·×

Msn × Mt, and f : Ms1 × · · · × Msn → P(Mt ) as:

curry(α)(a1, . . . ,an) = {b ∈ Mt | (a1, . . . ,an, b) ∈ α}

uncurry( f ) = {(a1, . . . ,an, b) | b ∈ f (a1, . . . ,an)}.

In other words, we can mimic an n-ary symbol σ ∈ Σs1...sn ,t

with a constant symbol of the product sort s1 ⊗ · · · ⊗ sn ⊗ t,
whose (intended) carrier set is exactly the product set Ms1 ×

. . . Msn × Mt . This leads to the following definition.

Definition 27. Let s, t be two sorts, not necessarily distinct.
The product sort s ⊗ t is a sort that is different from s and
t. The pairing symbol 〈_,_〉s,t : s × t → s ⊗ t is a function
symbol and the projection symbol _(_)s,t : s ⊗ t × s ⇀ t is a
partial function symbol. These are governed by the axioms

(Injectivity) (〈k, v〉 = 〈k ′, v′〉) → (k = k ′) ∧ (v = v′)

(Key-Value) 〈k, v〉(k ′) = (k = k ′) ∧ v

(Product Domain) ∃k∃v.〈k, v〉

forcing the carrier of s ⊗ t to be the product of the carriers of
s and t, and pairing/projection are interpreted as expected.

Product of multiple sorts as well as the associated pair-
ing/projection operations can be defined as derived constructs
as follows. Let s1, . . . , sn, t be sorts, not necessarily distinct,
and ϕ1, . . . , ϕn, ϕ,ψ be patterns of appropriate sorts. We define:

s1 ⊗ · · · ⊗ sn ⊗ t ≡ s1 ⊗ (s2 ⊗ (· · · ⊗ (sn ⊗ t) . . . ))

〈ϕ1, . . . , ϕn, ϕ〉 ≡ 〈ϕ1, 〈. . . , 〈ϕn, ϕ〉 . . .〉〉

ψ(ϕ1, . . . , ϕn) ≡ ψ(ϕ1) . . . (ϕn).

Notice that we tactically use the same syntax _(_, . . . ,_)
for both symbol applications and projections to blur their
distinction. In particular, if σ ∈ Σλ,s1⊗···⊗sn⊗t is a constant
symbol of the product sort, then σ(ϕ1, . . . , ϕn) is a well-formed
pattern if ϕ1, . . . , ϕn have appropriate sorts.

B. Defining recursive symbols in matching µ-logic
Definition 28. Let � = (S,Σ) be a signature and σ ∈ Σs1...sn ,s .
We use the notation σ(x1, . . . , xn) =lfp ϕ to mean the axiom:

σ(x1, . . . , xn) =

(µσ:s1 ⊗ · · · ⊗ sn ⊗ t .∃x1 . . . ∃xn.〈x1, . . . , xn, ϕ〉)(x1, . . . , xn)

A symbol σ ∈ Σs1...sn ,s obeying this axiom is called recursive.
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The following theorem says that if ϕ “behaves like a
symbol”, meaning that it has the property of propagation
(Proposition 3), then we can obtain variants of (Pre-Fixpoint)
and (Knaster-Tarski) for the recursive symbol σ.

Theorem 29. Let � be a signature with a recursive symbol
σ ∈ Σs1...sn ,t defined as σ(x1, . . . , xn) =lfp ϕ. Let Γ be a �-
theory such that for all ϕ1, . . . , ϕn:

Γ ` (∃z1 . . . ∃zn.z1 ∈ ϕ1 ∧ · · · ∧ zn ∈ ϕn ∧ ϕ[z1/x1, . . . , zn/xn])

→ ϕ[ϕ1/x1, . . . , ϕn/xn].

Then the following hold:
• Pre-Fixpoint: Γ ` ϕ→ σ(x1, . . . , xn);
• Knaster-Tarski: if Γ`ϕ[ψ/σ]→ψ then Γ`σ(x1,..., xn)→
ψ, where ϕ[ψ/σ] is the result of replacing all patterns
of the form σ(ϕ1, . . . , ϕn) in ϕ with ψ[ϕ1/x1, . . . , ϕn/xn].

VI. Instance: First-Order Logic with Least Fixpoints
First-order logic with least fixpoints (LFP) [7] extends the

syntax of first-order logic formulas with:

ϕ F [lfpR,x1 ,...,xnϕ](t1, . . . , tn)

where R is a predicate variable and ϕ is a formula that is
positive in R. Intuitively, “[lfpR,x1 ,...,xnϕ]” behaves as the least
fixpoint predicate of the operation that maps R to ϕ. Due to its
complexity and our limited space, we skip the formal definition
of the semantics and simply denote the validity relation in LFP
as �LFP ϕ. A comprehensive study on LFP can be found in [30].
Given the notations of recursive symbols defined in Sec-

tion V, it is straightforward to subsume LFP by extending the
theory ΓFOL defined in Section II-D with:

[lfpR,x1 ,...,xnϕ](t1, . . . , tn) ≡

(µR : s1⊗ . . .⊗sn⊗Pred.∃x1 . . . ∃xn.〈x1, . . . , xn, ϕ〉)(t1, . . . , tn)

for all predicate variables R with argument sorts s1, . . . , sn.
What is different is that we add one additional axiom,
∀x:Pred∀y:Pred.x = y, to constrain the (dummy) carrier set
of Pred is a singleton set, so that all MmL models are also
FOL/LFP models. This fact is used to prove the “only if” part
in the next theorem.4 We denote the resulting theory ΓLFP.

Theorem 30. If ϕ is any LFP formula, then �LFP ϕ iff ΓLFP � ϕ.

VII. Instances: Modal µ-Calculus and Temporal Logics
We have seen how MmL symbols and patterns can be

used to specify both structure and constraints, such as terms
(Section IV-C) and FOL (Section II-D), as well as vari-
ous induction, recursion and least-fixed point schemas (Sec-
tions IV-E and V) over these. These suffice to express and
prove program assertions, including complex state abstractions
(see also how separation logic falls as a fragment of matching

4We do not need that axiom in defining FOL in ML, as seen in Section II-D,
because there the “if” part is proved via a proof theoretical approach, using
the completeness proof system of FOL and the fact that we can mimic FOL
proofs in ML (see [1]). Since LFP does not have a complete proof system,
we have to add additional axioms to constrain more on the MmL models.

logic in [1]), in contexts where MmL is chosen as a static
state assertion formalism in program verification frameworks
based on Hoare logic [31], dynamic logic [11], or reachability
logic [2]. However, as explained in Section I, our ultimate
goal is to support not only static state assertions, but any
program properties, including ones that are usually specified
using Hoare, dynamic, or reachability logics. We start the
discussion in this section, by showing how MmL symbols
and patterns can also be used to specify dynamic transition
relations such as modal µ-logic modalities and dynamic logic;
in Section VIII we then discuss how MmL also subsumes
reachability logic, which subsumes Hoare logic [6].

A. Modal µ-logic syntax, semantics, and proof system
The syntax of modal µ-logic [8] is parametric on a countably

infinite set PVar of propositional variables. Modal µ-logic
formulas are given by the grammar5:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | µX . ϕ if ϕ is positive in X

Derived constructs are defined as usual, e.g., •ϕ ≡ ¬◦¬ϕ.
Modal µ-logic semantics is given using transition systems S =
(S,R), with S a nonempty set of states and R ⊆ S × S a
transition relation, and valuations V:PVar→P(S), as follows:
• JpKSV = V(p);
• Jϕ1 ∧ ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV ;
• J¬ϕKSV = S \ JϕKSV ;
• J◦ϕKSV = {s ∈ S | s R t implies t ∈ JϕKSV for all t ∈ S};
• JµX . ϕKSV =

⋂
{A ⊆ S | JϕKS

V [A/X]
⊆ A};

A modal µ-logic formula ϕ is valid, denoted �µ ϕ, if for all
transition systems S and all valuations V , we have JϕKSV = S.
A proof system of modal µ-logic is firstly given in [8] and
then proved to be complete in [32]. It extends the proof
system of propositional logic with the following proof rules:

(K) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2) (N)
ϕ

◦ϕ

(µ1) ϕ[(µX . ϕ)/X] → µX . ϕ (µ2)
ϕ[ψ/X] → ψ

µX . ϕ→ ψ
We denote the corresponding provability relation as `µ ϕ.
Notice that (K) and (N) are provable in MmL (Proposition 12),
and (µ1) and (µ2) are exactly (Pre-Fixpoint) and (Knaster-
Tarski). This means that we can easily mimic all modal
µ-logic proofs in MmL (i.e. “(2) ⇒ (3)” in Theorem 31).

B. Defining modal µ-logic in matching µ-logic
To subsume the syntax, we define a signature (of transition

systems) �TS = ({State}, {• ∈ ΣµState,State}) where we call the
symbol “•” one-path next. We regard propositional variables
in PVar as set variables. We write •ϕ instead of •(ϕ), and
define ◦ϕ ≡ ¬•¬ϕ. Then every modal µ-logic formula ϕ is an
MmL �TS-pattern of sort State. Finally, note that no axioms
are needed; let Γµ be the empty �TS-theory.

An important observation is that the �TS-models are exactly
the transition systems, where • ∈ ΣTSState,State is interpreted as

5The modal µ-logic literature often uses �ϕ and ♦ϕ instead of ◦ϕ and
•ϕ. We here use the latter to avoid confusion with the “always” �ϕ and
“eventually” ♦ϕ in LTL and CTL.
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the transition relation R. Specifically, for any transition system
S = (S,R), we can regard S as a �TS-model where S is the
carrier set of State and •S(t) = {s ∈ S | s R t} contains all R-
predecessors of t. This might seem counter-intuitive at the first
glance: why “one-path next” is interpreted as the predecessor
instead of the successor of R? See the following illustration:
· · · s

R
−→ s′

R
−→ s′′ · · · // states

••ϕ •ϕ ϕ // patterns
In other words, •ϕ is matched by states which have at least one
next state that satisfies ϕ, conforming to the intuition. Another
interesting observation is about •ϕ and its dual, ◦ϕ ≡ ¬•¬ϕ,
called “all-path next”. The difference is that ◦ϕ is matched by
s if for all states t such that s R t, we have t matches ϕ. In
particular, if s has no successor, then s matches ◦ϕ for all ϕ.
This is formally summarized in Proposition 32.

We now feel free to take any transition system S as an MmL
�TS-model. The following theorem shows that our definition
of modal µ-logic in MmL is faithful, both syntactically and
semantically. What is interesting about the theorem is its proof,
which can be applied to other all logics discussed in this paper,
and obtain similar results for all of them.

Theorem 31. The following properties are equivalent for all
modal µ-logic formulas ϕ: (1) �µ ϕ; (2) `µ ϕ; (3) Γµ ` ϕ; (4)
Γµ � ϕ; (5) M � ϕ for all �TS-models M such that M � Γµ;
(6) S �µ ϕ for all transition systems S.

Proof sketch: We only need to prove “(2) ⇒ (3)” and
“(5) ⇒ (6)”, as the rest are already proved/known. (1) =⇒
(2) follows by the completeness of modal µ-logic, which is
nontrivial but known. (2) =⇒ (3) follows by proving all modal
µ-logic proof rules as theorems in MmL. (3) =⇒ (4) follows
by the soundness of MmL (Theorem 24). (4) =⇒ (5) follows
by definition. (5) =⇒ (6) follows by proving the contrapositive
statement, “2µ ϕ implies Γµ 2 ϕ”, by taking a transition system
S = (S,R) and a valuation V such that JϕKSV , S, and showing
that if we regard S as a �TS-model and V as an S-valuation in
MmL, then S � Γµ and V(ϕ) , S, which means that Γµ 2 ϕ.
Finally, (6) =⇒ (1) follows by definition.
Therefore, modal µ-logic can be regarded as an empty

theory in a vanilla MmL without quantifiers, over a signature
containing only one sort and only one symbol, which is unary.
It is worth mentioning that variants of modal µ-logic with
more modal operators have been proposed (see [33] for a
survey). At our knowledge, however, all such variants consider
only unary modal operators and they are only required to obey
the usual (K) and (N) proof rules of modal logic. In contrast,
MmL allows polyadic symbols while still obeying the desired
(K) and (N) rules (see Proposition 12), allows arbitrary further
constraining axioms in MmL theories, and also quantification
over element variables and many-sorted universes.

C. Studying transition systems in MmL
The above suggests that MmL may offer a unifying play-

ground to specify and reason about transition systems, by
means of �TS-theories/models. We can define various tempo-
ral/dynamic operations and modalities as derived constructs

from the basic “one-path next” symbol “•” and the µ-binder,
without the need to extend the syntax and semantics of the
logic. We can constrain the models/transition systems of inter-
est using additional axioms, without the need to modify/extend
the proof system of the logic. In what follows, we show that by
defining proper constructs as syntactic sugar and adding proper
axioms, we can capture precisely LTL (both finite- and infinite-
trace), CTL, dynamic logic (DL), and reachability logic (RL).
Let us add more temporal modalities as derived constructs

(we have seen “all-path next” ◦ϕ in Section VII-B):
“eventually” ♦ϕ ≡ µX . ϕ ∨ •X

“always” �ϕ ≡ νX . ϕ ∧ ◦X

“until” ϕ1 U ϕ2 ≡ µX . ϕ2 ∨ (ϕ1 ∧ •X)

“well-founded” WF ≡ µX .◦X
Proposition 32. Let S = (S,R) be a transition system regarded
as a �TS-model, and let ρ be any valuation and s ∈ S. Then:
• s ∈ ρ̄(•ϕ) if there exists t ∈ S such that s R t, t ∈ ρ̄(ϕ);
in particular, s ∈ ρ̄(•>) if s has an R-successor;

• s ∈ ρ̄(◦ϕ) if for all t ∈ S such that s R t, t ∈ ρ̄(ϕ); in
particular, s ∈ ρ̄(◦⊥) if s has no R-successor;

• s ∈ ρ̄(♦ϕ) if there exists t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(�ϕ) if for all t ∈ S such that s R∗ t, t ∈ ρ̄(ϕ);
• s ∈ ρ̄(ϕ1 U ϕ2) if there exists n ≥ 0 and t1, . . . , tn ∈ S such
that s Rt1 R · · ·Rtn, tn ∈ ρ̄(ϕ2), and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1);

• s ∈ ρ̄(WF) if s is R-well-founded, meaning that there is
no infinite sequence t1, t2, · · · ∈ S with s R t1 R t2 R . . . ;

where R∗ =
⋃

i≥0 Ri is the reflexive transitive closure of R.

D. Instances: temporal logics
Since MmL can define modal µ-logic (as an empty theory

over a unary symbol), it is not surprising that it can also define
various temporal logics such as LTL and CTL as theories
whose axioms constrain the underlying transition relations.
What is interesting, in our view, is that the resulting theories
are simple, intuitive, and faithfully capture both the syntax
(provability) and the semantics of these temporal logics.

1) Instance: infinite-trace LTL: The LTL syntax, namely
ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕU ϕ

is already subsumed in MmL with the derived constructs we
give in Section VII-C. Other common LTL modalities such
as “always �ϕ” are defined from the “until U” modality in
the usual way. Infinite-trace LTL takes as models transition
systems whose transition relations are linear and infinite into
the future. We assume readers are familiar with the semantics
and proof system of infinite-trace LTL (if not, see [10]) and
skip their formal definitions. We use “�infLTL” and “`infLTL” to
denote infinite-trace LTL validity and provability, respectively.

To capture the characteristics of both “infinite future” and
“linear future”, we add the following two patterns as axioms:

(Inf) •> (Lin) •ϕ→ ◦ϕ
and denote the resulting �TS-theory as ΓinfLTL. Intuitively, (Inf)
forces all states s to have at least one successor, and thus
all traces are infinite, and (Lin) forces all states s to have
only a linear future. The following theorem shows that our
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definition of infinite-trace LTL is faithful both syntactically
and semantically, proved exactly as Theorem 31.

Theorem 33. The following properties are equivalent for all
infinite-trace LTL formulas ϕ: (1) `infLTL ϕ; (2) �infLTL ϕ; (3)
ΓinfLTL ` ϕ; (4) ΓinfLTL � ϕ.

Therefore, infinite-trace LTL can be regarded as a theory
containing two axioms, (Inf) and (Lin), over the same signa-
ture as the theory corresponding to modal µ-logic.
2) Instance: finite-trace LTL: Finite execution traces play

an important role in program verification and monitoring.
Finite-trace LTL considers models that are linear but have
only finite future. The following syntax of finite-trace LTL:

ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | ◦ϕ | ϕUw ϕ

differs from infinite-trace LTL in that the “until” modality
“U” is weak, meaning that ϕ1Uwϕ2 does not necessarily imply
that ϕ2 eventually holds. Again, we assume readers are familiar
with the semantics and proof system of finite-trace LTL (if not,
see [10]) and use “�finLTL” and “`finLTL” to denote its validity
and provability, respectively.

To subsume the above syntax, we define in MmL:
“weak until” ϕ1 Uw ϕ2 ≡ µX .ϕ2 ∨ (ϕ1 ∧ ◦X).

To capture the characteristics of both finite future and linear
future, we add the following two patterns as axioms:

(Fin) WF ≡ µX .◦X (Lin) •ϕ→ ◦ϕ
and call the resulting �TS-theory ΓfinLTL. Intuitively, (Fin)
forces all states to be well-founded, meaning that there is no
infinite execution trace in the underlying transition systems.

Theorem 34. The following properties are equivalent for all
finite-trace LTL formula ϕ: (1) `finLTL ϕ; (2) �finLTL ϕ; (3)
ΓfinLTL ` ϕ; (4) ΓfinLTL � ϕ.

Therefore, finite-trace LTL can be regarded as a theory con-
taining two axioms, (Fin) and (Lin), over the same signature
as the theory corresponding to modal µ-logic.
3) Instance: CTL: CTL’s models are transition systems

which are infinite into the future and allow states to have a
branching future (rather than linear). The syntax of CTL is
ϕ F p ∈ PVar | ϕ ∧ ϕ | ¬ϕ | AXϕ | EXϕ | ϕ AU ϕ | ϕ EU ϕ

extended with the following derived constructs:
EFϕ ≡ true EU ϕ AGϕ ≡ ¬EF¬ϕ
AFϕ ≡ true AU ϕ EGϕ ≡ ¬AG¬ϕ

The names of the CTL modalities suggest their meaning: the
first letter means either “on all paths” (A) or “on one path” (E),
and the second letter means “next” (X), “until” (U), “always”
(G), or “eventually” (F). For example, “AX” is “all-path next”,
“EU” is “one-path until”, etc. We refer readers to [34] for
CTL definitions, semantics and proof system. Here we denote
its validity and provability as “�CTL” and “`CTL”, respectively.

To define CTL as an MmL theory, we add only the axiom
(Inf) for infinite future and use the following syntactic sugar:

AXϕ ≡ ◦ϕ ϕ1 AU ϕ2 ≡ µ f . ϕ2 ∨ (ϕ1 ∧ ◦ f )

EXϕ ≡ •ϕ ϕ1 EU ϕ2 ≡ µ f . ϕ2 ∨ (ϕ1 ∧ • f )
The resulting �TS-theory is denoted as ΓCTL.

Theorem 35. For all CTL formula ϕ, the following are
equivalent: (1) `CTL ϕ; (2) �CTL ϕ; (3) ΓCTL ` ϕ; (4) ΓCTL � ϕ.

Therefore, CTL can be regarded as a theory over the same
signature as the theory corresponding to modal µ-logic, but
containing one axiom, (Inf). It may be insightful to look at
all three temporal logics discussed in this section through the
lenses of MmL, as theories over a unary symbol signature:
modal µ-logic is the empty and thus the least constrained
theory; CTL comes immediately next with only one axiom,
(Inf), to enforce infinite traces; infinite-trace LTL further
constrains with the linearity axiom (Lin); finally, finite-trace
LTL replaces (Inf) with (Fin). We believe that MmL can serve
as a convenient and uniform framework to define and study
temporal logics. For example, finite-trace CTL can be trivially
obtained as the theory containing only the axiom (Fin), LTL
with both finite and infinite traces is the theory containing only
the axiom (Lin), and CTL with unrestricted (finite or infinite
branch) models is the empty theory (i.e., modal µ-logic).

E. Instance: dynamic logic
Dynamic logic (DL) [11]–[13] is a common logic used for

program reasoning. The DL syntax is parametric in a set PVar
of propositional variables and a set APgm of atomic programs,
each belonging to a different formula syntactic category:

ϕ F p ∈ PVar | ϕ→ ϕ | false | [α]ϕ
α F a ∈ APgm | α ; α | α ∪ α | α∗ | ϕ?

The first line defines propositional formulas. The second line
defines program formulas, which represent programs built
from atomic ones with the primitive regular expression con-
structs. Define 〈a〉ϕ ≡ ¬[α](¬ϕ). Common program constructs
such as if-then-else, while-do, etc., can be defined as derived
constructs using the four primitive ones; see [11]–[13]. We let
“�DL” and “`DL” denote the validity and provability of DL.
It is known that DL can be embedded in the variant of

modal µ-logic with multiple modalities [33]. The idea is to
define a modality [a] for every atomic program a ∈ APgm,
and then to define the four program constructs as least/greatest
fixpoints. We can easily adopt the same approach and associate
an empty MmL theory to DL, over a signature containing
as many unary symbols as atomic programs. However, MmL
allows us to propose a better embedding, unrestricted by the
limitations of modal µ-logic. Indeed, the embedding in [33]
suffers from at least two limitations that we can avoid with
MmL. First, sometimes transitions are not just labeled with
discrete programs, such as in hybrid systems [35] and cyber-
physical systems [36] where the labels are continuous values
such as elapsing time. We cannot introduce for every time
t ∈ R≥0 a modality [t], as only countably many modalities are
allowed. Instead, we may want to axiomatize the domains of
such possibly continuous values and treat them as any other
data. Second, we may want to quantify over such values, be
they discrete or continuous, and we would not be able to do
so (even in MmL) if they are encoded as modalities/symbols.

