
Towards a Kool Future

Dorel Lucanu1, Traian-Florin �erb nuµ 2, and Grigore Ro³u3

1 Alexandru Ioan Cuza University, Ia³i, Romania
2 University of Bucharest, Romania

3 University of Illinois at Urbana-Champaign, USA

Abstract. The K framework was successfully used for de�ning formal
semantics for several practical languages, e.g. C, Java, Java Script, but no
language with distributed concurrent objects was de�ned in K up to now.
In this paper we investigate how the model of asynchronous method calls,
using the so-called futures for handling the return values, can be added
to an existing K de�nition using the ideas from the Complete Guide to
the Future paper. As the running example we use the K de�nition of
KOOL, a pedagogical and research language that captures the essence
of the object-oriented programming paradigm. This is a �rst step toward
a generic methodology for modularly adding future-based mechanisms to
allow asynchronous method calls.

1 Introduction

K (www.kframework.org) is a framework for formally de�ning the semantics of
programming languages. The K de�nitions of the programming languages are
executable, i.e. they can be used to execute programs written in the de�ned
language, and can be used for program analysis and veri�cation. The K Frame-
work is scalable: several realistic languages, e.g. Java [3], C [10], Java Script [16],
PHP [11], have already been de�ned in K. The main ingredients of a K de�nition
are con�gurations, computations and rules. Con�gurations organise the state in
units called cells, which are labeled and can be nested. Computations are special
nested list structures sequentialising computational tasks, such as fragments of
program. K (rewrite) rules make it explicit which parts of the term they read-
only, write-only, read-write, or do not care about. This makes K suitable for
de�ning truly concurrent languages even in the presence of sharing. The only
concurrency model described in some languages de�ned in K is that described
by threads. No language including distributed concurrent objects is de�ned in
K up to now.

Futures [15,25] are language constructs meant to represent awaited results
for asynchronous calls. Roughly speaking, a future is a place holder for a result
of an asynchronous concurrent computation. Once this computation is complete
the computed result, called future value, �lls the place holder. An access to an
unresolved feature is a blocking operation.

The futures can be transparent or explicit. For the explicit case, the language
includes speci�c constructs for creating futures and getting the results. On the

Boer's Festschrift, LNCS 9660, pp 325-343. 2016

www.kframework.org


other hand the implicit futures are handled by underlying middleware and the
syntax of the language remains unchanged. Some languages allow futures to
be passed as parameters to other processes; these are called �rst class futures.
First class futures are useful for both object-oriented and procedural paradigms
since they improve the concurrency patterns and o�er more �exibility in design.
Futures can be de�ned directly inside of a language [4,14,8,1,9] or as middleware
using a component-based model [23,5,13].

In the Complete Guide to the Future [8], Frank de Boer et. al provide the
semantics for an object-oriented language including explicit �rst class futures,
de�ned as an extension of the Creol language [14]. The main features de�ned
there include active multi-threaded objects, asynchronous method calls, and fu-
tures. A proof system for proving properties speci�c to concurrency is provided.

Inspired by [8], in this paper we investigate how the semantics of �rst class
futures can be added, in a generic way, to languages that already have a formal
semantics. We consider an object oriented language formally de�ned in the K
Framework, namely KOOL, and we identify how the con�guration is changed,
which semantic rules have to be modi�ed, in order to implement implicit futures,
and which rules should be added to implement explicit futures. We rely on
the modularity of the K framework and we claim that the number of changed
rules is minimal (no rule unrelated to the extension was modi�ed). Moreover,
K de�nitions being executable, using the K tool, allow users to e�ectively test
whether the semantics has the desired properties.

The underlying logics for K de�nitions are matching logic [17] and reachabil-
ity logic [20,6]. Using the encoding of Hoare triples into reachability logic [19],
we automatically have a translation of the proof system de�ned in the Com-
plete Guide to the Future into reachability logic. This makes possible the use of
provers like that reported in [22] for checking concurrency speci�c properties.

The paper is structured as follows. Section 2 includes a brief introduction to
K. The main ingredients of a K de�nition are exempli�ed using the KOOL pro-
gramming language, which is a part of the K tutorial (http://www.kframework.
org/index.php/K_Tutorial). Section 3 presents KFUTURE, a version of KOOL
with asynchronous methods calls modelled using futures. The main changes and
new added constructs are brie�y presented. Several experiments with the K tool
are reported in Section 4. Finally, Section 5 concludes the paper and discusses
future work opportunities.

Acknowledgements. This paper is written in honour of Frank de Boer on the
occasion of his 60th birthday and celebrates his exceptional contribution to the
object-oriented paradigm. The �rst author had the privilege to cooperate with
Frank and he is deeply grateful to him for that fruitful experience.