Let us instead define a signature (of labeled transition
systems) �LTS = ({State,Pgm},ΣLTSλ,Pgm ∪ {• ∈ Σ

LTS
PgmState,State})
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where the “one-path next” • is a binary symbol taking an ad-
ditional Pgm argument, and for all atomic programs a ∈ APgm
we add a constant symbol a ∈ ΣLTSλ,Pgm. Just as all �

TS-models
are exactly transition systems (Section VII-B), we have that all
�LTS-models are exactly labeled transition systems. We define
compound programs as derived constructs as follows:
〈α〉ϕ ≡ •(α, ϕ) [α]ϕ ≡ ¬〈α〉¬ϕ

(Seq) [α ; β]ϕ ≡ [α][β]ϕ (Choice) [α ∪ β]ϕ ≡ [α]ϕ ∧ [β]ϕ
(Test) [ψ?]ϕ ≡ (ψ → ϕ) (Iter) [α∗]ϕ ≡ ν f . (ϕ ∧ [α] f )

Like for the embedding of modal µ-logic (Section VII-B), no
axioms are needed. Let ΓDL denote the empty �LTS-theory.

Theorem 36. For all DL formulas ϕ, the following are
equivalent: (1) `DL ϕ; (2) �DL ϕ; (3) ΓDL ` ϕ; (4) ΓDL � ϕ.

We point out that the iterative operator [α∗]ϕ is axiomatized
with two axioms in the proof system of DL (see, e.g., [13]):

(DL-Iter1) ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

(DL-Iter2) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

while we just regard it as syntactic sugar, via (Iter). One may
argue that (Iter) desugars to the ν-binder, though, which obeys
the proof rules (Pre-Fixpoint) and (Knaster-Tarski) that
essentially have the same appearance as (DL-Iter1) and (DL-
Iter2). We agree. And that is exactly why we think one should
work in one uniform and fixed logic, such as MmL, where
general fixpoint axioms are given to specify and reason about
any fixpoint properties of any domains and to develop general-
purpose automatic tools and provers, rather than designing
special-purpose logics and tools that work on only certain
domains and then extending existing logics or designing new
logics when new domains are considered.

VIII. Instance: reachability logic
Reachability logic (RL) [2] is an approach to program ver-

ification using operational semantics. Different from other ap-
proaches such as Hoare-style verification, RL has a language-
independent proof system that offers sound and relatively com-
plete deduction for all languages. RL is the logic underlying
the K framework [37], which has been used to define the
formal semantics of various real languages such as C [3],
Java [4], and JavaScript [5], yielding program verifiers for all
these languages at no additional cost [6].

In spite of its generality w.r.t. languages, reachability
logic is unfortunately limited to specifying and deriving only
reachability properties. This limitation was one of the factors
that motivated the development of MmL. Fig. 8 shows a few of
RL’s proof rules; notice that unlike Hoare logic’s proof rules,
RL’s proof rules are not specific to any particular programming
language. The programming language is given through its
operational semantics as a set of axiom rules, to be used via
the (Axiom) proof rule. The characteristic feature of RL is its
(Circularity) rule, which supports reasoning about circular
behavior and recursive program constructs. In this subsection,
we show how RL is faithfully defined in MmL and all its proof
rules, including (Circularity), can be proved in MmL.

(Axiom)
ϕ1 ⇒ ϕ2 ∈ A
A `C ϕ1 ⇒ ϕ2

(Transitivity)
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

(Consequence)
Mcfg �ϕ1�ϕ′1 A `C ϕ′1 ⇒ ϕ′2 Mcfg �ϕ′2�ϕ2

A `C ϕ1 ⇒ ϕ2

(Circularity)
A `C∪{ϕ1⇒ϕ2 } ϕ1 ⇒ ϕ2

A `C ϕ1 ⇒ ϕ2

Fig. 2. Some selected proof rules in the proof system of reachability logic

A. RL syntax, semantics, and proof system
RL is parametric in a model of ML (without µ) called

the configuration model. Specifically, fix a signature (of static
program configurations) �cfg which may have various sorts
and symbols, among which there is a distinguished sort Cfg.
Fix a �cfg-model Mcfg called the configuration model, where
Mcfg

Cfg is the set of all configurations. RL’s formulas are called
reachability rules, or simply rules, and have the form ϕ1 ⇒ ϕ2
where ϕ1, ϕ2 are ML (without µ) �cfg-patterns. A reachability
system S is a finite set of rules, which yields a transition system
S = (Mcfg

Cfg,R) where s R t if there exist a rule ϕ1 ⇒ ϕ2 ∈ S
and an Mcfg-valuation ρ such that s ∈ ρ̄(ϕ1) and t ∈ ρ̄(ϕ2). A
rule ψ1 ⇒ ψ2 is S-valid, denoted S �RL ψ1 ⇒ ψ2, if for all
Mcfg

Cfg-valuations ρ and configurations s ∈ ρ̄(ψ1), either there is
an infinite trace s R t1 Rt2 R . . . in S or there is a configuration
t such that s R∗ r and t ∈ ρ̄(ψ2). Therefore, the validity in
reachability logic is defined in the spirit of partial correctness.

The sound and relatively complete proof system of RL
derives reachability logic sequents of the form A `C ϕ1 ⇒ ϕ2
where A (called axioms) and C (called circularities) are finite
sets of rules. Initially we start with A = S and C = ∅.
As the proof proceeds, more rules can be added to C via
(Circularity) and then moved to A via (Transitivity),
which can then be used via (Axiom). We write S `RL ψ1 ⇒ ψ2
to mean that S `∅ ψ1 ⇒ ψ2. Notice (Consequence) consults
the configuration model Mcfg for validity, so the completeness
result is relative to Mcfg. We recall the following result [2]:

Theorem 37. For all reachability systems S satisfying some
reasonable technical assumptions (see [2]) and all rules ψ1 ⇒
ψ2, we have S �RL ψ1 ⇒ ψ2 if and only if S `RL ψ1 ⇒ ψ2.

B. Defining reachability logic in matching µ-logic
We define the extended signature �RL = �cfg∪{• ∈ ΣCfg,Cfg}

where “•” is a unary symbol (one-path next). To capture the
semantics of reachability rules ϕ1 ⇒ ϕ2, we define:

“weak eventually” ♦wϕ ≡ νX . ϕ ∨ •X // equal to ¬WF ∨ ♦ϕ
“reaching star” ϕ1 ⇒

∗ ϕ2 ≡ ϕ1 → ♦wϕ2

“reaching plus” ϕ1 ⇒
+ ϕ2 ≡ ϕ1 → •♦wϕ2

Notice that the “weak eventually” ♦wϕ is defined similarly
to “eventually” ♦ϕ ≡ µX . ϕ ∨ •X , but instead of using least
fixpoint µ-binder, we define it as a greatest fixpoint. One
can prove that ♦wϕ = ¬WF ∨ ♦ϕ, that is, a configuration γ
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satisfies ♦wϕ if either it satisfies ♦ϕ, or it is not well-founded,
meaning that there exists an infinite execution path from γ.
Also notice that “reaching plus” ϕ1 ⇒

+ ϕ2 is a stronger
version of “reaching star”, requiring that ♦wϕ2 should hold
after at least one step. This progressive condition is crucial to
the soundness of RL reasoning: as shown in (Transitivity),
circularities are flushed into the axiom set only after one
reachability step is established. This leads us to the following
translation from RL sequents to MmL patterns.

Definition 38. Given a rule ϕ1 ⇒ ϕ2, define the MmL pattern
�(ϕ1 ⇒ ϕ2) ≡ �(ϕ1 ⇒

+ ϕ2) and extend it to a rule set A as
follows: �A ≡

∧
ϕ1⇒ϕ2∈A�(ϕ1 ⇒ ϕ2). Define the translation

RL2MmL from RL sequents to MmL patterns as follows:

RL2MmL(A `C ϕ1 ⇒ ϕ2) = (∀�A) ∧ (∀◦�C) → (ϕ1 ⇒
? ϕ2)

where ? = ∗ if C is empty and ? = + if C is nonempty. We
use ∀ϕ as a shorthand for ∀®x.ϕ where ®x = FV(ϕ).

Hence, the translation of A `C ϕ1 ⇒ ϕ2 depends on whether
C is empty or not. When C is nonempty, the RL sequent is
stronger in that it requires at least one step in ϕ1 ⇒ ϕ2.
Axioms (those in A) are also stronger than circularities (those
in C) in that axioms always hold, while circularities only hold
after at least one step because of the leading all-path next “◦”;
and since the “next” is a “weak” one, it does not matter which
step is actually made as circularities hold on all next states.

Theorem 39. Let ΓRL = {ϕ ∈ PatternML
Cfg | Mcfg � ϕ} be the

set of all ML patterns (without µ) of sort Cfg that hold in Mcfg.
For all RL systems S and rules ϕ1 ⇒ ϕ2 satisfying the same
technical assumptions in [2], the following are equivalent: (1)
S `RL ϕ1 ⇒ ϕ2; (2) S �RL ϕ1 ⇒ ϕ2; (3) ΓRL ` RL2MmL(S `∅
ϕ1 ⇒ ϕ2); (4) ΓRL � RL2MmL(S `∅ ϕ1 ⇒ ϕ2).

Therefore, provided that an oracle for validity of ML
patterns (without µ) in Mcfg is available, the MmL proof
system is capable of deriving any reachability property that
can be derived with the RL proof system. This result makes
MmL an even more fundamental logic foundation for the K
framework and thus for programming language specification
and verification than RL, because it can express significantly
more properties than partial correctness reachability.

IX. Future and Related Work
We discuss future work, open problems, and related work.

A. Relation to modal logics
Due to the duality between ML symbols and modal logic

modalities (Section III, Proposition 12), ML can be regarded
as a non-trivial extension of modal logics. There are various
directions to extend the basic propositional modal logic in the
literature [17]. One is the hybrid extension, where first-order
quantifiers “∀” and “∃” are added to the logic, as well as
state variables/names that allow to specify one particular state.
Another is the polyadic extension, where modalities can take
not just one argument, but any number of arguments, and there
can be multiple modalities. ML can be seen as a combination

of both extensions, further extended with multiple sort uni-
verses. The completeness of H (Theorem 16) also extends the
completeness results of its fragment logics, including hybrid
modal logic [18] and many-sorted polyadic modal logic [38].

B. Stronger completeness results of H
There are various notions of completeness in modal logics.

We give three of them under the context of ML and its proof
system H , from the strongest to the weakest:
• Global completeness: Γ �ML ϕ implies Γ `H ϕ;
• Strong local completeness: Γ �locML ϕ implies Γ `loc

H
ϕ;

• Weak local completeness: �ML ϕ implies `H ϕ;
where Γ �locML ϕ, called local semantic entailment, is defined as
for all models M , all valuations ρ, and all a ∈ M , if a ∈ ρ̄(ψ)
for all ψ ∈ Γ then a ∈ ρ̄(ϕ); Γ `loc

H
ϕ, called local provability,

is defined as there exists a finite subset Γ0 ⊆fin Γ such that `H
∧Γ0 → ϕ, where ∧Γ0 is the conjunction of all patterns in Γ0.
The completeness result for H that we present in Theorem 16
is a weak local completeness result, but the way we actually
prove it is by proving the strong local completeness theorem
and then let Γ = ∅. We did not present in this paper the strong
local completeness theorem due to its complex form.
What is not known and left as future work is global

completeness. Theorem 15 shows that global completeness
holds when Γ contains definedness symbols and axioms.

C. Alternative semantics of matching µ-logic
MmL cannot have a sound and complete proof system

because we can precisely define (N,+,×) (see Proposition 23).
On the other hand, the proof systemHµ turned out to be strong
enough to prove all the proof rules of all the proof systems
of all the logics discussed in this paper. Therefore, a natural
question is whether we can find alternative models for MmL
that make Hµ complete. A promising direction towards such
an alternative semantics is to consider the so-called Henkin
semantics or general semantics, where the least fixpoint pattern
µX . ϕ is not evaluated to the true least fixpoint in the models,
but to the least fixpoint that is definable in the logic.

X. Conclusion

We made two main contributions in this paper. Firstly, we
proposed a new sound and complete proof system H for
matching logic (ML). Secondly, we extended ML with the least
fixpoint µ-binder and proposed matching µ-logic (MmL). We
showed the expressiveness of MmL by defining a variety of
common logics about induction/fixpoints/verification in MmL.
We hope that MmL may serve as a promising unifying foun-
dation for specifying and reasoning about induction, fixpoints,
as well as model checking and program verification.
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Appendix A
Matching Logic Proof System P

We show the matching logic proof system P proposed in [1]
in Fig. 3.

Appendix B
Proof of Theorem 13

We prove the soundness theorem of H (Theorem 13). We
only discuss ML (without µ) in this section, so we drop all
unnecessary annotations. Specifically, we abbreviate “�ML” as
“�” and “`H” as “`”.

We write ρ1
x
∼ ρ2 to mean that ρ1, ρ2 differ only at x.

As in FOL, we can prove that ρ̄(∀x.ϕ) =
⋂

a∈M ρ[a/x](ϕ) =⋂
{ ρ̄′(ϕ) | ρ′

x
∼ ρ} and ρ̄(∃x.ϕ) =

⋃
a∈M ρ[a/x](ϕ) =⋃

{ ρ̄′(ϕ) | ρ′
x
∼ ρ}.

Lemma 40. The following propositions hold:
1) � ϕ1 → (ϕ2 → ϕ1)
2) � ϕ1 → (ϕ2 → ϕ3) → (ϕ1 → ϕ2) → (ϕ1 → ϕ3)
3) � (¬ϕ1 → ¬ϕ2) → (ϕ2 → ϕ1)
4) M, ρ � ϕ1 and M, ρ � ϕ1 → ϕ2 imply M, ρ � ϕ2
5) � ∀x.ϕ→ ϕ[y/x]
6) � ∀x.(ϕ1 → ϕ2) → ϕ1 → ∀x.ϕ2 if x < FV(ϕ1)
7) M � ϕ implies M � ∀x.ϕ
8) � Cσ[⊥] → ⊥
9) � Cσ[ϕ1 ∨ ϕ2] → Cσ[ϕ1] ∨ Cσ[ϕ2]
10) � Cσ[∃x.ϕ] → ∃x.Cσ[ϕ] if x < FV(Cσ[∃x.ϕ])
11) M, ρ � ϕ1 → ϕ2 implies M, ρ � Cσ[ϕ1] → Cσ[ϕ2]
12) � ∃x.x
13) � ¬(C1[x ∧ ϕ] ∧ C2[x ∧ ¬ϕ])

where ϕ, ϕ1, ϕ2, ϕ3 are patterns, x, y are variables, σ is a
symbol, Cσ is a single symbol context, C1,C2 are nested
symbol contexts, M is a model, and ρ is a valuation.

Proof: Some of the propositions are proved in [1]. To
make this proof self-contained, we present the proofs of all
propositions. Let M be a model and ρ be a valuation.

(1) ρ̄(ϕ1 → (ϕ2 → ϕ1)) = ρ̄(¬ϕ1) ∪ ρ̄(ϕ2 → ϕ1) = (M \
ρ̄(ϕ1)) ∪ ρ̄(¬ϕ2) ∪ ρ̄(ϕ1) = M .
(2) ρ̄(ϕ1 → (ϕ2 → ϕ3) → (ϕ1 → ϕ2) → (ϕ1 → ϕ3)) =

ρ̄(¬(ϕ1 → (ϕ2 → ϕ3))) ∪ ρ̄((ϕ1 → ϕ2) → (ϕ1 → ϕ3)) =
(ρ̄(ϕ1) ∩ (ρ̄(¬(ϕ2 → ϕ3))) ∪ ρ̄(¬(ϕ1 → ϕ2)) ∪ ρ̄(ϕ1 → ϕ3) =
(ρ̄(ϕ1) ∩ ρ̄(ϕ2) ∩ (M \ ρ̄(ϕ3))) ∪ (ρ̄(ϕ1) ∩ (M \ ρ̄(ϕ2))) ∪ (M \
ρ̄(ϕ1)) ∪ ρ̄(ϕ3) = M .
(3) ρ̄(¬ϕ1 → ¬ϕ2) → (ϕ2 → ϕ1) = ρ̄(¬(¬ϕ1 → ϕ2)) ∪

ρ̄(ϕ2 → ϕ1) = (M \ ρ̄(¬ϕ1 → ¬ϕ2)) ∪ (M \ ρ̄(ϕ2)) ∪ ρ̄(ϕ1) =
(M \ (ρ̄(¬¬ϕ1) ∪ ρ̄(¬ϕ2))) ∪ (M \ ρ̄(ϕ2)) ∪ ρ̄(ϕ1) = (M \ ((M \
M \ ρ̄(ϕ1))∪(M \ ρ̄(ϕ2))))∪(M \ ρ̄(ϕ2))∪ ρ̄(ϕ1) = (M \(ρ̄(ϕ1)∪
(M \ ρ̄(ϕ2)))) ∪ (M \ ρ̄(ϕ2)) ∪ ρ̄(ϕ1) = M .

(4) M, ρ � ϕ1 → ϕ2, so ρ̄(ϕ1 → ϕ2) = (M \ ρ̄(ϕ1))∪ ρ̄(ϕ2) =
M , and thus ρ̄(ϕ1) ⊆ ρ̄(ϕ2). Because M, ρ � ϕ1, ρ̄(ϕ1) = M ,
and thus ρ̄(ϕ2) = M .
(5) ρ̄(∀x.ϕ→ ϕ[y/x]) = (M \ ρ̄(∀x.ϕ)) ∪ ρ̄(ϕ[y/x]) = (M \⋂
ρ′(ρ

′(ϕ))) ∪ ρ′y(ϕ) where ρ′y = ρ[ρ(y)/x] and ρ′
x
∼ ρ. Notice

that ρy
x
∼ ρ. Thus

⋂
ρ′(ρ

′(ϕ)) ⊆ ρ′y(ϕ), and (M \
⋂
ρ′(ρ

′(ϕ)))∪

ρ′y(ϕ) = M .

(6) If suffices to show ρ̄(∀x.(ϕ1 → ϕ2) ⊆ ρ̄(ϕ1 → ∀x.ϕ2).
Notice that ρ̄(∀x.(ϕ1 → ϕ2)) =

⋂
ρ′ ρ
′((ϕ1 → ϕ)) =

⋂
ρ′((M \

ρ′(ϕ1)) ∪ ρ′(ϕ2)) where ρ′
x
∼ ρ. Since x < FV(ϕ1), ρ′(ϕ1) =

ρ̄(ϕ1), and thus
⋂
ρ′((M \ ρ′(ϕ1))∪ ρ′(ϕ2)) =

⋂
ρ′((M \ ρ̄(ϕ1))∪

ρ′(ϕ2)) = (M \ ρ̄(ϕ1)) ∪
⋂
ρ′(ρ

′(ϕ2)) = ρ̄(ϕ1 → ∀x.ϕ2).

(7) ρ̄(∀x.ϕ) =
⋂
ρ′ ρ
′(ϕ) where ρ′ x

∼ ρ, so it suffices to show
ρ′(ϕ) = M for any ρ′. Since � ϕ, we have M, ρ′ � ϕ, and thus
ρ′(ϕ) = M .
(8) ρ̄(Cσ[⊥] → ⊥) = M \ ρ̄(Cσ[⊥]), so it suffices to show

ρ̄(Cσ[⊥]) = ∅. In fact, ρ̄(σ(. . .⊥ . . . )) = σM (. . . ρ̄(⊥) . . . ) =
σM (. . . ∅ . . . ) = ∅.
(9) It suffices to show ρ̄(Cσ(ϕ1 ∨ ϕ2)) ⊆ ρ̄(Cσ[ϕ1] ∨

Cσ[ϕ2]). In fact, ρ̄(Cσ(ϕ1 ∨ ϕ2)) = ρ̄(σ(. . . (ρ̄(ϕ1) ∪
ρ̄(ϕ2)) . . . )) = σM (. . . ρ̄(ϕ1) . . . ) ∪ σM (. . . ρ̄(ϕ2) . . . ) =
ρ̄(Cσ[ϕ1]) ∪ ρ̄(Cσ[ϕ2]) = ρ̄(Cσ[ϕ1] ∨ Cσ[ϕ2]).
(10) It suffices to show ρ̄(Cσ[∃x.ϕ]) ⊆ ρ̄(∃x.Cσ[ϕ]). In fact,

ρ̄(Cσ[∃x.ϕ]) = ρ̄(σ(. . . ∃x.ϕ . . . )) = σM (. . . ρ̄(∃x.ϕ) . . . ) =
σM (. . .

⋃
ρ′ ρ
′(ϕ) . . . ) =

⋃
ρ′ σM (. . . ρ′(ϕ) . . . ) =

ρ̄(∃x.Cσ[ϕ]) where ρ′
x
∼ ρ. Notice that we can move

the big union
⋃
ρ′ from the argument to the top without

affecting other arguments because x < FV(Cσ[∃x.ϕ]).
(11) It suffices to show ρ̄(Cσ[ϕ1]) ⊆ ρ̄(Cσ[ϕ2]). Notice

that � ϕ1 → ϕ2, so ρ̄(ϕ1) ⊆ ρ̄(ϕ2), and thus, ρ̄(Cσ[ϕ1]) =
σM (. . . ρ̄(ϕ1) . . . ) ⊆ σM (. . . ρ̄(ϕ2) . . . ) = ρ̄(Cσ[ϕ2]).
(12) ρ̄(∃x.x) =

⋃
ρ′(ρ

′(x)) =
⋃
ρ′{ρ

′(x)} where ρ′
x
∼ ρ.

Notice
⋃
ρ′{ρ

′(x)} =
⋃

a∈M {a} = M .
(13) It suffices to show that either ρ̄(C1[x ∧ ϕ]) or ρ̄(C2[x ∧
¬ϕ]) is the empty set. For every nested symbol context C,
use the same technique in (8) and structural induction, we can
prove that if ρ̄(ψ) = ∅ then ρ̄(C[ψ]) = ∅. Therefore, we just
need to prove that either ρ̄(x ∧ ϕ) or ρ̄(x ∧ ¬ϕ) is the empty
set. If ρ(x) < ρ̄(ϕ), then the former is empty. Otherwise, the
latter is empty.
Now we are ready to prove Theorem 13.

Proof of Theorem 13: Carry out induction on the length
of the Hilbert-style proof Γ ` ϕ.
(Base Case). Suppose the length is 1. Then ϕ is either an

axiom inH or ϕ ∈ Γ. If ϕ is an axiom, then � ϕ by Lemma 40.
If ϕ ∈ Γ, then Γ � ϕ by definition.
(Induction Step). Suppose the proof Γ ` ϕ has n + 1 steps:

ϕ1, . . . , ϕn, ϕn+1 with ϕn+1 ≡ ϕ

By induction hypothesis, Γ � ϕ1 ,. . . , Γ � ϕn. If ϕ is an
axiom or ϕ ∈ Γ, then � ϕ by for the same reason as in (Base
Case). If the last step is one of (Modus Ponens), (Universal
Generalization), or (Framing), then Γ � ϕ by Lemma 40,
cases (4), (7), and (11), respectively.

Appendix C
Properties of Proof SystemH

We discuss properties of H . In particular, we prove Propo-
sition 12 and Theorem 14.
Our final goal is to prove all proof rules in P using the proof

system H plus (Definedness) axioms, i.e., Theorem 15.
We only discuss ML (without µ) in this section, so we drop

all unnecessary annotations. Specifically, we abbreviate “�ML”
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(Propositional Tautology) ϕ, if ϕ is a proposition tautology over patterns of the same sort

(Modus Ponens)
ϕ1 ϕ1 → ϕ2

ϕ2
(Functional Substitution) (∀x.ϕ) ∧ (∃y.ϕ′ = y) → ϕ[ϕ′/x] if y < FV(ϕ′)
(∀) ∀x.(ϕ1 → ϕ2) → (ϕ1 → ∀x.ϕ2) if x < FV(ϕ1)

(Universal Generalization)
ϕ

∀x.ϕ
(Equality Introduction) ϕ = ϕ
(Equality Elimination) (ϕ1 = ϕ2) ∧ ψ[ϕ1/x] → ψ[ϕ2/x]

(Membership Introduction)
ϕ

if x < FV(ϕ)
∀x.(x ∈ ϕ)

(Membership Elimination)
∀x.(x ∈ ϕ)

if x < FV(ϕ)
ϕ

(Membership Variable) (x ∈ y) = (x = y)

(Membership¬) (x ∈ ¬ϕ) = ¬(x ∈ ϕ)
(Membership∧) (x ∈ ϕ1 ∧ ϕ2) = (x ∈ ϕ1) ∧ (x ∈ ϕ2)
(Membership∃) (x ∈ ∃y.ϕ) = ∃y.(x ∈ ϕ), where x and y distinct.
(Membership Symbol) x ∈ Cσ[ϕ] = ∃y.(y ∈ ϕ) ∧ (x ∈ Cσ[y]) if y < FV(Cσ[ϕ])

Fig. 3. Sound and complete matching logic proof system P with definedness symbols

as “�” and “`H” as “`”. We sometimes call a nested symbol
context just a symbol context (see Definition 10).

Proposition 41 (Sound FOL Reasoning). Let � = (S,Σ) be
a matching logic signature. Let (S,Π,F) be any first-order
logic signature with Π = {Πs}s∈S a set of constant predicate
symbols and F = ∅ a set of function symbols. For any
predicate logic formula Ψ(π1, . . . , πn) where π1, . . . , πn ∈ Π,
if Ψ(π1, . . . , πn) is derivable in FOL, then Ψ(ϕ1, . . . , ϕn) is
derivable in matching logic, where ϕi has the same sort as πi
for 1 ≤ i ≤ n.

Proof: Notice that F = ∅, so the only FOL terms are
variables. Under that condition, the first seven rules in Fig. 1
form a complete FOL proof system as in [16].

Proposition 42 (Sound Frame Reasoning). For any σ ∈
Σs1...sn ,s and ϕi, ϕ

′
i ∈ Patternsi such that Γ ` ϕi → ϕ′i for

any 1 ≤ i ≤ n, then Γ ` σ(ϕ1, . . . , ϕn) → σ(ϕ′1, . . . , ϕ
′
n). For

any symbol context C and ϕi, ϕ′i such that Γ ` ϕi → ϕ′i , then
Γ ` C[ϕ] → C[ϕ′i].

Proof: For the first case, it suffices to show that

Γ ` σ(ϕ1, ϕ2, . . . , ϕn) → σ(ϕ′1, ϕ2, . . . , ϕn)

Γ ` σ(ϕ′1, ϕ2, . . . , ϕn) → σ(ϕ′1, ϕ
′
2, . . . , ϕn)

. . .

Γ ` σ(ϕ′1, ϕ
′
2, . . . , ϕn) → σ(ϕ′1, ϕ

′
2, . . . , ϕ

′
n)

which directly follow by (Framing).
For the second case, the proof is by structure induction on

C. If C is the identity context, the conclusion is obvious. If C
has the form Cσ[C ′], the conclusion follows from induction
hypothesis and (Framing).

Proposition 43 (Propagation through Symbol Contexts). For
any symbol context C and patterns ϕ1, ϕ2, ϕ, the following
propositions hold.
• Γ ` C[⊥] ↔ ⊥
• Γ ` C[ϕ1 ∨ ϕ2] ↔ C[ϕ1] ∨ C[ϕ2]
• Γ ` C[∃x.ϕ] ↔ ∃x.C[ϕ] if x < FV(C[∃x.ϕ])

The following results are often useful in practice, whose proofs
can be obtained by standard propositional reasoning with the
above propositions:
• Γ ` C[ϕ1 ∨ ϕ2] iff Γ ` C[ϕ1] ∨ C[ϕ2]
• Γ ` C[∃x.ϕ] iff Γ ` ∃x.C[ϕ] if x < FV(C[∃x.ϕ])

Proof: The proof is by structure induction on the symbol
context C. If C is the identity context then the conclusion
is obvious. Now assume C = Cσ[C ′] where C ′ is a symbol
context for which the conclusion holds.
Firstly, let us prove Γ ` Cσ[C ′[⊥]] ↔ ⊥. The implication

from right to left is by simple propositional reasoning. For the
other direction, notice by induction hypothesis Γ ` C ′[⊥] → ⊥
and by (Framing) Γ ` Cσ[C ′[⊥]] → Cσ[⊥]. In addition by
(Propagation⊥), Γ ` Cσ[⊥] → ⊥, and the rest of the proof is
by standard propositional reasoning.
Secondly, let us prove Γ ` Cσ[C ′[ϕ1∨ϕ2]] ↔ Cσ[C ′[ϕ1]]∨

Cσ[C ′[ϕ2]]. For the implication from right to left, it suffices
to prove Γ ` Cσ[C ′[ϕi]] → Cσ[C ′[ϕ1 ∨ ϕ2]] for i = 1,2. By
(Framing), it suffices to prove Γ ` C ′[ϕi] → C ′[ϕ1 ∨ ϕ2],
which follows from the induction hypothesis. For the implica-
tion from left to right, the proof is the same as how we proved
Γ ` Cσ[C ′[⊥]] → ⊥, while instead of (Propagation⊥) we use
(Propagation∨).
Finally, let us prove Γ ` Cσ[C ′[∃x.ϕ]] ↔ ∃x.Cσ[C ′[ϕ]] for

x < FV(Cσ[C ′[∃x.ϕ]]). In fact the proof is the same as above,
while instead of (Propagation∨) we use (Propagation∃).
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Proposition 44 (Congruence of Provably Equivalence). For
any context C (not necessarily just symbol context), Γ ` ϕ1 ↔
ϕ2 implies Γ ` C[ϕ1] ↔ C[ϕ2].

Proof: The proof is by induction on the structure of C.
If C is the identity context the conclusion is obvious. If C is
of the form ¬C ′, ψ → C ′, or C ′ → ψ where C ′ is a context
and ψ is a pattern (notice ψ does not have the placeholder
variable � in it), the conclusion is by standard propositional
reasoning. If C has the form ∀x.C ′, the conclusion follows
from standard FOL reasoning. If C has the form Cσ[C ′], the
conclusion follows from Proposition 42.
Proposition 44 allows us to in-place replace ϕ1 for ϕ2

in any context as long as ` ϕ1 ↔ ϕ2, which is obviously
a powerful and convenient result. In some of the following
proofs, when we carry out structural induction on a pattern ϕ,
we take I = {∧,¬,∃} as primitives instead of J = {→,¬,∀}
for technical simplicity. Proposition 44 justifies this approach,
as we can transform any pattern ϕ to another pattern, say ϕI ,
that uses only constructs in I and ` ϕ↔ ϕI . Then, ϕ and ϕI
are interchangeable in any context.

Definition 45. Define the dual of a symbol σ as follows:

σ̄(ϕ1, . . . , ϕn) ≡ ¬σ(¬ϕ1, . . . ,¬ϕn).

Lemma 46. Γ ` ϕ implies Γ ` ¬C[¬ϕ] for symbol context C.

Proof:

1 ϕ hypothesis
2 ¬ϕ→ ⊥ by 1, FOL reasoning
3 C[¬ϕ] → C[⊥] by 2, (Framing)
4 C[⊥] → ⊥ by (Propagation)
5 C[¬ϕ] → ⊥ by 3 and 4, FOL reasoning
6 ¬C[¬ϕ] by 5, FOL reasoning

Now we are ready to prove Proposition 12.
Proof of Proposition 12: Let the single symbol context

Cσ = σ(ϕ1, . . . , ϕi−1,�, ϕi+1, . . . , ϕn) for some symbol σ ∈ Σ.
(K). Note that we just need to prove the case of one

argument, i.e., to prove ` ¬Cσ[¬(ϕ → ϕ′)] → ¬Cσ[¬ϕ] →
¬Cσ[¬ϕ′]. The case of multiple arguments can be incremen-
tally proved by simple propositional reasoning.

To prove the “one argument” case, we apply simple proposi-
tional reasoning and obtain ` Cσ[ϕ∧ϕ′]∨Cσ[¬ϕ]∨¬Cσ[¬ϕ′].
By Proposition 43, the goal becomes ` Cσ[(ϕ ∧ ϕ′) ∨ ¬ϕ] ∨
¬Cσ[¬ϕ′], i.e., ` Cσ[ϕ′∨¬ϕ]∨¬Cσ[¬ϕ′]. By Proposition 43
again, we obtain ` Cσ[ϕ′] ∨ Cσ[¬ϕ] ∨ ¬Cσ[¬ϕ′]. Done.
(N) is proved in Lemma 46, letting C to be Cσ .
In what follows, we move towards proving Theorem 15, by

showing that all proof rules of P in Fig. 3 can be proved in
H . We will need (a lot of) lemmas.

The next lemma is useful in establishing an equality.

Lemma 47. Γ ` ϕ1 ↔ ϕ2 implies Γ ` ϕ1 = ϕ2.

Proof:

1 ϕ1 ↔ ϕ2 hypothesis
2 ¬d¬(ϕ1 ↔ ϕ2)e by 1, Lemma 46
3 ϕ1 = ϕ2 by 2, definition of equality

Lemma 48. (Equality Introduction) can be proved in H .

Proof:

1 ϕ↔ ϕ propositional tautology
2 ϕ = ϕ by 1, Lemma 47

Lemma 49. (Membership Introduction) can be proved in H .

Proof:

1 ϕ hypothesis
2 ϕ→ (x → ϕ) (Proposition1)
3 x → ϕ by 1 and 2, (Modus Ponens)
4 x → x propositional tautology
5 x → x ∧ ϕ by 3 and 4, FOL reasoning
6 dxe → dx ∧ ϕe by 5, (Framing)
7 dxe definedness axiom
8 dx ∧ ϕe by 6 and 7, (Modus Ponens)
9 x ∈ ϕ by 8, definition of membership
10 ∀x.(x ∈ ϕ) by 9, (Universal Generalization)

Lemma 50. (Membership Elimination) can be proved in H .

Proof:

1 ∀x.(x ∈ ϕ) hypothesis
2 (∀x.(x ∈ ϕ)) (Variable Substitution)

→ x ∈ ϕ
3 x ∈ ϕ by 1 and 2, (Modus Ponens)
4 dx ∧ ϕe by 3, definition of membership
5 ¬(dx ∧ ϕe (Singleton Variable)

∧(x ∧ ¬ϕ))
6 dx ∧ ϕe by 5, FOL reasoning

→ (x → ϕ)
7 x → ϕ by 4 and 6, (Modus Ponens)
8 ∀x.(x → ϕ) by 7, (Universal Generalization)
9 (∃x.x) → ϕ by 8, FOL reasoning
10 ∃x.x (Existence)
11 ϕ by 10 and 9, (Modus Ponens)

Lemma 51. (Membership Variable) can be proved in H .

Proof: By Lemma 47, we just need to prove both ` (x ∈
y) → (x = y) and ` (x = y) → (x ∈ y). We first prove
` (x = y) → (x ∈ y).
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1 dxe definedness axiom
2 dxe ∨ dye by 1, FOL reasoning
3 dx ∨ ye by 2, Proposition 43
4 d¬(x ↔ y) ∨ (x ∧ y)e by 3, FOL reasoning
5 d¬(x ↔ y)e ∨ dx ∧ ye by 4, Proposition 43
6 ¬d¬(x ↔ y)e → dx ∧ ye by 5, FOL reasoning
7 (x = y) → (x ∈ y) by 6, definition

We then prove ` (x ∈ y) → (x = y).

1 ¬(dx ∧ ye ∧ dx ∧ ¬ye) by (Singleton Variable)
2 ¬(dx ∧ ye ∧ d¬x ∧ ye) by (Singleton Variable)
3 dx ∧ ye → ¬dx ∧ ¬ye by 1, FOL reasoning
4 dx ∧ ye → ¬d¬x ∧ ye by 2, FOL reasoning
5 dx ∧ ye by 3, 4, FOL reasoning
→ ¬dx ∧ ¬ye ∧ ¬d¬x ∧ ye

6 dx ∧ ye by 5, FOL reasoning
→ ¬(dx ∧ ¬ye ∨ d¬x ∧ ye)

7 dx ∧ ye by 6, Proposition 43
→ ¬d(x ∧ ¬y) ∨ (¬x ∧ y)e

8 dx ∧ ye → ¬d¬(x ↔ y)e by 7, FOL reasoning
9 (x ∈ y) → (x = y) by 8, definition

Lemma 52. (Membership¬) can be proved in H .

Proof: We first prove ` (x ∈ ¬ϕ) → ¬(x ∈ ϕ).

1 ¬(dx ∧ ϕe ∧ dx ∧ ¬ϕe) by (Singleton Variable)
2 dx ∧ ¬ϕe → ¬dx ∧ ϕe by 1, FOL reasoning
3 (x ∈ ¬ϕ) → ¬(x ∈ ϕ) by 2, definition

We then prove ` ¬(x ∈ ϕ) → (x ∈ ¬ϕ).

1 dxe definedness axiom
2 d(x ∧ ϕ) ∨ (x ∧ ¬ϕ)e by 1, FOL reasoning
3 dx ∧ ϕe ∨ dx ∧ ¬ϕe by 2, Proposition 43
4 ¬dx ∧ ϕe → dx ∧ ¬ϕe by 3, FOL reasoning
5 ¬(x ∈ ϕ) → (x ∈ ¬ϕ) by 4, definition

Lemma 53. ` (x ∈ (ϕ1 ∨ ϕ2)) ↔ (x ∈ ϕ1) ∨ (x ∈ ϕ2).

Proof: Use (Propagation∨) and FOL reasoning.

Lemma 54. (Membership∧) can be proved in H .

Proof: Use Lemma 52 and 53, and the fact that ` ϕ1 ∧
ϕ2 ↔ ¬(¬ϕ1 ∨ ¬ϕ2).

Lemma 55. (Membership∃) can be proved in H .

Proof: Use (Propagation∃) and FOL reasoning.
The following is a useful lemma about definedness symbols.

Lemma 56. ` C[ϕ] → dϕe for any symbol context C.

Proof: Let x be a fresh variable in the following proof.

1 dxe definedness axiom
2 dxe ∨ dϕe by 1, FOL reasoning
3 dx ∨ ϕe by 2, Proposition 43
4 dx ∧ ¬ϕ ∨ ϕe by 3, FOL reasoning
5 dx ∧ ¬ϕe ∨ dϕe by 4, Proposition 43
6 C[x ∧ ϕ] → ¬dx ∧ ¬ϕe by (Singleton Variable)
7 ¬dx ∧ ¬ϕe → dϕe by 5, FOL reasoning
8 C[x ∧ ϕ] → dϕe by 6 and 7, FOL reasoning
9 ∀x.(C[x ∧ ϕ] → dϕe) by 8, FOL reasoning
10 (∃x.C[x ∧ ϕ]) → dϕe by 9, FOL reasoning
11 ϕ→ (∃x.x) ∧ ϕ by (Existence)
12 ϕ→ ∃x.(x ∧ ϕ) by 11, FOL reasoning
13 C[ϕ] → C[∃x.(x ∧ ϕ)] by 12, (Framing)
14 C[∃x.(x ∧ ϕ)] → dϕe by 10, Proposition 43
15 C[ϕ] → dϕe by 13, 14, FOL reasoning

Corollary 57. ` Cσ[ϕ] → dϕe and ` bϕc → ¬Cσ[¬ϕ] for all
symbols σ. In particular, ` ϕ→ dϕe and ` bϕc → ϕ.

We are now ready to prove the deduction theorem (Theo-
rem 14).

Proof of Theorem 14: Carry out induction on the length
of the proof Γ ∪ {ψ} ` ϕ.
(Base Case). Suppose the length is one, then either ϕ is an

axiom in H or ϕ ∈ Γ ∪ {ψ}. In either case, it is obvious that
Γ ` bψc → ϕ (noticing Corollary 57 for the case ϕ is ψ).
(Induction Step). Suppose the proof Γ ∪ {ψ} ` ϕ has n + 1

steps:
ϕ1, . . . , ϕn, ϕ.

If ϕ is an axiom in H or ϕ ∈ Γ ∪ {ψ}, then Γ ` bψc → ϕ
for the same reason as (Base Case). If the last step is (Modus
Ponens) on ϕi and ϕj for some 1 ≤ i, j ≤ n such that ϕj has
the form ϕi → ϕ, by induction hypothesis, Γ ` bψc → ϕi and
Γ ` bψc → (ϕi → ϕ). By FOL reasoning, Γ ` bψc → ϕ. If
the last step is (Universal Generalization) on ϕi for some
1 ≤ i ≤ n, then ϕ must have the form ∀x.ϕi where x does not
occur free in ψ. By induction hypothesis, Γ ` bψc → ϕi . By
FOL reasoning, Γ ` bψc → ∀x.ϕi .
If the last step is (Framing) on ϕi for some 1 ≤ i ≤ n,

then ϕi must have the form ϕ′i → ϕ′′i , and ϕ must have the
form Cσ[ϕ′i] → Cσ[ϕ′′i ] for some symbol σ. By induction
hypothesis, Γ ` bψc → (ϕ′i → ϕ′′i ). We now prove Γ ` bψc →
(Cσ[ϕ′i] → Cσ[ϕ′′i ]).

1 bψc → (ϕ′i → ϕ′′i ) hypothesis
2 ϕ′i → ϕ′′i ∨ d¬ψe by 1, FOL reasoning
3 Cσ[d¬ψe] → d¬ψe Corollary 57
4 Cσ[ϕ′i] by 2, (Framing)
→ Cσ[ϕ′′i ∨ d¬ψe]

5 Cσ[ϕ′i] by 4, Proposition 43
→ Cσ[ϕ′′i ] ∨ Cσ[d¬ψe]

6 Cσ[ϕ′′i ] ∨ Cσ[d¬ψe] by 3, FOL reasoning
→ Cσ[ϕ′′i ] ∨ d¬ψe

7 Cσ[ϕ′i] → Cσ[ϕ′′i ] ∨ d¬ψe by 5, 6, FOL reasoning
8 bψc → (Cσ[ϕ′i] → Cσ[ϕ′′i ]) by 7, FOL reasoning
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Lemma 58. (Equality Elimination) can be proved in H .

Proof: Recall the definition of equality (ϕ1 = ϕ2) ≡
bϕ1 ↔ ϕ2c. Theorem 14 together with Proposition 44 give
us a nice way to deal with equality premises. To prove
` (ϕ1 = ϕ2) → (ψ[ϕ1/x] → ψ[ϕ2/x]), we apply Theorem 14
and prove {ϕ1 ↔ ϕ2} ` ψ[ϕ1/x] → ψ[ϕ2/x], which is
proved by Proposition 44. Note that the (formal) proof given
in Proposition 44 does not use (Universal Generalization)
at all, so the conditions of Theorem 14 are satisfied.

Lemma 59. (Functional Substitution) can be proved in H .

Proof: Let z be a fresh variable that does not occur free
in ϕ and ϕ′, and is distinct from x. Notice the side condition
that y does not occur free in ϕ′.

1 ϕ′ = z ↔ z = ϕ′ definition
2 z = ϕ′→ (ϕ[z/x] → ϕ[ϕ′/x]) Lemma 58
3 (∀x.ϕ) → ϕ[z/x] by axiom
4 ϕ′ = z → ((∀x.ϕ) → ϕ[z/x]) FOL reasoning
5 ϕ′ = z → (ϕ[z/x] → ϕ[ϕ′/x]) FOL reasoning
6 ϕ′ = z → ((∀x.ϕ) → ϕ[ϕ′/x]) FOL reasoning
7 ∀z.(ϕ′ = z → ((∀x.ϕ) → ϕ[ϕ′/x])) by 6
8 (∃z.ϕ′ = z) → ((∀x.ϕ) → ϕ[ϕ′/x]) FOL reasoning
9 (∀x.ϕ) ∧ (∃z.ϕ′ = z) → ϕ[ϕ′/x] FOL reasoning
10 (∀x.ϕ) ∧ (∃y.ϕ′ = y) → ϕ[ϕ′/x] FOL reasoning

Lemma 60. ` Cσ[ϕ1 ∧ (x ∈ ϕ2)] = Cσ[ϕ1] ∧ (x ∈ ϕ2).