The work presented here was partially supported by Romanian Contract
161/15.06.2010, SMIS-CSNR 602-12516 (DAK), which made possible the devel-
opment of the main �rst versions of the K Framework.

2

Boer's Festschrift, LNCS 9660, pp 325-343. 2016

http://www.kframework.org/index.php/K_Tutorial
http://www.kframework.org/index.php/K_Tutorial


2 A Kool Introduction to K

In a nutshell, the K Framework [21] consists of computations, con�gurations,
and rules. Computations are special sequences of tasks, where a task can be,
e.g., a fragment of program that needs to be processed. Con�gurations are used
to describe the program states and are organised as nested pools of cells holding
syntactic and semantic information. K rules distinguish themselves by specify-
ing only what is needed from a con�guration, and by clearly identifying what
changes, and thus, being more concise, more modular, and more concurrent than
regular rewrite rules.

The running example is KOOL [18], a pedagogical and research language
that captures the essence of the object-oriented programming paradigm. Among
the object-oriented features included in KOOL we �nd the inheritance and the
dynamic method dispatch mechanism. Moreover, KOOL is higher-order, allowing
function abstractions to be treated like any other values in the language. The K
de�nition of KOOL was the starting point for the K de�nition of Java [3].

Syntax and Computations. Computations extend syntax with an operation, �y�,
meaning to capture task sequentialization. The basic unit of computation is a
task, which can either be a fragment of syntax, maybe with holes in it, or a
semantic task, such as the recovery of an environment. The computation is ab-
stracted away from the language designer via intuitive program languages syntax
annotations like strictness constraints that specify the order of evaluation for its
arguments. The decompositions of computations are similar to the use of stacks
in abstract machines [12] and to the refocusing techniques for implementing
reduction semantics with evaluation contexts [7].

Exp ::= Int | Id
| Exp + Exp [strict]
| Exp ( Exps ) [strict]
. . .

Stmt ::= Decl
| Block
| Exp ;

| if ( Exp ) Block else Block [strict(1)]
. . .

Decl ::= Type Exp
| Type Id ( Exp ) Block
| Id Block
| Id extends Id Block

Block ::= { }

| { Stmts }

Exps ::= List(Exp,",")
Stmts ::= List(Stmt,"")

Fig. 1. A fragment of KOOL's syntax

Fig. 1 includes a fragment of the syntax for KOOL, described using BNF
notation. The strictness annotations add semantic information to the syntax by
specifying the order of evaluation of arguments for the corresponding construct.
This is achieved by the means of the heating/cooling rules, which are automat-
ically generated from strictness annotations. The order of evaluation can be left
unspeci�ed (if using the "strict" attribute), or speci�ed to happen in a given
order using the "seqstrict" attribute. For instance, the "strict" attribute for the

3

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



addition operator says that all arguments of addition are evaluated, but in an
unspeci�ed order, which is achieved by the following heating/cooling rules:

E1 + E2 
 E1 y � + E2 E1 + E2 
 E2 y E1 + �
I1 y � + E2 
 I1 + E2 I2 y E1 + � 
 E1 + I2

When the strict attribute has parameters, only those parameters are evaluated.
E.g., for the statement if only the �rst argument (the conditional expression) is
evaluated. For seqstrict, no attributes specify the evaluation of all arguments in
a left-to-right order, while a list of positions speci�es that the given arguments
are to be evaluated in the given order, allowing for di�erent order of evaluation
to be speci�ed.〈〈〈 〈$PGM y execute〉 k〈 〈·List〉 fstack〈·List〉 xstack

〈·K 〉 return〈〈Object〉 crntClass

〈·List〉 envStack

〈·K 〉 location?

〉
crntObj

〉
control

〈·Map〉 env〈·Map〉 holds〈0〉 id

〉
thread∗

〉
threads

〈·Map〉 store 〈0〉 nextLoc 〈·Set〉 busy 〈·Set〉 terminated 〈·List〉 in 〈·List〉 out〈〈
〈Main〉 className 〈Object〉 extends

〈·K 〉 declarations

〉
class∗

〉
classes

〉
T

Fig. 2. KOOL Con�guration

Con�gurations. A con�guration is a nested multiset of labeled cells, in which
each elementary cell can contain either a list, a set, a bag, a map, or a compu-
tation. Fig. 2 includes the con�guration for the KOOL language. Here is a brief
description of the cells (the tree-like structure of the list re�ects the nesting
structure of the cells):

T � top level cell;

threads � holds a pool of thread cells;

thread � holds the sub-con�guration of a thread;

k � holds the nested list of the computations for the thread;
control � holds the local control state of the thread;

fstack � holds the function stack;
xstack � holds the stack of exceptions;
return � holds the type of the value to be returned by the current
method;

crntObj � holds the description of the current object (this);

crntClass � holds the name of the current class which the cur-
rent object belongs to;