Proof:We first prove ` Cσ[ϕ1∧(x ∈ ϕ2)] → Cσ[ϕ1]∧(x ∈
ϕ2). By FOL reasoning, it suffices to show both ` Cσ[ϕ1∧(x ∈
ϕ2)] → Cσ[ϕ1] and ` Cσ[ϕ1 ∧ (x ∈ ϕ2)] → (x ∈ ϕ2). The first
follows immediately by (Framing) and FOL reasoning. The
second can be proved as:

1 dxe
2 d(x ∧ ¬ϕ2) ∨ (x ∧ ϕ2)e
3 dx ∧ ¬ϕ2e ∨ dx ∧ ϕ2e
4 ¬dx ∧ ¬ϕ2e → dx ∧ ϕ2e
5 Cσ[dx ∧ ϕ2e] → ¬dx ∧ ¬ϕ2e
6 Cσ[dx ∧ ϕ2e] → dx ∧ ϕ2e
7 Cσ[ϕ1 ∧ dx ∧ ϕ2e] → Cσ[dx ∧ ϕ2e]
8 Cσ[ϕ1 ∧ dx ∧ ϕ2e] → dx ∧ ϕ2e
9 Cσ[ϕ1 ∧ (x ∈ ϕ2)] → (x ∈ ϕ2)

Lemma 61. ` ∃y.((x = y) ∧ ϕ) = ϕ[x/y] where x, y distinct.

Proof: The proof is by induction on the structural of
ϕ and Lemma 60.

Lemma 62. ` ϕ = ∃y.(dy ∧ ϕe ∧ y) if y < FV(ϕ).

Proof: We first prove ` ∃y.(dy ∧ ϕe ∧ y) → ϕ.

1 ¬(dy ∧ ϕe ∧ (y ∧ ¬ϕ)) (Singleton Variable)
2 dy ∧ ϕe ∧ y → ϕ by 1, FOL reasoning
3 ∀y.(dy ∧ ϕe ∧ y → ϕ) by 2, axiom
4 ∃y.(dy ∧ ϕe ∧ y) → ϕ by 3, FOL reasoning

We then prove ` ϕ → ∃y.(dy ∧ ϕe ∧ y). Let x be a fresh
variable distinct from y.

1 x ∈ ϕ→ x ∈ ϕ
2 x ∈ ϕ→ dx ∧ ϕe
3 x ∈ ϕ→ dx ∧ dx ∧ ϕee
4 x ∈ ϕ→ x ∈ dx ∧ ϕe
5 x ∈ ϕ→ ∃y.(x = y ∧ x ∈ dy ∧ ϕe)
6 x ∈ ϕ→ ∃y.(x ∈ y ∧ x ∈ dy ∧ ϕe)
7 x ∈ ϕ→ ∃y.(x ∈ (y ∧ dy ∧ ϕe))
8 x ∈ ϕ→ x ∈ ∃y.(y ∧ dy ∧ ϕe)
9 x ∈ (ϕ→ ∃y.(y ∧ dy ∧ ϕe))
10 ∀x.(x ∈ (ϕ→ ∃y.(y ∧ dy ∧ ϕe)))
11 ϕ→ ∃y.(y ∧ dy ∧ ϕe)

Lemma 63. (Membership Symbol) is provable in H .

Proof: We first prove ` x ∈ Cσ[ϕ] → ∃y.(y ∈ ϕ ∧ x ∈
Cσ[y]). Let Ψ ≡ ∃y.(y ∈ ϕ ∧ x ∈ Cσ[y]).

1 ∃y.(y ∈ ϕ ∧ x ∈ Cσ[y]) → Ψ
2 ∃y.(dy ∧ ϕe ∧ x ∈ Cσ[y]) → Ψ
3 ∃y.(dx ∧ dy ∧ ϕee ∧ x ∈ Cσ[y]) → Ψ
4 ∃y.(x ∈ dy ∧ ϕe ∧ x ∈ Cσ[y]) → Ψ
5 ∃y.(x ∈ (dy ∧ ϕe ∧ Cσ[y])) → Ψ
6 x ∈ ∃y.(dy ∧ ϕe ∧ Cσ[y]) → Ψ
7 x ∈ ∃y.Cσ[dy ∧ ϕe ∧ y] → Ψ

8 x ∈ Cσ[∃y.dy ∧ ϕe ∧ y] → Ψ

9 x ∈ Cσ[ϕ] → Ψ

We then prove ` ∃y.(y ∈ ϕ ∧ x ∈ C[y]) → x ∈ C[ϕ]. In
fact, we just need to apply the same derivation as above on
` Ψ→ ∃y.(y ∈ ϕ ∧ x ∈ C[y]).

We are now ready to prove Theorem 15.
Proof of Theorem 15: By the completeness of P (Theo-

rem 9), we have Γ `P ϕ. We have shown that all proof rules in
P are provable in H with (Definedness) axioms, so Γ `H ϕ.

Appendix D
Proof of Theorem 16

We prove the completeness theorem of H (Theorem 16).
We only discuss ML (without µ) in this section, so we drop
all unnecessary annotations. Specifically, we abbreviate “�ML”
as “�”; “`H” as “`”; “PatternML” as “Pattern”, etc.
For simplicity of some technical proofs, we assume that
{∧,¬,∃} is our set of primitives, instead of {→,¬,∀}. This is
justified by Proposition 44.
Our proof technique was mainly inspired by [18].

Lemma 64 (Substitution Lemma). ρ̄(ϕ[y/x]) = ρ[ρ(y)/x](ϕ).

Proof: Carry out induction on the structure of ϕ. The only
nontrivial case is when ϕ ≡ ∃z.ψ. Without loss of generality,
let us assume z is distinct from x and y. If not, apply α-
renaming to make them different. Then
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ρ̄((∃z.ψ)[y/x])
≡ ρ̄(∃z.(ψ[y/x]))
≡

⋃
{ρ1(ψ[y/x]) | ρ1

z
∼ ρ}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ and ρ′1 = ρ1[ρ1(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ and ρ′1 = ρ1[ρ(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ[ρ(y)/x]}

≡
⋃
{ρ′1(ψ) | ρ1

z
∼ ρ′}

≡ ρ′(∃z.ψ)

Definition 65 (Local Provability). Let s be a sort, Hs ⊆

Patterns be a pattern set, and ϕs be a pattern of sort s. We
write Hs s ϕs , if there exists a finite subset ∆s ⊆fin Hs such
that ∅ `s

∧
∆s → ϕs , where

∧
∆s is the conjunction of all

patterns in ∆s . When ∆s is the empty set,
∧
∆s is >s . Let

H = {Hs}s∈S be a family set of patterns. We write H s ϕs if
Hs s ϕs . We drop sort subscripts when there is no confusion.

Definition 66 (Consistent Sets). Let Γs be a pattern set of
sort s. We say Γs is consistent, if Γs 1 ⊥s . Γs is a maximal
consistent set (MCS) if any strict extension of it is inconsistent.
By abuse of language, we say Γ = {Γs}s∈S is consistent if
every Γs is consistent, and Γ is an MCS if every Γs is an
MCS.

Like the local provability relation, consistency is also a
local property. Pattern set Γs is consistent (or an MCS) only
depends on itself. A useful intuition about consistent sets
is that they provide consistent “views” of patterns. Recall
that patterns in matching logic match elements in domain.
Intuitively speaking, a pattern set Γs is inconsistent if it
contains patterns that cannot match common elements in any
models and valuations. In other words, if Γs is consistent, then
there exist a model M and a valuation ρ, and an element
a in the model, such that all patterns in Γs match a, i.e.,
a ∈ ρ̄(ϕ) for all pattern ϕ ∈ Γs . If Γs is in addition an
MCS, adding any pattern ψ < Γs will lead to inconsistency,
and thus a < ρ̄(ψs). Therefore, we can think of the MCS Γs
representing that particular element a, with all patterns in Γs
matching it while patterns outside Γs not. This useful intuition
motivates the definition of canonical models that consist MCSs
as elements (see Definition 70), and the Truth Lemma that
says “Matching = Membership in MCSs”, connecting syntax
and semantics, (see Lemma 79). They play an important role
in proving the completeness result, including both local and
global completeness theorems. The rest of the section is all
about making this intuition work.

Proposition 67 (MCS Properties). Given an MCS Γ and
patterns ϕ, ϕ1, ϕ2 of the same sort s. The following propositions
hold.

1) ϕ ∈ Γ if and only if Γ  ϕ; In particular, if ` ϕ then
ϕ ∈ Γ;

2) ¬ϕ ∈ Γ if and only if ϕ < Γ;
3) ϕ1∧ϕ2 ∈ Γ if and only if ϕ1 ∈ Γ and ϕ2 ∈ Γ; In general,

for any finite pattern set ∆,
∧
∆ ∈ Γ if and only if ∆ ⊆ Γ;

4) ϕ1 ∨ ϕ2 ∈ Γ if and only if ϕ1 ∈ Γ or ϕ2 ∈ Γ; In general,

for any finite pattern set ∆,
∨
∆ ∈ Γ if and only if ∆∩Γ ,

∅; As a convention, when ∆ = ∅,
∨
∆ is ⊥;

5) ϕ1, ϕ1 → ϕ2 ∈ Γ implies ϕ2 ∈ Γ; In particular, if `
ϕ1 → ϕ2, then ϕ1 ∈ Γ implies ϕ2 ∈ Γ.

Proof: Standard propositional reasoning.

Definition 68 (Witnessed MCSs). Let Γ be an MCS of sort
s. Γ is a witnessed MCS, if for any pattern ∃x.ϕ ∈ Γ, there
is a variable y such that (∃x.ϕ) → ϕ[y/x] ∈ Γ. By abuse use
of language, we say the family set Γ = {Γs}s∈S is a witnessed
MCS if every Γs is a witnessed MCS.

In the following, we show any consistent set Γ can be
extended to a witnessed MCS Γ+. The extension, however,
requires an extension of the set of variables. To see why
such an extension is needed, consider the following example.
Let � = (S,Var,Σ) be a signature, s ∈ S be a sort, and
Γ = {¬x | x ∈ Vars} be a pattern set containing all
variable negations. We leave it for the readers to show that
Γ is consistent. Here, we claim the consistent set Γ cannot be
extended to a witnessed MCS Γ+ in the signature �. The proof
is by contradiction. Assume Γ+ exists. By Proposition 67 and
(Existence), ∃x.x ∈ Γ+. Because Γ+ is a witnessed MCS,
there is a variable y such that (∃x.x) → y ∈ Γ+, and by
Proposition 67, y ∈ Γ+. On the other hand, ¬y ∈ Γ ⊆ Γ+. This
contradicts the consistency of Γ+.

Lemma 69 (Extension Lemma). Let � = (S,Var,Σ) be a
signature and Γ be a consistent set of sort s ∈ S. Extend
the variable set Var to Var+ with countably infinitely many
new variables, and denoted the extended signature as �+ =
(Var+,S,Σ). There exists a pattern set Γ+ in the extended
signature � such that Γ ⊆ Γ+ and Γ+ is a witnessed MCS.

Proof: We use Patterns and Pattern+s denote the set of
all patterns of sort s in the original and extended signatures,
respectively. Enumerate all patterns ϕ1, ϕ2, · · · ∈ Pattern+s . For
every sort s, enumerate all variables x1:s,x2:s, . . . in Var+s \
Vars . We will construct a non-decreasing sequence of pattern
sets Γ0 ⊆ Γ1 ⊆ Γ2 · · · ⊆ Pattern+s , with Γ0 = Γ. Notice
that Γ0 contains variables only in Var. Eventually, we will let
Γ+ =

⋃
i≥0 Γi and prove it has the intended properties.

For every n ≥ 1, we define Γn as follows. If Γn−1 ∪ {ϕn} is
inconsistent, then Γn = Γn−1. Otherwise,

if ϕn is not of the form ∃x:s′.ψ:
Γn = Γn−1 ∪ {ϕn}

if ϕn ≡ ∃x:s′.ψ and xi:s′ is the first variable in Var+s′ \ Vars′
that does not occur free in Γn−1 and ψ:

Γn = Γn−1 ∪ {ϕn} ∪ {ψ[xi:s′/x:s′]}

Notice that in the second case, we can always pick a variable
xi:s′ that satisfies the conditions because by construction,
Γn−1∪{ϕn} uses at most finitely many variables in Var+\Var.
We show that Γn is consistent for every n ≥ 0 by induction.

The base case is to show Γ0 is consistent in the extended
signature. Assume it is not. Then there exists a finite subset
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∆0 ⊆fin Γ0 such that `
∧
∆0 → ⊥. The proof of

∧
∆0 → ⊥

is a finite sequence of patterns in Pattern+. We can replace
every occurrence of the variable y ∈ Var+ \ Var (y can have
any sort) with a variable y ∈ Var that has the same sort as y
and does not occur (no matter bound or free) in the proof. By
induction on the length of the proof, the resulting sequence is
also a proof of

∧
∆0 → ⊥, and it consists of only patterns in

Pattern. This contradicts the consistency of Γ0 as a subset
of Patterns , and this contradiction finishes our proof of the
base case.

Now assume Γn−1 is consistent for n ≥ 1. We will show
Γn is also consistent. If Γn−1 ∪ {ϕn} is inconsistent or ϕn
does not have the form ∃x:s′.ψ, Γn is consistent by con-
struction. Assume Γn−1 ∪ {ϕn} is consistent, ϕn ≡ ∃x:s′.ψ,
but Γn = Γn−1 ∪ {ϕn} ∪ {ψ[xi:s′/x:s′]} is not consistent.
Then there exists a finite subset ∆ ⊆fin Γn−1 ∪ {ϕn} such
that `

∧
∆ → ¬ψ[xi:s′/x:s′]. By (Universal Generaliza-

tion), ` ∀xi:s′.(
∧
∆ → ¬ψ[xi:s′/x:s′]). Notice that xi:s′ <

FV(
∧
∆) by construction, so by FOL reasoning `

∧
∆ →

¬∃xi:s′.(ψ[xi:s′/x:s′]). Since xi:s′ < FV(ψ), by α-renaming,
∃xi:s′.(ψ[xi:s′/x:s′]) ≡ ∃x:s′.ψ ≡ ϕn, and thus `

∧
∆→ ¬ϕn.

This contradicts the assumption that Γn−1∪{ϕn} is consistent.
Since Γn is consistent for any n ≥ 0, Γ+ =

⋃
n Γn is also

consistent. This is because the derivation that shows inconsis-
tency would use only finitely many patterns in Γ+. In addition,
we know Γ+ is maximal and witnessed by construction.

We will prove that for every witnessed MCS Γ = {Γs}s∈S ,
there exists a model M and a valuation ρ such that for every
ϕ ∈ Γs , ρ̄(ϕ) , ∅. The next definition defines the canonical
model which contains all witnessed MCSs as its elements.
We will construct our intended model M as a submodel of the
canonical model.

Definition 70 (Canonical Model). Given a signature � =

(S,Σ). The canonical model W = ({Ws}s∈S,_W ) consists of
• a carrier set Ws = {Γ | Γ is a witnessed MCS of sort s}
for every sort s ∈ S;

• an interpretation σW : Ws1 ×· · ·×Wsn → P(Ws) for every
symbol σ ∈ Σs1...sn ,s , defined as Γ ∈ σW (Γ1, . . . ,Γn) if
and only if for any ϕi ∈ Γi , 1 ≤ i ≤ n, σ(ϕ1, . . . , ϕn) ∈
Γ; In particular, the interpretation for a constant symbol
σ ∈ Σλ,s is σW = {Γ ∈ Ws | σ ∈ Γ}.

The carrier set W is not empty, thanks to Lemma 69.

The canonical model has a nontrivial property stated as the
next lemma. The proof of the lemma is difficult, so we leave
it to the end of the subsection.

Theorem 71 (Existence Lemma). Let � = (S,Σ) be a
signature and Γ be a witnessed MCS of sort s ∈ S. Given
a symbol σ ∈ Σs1...sn ,s and patterns ϕ1, . . . , ϕn of appropriate
sorts. If σ(ϕ1, . . . , ϕn) ∈ Γ, then there exist n witnessed MCSs
Γ1, . . . ,Γn of appropriate sorts such that ϕi ∈ Γi for every
1 ≤ i ≤ n, and Γ ∈ σW (Γ1, . . . ,Γn).

Definition 72 (Generated Models). Let � = (S,Σ) be a
signature and W = ({Ws}s∈S,_W ) be the canonical model.
Given a witnessed MCS Γ = {Γs}s∈S . Define Y = {Ys}s∈S be

the smallest sets such that Ys ⊆ Ws for every sort s, and the
following inductive properties are satisfied:
• Γs ∈ Ys for every sort s;
• If ∆ ∈ Ys and there exist a symbol σ ∈ Σs1...sn ,s and
witnessed MCSs ∆1, . . . ,∆n of appropriate sorts such that
∆ ∈ σW (∆1, . . . ,∆n), then ∆1 ∈ Ys1, . . . ,∆n ∈ Ysn .

Let Y = (Y,_Y ) be the model generated from Γ, where

σY (∆1, . . . ,∆n) = Ys ∩ σW (∆1, . . . ,∆n) for every
σ ∈ Σs1...sn ,s and ∆1 ∈ Ys1, . . . ,∆n ∈ Ysn .

We give some intuition about the generated model Y =
(Y,_Y ). The interpretation σY is just the restriction of the
interpretation σM on Y . The carrier set Y is defined induc-
tively. Firstly, Y contains Γ. Given a set ∆ ∈ Y . If sets
∆1, . . . ,∆n are “generated” from ∆ by a symbol σ, meaning
that ∆ ∈ σW (∆1, , . . . ,∆n), then they are also in Y . Of course,
a set ∆ is in Y maybe because it is generated from a set ∆′
by a symbol σ′, while ∆′ is generated from a set ∆′′ by a
symbol σ′′, and so on. This generating path keeps going and
eventually ends at Γ in finite number of steps. By definition,
every member of Y has at least one such generating path, which
we formally define as follows.

Definition 73 (Generating Paths). Let Γ = {Γs}s∈S be a
witnessed MCS and Y be the model generated from Γ. A
generating path π is either the empty path ε , or a sequence
of pairs 〈(σ1, p1), . . . , (σk, pk)〉 where σ1, . . . ,σk are symbols
(not necessarily distinct) and p1, . . . , pk are natural numbers
representing positions. The generating path relation, denoted
as GP, is a binary relation between witnessed MCSs in Y and
generating paths, defined as the smallest relation that satisfies
the following conditions:
• GP(Γs, ε) holds for every sort s;
• If GP(∆, π) holds for a set ∆ ∈ Ys and a generating path
π, and there exist a symbol σ ∈ Σs1...sn ,s and witnessed
MCSs ∆1, . . . ,∆n such that ∆ ∈ σW (∆1, . . . ,∆n), then
GP(∆i, 〈π, (σ, i)〉) holds for every 1 ≤ i ≤ n.

We say that ∆ has a generating path π in the generated model
if GP(∆, π) holds. It is easy to see that every witnessed MCS
in Y has at least one generating path, and if a witnessed MCS
of sort s has the empty path ε as its generating path, it must
be Γs itself.

Definition 74 (Symbol Contexts for Generating Paths). Given
a generating path π. Define the symbol context Cπ inductively
as follows. If π = ε , then Cπ is the identity context �. If
π = 〈π0, (σ, i)〉 where σ ∈ Σs1...sn ,s and 1 ≤ i ≤ n, then
Cπ = Cπ0 [σ(>s1, . . . ,>si−1,�,>si+1, . . . ,>sn )].

A good intuition about Definition 74 is given as the next
lemma.

Lemma 75. Let Γ be a witnessed MCS and Y be the model
generated from Γ. Let ∆ ∈ Y . If ∆ has a generating path π,
then Cπ[ϕ] ∈ Γ for any pattern ϕ ∈ ∆.

Proof: The proof is by induction on the length of the
generating path π. If π is the empty path ε , then ∆ must be
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Γ and Cπ is the identity context, and Cπ[ϕ] = ϕ ∈ Γ for any
ϕ ∈ ∆. Now assume ∆ has a generating path π = 〈π0, (σ, i)〉
with σ ∈ Σs1...sn ,s . By Definition 73, there exist witnessed
MCSs ∆s1, . . . ,∆sn ,∆s ∈ Y and 1 ≤ i ≤ n such that ∆ = ∆si ,
∆s ∈ σW (∆s1, . . . ,∆sn ), and ∆s has π0 as its generating path.
For every ϕ ∈ ∆ = ∆i , since >sj ∈ ∆sj for any j , i, by Defini-
tion 70, σ(>s1, . . . ,>si−1, ϕ,>si+1, . . . ,>sn ) ∈ ∆s . By induction
hypothesis, Cπ0 [σ(>s1, . . . ,>si−1, ϕ,>si+1, . . . ,>sn )] ∈ Γ, while
the latter is exactly Cπ[ϕ].

Lemma 76 (Singleton Variables). Let Γ be a witnessed MCS
and Y be the model generated from Γ. For every Γ1,Γ2 ∈ Y
of the same sort and every variable x, if x ∈ Γ1 ∩ Γ2 then
Γ1 = Γ2.

Proof: Let πi be a generating path of Γi for i = 1,2.
Assume Γ1 , Γ2. Then there exists a pattern ϕ such that ϕ ∈ Γ1
and ¬ϕ ∈ Γ2. Because x ∈ Γ1 ∩ Γ2, we know x ∧ ϕ ∈ Γ1 and
x ∧ ¬ϕ ∈ Γ2. By Lemma 75, Cπ1 [x ∧ ϕ],Cπ2 [x ∧ ¬ϕ] ∈ Γ,
and thus Cπ1 [x ∧ ϕ] ∧ Cπ2 [x ∧ ¬ϕ] ∈ Γ. On the other hand,
¬(Cπ1 [x ∧ ϕ] ∧ Cπ2 [x ∧ ¬ϕ]) is an instance of (Singleton
Variable) and thus it is included in Γ. This contradicts the
consistency of Γ.
We will establish an important result about generated mod-

els in Lemma 79 (the Truth Lemma), which links the semantics
and syntax and is essential to the completeness result. Roughly
speaking, the lemma says that for any generated model Y and
any witnessed MCS ∆ ∈ Y , a pattern ϕ is in ∆ if and only if
the interpretation of ϕ in Y contains ∆. To prove the lemma,
it is important to show that every variable is interpreted to a
singleton. Lemma 76 ensures that every variable belongs to
at most one witnessed MCS. To make sure it is interpreted to
exactly one MCS, we complete our model by adding a dummy
element ? to the carrier set, and interpreting all variables
which are interpreted to none of the MCSs to the dummy
element. This motivates the next definition.

Definition 77 (Completed Models and Completed Valuations).
Let Γ = {Γs}s∈S be a witnessed MCS and Y be the Γ-generated
model. Γ-completed model, denoted as M = ({Ms}s∈S,_M ), is
inductively defined as follows for all sorts s ∈ S:
• Ms = Ys , if every x:s belongs at least one MCS in Ys;
• Ms = Ys ∪ {?s}, otherwise.

We assume ?s is an entity that is different from any MCSs,
and ?s1 , ?s2 if s1 , s2. For every σ ∈ Σs1...sn ,s , define its
interpretation

σM (∆1, . . . ,∆n) =


∅ if some ∆i = ?si

σY (∆1, . . . ,∆n) ∪ {?s} if all ∆j , ?sj

and some ∆i = Γsi
σYΓ0 (∆1, . . . ,∆n) otherwise

The completed valuation ρ : Var→ M is defined as

ρ(x:s) =

{
∆ if x:s ∈ ∆
?s otherwise

The valuation ρ is a well-defined function, because by
Lemma 76, if there are two witnessed MCSs ∆1 and ∆2 such
that x ∈ ∆1 and x ∈ ∆2, then ∆1 = ∆2.

Now we come back to prove Lemma 71. We need the
following technical lemma.

Lemma 78. Let σ ∈ Σs1...sn ,s be a symbol, Φ1, . . . ,Φn, φ be
patterns of appropriate sorts, and y1, . . . , yn, x be variables
of appropriate sorts such that y1, . . . , yn are distinct, and
y1, . . . , yn < FV(φ) ∪

⋃
1≤i≤n FV(Φi). Then

` σ(Φ1, . . . ,Φn)

→ ∃y1, . . . ,∃yn.

σ(Φ1 ∧ (∃x.φ→ φ[y1/x]), . . . ,Φn ∧ (∃x.φ→ φ[yn/x]))

Proof: Notice that for every 1 ≤ i ≤ n,

` ∃x.φ→ ∃yi .(φ[yi/x]).

By easy matching logic reasoning,

` σ(Φ1, . . . ,Φn)

→ σ(Φ1 ∧ (∃x.φ→ ∃y1.(φ[y1/x])),

. . . ,

Φn ∧ (∃x.φ→ ∃yn.(φ[yn/x])))

Then use Proposition 43 to move the quantifiers ∃y1, . . . ,∃yn
to the top.
Now we are ready to prove Lemma 78.

Proof of Lemma 78: Recall that Γ ∈ σW (Γ1, . . . ,Γn)
means for every φi ∈ Γi , 1 ≤ i ≤ n, σ(φ1, . . . , φn) ∈ Γ.
The main technique that we will be using here is similar to
Lemma 69. We start with the singleton sets {ϕi} for every
1 ≤ i ≤ n and extend them to witnessed MCSs Γi , while this
time we also need to make sure the results Γ1, . . . ,Γn satisfy
the desired property Γ ∈ σW (Γ1, . . . ,Γn). Another difference
compared to Lemma 69 is that this time we do not extend our
set of variables, because our starting point, {ϕi}, contains just
one pattern and uses only finitely many variables. Readers will
see how these conditions play a role in the upcoming proof.
Enumerate all patterns of sorts s1, . . . , sn as follows

ψ0,ψ1,ψ2, · · · ∈
⋃

1≤i≤n Patternsi . Notice that s1, . . . , sn do
not need to be all distinct. To ease our notation, we define a
“choice” operator, denoted as [ϕs]s′ , as follows

[ϕs]s′ =

{
ϕs if s = s′

nothing otherwise

For example, ϕs ∧ [ψ]s means ϕs ∧ ψ if ψ also has sort s.
Otherwise, it means ϕs . The choice operator propagates with
all logic connectives in the natural way. For example, [¬ψ]s =
¬[ψ]s .
In the following, we will define a non-decreasing sequence

of pattern sets Γ(0)i ⊆ Γ
(1)
i ⊆ Γ

(2)
i ⊆ · · · ⊆ Patternsi for each

1 ≤ i ≤ n, such that the following conditions are true for all
1 ≤ i ≤ n and k ≥ 0:

1) If ψk has sort si , then either ψk or ¬ψk belongs to Γ(k+1)
i .
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2) If ψk has the form ∃x.φk and it belongs to Γ(k+1)
i , then

there exists a variable z such that (∃x.φk) → φk[z/x]
also belongs to Γ(k+1)

i .
3) Γ(k)i is finite.
4) Let π

(k)
i =

∧
Γ
(k)
i for every 1 ≤ i ≤ n. Then

σ(π
(k)
1 , . . . , π

(k)
n ) ∈ Γ.

5) Γ(k)i is consistent.

Among the above five conditions, condition (2)–(5) are like
“safety” properties while condition (1) is like a “liveness”
properties. We will eventually let Γi =

⋃
k≥0 Γ

(k)
i and prove

that Γi has the desired property. Before we present the actual
construction, we give some hints on how to prove these
conditions hold. Conditions (1)–(3) will be satisfied directly by
construction, although we will put a notable effort in satisfying
condition (2). Condition (4) will be proved hold by induction
on k. Condition (5) is in fact a consequence of condition (4)
as shown below. Assume condition (4) holds but condition (5)
fails. This means that Γ(k)i is not consistent for some 1 ≤ i ≤ n,
so ` π(k)i → ⊥. By (Framing)

` σ(π
(k)
1 , . . . , π

(k)
i , . . . , π

(k)
n ) → σ(π

(k)
1 , . . . ,⊥, . . . , π

(k)
n )

Then by Proposition 43 and FOL reasoning,

` σ(π
(k)
1 , . . . , π

(k)
i , . . . , π

(k)
n ) → ⊥

Since σ(π(k)1 , . . . , π
(k)
i , . . . , π

(k)
n ) ∈ Γ by condition (4), we know

⊥ ∈ Γ by Proposition 67. And this contradicts the fact that Γ
is consistent.
Now we are ready to construct the sequence Γ(0)i ⊆ Γ

(1)
i ⊆

Γ
(2)
i ⊆ . . . for 1 ≤ i ≤ n. Let Γ(0)i = {ϕi} for 1 ≤ i ≤ n.

Obviously, Γ(0)i satisfies conditions (3) and (4). Condition (5)
follows as a consequence of condition (4). Conditions (1) and
(2) are not applicable.
Suppose we have already constructed sets Γ(k)i for every

1 ≤ i ≤ n and k ≥ 0, which satisfy the conditions (1)–(5). We
show how to construct Γ(k+1)

i . In order to satisfy condition (1),
we should add either ψk or ¬ψk to Γ(k)i , if Γ(k)i has the same
sort as ψk . Otherwise, we simply let Γ(k+1)

i be the same as
Γ
(k)
i . The question here is: if Γ(k)i has the same sort as ψk ,

which pattern should we add to Γ(k)i , ψk or ¬ψk? Obviously,
condition (3) will still hold no matter which one we choose
to add, so we just need to make sure that we do not break
conditions (2) and (4).
Let us start by satisfying condition (4). Consider pattern

σ(π
(k)
1 , . . . , π

(k)
n ), which, by condition (4), is in Γ. This tells us

that the pattern

σ(π
(k)
1 ∧ [ψk ∨ ¬ψk]s1, . . . , π

(k)
n ∧ [ψk ∨ ¬ψk]sn )

is also in Γ. Recall that [_]s is the choice operator, so if ψk has
sort si , then π(k)i ∧[ψk∨¬ψk]si is π

(k)
i ∧(ψk∨¬ψk). Otherwise,

it is π(k)i . Use Proposition 43 and FOL reasoning, and notice

that the choice operator propagates with the disjunction ∨ and
the negation ¬, we get

σ((π
(k)
1 ∧ [ψk]s1 ) ∨ (π

(k)
1 ∧ ¬[ψk]s1 ),

. . . , ∈ Γ

(π
(k)
n ∧ [ψk]sn ) ∨ (π

(k)
n ∧ ¬[ψk]sn ))

Then we use Proposition 43 again and move all the disjunc-
tions to the top, and we end up with a disjunction of 2n
patterns:∨

σ(π
(k)
1 ∧ [¬]

(k)
1 [ψk]s1, . . . , π

(k)
n ∧ [¬]

(k)
n [ψk]sn ) ∈ Γ

where [¬] means either nothing or ¬. Notice that some [ψk]si ’s
might be nothing, so some of these 2n patterns may be the
same.

Notice that Γ is an MCS. By proposition 67, among these 2n
patterns there must exists one pattern that is in Γ. We denote
that pattern as

σ(π
(k)
1 ∧ [¬]

(k)
1 [ψk]s1, . . . , π

(k)
n ∧ [¬]

(k)
n [ψk]sn )

For any 1 ≤ i ≤ n, if [¬](k)i [ψk]si does not have the form
∃x.φ, we simply define Γ(k+1)

i = Γ
(k)
i ∪ {[¬]

(k)
i [ψk]si }. If

[¬]
(k)
i [ψk]si does have the form ∃x.φ, we need special effort

to satisfy condition (2). Without loss of generality and to ease
our notation, let us assume that for every 1 ≤ i ≤ n, the pattern
[¬]
(k)
i [ψk]si has the same form ∃x.φ. We are going to find for

each index i a variable zi such that

σ(π
(k)
1 ∧ ∃x.φ ∧ (∃x.φ→ φ[z1/x]),

. . . , ∈ Γ

π
(k)
n ∧ ∃x.φ ∧ (∃x.φ→ φ[zn/x]))

This will allow us to define Γ(k+1)
i = Γ

(k)
i ∪ {∃x.φ} ∪ {∃x.φ→

φ[zi/x]} which satisfies conditions (2) and (4).
We find these variables zi’s by Lemma 78 and the fact that
Γ is a witnessed set. Let Φi ≡ π

(k)
i ∧ ∃x.φ for 1 ≤ i ≤ n. By

construction, σ(Φ1, . . . ,Φn) ∈ Γ. Hence, by Lemma 78 and
Proposition 67, for any distinct variables y1, . . . , yn < FV(φ) ∪⋃

1≤i≤n FV(Φi),

∃y1 . . . ∃yn.

σ(Φ1 ∧ (∃x.φ→ φ[y1/x]), . . . ,Φn ∧ (∃n.φ→ φ[yn/x])) ∈ Γ

The set Γ is a witnessed set, so there exist variables z1, . . . , zn
such that

σ(Φ1 ∧ (∃x.φ→ φ[z1/x]), . . . ,Φn ∧ (∃x.φ→ φ[zn/x])) ∈ Γ

This justifies our construction Γ(k+1)
i = Γ

(k)
i ∪ {∃x.φ} ∪

{∃x.φ→ φ[zi/x]}.
So far we have proved our construction of the sequences
Γ
(0)
i ⊆ Γ

(1)
i ⊆ Γ

(2)
i ⊆ . . . for 1 ≤ i ≤ n satisfy the

conditions (1)–(5). Let Γi =
⋃

k≥0 Γ
(k)
i for 1 ≤ i ≤ n. By

construction, Γi is a witnessed MCS. It remains to prove
that Γ ∈ σW (Γ1, . . . ,Γn). To prove it, assume φi ∈ Γi for
1 ≤ i ≤ n. By construction, there exists K > 0 such that
φi ∈ Γ

(K)
i for all 1 ≤ i ≤ n. Therefore, ` π(K)i → φi . By
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condition (4), σ(π(K)1 , . . . , π
(K)
n ) ∈ Γ, and thus by (Framing)

and Proposition 67, σ(φ1, . . . , φn) ∈ Γ.

Lemma 79 (Truth Lemma). Let Γ be a witnessed MCS, M be
its completed model, and ρ be the completed valuation. For
any witnessed MCS ∆ ∈ M and any pattern ϕ such that ∆ and
ϕ have the same sort,

ϕ ∈ ∆ if and only if ∆ ∈ ρ̄(ϕ)

Proof: The proof is by induction on the structure of ϕ.
If ϕ is a variable the conclusion follows by Definition 70. If
ϕ has the form ψ1 ∧ ψ2 or ¬ψ1, the conclusion follows from
Proposition 67. If ϕ has the form σ(ϕ1, . . . , ϕn), the conclusion
from left to right is given by Lemma 71. The conclusion from
right to left follows from Definition 70.
Now assume ϕ has the form ∃x.ψ. If ∃x.ψ ∈ ∆, since ∆

is a witnessed set, there is a variable y such that ∃x.ψ →
ψ[y/x] ∈ ∆, and thus ψ[y/x] ∈ ∆. By induction hypothesis,
∆ ∈ ρ̄(ψ[y/x]), and thus by the semantics of the logic, ∆ ∈
ρ̄(∃x.ψ).
Consider the other direction. Assume ∆ ∈ ρ̄(∃x.ψ). By

definition there exists a witnessed set ∆′ ∈ M such that
∆ ∈ ρ[∆′/x](ψ). By Definition 77, every element in M
(no matter if it is an MCS or ?) has a variable that is
assigned to it by the completed valuation ρ. Let us assume that
variable y is assigned to ∆′, i.e., ρ(y) = ∆′. By Lemma 64,
∆ ∈ ρ̄′(ψ) = ρ̄(ψ[y/x]). By induction hypothesis, ψ[y/x] ∈ ∆.
Finally notice that ` ψ[y/x] → ∃y.ψ[y/x]. By Proposition 67,
∃y.ψ[y/x] ∈ ∆, i.e., ∃x.ψ ∈ ∆.

Theorem 80. For any consistent set Γ, there is a model M
and a valuation ρ such that for all patterns ϕ ∈ Γ, ρ̄(ϕ) , ∅.

Proof: Use Lemma 69 and extend Γ to a witnessed MCS
Γ+. Let M and ρ be the completed model and valuation
generated by Γ+ respectively. By Lemma 79, for all patterns
ϕ ∈ Γ ⊆ Γ+, we have Γ+ ∈ ρ̄(ϕ), so ρ̄(ϕ) , ∅.
Now we are ready to prove Theorem 16.
Proof of Theorem 16: Assume the opposite. If ∅ 0 ϕ, then

{¬ϕ} is consistent by Definition 66. Then there is a model M
and an valuation ρ such that ρ̄(¬ϕ) , ∅, i.e., ρ̄(ϕ) , M . This
contradicts the fact that ∅ � ϕ.
We point out that Lemma 79 in fact gives us the following

stronger completeness result of H . In literature, Theorem 16
is called weak local completeness theorem while Theorem 81
is called strong local completeness theorem.

Theorem 81. For any set Γ and any pattern ϕ, Γ �loc ϕ
implies Γ  ϕ, where Γ �loc ϕ means that for all models M ,
all valuations ρ, and all elements a ∈ M , if a ∈ ρ̄(ψ) for all
ψ ∈ Γ then a ∈ ρ̄(ϕ).

Proof: Assume the opposite that Γ 1 ϕ, which implies
that Γ∪ {¬ϕ} is consistent. Extend it to a witnessed MCS Γ+
and let M, ρ be the completed model and completed valuation
generated by Γ+. By Lemma 79, Γ+ ∈ ρ̄(ψ) for all ψ ∈ Γ, and
Γ+ ∈ ρ̄(¬ϕ), i.e., Γ+ < ρ̄(ϕ). This contradicts with Γ �loc ϕ.

Appendix E
Proof of Proposition 20

Proof of Proposition 20: Trivial. Note that MmL coin-
cides with ML on the fragment without µ.

Appendix F
Proof of Proposition 22 and 23

We prove that the theory Γterm
�

captures precisely term
algebras, up to isomorphism. The proof is mainly a feast of
inductive reasoning.

Proof: Let us fix a �+-model M such that M � Γterm
�

.
By axiom (Function), the interpretation cM : M × · · · ×M →
P(M) must be a function, where c ∈ ΣTerm...TermTerm, meaning
that for all a1, . . . ,an ∈ M , cM (a1, . . . ,an) contains exactly
one element. By abuse of language, we denote that element
as cM (a1, . . . ,an) and regard cM : M × · · · ×M → M as really
a function.

To prove the proposition, it suffices to establish an
isomorphism between the two algebras (M, {cM }c∈Σ) and
(T�Term, {cT� }c∈Σ).
Let us define a subset M0 ⊆ M inductively as follows (in

which we separate the cases of constant constructs from non-
constant constructors for clarity):
• cM ∈ M0, if c ∈ Σλ,Term;
• cM (a1, . . . ,an), if c ∈ ΣTerm...Term,Term and a1, . . . ,an ∈

M0.
We claim that for all valuation ρ,

ρ̄(µD.
∨
c∈Σ

c(D, . . . ,D)) = M0.

We prove the equation by proving set containment for both
directions. Notice that by definition,

ρ̄(µD.
∨
c∈Σ

c(D, . . . ,D)) =
⋂
{A ⊆ M |

⋃
c∈Σ

cM (A, . . . , A) ⊆ A}.

Denote the above set M1 and we prove M0 = M1.
(Case M0 ⊆ M1). Notice that M0 is defined inductively,

so we carry out induction. The base case is c ∈ Σλ,Term and
cM ∈ M0. We aim to prove cM ∈ M1. For that purpose, assume
a set A ⊆ M such that

⋃
c∈Σ cM (A, . . . , A) ⊆ A and try to

prove cM ∈ A. This is trivial, because cM is in the big-union
set on the left. The induction case is c ∈ ΣTerm...Term,Term and
a1, . . . ,an ∈ M0 and cM (a1, . . . ,an) ∈ M0. We aim to prove
cM (a1, . . . ,an) ∈ M1. Similarly, we assume a set A ⊆ M such
that

⋃
c∈Σ cM (A, . . . , A) ⊆ A and try to prove cM (a1, . . . ,an) ∈

M0. By induction hypothesis, a1, . . . ,an ∈ M1, which implies
that cM (a1, . . . ,an) is in the big-union on the left, and thus in
A. Done.
(Case M1 ⊆ M0). We just need to prove that M1 satisfies

the condition that
⋃

c∈Σ cM (M0, . . . ,M0) ⊆ M0, which follows
directly by the construction of M0.

Hence we conclude that M0 = M1. By axiom (Inductive
Domain), M1 = M is the total set, and thus M = M0. Note that
(Inductive Domain) forces the model M to be an inductive
one (i.e., M0), and thus admits inductive reasoning.
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We now define the isomorphism:

(M, {cM }c∈Σ)
i
−⇀↽−
j
(T�, {cT� }c∈Σ)

inductively as follows:
• i(cM ) = c, for c ∈ Σλ,Term;
• i(cM (a1, . . . ,an)) = c(i(a1), . . . , i(an)), for c ∈

ΣTerm...Term,Term;
• j(c) = cM , for c ∈ Σλ,Term;
• j(c(t1, . . . , tn)) = cM ( j(t1), . . . , j(tn)), for

c ∈ ΣTerm...Term,Term.
It is then straightforward to verify that i ◦ j and j ◦ i

are both identity function, by induction. In addition, they are
isomorphic to each other.
Proposition 23 is a direct corollary of Theorem 22.
Proof of Theorem 23: Let us fix a model M � ΓN. By

Theorem 22, the reduct of M over the sub-signature {0 ∈
Σλ,Nat, succ ∈ ΣNat,Nat} is isomorphic to natural numbers N,
under the isomorphism:

(M, {0M , succM })
i
−⇀↽−
j
(N, {0, s})

where s(n) = n + 1 is the successor function on N.
Our aim is to show that the four axioms about plus and

mult force a unique interpretation in M . In particular, + and
× obviously give two valid interpretations under the above
(i, j)-isomorphism, as they clearly satisfies the axioms. But the
uniqueness of the interpretations of plus and mult is trivial, as
the four axioms form a valid inductive definition in M .

Appendix G
Properties about Proof SystemHµ

We present and proof some important properties about Hµ.
First of all, we can generalized Lemma 64 to the setting with
set variables and µ-binder.

Lemma 82. ρ̄(ϕ[ψ/X]) = ρ[ρ(ψ)/X](ϕ) for all X ∈ SVar.

Proof: Carry out induction on the structure of ϕ. The only
interesting case is when ϕ ≡ µZ .ϕ1. By α-renaming, we can
safely assume Z < FV(ψ). We have:

ρ̄((µZ .ϕ1)[ψ/X])

= ρ̄(µZ .(ϕ1[ψ/X]))

=
⋂
{A | ρ[A/Z](ϕ1[ψ/X]) ⊆ A}

=
⋂
{A | ρ[A/Z][ρ[A/Z](ψ)/X](ϕ1) ⊆ A}

=
⋂
{A | ρ[A/Z][ρ̄(ψ)/X](ϕ1) ⊆ A}

=
⋂
{A | ρ[ρ̄(ψ)/X][A/Z](ϕ1) ⊆ A}

= ρ[ρ̄(ψ)/X](µZ .ϕ1)

= ρ[ρ̄(ψ)/X](ϕ).

Done.
We prove the soundness theorem.
Proof of Theorem 24: The soundness of all proof rules

in H are proved as in Theorem 13. We just need to prove the

soundness of (Set Variable Substitution), (Pre-Fixpoint),
and (Knaster-Tarski). Let M be a model.
(Set Variable Substitution). Assume M � ϕ. By defini-

tion, ρ̄(ϕ) = M for all ρ. Our goal is to show M � ϕ[ψ/X]. Let
ρ be any valuation. We have ρ̄(ϕ[ψ/X]) = ρ[ρ̄(ψ)/X](ϕ). Note
that ρ[ρ̄(ψ)/X] is just another valuation, so ρ[ρ̄(ψ)/X](ϕ) = M
by assumption.
(Pre-Fixpoint). Let ρ be any valuation. Our goal is to prove

ρ̄(ϕ[µX .ϕ/X] → µX .ϕ) = M . By definition, ρ̄(ϕ[µX .ϕ/X]) =
ρ[ρ̄(µX .ϕ)/X](ϕ), and ρ̄(µX .ϕ) =

⋂
{A | ρ[A/X](ϕ) ⊆ A}.