4

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



envStack � holds the state of the object as a stack of environ-
ments (for each ancestor class an environment binding the
�elds of the class to their current locations);

location � holds the location where the object is stored;

env � holds a map binding each name accessible by the thread to a
store location;

holds � include the locks held by the thread;
id � holds a natural number that is the identity of the thread;

store � holds a global (shared by all threads) map binding the allocated
locations to some values; the fact that the environment is local but the
store is global allows for shared memory while preserving the visibility
domain of variables;

nextLoc � holds a natural number indicating the next free location;
busy � holds the locks which have been acquired but not yet released by

threads;
terminated � holds the unique identi�ers of the threads which already ter-

minated (needed for join);
in � holds the list of the input data (needed for reading statements);
out � holds the list of the output data (needed for writing statements);
classes � the pool of the classes of a KOOL program;

class � holds the description of a class;

classname � holds the name of the class;
extends � holds the name of the parent class;
declarations � holds the declarations for the class �elds and methods.

The content speci�cation for the elementary cells has a double role: 1) it
speci�es the content of that cell in the initial con�guration, and 2) it speci�es
the type (sort) of the information stored in that cell. The dot notation is used
for the empty data structures: e.g., ·List denotes the empty list, ·Set denotes the
empty set, and so on. The special variable $PGM will be replaced in the initial
con�guration with the program to be executed. The internal command execute

triggers the execution of the program after its preprocessing to �ll the initial
con�guration.

The star character following the name of a cell speci�es the multiplicity of
that cell, i.e. a concrete con�guration may include zero, one, or more cells of
that kind. For instance, a concrete con�guration may include several thread cells
and/or several class cells.

K rules. The transition relation de�ning the operational semantics of a language
is described by K rules. For instance, the rule giving the semantics for the addi-
tion operator is

I1 + I2

I1 +Int I2

where above the horizontal line is the pattern used for matching and below the
horizontal line is the pattern that de�nes the result term replacing the matched

5

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



term. This rule is applied only when the above pattern matches the top of the k
cell (we shall see later why). Since the syntax of this operator was de�ned with
the strict attribute, it follows that it is evaluated only after its arguments have
been evaluated to the integers I1 and I2. The operation +Int e�ectively adds
two integers. The semantics of the statement if is given by two rules:

if true B1 else _

B1

if false_ else B2

B2

Recall that the syntax of if is strict only in the �rst argument, so only the
condition expression is evaluated �rst to either true or false. The two rules cor-
responds to the two possible values returned by the evaluation of the condition
expression.

Although K rules are in essence rewrite rules, there are several ways in which
they di�er from a regular rewrite rule. First, in-place rewriting (denoted by the
horizontal bar) allows one to specify small changes into a bigger context, by
underlining the part that needs to change and writing its replacement under the
line, instead of repeating the context in both sides of a rewrite rule. For instance,
the rule for addition will be applied only when the the pattern I1 + I2 matches
the top of the computation cell. This enables another optimisation, namely the
ability of using anonymous variables (_) for the unused variables in the context
(see, e.g., the rule for if).

Furthermore, K allows the use of cell comprehension for focusing only on the
parts of the cells which are relevant, as in the rule for variable lookup:〈

X :Id

V

···

〉
k 〈··· X 7→ L ···〉 env 〈··· L 7→ V :Val ···〉 store

The lookup rule above rule speci�es that when a variable X is the �rst
computational task, and X is bound to some location L in the environment, and
L is mapped to some value V in the store, then we rewrite X into V .

The ellipses at the left/right end of a cell are used to specify that there could
be more items in that cell (in the corresponding side) in addition to what is
explicitly speci�ed. Note that the variable to be looked up is the �rst task in the
k cell (the cell is closed to the left and open to the right), while the binding of
X to L and the mapping of L to V can be anywhere in the env and store cells
(these cells are open in both sides).

Finally, the process of con�guration abstraction allows for mentioning only
the relevant cells in a rule, by relying on the static structure of the declared con-
�guration to infer the rest (con�guration concretization). For instance, without
K's con�guration abstraction, the lookup rule above would have to also include
the thread and threads cells. Con�guration abstraction is crucial for modularity,
because it gives the possibility to write de�nitions in a way that may not re-
quire to revisit existing rules when the con�guration changes as new (orthogonal)
language features are introduced.

6

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



Advanced features of the KOOL language semantics

We conclude our brief introduction to K by showing the semantic rules de�ning
the behavior of some important features of KOOL which would be a�ected by
the introduction of futures in the next section.