By Knaster-Tarski theorem, ρ̄(µX .ϕ) itself is a fixpoint of
ρ[A/X](ϕ) = A. Therefore, ρ[ρ̄(µX .ϕ)/X](ϕ) = ρ̄(µX .ϕ).
Done.
(Knaster-Tarski). Assume M � ϕ[ψ/X] → ψ. Our goal is

to prove M � µX .ϕ → ψ. Let ρ be any valuation. We need
to prove ρ̄(µX .ϕ) ⊆ ρ̄(ψ). Note that ρ̄(µX .ϕ) is defined as the
least fixpoint of ρ[A/X](ϕ) = A. By Knaster-Tarski theorem,
it suffices to prove ρ̄(ψ) is a pre-fixpoint, i.e., ρ[ρ̄(ψ)/X](ϕ) ⊆
ρ̄(ψ). This is given by our assumption, M � ϕ[ψ/X] → ψ. This
implies that ρ̄(ϕ[ψ/X]) ⊆ ρ̄(ψ), i.e., ρ[ρ̄(ψ)/X](ϕ) ⊆ ρ̄(ψ).
Done.

Lemma 83. ` µX .ϕ↔ ϕ[µX .ϕ/X].

Proof: We prove both directions.
(Case “→”). Apply (Knaster-Tarski), and we prove `

ϕ[(ϕ[µX .ϕ/X])/X] → ϕ[µX .ϕ/X]. By Lemma 87, and
the fact that ϕ is positive in X , we just need to prove
` ϕ[µX .ϕ/X] → ϕ, which is proved by (Pre-Fixpoint).
(Case “←”) is exactly (Pre-Fixpoint).

Lemma 84. The following propositions hold:
• Pre-Fixpoint: ` νX .ϕ→ ϕ[νX .ϕ/X];
• Knaster-Tarski: ` ψ → ϕ[ψ/X] implies ` ψ → νX .ϕ.

Proof: These are standard proofs as in modal µ-logic.

Lemma 85. Γ ` ϕ1 → ϕ2 implies Γ ` µX .ϕ1 → µX .ϕ2.

Proof: Use (Knaster-Tarski), and then (Set Variable
Substitution).

Lemma 86. For any context C, we have Γ ` ϕ1 ↔ ϕ2 if and
onlyf if Γ ` C[ϕ1] ↔ C[ϕ2].

Proof: Carry out induction on the structure of C. Except
the case C ≡ µX .C1, all other cases have been proved in
Proposition 44. While the µ-case is proved by Lemma 85.

Note that Lemma 86 along with Lemma 83 allow us to
“unfold” a least fixpoint pattern µX .ϕ and replace it, in-place
in any context, by ϕ[µX .ϕ/X].

Lemma 87. A context C is positive if it is positive in �;
otherwise, it is negative. Let Γ ` ϕ1 → ϕ2. We have

Γ ` C[ϕ1] → C[ϕ2] if C is positive,
Γ ` C[ϕ2] → C[ϕ1] if C is negative.

Proof: Carry out induction on the structure of C. The
cases when C is a propositional/FOL context are trivial. The
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case when C is a symbol application is proved by (Framing).
The case when C is a µ-binder is proved by Lemma 85.

Lemma 88. Let ψ be a predicate pattern and C be a context
where � is not under any µ-binder. We have ` ψ ∧ C[ϕ] ↔
ψ ∧ C[ψ ∧ ϕ] for all ϕ.

Proof: Carry out induction on the structure of C. The
cases when C is a propositional/FOL context are trivial. The
case when C is a symbol application is proved using the fact
that predicate patterns propagate through symbols. Since �
does not occur under any µ-binder, that is all cases.

Lemma 89. Let ψ be a predicate pattern and ϕ be a pattern.
Let X be a set variable that does not occur under any µ-binder
in ϕ, and X < FV(ψ). We have ` ψ ∧ µX .ϕ↔ µX .(ψ ∧ ϕ).

Proof: Note that “←” is proved by Lemma 85. We only
need to prove “→”. By propositional reasoning, the goal
becomes ` µX .ϕ→ ψ → µX .(ψ∧ϕ) and we apply (Knaster-
Tarski). We obtain ` ψ∧ϕ[ψ → µX .(ψ∧ϕ)/X] → µX .(ψ∧ϕ).
By (Pre-Fixpoint), we just need to prove ` ψ ∧ ϕ[ψ →
µX .(ψ ∧ ϕ)/X] → ψ ∧ ϕ[µX .(ψ ∧ ϕ)/X]. By Lemma 89, we
just need to prove ` ψ ∧ ϕ[ψ ∧ (ψ → µX .(ψ ∧ ϕ))/X] →
ψ ∧ ϕ[µX .(ψ ∧ ϕ)/X], which then by Lemma 87 becomes
` ψ ∧ ϕ[ψ ∧ (µX .(ψ ∧ ϕ))/X] → ψ ∧ ϕ[µX .(ψ ∧ ϕ)/X], which
then follows by Lemma 89.

We now obtain a version of deduction theorem for Hµ,
which we believe is not in its strongest form, but it is good
enough to prove other theorems in this paper.

Theorem 90 (Deduction Theorem of Hµ). Let Γ be an axiom
set containing definedness axioms and ϕ,ψ be two patterns.
If Γ ∪ {ψ} ` ϕ and the proof (1) does not use (Universal
Generalization) on free element variables in ψ; (2) does not
use (Knaster-Tarski), unless set variable X does not occur
under any µ-binder in ϕ and X < FV(ψ); (3) does not use
(Set Variable Substitution) on free set variables in ψ, then
Γ ` bψc → ϕ.

Proof: Carry out induction on the length of the proof
Γ ∪ {ψ} ` ϕ. (Base Case) and (Induction Case) for (Modus
Ponens) and (Universal Generalization) are proved as in
Theorem 90. We only need to prove (Induction Case) for
(Knaster-Tarski) and (Set Variable Substitution).

(Knaster-Tarski). Suppose ϕ ≡ µX .ϕ1 → ϕ2. We should
prove that Γ ` bψc → (µX .ϕ1 → ϕ2), i.e., Γ ` bψc ∧ µX .ϕ1 →
ϕ2. Note that bψc is a predicate pattern. By Lemma 89, our
goal becomes Γ ` µX .(bψc∧ϕ1) → ϕ2. By (Knaster-Tarski),
we need to prove Γ ` (bψc ∧ ϕ1)[ϕ2/X] → ϕ2. Note that X <
FV(bψc), so the above becomes Γ ` bψc ∧ ϕ1[ϕ2/X] → ϕ2,
i.e., Γ ` bψc → ϕ1[ϕ2/X] → ϕ2, which is our induction
hypothesis.

(Set Variable Substitution). Trivial. Note that X <
FV(ψ).

Appendix H
Proofs of Proposition 25

Proof of Proposition 25: We refer readers to [1] for
some of the proof techniques that we use. Notice that ϕ(x)
as well as other formulas are patterns of sort Pred. How-
ever, the (Inductive Domain) axiom is about the sort Nat.
Therefore, our first step is to lift ϕ from Pred to Nat, using
the definedness symbols. In fact, we will use the membership
and equality constructs that are defined from the definedness
symbols. We define N = ∃x.x ∧ dϕ(x)eNat

Pred, which captures
the set of all numbers in which ϕ holds. One can prove that
x ∈ N = dϕ(x)eNat

Pred.
Since all patterns of sort Pred are predicate patterns, we

may use the deduction theorem (Theorem 90) and assume ϕ(0)
and ∀x.(ϕ(x) → ϕ(succ(x))), and to prove ∀x.ϕ(x). Using the
equality x ∈ N = dϕ(x)eNat

Pred, this means that we assume 0 ∈ N
and ∀x.(x ∈ N → succ(x) ∈ N) and prove ∀x.x ∈ N , which
implies N by (Membership Elimination).
By (Knaster-Tarski), it suffices to prove only 0 ∨

succ(N) → N , which requires to prove 0→ N and succ(N) →
N . The first is proved by the assumption that 0 ∈ N . The
second is proved by considering y ∈ succ(N) → y ∈ N , which
then becomes (∃x.y ∈ succ(x) ∧ x ∈ N) → y ∈ N . By the
fact that succ is a function, it becomes x ∈ N → succ(x) ∈ N ,
which is then proved by our second assumption. Done.

Appendix I
Notations and Proofs about Recursive Symbols

Even though we tactically blur the distinction between
constant symbol σ ∈ Σλ,s1⊗···⊗sn⊗s and n-ary symbol σ ∈
Σs1...sn ,s , doing so will cause us a lot of trouble in this section,
when our aim is to prove such as blur of syntax actually works.
Therefore, within this section, we introduce and use a more
distinct syntax that distinguishes the two.
We use the following notations (and their meaning):

σ ∈ Σs1 ,...,sn ,s

ασ ∈ Σλ,s1⊗···⊗sn⊗s

σ(ϕ1, . . . , ϕn) symbol application
ασ[ϕ1, . . . , ϕn] projections
σ(x1, . . . , xn) = ασ[x1, . . . , xn] recursive symbol
ασ = µα.∃®x〈®x, ϕ[α/σ]〉 definition of ασ

Before we prove Theorem 29, we introduce a useful lemma
that allows us to prove properties about least fixpoint patterns.
Recall that rule (Knaster-Tarski) allows us to prove theorems
of the form Γ ` µX .ϕ → ψ. However, in practice, the least
fixpoint pattern µX .ϕ is not always the only components on
the left hand side, but rather stay within some contexts. The
following lemma is particularly useful in practice, as it allows
us to “plug out” the least fixpoint pattern from its context,
so that we can apply (Knaster-Tarski). After that, we may
“plug it back” into the context.

Lemma 91. Let C[�] be a context such that � does not occur
under any µ-binder, and
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• C[ϕ∧ψ] = C[ϕ] ∧ψ, for all patterns ϕ and all predicate
patterns ψ;

• C[∃x.ϕ] = ∃x.C[ϕ], for all ϕ and x < FV(C[�]).
Then we have that Γ ` C[ϕ] → ψ if and only if Γ ` ϕ →
∃x.x ∧ bC[x] → ψc.

Proof:We prove both directions simultaneously. Note that
it is easy to prove that Γ ` ϕ = ∃x.(x ∧ (x ∈ ϕ)) using rules
(Membership) in the proof system P (see Fig. 3).
We start with Γ ` C[ϕ] → ψ. By the mentioned equality,

we get Γ ` C[∃x.(x ∧ (x ∈ ϕ))] → ψ. By the properties
of C, it becomes Γ ` (∃x.C[x] ∧ x ∈ ϕ) → ψ, which, by
FOL reasoning, becomes Γ ` x ∈ ϕ → (C[x] → ψ). Note
that x ∈ ϕ is a predicate pattern, so the goal is equivalent to
Γ ` x ∈ ϕ→ bC[x] → ψc.
Now we are almost done. To show the “if” part, we apply

(Membership Introduction) on Γ ` ϕ → ∃x.x ∧ bC[x] →
ψc and obtain Γ ` y ∈ ϕ → ∃x.(y ∈ x) ∧ bC[x] → ψc.
Note that y is a fresh variable and y < FV(C[x]) ∪ FV(ψ), so
y ∈ bC[x] → ψc = bC[x] → ψc. Notice that y ∈ x = (y = x).
And we obtain Γ ` y ∈ ϕ→ bC[y] → ψc. Done.
To show the “only if” part, we apply some simple FOL

reasoning on Γ ` x ∈ ϕ → bC[x] → ψc and conclude that
Γ ` (∃x.(x ∧ x ∈ ϕ)) → ∃x.(x ∧ bC[x] → ψc). Then by the
equality ϕ = ∃x.(x ∧ x ∈ ϕ), we are done.

Note the conditions about the context C in Lemma 91 are
important. Many contexts that arise in practice satisfy the
conditions. In particular, (nested) symbol contexts satisfy the
conditions automatically.

Under the above new notation and the lemma, we are ready
to prove Theorem 29.

Proof of Theorem 29: (Pre-Fixpoint). This is proved by
simply unfolding ασ following its definition.
(Knaster-Tarski). We give the following proof that goes

backward from conclusion to their sufficient conditions.

σ(x1, . . . , xn) → ψ

⇐= ασ[x1, . . . , xn] → ψ

⇐= α→ ∃α.(α ∧ bα[x1, . . . , xn] → ψc)

⇐= ασ → ∀®x. ∃α.(α ∧ bα[x1, . . . , xn] → ψc)︸                                  ︷︷                                  ︸
α0

⇐= ∃®x.〈®x, ϕ[∀®x.α0/σ]〉 → ∀®x.α0

⇐= 〈®x, ϕ[∀®x.α0/σ]〉 → α0[z1/x1 . . . zn/xn]

⇐= 〈®x, ϕ[∀®x.α0/σ]〉

→ ∃α.(α ∧ bα[z1, . . . , zn] → ψ[z1/x1 . . . zn/xn]c)

⇐= 〈®x, ϕ[∀®x.α0/σ]〉[x1, . . . , xn] → ψ

⇐= ϕ[∀®x.α0/σ] → ψ

⇐= ϕ[∀®x.α0/σ] → ϕ[ψ/σ]

Notice that the last step is by Γ ` ϕ[ψ/σ] → ψ.
By the positiveness of ϕ in σ (see Lemma 87), we just need

to prove that for all ϕ1, . . . , ϕn:

Γ ` (∀®x.α0)[ϕ1, . . . , ϕn] → ψ[ϕ1/x1 . . . ϕn/xn]

By (Key-Value) and definition of α0, the above becomes

Γ `z1 ∈ ϕ1 ∧ · · · ∧ zn ∈ ϕn ∧ ψ[z1/x1 . . . zn/xn]

→ ψ[ϕ1/x1 . . . ϕn/xn],

which holds by assumption. Done.
What is interesting in the above proof is that we used only

(Key-Value) and did not use (Injectivity) and (Product
Domain). The last two axioms are used in the proof of
Theorem 30, where we need to establish an isomorphism
between models of LFP and MmL. In there, the two axioms
are needed to constrain MmL models.

Appendix J
Proof of Theorem 30

We first show that the theory of products (see Definition 27)
capture precisely the product set Ms × Mt . We denote the
theory of products as Γproduct, consisting of the three axioms
(Injectivity), (Key-Value), and (Product Domain).

Lemma 92. For any signature � consisting two sorts s, t and
their product sort s ⊗ t, there exists an isomorphism

Ms⊗t

i
−⇀↽−
j

Ms × Mt .

Under the above isomorphism, we adopt the following abbre-
viations for all a ∈ Ms, b ∈ Ms, p ∈ Ms × Mt :

〈a, b〉 ≡ (〈_,_〉s,t )M (a, b) p(v) ≡ (_(_)s,t )M (p, v)

Then for all f : Ms → P(Mt ) and α ⊆ P(Ms × Mt ), we have

f (a) = uncurry( f )(a) curry(α)(a) = α(a).

Proof: By (Product Domain), Ms⊗t = ρ̄(∃k∃v.〈k, v〉) =
∪a∈Ms ,b∈Mt 〈a, b〉. Define the (i, j)-isomorphism such that
i(〈a, b〉) = (a, b) and j((a, b)) = 〈a, b〉. Note that i is well-
defined because of (Injectivity). Clearly, i, j form an isomor-
phism between Ms×t and Ms × Mt .
Now we prove the two equations. They are straightforward.

Note that uncurry( f )(a) = {(a, b) | b ∈ f (a)}(a) = {b | b ∈
f (a)} = f (a). Similarly, curry(α)(a) = {b | (a, b) ∈ α} = α(a)
by definition. Done.

Corollary 93. For any signature � containing sorts
s1, . . . , sn, t and their product sorts s1⊗ · · ·⊗ sn⊗ t, there exists
an isomorphism between Ms1⊗···⊗sn⊗t and Ms1×· · ·×Msn×Mt .
And for any function f : Ms1 × · · · × Msn → P(Mt ) and sets
α ⊆ Ms1 × · · · × Msn × Mt , we have

f (a1, . . . ,an) = uncurry( f )(α)
curry(α)(a1, . . . ,an) = α(a1, . . . ,an)

where we abbreviate α(a1, . . . ,an) ≡ α(a1) . . . (an) is a com-
position of projections.

We now review the syntax and semantics of LFP, slightly
adapted to fit the best with our setting.
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Definition 94. Let (S,Σ,Π) be a FOL signature. LFP extends
FOL formulas by the following additional rule:

ϕ F · · · | [lfpR, ®xϕ](t1, . . . , tn)

where R is an n-ary predicate variable and ϕ is positive in
R. LFP valuations also extend FOL that map every n-ary
predicate variable R to and n-ary relation ρ(R) ⊆ P(Mn).6
Given a FOL model M and a valuation ρ, LFP extends the
semantics of FOL by adding the following valuation rule for
least fixpoint formulas:

M, ρ �LFP [lfpR, ®xϕ](t1, . . . , tn),
if (ρ(t1), . . . , ρ(tn)) ∈⋂

{α ⊆ Ms1 × · · · × Msn | for all ai ∈ Msi ,1 ≤ i ≤ n,

M, ρ[α/R, ®a/®x] �LFP ϕ implies (a1, . . . ,an) ∈ α}

LFP formula ϕ is valid, denoted �LFP ϕ, if M, ρ �LFP ϕ for all
M and ρ.

Proof of Theorem 30: The proof is mainly based
on the isomorphism between LFP models and MmL ΓLFP-
models. Notice that the (Function) axioms forces symbols
in all ΓLFP-models are functions. In addition, the axiom
∀x:Pred∀y:Pred.x = y forces the carrier set of Pred must
be a singleton set, say, {?}.
(The “if” direction). We follow the same idea as we prove

that ML captures faithfully FOL (see [1]), we construct
from an LFP model ({MLFP

s }s∈S,Σ
LFP,ΠLFP) a corresponding

MmL ΓLFP model, denoted ({MMmL
s }s∈S∪{MMmL

Pred },Σ
MmL) with

MMmL
s = MLFP

s , MMmL
Pred = {?}, and ΣMmL defined as in

Section II-D consisting of symbols that are all functions. An
LFP valuation ρLFP derives a corresponding MmL valuation
ρMmL such that ρMmL(x) = ρLFP(x) for all LFP (element)
variables x and ρMmL(R) = ρLFP(R)×{?}. Our goal is to prove
that for all LFP formulas ϕ, we have MLFP, ρLFP �LFP ϕ if and
only if ρMmL(ϕ) = {?}. Firstly, notice that as shown in [1],
ρMmL(t) = {ρLFP(t)} for all terms t. Therefore, to simplify
our notation we uniformly use ρ(t) in both LFP and MmL
settings. Carry out induction on the structure of ϕ. The only
additional cases (compared with FOL) are ϕ ≡ R(t1, . . . , tn)
and ϕ ≡ [lfpR,x1 ,...,xnψ](t1, . . . , tn). The first case is easy, as
shown in the following reasoning: MLFP, ρLFP � R(t1, . . . , tn) iff
(ρ(t1), . . . , ρ(tn)) ∈ ρLFP(R) iff (ρ(t1), . . . , ρ(tn),?) ∈ ρMmL(R)
iff ρMmL(R(t1, . . . , tn)) = {?}. The second case when ϕ ≡

6This is where we are different from the classic LFP. In classic LFP,
formulas cannot contain predicate variables that occur free. And the semantics
of predicate variables, which is needed when we define the semantics of
[lfpR ,x1 , . . . ,xn ], are given by an extended model M′ that takes R as an n-ary
predicate symbol and interprets it as a relation α ⊆ Ms1×· · ·×Msn . Here, we
allow predicate variables to occur free in a formula, and we extend valuations
to give them semantics, instead of modifying the model. This slightly modified
presentation is obviously the same as the classic one, but fits better in our
setting and looks more similar and uniform to MmL.

[lfpR,x1 ,...,xnψ](t1, . . . , tn) is shown as the following reasoning:

MLFP, ρLFP �LFP [lfpR,x1 ,...,xnψ](t1, . . . , tn)

iff (ρ(t1), . . . , ρ(tn)) ∈⋂
{α ⊆ MLFP

s1 × · · · × MLFP
sn
| for all ai ∈ MLFP

si
,1 ≤ i ≤ n,

MLFP, ρLFP[α/R, ®a/®x] �LFP ψ implies (a1, . . . ,an) ∈ α}

iff (by induction hypothesis)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α ⊆ MMmL

s1 × · · · × MMmL
sn
| for all ai ∈ MMmL

si
,1 ≤ i ≤ n,

(ρ[α/R, ®a/®x])MmL(ψ) = {?} implies (a1, . . . ,an) ∈ α}

iff (by definition of (ρ[α/R, ®a/®x])MmL)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α+ ⊆ MMmL

s1 × · · · × MMmL
sn
× {?} |

for all ai ∈ MMmL
si

,1 ≤ i ≤ n,

ρMmL[α+/R, ®a/®x](ψ) = {?} implies (a1, . . . ,an,?) ∈ α+}

iff (by reasoning about sets)
(ρ(t1), . . . , ρ(tn)) ∈⋂
{α+ ⊆ MMmL

s1 × · · · × MMmL
sn
× {?} |⋃

ai ∈M
MmL
si

(a1, . . . ,an, ρMmL[α+/R, ®a/®x](ψ)) ⊆ α+}

iff (by MmL semantics)
(ρ(t1), . . . , ρ(tn)) ∈

ρMmL((µR : s1⊗ . . .⊗sn⊗Pred.∃x1 . . . ∃xn.〈x1, . . . , xn,ψ〉)),

and the last statement, by MmL semantics, is equivalent to
ρMmL([lfpR,x1 ,...,xnψ](t1, . . . , tn)), Done. And now we conclude
that ΓLFP � ϕ then �LFP ϕ. Otherwise, there exists an LFP
model MLFP and valuation ρLFP such that MLFP, ρLFP 2LFP ϕ,
and this implies that in the ΓLFP-model MMmL, we have
ρMmL(ϕ) , {?}, meaning that ΓLFP 2 ϕ.
(The “only if” part). Notice the axiom ∀x:Pred∀y:Pred.x =

y forces that MPred = {?} must be a singleton set, which
ensures that the above translation from an LFP model MLFP

to an MmL model MMmL can go backward. Specifically, for
every MmL (function) symbol f ∈ ΣMmL

s1...sn ,s , we construct
from its interpretation fMMmL : Ms1 × · · · × Msn → P(Ms), the
corresponding LFP function fMLFP : Ms1×· · ·×Msn → Ms such
that fMMmL (a1, . . . ,an) = { fMLFP (a1, . . . ,an)}. Similarly, for
every MmL (function) symbol π ∈ ΣMmL

s1...sn ,Pred, we construct
from its interpretation πMMmL : Ms1 ×· · ·×Msn → {∅, {?}}, the
corresponding LFP predicate πMLFP ⊆ Ms1×· · ·×Msn , such that
πMLFP ⊆ Ms1 × · · · ×Msn = {(a1, . . . ,an) | πMMmL (a1, . . . ,an) =
{?}}. Then we carry out the same reasoning as in the “if”
part, and we are done.

Appendix K
Proof of Theorem 31

Theorem 31 shows that our definition of modal µ-logic in
MmL is faithful. We have shown a proof sketch in the main

Technical Report http://hdl.handle.net/2142/102281, January 2019



paper. We give the complete detailed proof in this subsection.
The main purpose is to give an example, as the proofs of the
corresponding theorems for LTL/CTL/DL have similar forms.

Lemma 95. `µ ϕ implies Γµ ` ϕ.

Proof: We need to prove that all modal µ-logic
proof rules are provable in matching µ-logic. Recall
that modal µ-logic contains all propositional tautologies
and (Modus Ponens), plus the following four rules:

(K) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2) (N)
ϕ

◦ϕ

(µ1) ϕ[(µX .ϕ)/X] → µX .ϕ (µ2)
ϕ[ψ/X] → ψ

µX .ϕ→ ψ
Notice that (K) and (N) are proved by Proposition 12, and (µ1)
and (µ2) are exactly (Pre-Fixpoint) and (Knaster-Tarski).

Lemma 96. For all S = (S,R) and all valuations V : PVar→
P(S), we have s ∈ JϕKSV if and only if s ∈ V̄(ϕ).

Proof: Carry out structural induction on ϕ.
(Case ϕ ≡ X). We have JXKSV = V(X) = V̄(X). Proved.
(Case ϕ ≡ ϕ1∧ϕ2). We have Jϕ1∧ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV =

V̄(ϕ1) ∧ V̄(ϕ2) = V̄(ϕ1 ∧ ϕ2). Proved.
(Case ϕ ≡ ¬ϕ1). We have J¬ϕ1KSV = S\Jϕ1KSV = S\V̄(ϕ1) =

S \ (S \ V̄(¬ϕ1)) = V̄(¬ϕ1). Proved.
(Case ϕ ≡ ◦ϕ1). By Proposition 32, we have J◦ϕ1KSV = {s ∈

S | s R t implies t ∈ Jϕ1KSV for all t ∈ S} = {s ∈ S | s ∈
V̄(◦ϕ1)} = V̄(◦ϕ1). Proved.

(Case ϕ ≡ µX .ϕ1). We have JµX .ϕ1KSV =
⋂
{A ⊆ S |

Jϕ1KSV [A/X] ⊆ A} = V̄(µX .ϕ1). Proved.
Induction is finished and lemma is proved.

Corollary 97. Γµ � ϕ implies �µ ϕ.

Proof: Assume the opposite. Then there exist S = (S,R),
ρ : PVar → P(S), and s ∈ S such that s < JϕKSV . By
Lemma 96, s < V̄(ϕ). Since S � Γµ, we have Γµ 2 ϕ.
Contradiction.

Now we have completed the proof of Theorem 31, where
(2) =⇒ (3) is given by Lemma 95, and (5) =⇒ (6) is given
by Corollary 97.

Appendix L
Proof of Proposition 32

Proof of Proposition 32: We simply apply definition.
Recall that s ∈ •S(t) iff s R t.
(Case “•”). s ∈ ρ̄(•ϕ) iff there exists t ∈ ρ̄(ϕ) such that

s ∈ •S(t) iff there exists t such that s R t and t ∈ ρ̄(ϕ).
(Case “◦”). s ∈ ρ̄(◦ϕ) iff s ∈ ρ̄(¬•¬ϕ) iff s < ρ̄(•¬ϕ) iff

(use (Case “•”)) for all t, t ∈ ρ̄(¬ϕ) implies s < •S(t) iff for all
t, s ∈ •S(t) implies t ∈ ρ̄(ϕ) iff for all t, s R t implies t ∈ ρ̄(ϕ).

(Case “♦”). Note that ρ̄(♦ϕ) =
⋂
{A ⊆ S | ρ[A/X](ϕ∨•X) ⊆

A} =
⋂
{A ⊆ S | ρ̄(ϕ) ∪ •S(A) ⊆ A}. On the other hand,

{s ∈ S | ∃t ∈ S such that t ∈ ρ̄(ϕ) and s R∗ t} = {s ∈ S |
∃t ∈ S,∃n ≥ 0 such that t ∈ ρ̄(ϕ) and s Rn t} = {s ∈ S |

∃n ≥ 0 such that s ∈ •n
S
(ρ̄(ϕ))} =

⋃
n≥0 •

n
S
(ρ̄(ϕ)). Therefore,

we just need to prove the two sets:

(η) ≡
⋂
{A ⊆ S | ρ̄(ϕ) ∪ •S(A) ⊆ A}

(ξ) ≡
⋃
n≥0
•n
S
(ρ̄(ϕ))

are equal. This can be directly proved by Knaster-Tarski
theorem.
(Case “�”). Similar to (Case “♦”).
(Case “ϕ1 U ϕ2”). As in (Case “♦”), we define two sets:

(η) ≡ ρ̄(ϕ1 U ϕ2) =
⋂
{A ⊆ S | ρ̄(ϕ2) ∪ (ρ̄(ϕ1 ∩ •S(A))) ⊆ A}

(ξ) ≡ {s ∈ S | exist n ≥ 0 and t1, . . . , tn ∈ S such that
s R t1 R . . . R tn, and s, t1, . . . , tn−1 ∈ ρ̄(ϕ1), tn ∈ ρ̄(ϕ2)}

and then use Knaster-Tarski theorem to prove them equal.
(Case “WF”). Again, we define two sets:

(η) ≡ ρ̄(µX .◦X) =
⋂
{A ⊆ S | (S \ A) ⊆ •S(S \ A)}

(ξ) ≡ {s ∈ S | s has no infintie path}

and then use Knaster-Tarski theorem to prove them equal.

Appendix M
Proof of Theorem 33

As a review, we formally define the semantics of infinite-
trace LTL and present in Fig. 4 its sound and complete proof
system. There are different notions of semantics of infinite-
trace LTL. We here review the one that fits best in our setting.
Let us first formally define some characteristic subclasses

of transition systems.

Definition 98. A transition system S = (S,R) is:
• well-founded if for all s ∈ S, there is no infinite path from

s;
• non-terminating, if for all s ∈ S there is t ∈ S such that

s R t.
• linear, if for all s ∈ S and t1, t2 ∈ S such that s R t1 and

s R t2, then t1 = t2.

Definition 99. Infinite-trace LTL formulas ϕ is interpreted
over a transition system S = (S,R) that is non-terminating
and linear. We use sk to denote the unique state such that
sRs1 Rs2 R. . .Rsk , for k ≥ 0. When k = 0, we let s0 = s. Given
a valuation V : PVar→ P(S), semantics of infinite-trace LTL
is inductively defined for all s ∈ S and ϕ as follows:
• s �infLTL X if s ∈ V(X);
• s �infLTL ϕ1 ∧ ϕ2 if s �infLTL ϕ1 and s �infLTL ϕ2;
• s �infLTL ¬ϕ if s 2infLTL ϕ;
• s �infLTL ◦ϕ if s1 �infLTL ϕ;
• s �infLTL ϕ1 U ϕ2 if exists k ≥ 0 such that sk �infLTL ϕ2 and
for all 0 ≤ i < k, si �infLTL ϕ1.

Lemma 100. `infLTL ϕ implies ΓinfLTL ` ϕ.

Proof: We just need to prove that all proof rules in Fig. 4
can be proved in ΓinfLTL.

(Taut) and (MP). Trivial.
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(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(K◦) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2)

(N◦)
ϕ

◦ϕ
(K�) �(ϕ1 → ϕ2) → (�ϕ1 → �ϕ2)

(N�)
ϕ

�ϕ
(Fun) ◦ϕ↔ ¬(◦¬ϕ)
(U1) (ϕ1 U ϕ2) → ♦ϕ2
(U2) (ϕ1 U ϕ2) ↔ (ϕ2 ∨ (ϕ1 ∧ ◦(ϕ1 U ϕ2)))
(Ind) �(ϕ→ ◦ϕ) → (ϕ→ �ϕ)

Fig. 4. Infinite-trace LTL proof system

(K◦) and (N◦). By Proposition 12.
(K�) and (N�). Proved by applying (Knaster-Tarski) first,

followed by simple propositional and modal logic reasoning.
(Fun, “→”). Proved from axiom (Inf) •> and simple modal

logic reasoning.
(Fun, “←”). Exactly axiom (Lin).
(U1). By (Knaster-Tarski) followed by propositional rea-

soning.
(U2). By definition of ϕ1 U ϕ2 as a least fixpoint and (Fun).
(Ind). By (Knaster-Tarski).

Lemma 101. s �infLTL ϕ if and only if s ∈ V̄(ϕ).

Proof: We make two interesting observations. Firstly, it
suffices to prove merely the “only if” part. The “if” part follows
by considering the “only if” part on ¬ϕ.
Secondly, the definition of “s �infLTL ϕ” is an inductive one,

meaning that “�infLTL” is the least relation that satisfies the five
conditions in Definition 99. To show that “s �infLTL ϕ implies
s ∈ V̄(ϕ)”, it suffices to show that s ∈ V̄(ϕ) satisfies the same
conditions. This is easily followed by Proposition 32.

Note how interesting that this lemma is proved by applying
Knaster-Tarski theorem in the meta-level.

Corollary 102. ΓinfLTL � ϕ implies �infLTL ϕ.

Proof: Assume the opposite and there exists a transition
system S = (S,R) that is linear and non-terminating, a
valuation V , and a state s ∈ S such that s 2infLTL ϕ. By
Lemma 101, s < V̄(ϕ), meaning that S 2 ϕ. Since S is non-
terminating and linear, the axioms (Inf) and (Lin) hold in S,
and thus ΓinfLTL 2 ϕ. Contradiction.

Now we are ready to prove Theorem 33.
Proof of Theorem 33: Use Lemma 100 and Corol-

lary 102, as well as the soundness of MmL proof system and
the completeness of infinite-trace LTL proof system.

Appendix N
Proof of Theorem 34

We review the semantics of finite-trace LTL as well as its
sound and complete proof system presented in Fig. 5.

(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(K◦) ◦(ϕ1 → ϕ2) → (◦ϕ1 → ◦ϕ2)

(N◦)
ϕ

◦ϕ
(K�) �(ϕ1 → ϕ2) → (�ϕ1 → �ϕ2)

(N�)
ϕ

�ϕ
(¬◦) ¬◦ϕ→ ◦¬ϕ

(coInd)
◦ϕ→ ϕ

ϕ
(Fix) (ϕ1 Uw ϕ2) ↔ (ϕ2 ∨ (ϕ1 ∧ ◦(ϕ1 Uw ϕ2)))

Fig. 5. Finite-trace LTL proof system

The following definition is adapted from [10] to fit best in
our setting.

Definition 103. Finite-trace LTL formulas ϕ is interpreted
over a transition system S = (S,R) that is well-founded and
linear. One can show that S = {s1, . . . , sn} must be finite,
and the transition relation of S must be of the linear structure
s1 R . . . R sn. Given a valuation V : PVar→ P(S), semantics
of infinite-trace LTL is inductively defined for all si ∈ S and
ϕ as follows:
• si �finLTL X if si ∈ V(X);
• si �finLTL ϕ1 ∧ ϕ2 if si �finLTL ϕ1 and si �finLTL ϕ2;
• si �finLTL ¬ϕ if si 2finLTL ϕ;
• si �finLTL ◦ϕ if si = sn or si+1 �finLTL ϕ;
• si �finLTL ϕ1 Uw ϕ2 if either sj �finLTL ϕ1 for all j ≥ i, or
there exists i ≤ k ≤ n such that sk �finLTL ϕ2 and for all
i ≤ j < k, sj �finLTL ϕ1.

Lemma 104. `finLTL ϕ implies ΓfinLTL ` ϕ.

Proof: We just need to prove all proof rules in Fig. 5 can
be proved by axioms (Fin) and (Lin) in MmL. We skip the
ones that have shown in Lemma 100.
(¬◦). Proved by axiom (Lin).
(coInd). Use axiom (Fin) µX .◦X and to prove ΓfinLTL `

µX .◦X → ϕ by (Knaster-Tarski).
(Fix). By definition of ϕ1 Uw ϕ2 as a least fixpoint.

Lemma 105. s �finLTL ϕ if and only if s ∈ V̄(ϕ).

Proof: As in Lemma 101, we just need to prove the “only
if” part, by showing that s ∈ V̄(ϕ) satisfies the five conditions
in Definition 103. This is easily followed by Proposition 32.
The case ϕ1 Uw ϕ2 shall be proved by directly applying MmL
semantics.

Corollary 106. ΓfinLTL � ϕ implies �finLTL ϕ.

Proof: Assume the opposite and use Lemma 105.
Now we can prove Theorem 34.

Proof of Theorem 34: Use Lemma 104 and Corol-
lary 106, as well as the soundness of MmL proof system and
the completeness of finite-trace LTL proof system.
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(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(CTL1) EX(ϕ1 ∨ ϕ2) ↔ EXϕ1 ∨ EXϕ2
(CTL2) AXϕ↔ ¬(EX¬ϕ)
(CTL3) ϕ1 EU ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ EX(ϕ1 EU ϕ2))
(CTL4) ϕ1 AU ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ AX(ϕ1 AU ϕ2))
(CTL5) EXtrue ∧ AXtrue
(CTL6) AG(ϕ3 → (¬ϕ2 ∧ EXϕ3)) → (ϕ3 → ¬(ϕ1 AU ϕ2))
(CTL7) AG(ϕ3 → (¬ϕ2 ∧ (ϕ1 → AXϕ3)))

→ (ϕ3 → ¬(ϕ1 EU ϕ2))
(CTL8) AG(ϕ1 → ϕ2) → (EXϕ1 → EXϕ2)

Fig. 6. CTL proof system

Appendix O
Proof of Theorem 35

We review the semantics of CTL as well as its sound and
complete proof system presented in Fig. 6.

Definition 107. CTL formulas are interpreted on a transition
system S = (S,R) that is non-terminating, and a valuation
V : PVar → P(S). We call an (infinite) sequence of states
s0s1 . . . a path if si R si+1 for all i ≥ 0. CTL semantics is
defined inductively for all s0 ∈ S and ϕ as follows:
• s0 �CTL X if s0 ∈ V(X);
• s0 �CTL ϕ1 ∧ ϕ2 if s0 �CTL ϕ1 and s0 �CTL ϕ2;
• s0 �CTL ¬ϕ if s0 2CTL ϕ;
• s0 �CTL EXϕ if there exists s1 such that s0 R s1, s1 �CTL ϕ;
• s0 �CTL AXϕ if for all s1 such that s0 R s1, s1 �CTL ϕ;
• s0 �CTL ϕ1 EU ϕ2 if there exists a path s0s1 . . . and k ≥ 0
such that sk �CTL ϕ2, and s0, . . . , sk−1 �CTL ϕ1;

• s0 �CTL ϕ1AUϕ2 if for all paths s0s1 . . . there exists k ≥ 0
such that sk �CTL ϕ2, and s0, . . . , sk−1 �CTL ϕ1;.

We write �CTL ϕ if for all S = (S,R), all valuations ρ, and all
s ∈ S, s �CTL ϕ.

Lemma 108. `CTL ϕ implies ΓCTL ` ϕ.

Proof: We just need to prove all CTL rules from the
axiom (Inf) in MmL. We skip the first 7 rules as they are
simple. The rest 3 rules can be proved by applying (Knaster-
Tarski) and use properties in Properties 115.

Lemma 109. s �CTL ϕ if and only if s ∈ V̄(ϕ).

Proof: As in Lemma 101, we just need to prove the “only
if” part by showing that s ∈ V̄(ϕ) satisfies all 7 conditions in
Definition 107. The first 5 of them are simple. We show the
last two ones about “EU” and “AU”.
(Case EU). Assume there exists a path s0s1 . . . and k ≥ 0

such that sk ∈ V̄(ϕ2) and s0, . . . , sk−1 ∈ V̄(ϕ1). Our goal is to
show s0 ∈ V̄(ϕ1 EUϕ2). By semantics of MmL, V̄(ϕ1 EUϕ2) =
V̄(µX .ϕ2 ∨(ϕ1 ∧•X)) =

⋂
{A ⊆ S | V̄(ϕ2)∪ (V̄(ϕ1)∩•S(A)) ⊆

A}. Therefore, it suffices to prove that s0 ∈ A for all A ⊆ S
such that V̄(ϕ2) ⊆ A and V̄(ϕ1) ∩ •S(A) ⊆ A. This is easy,
sk ∈ V̄(ϕ2) ⊆ A implies sk−1 ∈ •S(sk). Also, sk−1 ∈ V̄(ϕ1)

(Taut) ϕ, if ϕ is a propositional tautology

(MP)
ϕ1 ϕ1 → ϕ2

ϕ2
(DL1) [α](ϕ1 → ϕ2) → ([α]ϕ1 → [α]ϕ2)
(DL2) [α](ϕ1 ∧ ϕ2) ↔ ([α]ϕ1 ∧ [α]ϕ2)
(DL3) [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ
(DL4) [α ; β]ϕ↔ [α][β]ϕ
(DL5) [ψ?]ϕ↔ (ψ → ϕ)
(DL6) ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ
(DL7) ϕ ∧ [α∗](ϕ→ [α]ϕ) → [α∗]ϕ

(Gen)
ϕ

[α]ϕ

Fig. 7. Dynamic logic proof system

by assumption. Then sk−1 ∈ V̄(ϕ1) ∩ •S(sk) ⊆ A. Repeat this
procedure for k times and we obtain s0 ∈ A. Done.
(Case AU). Let us denote ◦S(A) = {s ∈ S | for all t ∈

S such that s R t, t ∈ A} to be the “interpretation” of “all-path
next ◦” in S. Prove by contradiction. Assume the opposite
statement that s0 < V̄(ϕ1 AU ϕ2) = V̄(µX .ϕ2 ∨ (ϕ1 ∧ ◦X)) =⋂
{A ⊆ S | V̄(ϕ2)∪(V̄(ϕ1)∩◦S(A)) ⊆ A}. This means that there

exists A ⊆ S such that V̄(ϕ2) ⊆ A and V̄(ϕ1) ∩ ◦S(A) ⊆ A, and
s0 < A. This is going to cause contradiction. Firstly by V̄(ϕ2) ⊆
A, s0 < V̄(ϕ2), which implies that s0 ∈ V̄(¬ϕ2). Secondly by
V̄(ϕ1)∩◦S(A) ⊆ A, we know that (S \A) ⊆ V̄(¬ϕ1)∪•S(S \A).
Since s0 < A, we know either s0 ∈ V̄(¬ϕ1) or s0 ∈ •S(S \ A).
If it is the first case, then we have a contradiction as any
path starting from s0 contradicts with the condition. If it is
the second case, then there exists a state, say s1, such that
s0 R s1 and s1 < A, which also implies s1 < V̄(ϕ2). Repeat this
process and obtain a sequence of state s0s1 . . . . If the sequence
is finite, say s0s1 . . . sn, then by construction s0, . . . , sn < V̄(ϕ2)
and sn ∈ V̄(¬ϕ1), which is a contradiction to the condition. If
the sequence is infinite, then by construction s0s1 . . . satisfies
that s0, s1,< V̄(ϕ2), which also contradicts to the condition.
Done.

Corollary 110. ΓCTL � ϕ implies �CTL ϕ.

Proof: Use Lemma 109 and prove by contradiction. Note
that it is easy to verify that S � ΓCTL if S is non-terminating.

Now we are ready to prove Theorem 35.
Proof of Theorem 35: Use Lemma 108 and Corol-

lary 110, as well as soundness of MmL and completeness of
CTL.

Appendix P
Proof of Theorem 36

We review the semantics of DL as well as its sound and
complete proof system presented in Fig. 7.

Definition 111. Let S = (S, {Ra}a∈APgm) be an APgm-labeled
transition system where Ra ∈ S × S is the transition relation
for atomic program a. Let V : PVar → P(S) be a valuation.
DL semantics is inductively defined as follows where state
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formulas are evaluated to subsets of S and program formulas
are evaluated to relations of S:
• JpKSV = V(p);
• Jϕ1 ∧ ϕ2KSV = Jϕ1KSV ∩ Jϕ2KSV ;
• J¬ϕKSV = S \ JϕKSV ;
• J[α]ϕKSV = {s ∈ S | for all t ∈ S such that (s, t) ∈
JαKSV ,we have t ∈ JϕKSV };

• JaK = Ra for a ∈ APgm;
• Jα1 ; α2KSV = Jα1KSV ◦ Jα2KSV ;
• Jα1 ∪ α2KSV = Jα1KSV ∪ Jϕ2KSV ;
• Jα∗KSV = (JαK

S

V )
∗;

• Jϕ?KSV = {(s, s) | s ∈ JϕK
S

V }.
where “R1 ◦ R2” is the composition of two relations R1,R2 de-
fined as R1 ◦ R2 = {(s1, s3) | there exists s2 such that (s1, s2) ∈
R1 and (s2, s3) ∈ R2}. We write �DL ϕ if JϕKSV = S for all S
and V .

Lemma 112. `DL ϕ implies ΓDL ` ϕ.

Proof: We just need to prove that all proof rules in Fig. 7
can be proved in ΓDL. First of all, rules (DL3) to (DL6) follow
from (syntactic sugar) definitions. Rules (Taut) and (MP) are
trivial, We only prove (DL1), (DL2), (DL7), and (Gen).
Notice that [α]ϕ is defined a syntactic sugar based on the

structure of α. Therefore, we carry out structure induction on
α. We should be careful to prevent circular reasoning. Our
proving strategy is to prove (Gen) first, and then prove (DL1)
and (DL2) simultaneously, and finally prove (DL7).
(Gen). Carry out induction on α. All cases are trivial. Notice

the case when α ≡ β∗ is proved by proving ΓDL ` ϕ→ [α∗]ϕ
using (Knaster-Tarski). After simplification, the goal be-
comes ΓDL ` ϕ→ [β]ϕ. This is proved by applying induction
hypothesis, which shows ΓDL ` [β]ϕ.
(DL1) and (DL2). We prove both rules simultaneously by

induction on α. We discuss only interesting cases and skip
the trivial ones. (DL1, α ≡ β1 ; β2) is proved from induction
hypothesis, by applying (Gen) on [β1]. (DL1,α ≡ β∗) is proved
by applying (Knaster-Tarski), following by applying (DL2,
“→”) on [β]. (DL2, α ≡ β∗, “→”) is proved by (Knaster-
Tarski). (DL2, α ≡ β∗, “←”) is proved by (Knaster-Tarski),
followed by (DL2) on [β].

(DL7) is proved directly by (Knaster-Tarski), followed by
(DL2, “←”) on [α].

We now connect the semantics of DL with the semantics
of MmL. First of all, we show that the transition system S =

(S, {Ra}a∈APgm) can be regarded as a �LTS-model, where S is
the carrier set of State and APgm (the set of atomic programs)
is the carrier set of Pgm. The “one-path next • ∈ ΣPgmState,State
is interpreted according to DL semantics for all t ∈ S and
a ∈ APgm:

•S(a, t) = {s ∈ S | (s, t) ∈ Ra}.

In addition, valuation V : PVar → P(S) can be regarded as
a matching µ-logic valuation (where we safely ignore the
valuations of element variables because they do not appear
in DL syntax).

Lemma 113. Under the above notations, JϕKSV = V̄(ϕ).

Proof: As in Lemma 101, we just need to prove that
JϕKSV ⊆ V̄(ϕ) by showing that V̄(ϕ) satisfies the conditions in
Definition 111. The only interesting case is to show V̄([α]ϕ) =
{s ∈ S | for all t ∈ S, (s, t) ∈ JαKSV implies t ∈ V̄(ϕ)}.
We prove it by carrying out structural induction on the DL
program formula α. The case when α ≡ a for a ∈ APgm
is easy. The cases when α ≡ β1 ; β2, α ≡ β1 ∪ β2, and
α ≡ ψ? follows directly by basic analysis about sets and
using definition of the semantics of DL program formulas.
The interesting case is when α ≡ β∗. In this case we should
prove V̄([β∗]ϕ) = V̄(νX .ϕ ∧ [β]X) =

⋃
{A | A ⊆ V̄(ϕ) ∩

V[A/X]([β]X)} =
⋃
{A | A ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈

JβKSV implies t ∈ S}} ?
= {s | for all t, (s, t) ∈ Jβ∗KSV implies t ∈

V̄(ϕ)} We denote the left-hand side of “ ?
=” as (η) and the

right-hand side as (ξ).

To prove (η) = (ξ), we prove containment from both
directions.

(Case (η) ⊆ (ξ)). This is proved by considering an s ∈ (η)
and show s ∈ (ξ). By construction of (η), there exists A ⊆ S
such that A ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈ JβKSV implies t ∈
A}, and that s ∈ A. In order to prove s ∈ (ξ), we assume
t ∈ S such that (s, t) ∈ (JβKSV )

∗ and try to prove t ∈ V̄(ϕ). By
definition, there exists k ≥ 0 and s0, . . . , sk such that s = s0,
t = sk , and (si, si+1) ∈ JβKSV for all 0 ≤ i < k. By induction
and the property of A, and that s0 ∈ A, we can prove that
s0, s1, . . . , sk ∈ V̄(ϕ), and thus t ∈ V̄(ϕ). Done.

(Case (ξ) ⊆ (η)). Notice that the set η is defined as a
greatest fixpoint, so it suffices to show that (ξ) satisfies the
condition, i.e., to prove that (ξ) ⊆ V̄(ϕ) ∩ {s | for all t, (s, t) ∈
JβKSV implies t ∈ (ξ)}. This can be easily proved by the
definition of (ξ). Done.

Corollary 114. ΓDL � ϕ implies �DL ϕ.

Proof: Use Lemma 113, and for the sake of contradiction,
assume the opposite. Suppose there exists S = (S, {Ra}a∈APgm)
and a valuation V and a state s such that s < JϕKSV . We then
know s < V̄(ϕ), which implies that S 2 ϕ. Obviously S � ΓDL
as the theory ΓDL contains no addition axioms. This means
that ΓDL 2 ϕ.

We are ready to prove Theorem 36.

Proof of Theorem 36: Use Lemma 112 and Corol-
lary 114, as well as soundness of MmL and completeness of
DL.
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Appendix Q
Proof of Theorem 39

As a review, we use the following notations:

“one-path next” •ϕ, where • ∈ ΣCfg,Cfg

“all-path next” ◦ϕ ≡ ¬•¬ϕ

“eventually” ♦ϕ ≡ µX .ϕ ∨ •X

“always” �ϕ ≡ νX .ϕ ∧ ◦X

“well-founded” WF ≡ µX .◦X

“weak eventually” ♦wϕ ≡ νX .ϕ ∨ •X

Proposition 115. The following propositions hold:
1) ` •⊥ ↔ ⊥
2) ` •(ϕ1 ∨ ϕ2) ↔ •ϕ1 ∨ •ϕ2
3) ` •(∃x.ϕ) ↔ ∃x.•ϕ
4) ` ◦> ↔ >
5) ` ◦(ϕ1 ∧ ϕ2) ↔ ◦ϕ1 ∧ ◦ϕ2
6) ` ◦(∀x.ϕ) ↔ ∀x.◦ϕ
7) ` ϕ→ ♦ϕ and ` •♦ϕ→ ♦ϕ
8) ` �ϕ→ ϕ and ` �ϕ→ ◦�ϕ
9) ` ϕ→ ♦wϕ and ` •♦wϕ→ ♦wϕ

10) Γ ` ϕ1 → ϕ2 implies Γ ` ?ϕ1 → ?ϕ2 where ? ∈
{•,◦,♦,�,♦w}

11) ` ♦⊥ ↔ ⊥
12) ` ♦(ϕ1 ∨ ϕ2) ↔ ♦ϕ1 ∨ ♦ϕ2
13) ` ♦(∃x.ϕ) ↔ ∃x.♦ϕ
14) ` �> ↔ >
15) ` �(ϕ1 ∧ ϕ2) ↔ �ϕ1 ∧ �ϕ2
16) ` �(∀x.ϕ) ↔ ∀x.�ϕ
17) ` �ϕ↔ ¬♦¬ϕ
18) ` ◦ϕ1 ∧ •ϕ2 → •(ϕ1 ∧ ϕ2)
19) ` ◦(ϕ1 → ϕ2) ∧ •ϕ1 → •ϕ2
20) ` ♦wϕ↔ (WF→ ♦ϕ)
21) ` ♦w(ϕ1 ∨ ϕ2) ↔ ♦wϕ1 ∨ ♦wϕ2
22) ` ♦w(∃x.ϕ) ↔ ∃x.♦wϕ
23) ` ?? ϕ↔ ?ϕ where ? ∈ {♦,�,♦w}
24) ` WF↔ µX .◦kX when k ≥ 1
25) ` WF↔ µX .◦�X
26) ` �ϕ1 ∧ ♦wϕ2 → ♦w(ϕ1 ∧ ϕ2)
27) ` �(ϕ1 → ϕ2) ∧ ϕ1 → ϕ2

Proof: We prove them in order.
(1–3) follows from (Propagation), and (Framing).
(4–6) are proved from (1–3) and that ◦ϕ ≡ ¬•¬ϕ.
(7) is proved by (Pre-Fixpoint) that ` ϕ ∨ •♦ϕ→ ♦ϕ.
(8) is proved by (Pre-Fixpoint) that ` �ϕ→ ϕ ∧ •�ϕ.
(9) is proved by (Knaster-Tarski) that ` ϕ∨•♦wϕ→ ♦wϕ.
(10, when ? is •) is exactly (Framing).
(10, when ? is ◦) is exactly Proposition 12.
(10, when ? is ♦) requires us to prove Γ ` ♦ϕ1 → ♦ϕ2. By

(Knaster-Tarski), it suffices to prove Γ ` ϕ1 ∨ •♦ϕ2 → ♦ϕ2,
which is proved by (7).
(10, when ? is �) requires us to prove Γ ` �ϕ1 → �ϕ2. By

(Knaster-Tarski), it suffices to prove Γ ` �ϕ1 → ϕ1 ∧ •�ϕ2,
which is proved by (8).

(10, when ? is ♦w) requires us to prove Γ ` ♦wϕ1 → ♦wϕ2.
By (Knaster-Tarski), it suffices to prove Γ ` ♦wϕ1 → ϕ1 ∨
•♦wϕ2, which is proved by (Pre-Fixpoint).
(11, “→”) is proved by (Knaster-Tarski).
(11,“←”) is trivial.
(12, “→”) is proved by (Knaster-Tarski), followed by (2)

to propagate “•” through “∨”, and finished with (7).
(12, “←”) is prove by (10, when ? is ♦).
(13, “→”) is proved by (Knaster-Tarski), followed by (3)

to propagate “•” through “∃”, and finished with (7).
(13, “←”) is proved by (10, when ? is ♦).
(14–16) are proved similar to (11–13).
(17, both directions) are proved by (Knaster-Tarski) fol-

lowed by (Pre-Fixpoint).
(18) is proved by ◦ϕ ≡ ¬•¬ϕ and (Propagation).
(19) is proved by (18) followed by (10).
(20, “→”) is proved by proving ` WF → (♦wϕ → ♦ϕ),

which is proved by (Knaster-Tarski) followed by (19).
(20, “←”) is proved by (Knaster-Tarski), followed by (2)

to propagate “•” through “∨”. After some additional proposi-
tional reasoning, we obtain two proof goals: ` ♦ϕ→ ϕ ∨ •♦ϕ
and ` ◦WF→ WF. The former is proved by (Knaster-Tarski)
and the latter is exactly (Pre-Fixpoint).

(21, “→”) is proved by applying (20) everywhere followed
by (12).

(21, “←”) is proved by (10, when ? is ♦w).
(22, “→”) is proved by applying (20) everywhere followed

by (13).
(22, “←”) is proved by (10, when ? is ♦w).
(23, when ? is ♦, “→”) is proved by (Knaster-Tarski)

followed by (7).
(23, when ? is ♦, “←”) is proved by (7) and (10).
(23, when ? is �, “→”) is proved by (8) and (10).
(23, when ? is �, “←”) is proved by (Knaster-Tarski)

followed by (8).
(23, when ? is ♦w , “→”) is proved by applying (Knaster-

Tarski) first. Then we need to prove ` ♦w♦wϕ→ ϕ∨•♦w♦wϕ.
By (Pre-Fixpoint), we know ` ♦w♦wϕ → ♦wϕ ∨ •♦w♦wϕ.
Thus, it suffices to prove ` ♦wϕ∨•♦w♦wϕ→ ϕ∨•♦w♦wϕ. By
propositional reasoning, we just need to prove ` ♦wϕ → ϕ ∨
•♦w♦wϕ. By (Knaster-Tarski), we know ` ♦wϕ→ ϕ∨•♦wϕ,
so it suffices to prove ` ϕ ∨ •♦wϕ → ϕ ∨ •♦w♦wϕ. Again by
propositional reasoning, it suffices to prove ` •♦wϕ → ϕ ∨
•♦w♦wϕ, which can be proved by proving ` •♦wϕ→ •♦w♦wϕ,
which is finally proved by (9) and (10).

(23, when ? is ♦w , “←”) is proved by (9) and (10).
Note it is sufficient to prove (24) only for the case k = 1.
(24, “→”) is proved by applying (Knaster-Tarski) and

(Pre-Fixpoint) first. Then we need to prove ` µX .◦◦X →
◦µX .◦◦X . Apply (Knaster-Tarski) again, and finished by
(Pre-Fixpoint).

(24, “←”) is proved by applying (Knaster-Tarski) followed
by (Pre-Fixpoint).

(25, “→”) is proved by applying (Knaster-Tarski) followed
by (Pre-Fixpoint). Then we obtain ` µX .◦�X → �µX .◦�X .
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Axiom:
ϕ⇒ ϕ′ ∈ A
A `C ϕ⇒ ϕ′

Reflexivity:
A `∅ ϕ⇒ ϕ
Transitivity:
A `C ϕ1 ⇒ ϕ2 A ∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3
Logic Framing:
A `C ϕ⇒ ϕ′ ψ is a FOL formula

A `C ϕ ∧ ψ ⇒ ϕ′ ∧ ψ
Consequence:
Mcfg � ϕ1 → ϕ′1 A `C ϕ′1 ⇒ ϕ′2 Mcfg � ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2
Case Analysis:
A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ
Abstraction:
A `C ϕ⇒ ϕ′ X ∩ FV(ϕ′) = ∅

A `C ∃X .ϕ⇒ ϕ′

Circularity:
A `C∪{ϕ⇒ϕ′ } ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Fig. 8. Reachability logic proof system

Apply (Knaster-Tarski) on �, and we obtain ` µX .◦�X →
◦�µX .◦�X , finished by (Pre-Fixpoint).

(25, “←”) is proved by (8), (10), and then apply Lemma 85.
(26) is proved by applying (Knaster-Tarski) firstly. After

propositional reasoning, we obtain two goals: ` �ϕ1∧♦wϕ2 →
ϕ1∨•(�ϕ1∧♦wϕ2) and ` �ϕ1∧♦wϕ2 → ϕ2∨•(�ϕ1∧♦wϕ2).
The first goal is easily proved by (8). The second goal is by
unfolding “♦wϕ2” and “�ϕ1”, and then use (18).

(27) is proved by (8).

Lemma 116. A `C ϕ1 ⇒ ϕ2 implies ΓRL ` RL2MmL(A `C
ϕ1 ⇒ ϕ2).

Proof: We need to prove that all reachability logic proof
rules in Fig. 8 are provable in matching µ-logic.
(Axiom). We prove for the case when C , ∅. The case

when C = ∅ is the same. Our goal, after translation, is ΓRL `
∀�A∧∀�C → (ϕ1 → •♦wϕ2). By assumption, ϕ1 ⇒ ϕ2 ∈ A,
and thus we just need to prove ΓRL ` ∀(ϕ1 → •♦wϕ2) →
(ϕ1 → •♦wϕ2), which is trivial by FOL reasoning.

(Reflexivity). Notice that C = ∅ in this rule. Our goal,
after translation, is ΓRL ` ∀�A → (ϕ → ♦wϕ), which is true
by Proposition 115.

(Transitivity, C = ∅). Our goal, after translation, is
ΓRL ` ∀�A → (ϕ1 → ♦wϕ3). Our two assumptions are
ΓRL ` ∀�A → (ϕ1 → ♦wϕ2) and ΓRL ` ∀�A → (ϕ2 →
♦wϕ3). From the latter assumption and Proposition 115, we
have ΓRL ` ∀�A → (♦wϕ2 → ♦w♦wϕ3), and then by
propositional reasoning and the former assumption we have
ΓRL ` ∀�A → (ϕ1 → ♦w♦wϕ3). Finally, by Proposition 115

we have ΓRL ` ∀�A→ (ϕ1 → ♦wϕ3), which is what we want
to prove.
(Transitivity, C , ∅). Our goal, after translation, is
ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ3). Our two assumptions
are ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ2) and ΓRL `
∀�A ∧ ∀�C → (ϕ2 → ♦wϕ3). From the first assumption, we
have ΓRL ` ∀�A∧∀◦�C ∧ ϕ1 → ∀�A∧∀◦�C ∧ •♦wϕ2, and
thus by propositional reasoning, it suffices to prove that ΓRL `
∀�A∧∀◦�C∧•♦wϕ2 → •♦wϕ3. From the second assumption
and Proposition 115(10), we know that ΓRL ` •♦w(∀�A ∧
∀�C ∧ ϕ2) → •♦w♦wϕ3, which by Proposition 115(23), im-
plies ΓRL ` •♦w(∀�A∧∀�C∧ϕ2) → •♦wϕ3. Then, it suffices
to prove ΓRL ` ∀�A∧∀◦�C∧•♦wϕ2 → •♦w(∀�A∧∀�C∧ϕ2).
The rest is easy, since by Proposition 115(8), we just need to
prove ΓRL ` ∀◦�A∧∀◦�C∧•♦wϕ2 → •♦w(∀�A∧∀�C∧ϕ2),
which then by Proposition 115(18) becomes ΓRL ` •(∀�A ∧
∀�C ∧ ♦wϕ2) → •♦w(∀�A ∧ ∀�C ∧ ϕ2), and then by
Proposition 115(10) becomes ΓRL ` ∀�A ∧ ∀�C ∧ ♦wϕ2 →
♦w(∀�A∧∀�C∧ϕ2), which is proved by Proposition 115(26).

(Logic Framing). We prove for the case when C , ∅. The
case when C = ∅ is the same. Our goal, after translation,
is ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 ∧ ψ → •♦w(ϕ2 ∧ ψ)). Our
assumption is ΓRL ` ∀�A ∧ ∀◦�C → (ϕ1 → •♦wϕ2). Notice
that FOL formula ψ is a predicate pattern, so ` •♦w(ϕ2 ∧
ψ) ↔ (•♦wϕ2) ∧ψ, and the rest is by propositional reasoning.
The condition that ψ is a FOL formula (and thus a predicate
pattern) is crucial to propagate ψ throughout its context.
(Consequence). This is the only rule where axioms in ΓRL

is actually used. Again, we prove for the case C , ∅ as the
case when C = ∅ is the same. Our goal, after translation, is
ΓRL ` ∀�A∧∀◦�C → (ϕ1 → •♦wϕ2). Our three assumptions
include Mcfg � ϕ1 → ϕ′1, Mcfg � ϕ′2 → ϕ2, and ΓRL ` ∀�A ∧
∀◦�C → (ϕ′1 → •♦wϕ

′
2). Notice that by definition of ΓRL, we

know immediately that ϕ1 → ϕ′1 ∈ Γ
RL and ϕ′2 → ϕ2 ∈ Γ

RL.
The rest of the proof is simply by Proposition 115(10) and
some propositional reasoning.

(Case Analysis). Simply by some propositional reasoning.
(Abstraction). Simply by some FOL reasoning. Notice that
∀�A and ∀�C are closed patterns.

(Circularity). We prove for the case when C , ∅, as the
case when C = ∅ is the same. Our goal, after translation, is
ΓRL ` ∀�A∧∀◦�C → (ϕ1 → •♦wϕ2). By FOL reasoning and
Proposition 115(20,2,25), the goal becomes ΓRL ` µX .◦�X →
∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2). By (Knaster-Tarski) and
some FOL reasoning, it suffices to prove ΓRL ` ◦�(∀�A ∧
∀◦�C → ∀(ϕ1 → •♦wϕ2)) ∧∀�A∧∀◦�C → (ϕ1 → •♦wϕ2).
Our assumption, after translation, is ΓRL ` ∀�A ∧ ∀◦�C ∧
∀◦(ϕ1 → •♦wϕ2) → (ϕ1 → •♦wϕ2), so it suffices to prove
ΓRL◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2)) ∧ ∀�A ∧ ∀◦�C →
∀�A∧∀◦�C∧∀◦(ϕ1 → •♦wϕ2), which by some propositional
reasoning becomes ΓRL ` ◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 →
•♦wϕ2)) ∧ ∀�A ∧ ∀◦�C → ∀◦(ϕ1 → •♦wϕ2). By Proposi-
tion 115(8), it becomes ΓRL ` ◦�(∀�A ∧ ∀◦�C → ∀(ϕ1 →
•♦wϕ2)) ∧ ◦∀�A ∧ ◦∀◦�C → ∀◦(ϕ1 → •♦wϕ2), and by
Proposition 115(5,6,10), it becomes ΓRL ` �(∀�A∧∀◦�C →
∀(ϕ1 → •♦wϕ2)) ∧ ∀�A ∧ ∀◦�C → ∀(ϕ1 → •♦wϕ2), which
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is proved by Proposition 115(27).

Corollary 117. S `∅ ϕ1 ⇒ ϕ2 implies ΓRL ` RL2MmL(S `∅
ϕ1 ⇒ ϕ2).

Proof: Let A = S and C = ∅ in Lemma 116.

Lemma 118. ΓRL � RL2MmL(S `∅ ϕ1 ⇒ ϕ2) implies S �RL
ϕ1 ⇒ ϕ2.

Proof: Let S = (Mcfg
Cfg,R) be the transition system that is

yielded by S. We tactically use the same letter S to mean the
extended �RL-model Mcfg with • ∈ ΣCfg,Cfg be interested as
the transition relation R. Then S � ΓRL, because all axioms
in ΓRL are about only the configuration model Mcfg and says
nothing about the transition relation R. Since Mcfg � Γcfg (by
definition), then S � Γcfg. By condition of the lemma, S �
RL2MmL(S `∅ ϕ1 ⇒ ϕ2), i.e., S � ∀�S → ϕ1 → ♦wϕ2.
By construction of S, for all rules ψ1 ⇒ ψ2 ∈ S, we have
S � ψ1 → •ψ2 (in MmL), which implies S � ∀�(ψ1 → ♦wψ2),
meaning that S � ∀�S. Therefore, S � ϕ1 → ♦wϕ2 (in MmL),
which is exactly the same meaning as S �RL ϕ1 ⇒ ϕ2 (in RL).

Finally, we are ready to prove Theorem 39.
Proof of Theorem 39: Following the same roadmap as

in the proof of Theorem 31, where (2) ⇒ (3) is given by
Corollary 117 and (5)⇒ (6) is given by Lemma 118. The rest
is by the sound and (relative) completeness of RL. Notice that
technical assumptions of [2] are needed for the completeness
result of RL.
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