The new operator. The rule de�ning the operator new includes a more complex
matching part and many local rewrites:〈

new Class(Vs) y K

(create(Class) y storeObj y Class(Vs)); return this;

〉
k

〈
Env

·Map

〉
env

〈
L

L+Int 1

〉
nextLoc〈〈

Obj

〈Class〉 crntClass〈ListItem(Object, 〈·Map〉 env)〉 envStack〈L〉 location

〉
crntObj

〈
·List

ListItem(Env ,K,C, 〈Obj 〉 crntObj〈T 〉 return)

〉
fstack

〈
T

Class

〉
return C

〉
control

The semantics of new consists of two actions: memory allocation for the new
object and execution of the corresponding constructor. Then the created object
is returned as the result of the new operation. The rule matches a new expression
on the top of the k cell, where the parameters Vs are already evaluated due to
the strictness, and performs the following changes in the con�guration:

� replaces the new expression with two actions, memory allocation for the new
object (given by the auxiliary operations create and storeObj) and execu-
tion of the corresponding constructor, followed by the instruction returning
the created object;

� stores the current environment, computation, control, object, and return
type on the function stack;

� initializes the object creation process by emptying the local environment and
the current object, and allocating a location in the store where the created
object will be eventually stored;

� replaces the return type with the class of the newly created object.

Method Calls. The rule for method calls is somehow similar to that of the new
operator:

7

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



〈
methodClosure (_->T,Class,OL,Ps, S)(Vs) y K

mkDecls (Ps,Vs) S return ;

〉
k

〈
Env

·Map

〉
env

〈··· OL 7→ objecClosure (〈_〉 crntClass,Obj) ···〉 store〈 〈
Obj ′

〈Class〉 crntClass Obj

〉
crntObj

〈
T ′

T

〉
return

〈
·List

ListItem ((Env ,K,C,
〈
Obj ′

〉
crntObj, 〈T ′〉 return))

···

〉
fstack C

〉
control

Since the syntax for method calls is strict, the expression describing the method
name is evaluated to the corresponding function value. Recall that KOOL is a
higher-order language that allows the function abstractions to be treated like any
other values. A function value is a closure that includes the method parameters,
the body of the method, and the object value. The type held by a method
closure is the entire type of the method in order to dynamically upcast values
when passed to contexts where values of superclass types are expected. An object
value consists of an objectClosure-wrapped bag containing the current class of
the object and the environment stack of the object. The current class of an object
will always be one of the classes mapped to an environment in the environment
stack of the object. The rule matches a method call on top of the computation
cell and performs the following changes in the con�guration:

� replaces the method call with the method body followed by a return;;
� pushes the current environment, control data, current object and the return

type onto the function stack;
� binds the actual arguments to formal parameters using the auxiliary opera-

tion mkDecls;
� updates the current object and the return type of the current method.

The arguments of the call are evaluated to a list of values Vs due to the strict
attribute. The variable K matches the rest of the computation.

The return statement performs the dual operations:

� pops the environment, control data, current object and the return type from
the function stack and stores them into the corresponding cells;

� checks the type of the returned value and passes it to the popped computa-
tion; note that its type is cast to that stored in the return cell.〈

return V ; y _

subtype ( typeOf (V ), T) y true? y unsafeCast (V , T) y K

〉
k

〈
ListItem ((Env ,K,C))

·List

···

〉
fstack

〈
T

C

〉
return

〈
_

Env

〉
env

8

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



3 KOOL with Futures

This section presents a language design exercise: adding support for futures to
an existing object oriented language executable de�nition.

We chose KOOL as the reference object oriented language de�nition, because
it is a relatively small but not trivial language designed for teaching students
object oriented concepts and dynamic typing.

An important aspect of the exercise is given by the executability attribute
of the de�nition: as expected, designing executable de�nitions requires more
attention to details; on the other hand, these de�nitions are testable, making it
easier to detect design glitches.

Although we took The Complete Guide to the Future [8] as a starting point
for our de�nitional enterprise, we decided rather early on not supporting certain
Creol-speci�c constructs such as nondeterministic choice and parallel composi-
tion, as futures themselves bring a high degree of nondeterminism and concur-
rency. The new language we obtained is called KFUTURE.

3.1 Syntax

The syntax of KOOL, excepting that for threads � which was removed �, remains
unchanged and we only added the same constructs as in [8]:

Exp ::= Exp ! Id(Exps) [strict(1)]
| Guard

Guard ::= wait

| Exp ? [strict]

Type ::= ! Type Id ::= get Stmt ::= await Exp ;

The expressions are enriched with asynchronous calls, a future reading opera-
tion get, and guards used to block/release the objects's tasks. The only added
statement await is used for releasing tasks and !T is the type of the futures
returning values of type T .

3.2 Con�guration

The con�guration of the new language is represented in Fig. 3. KFUTURE
objects are top-level independent agents [24], asynchronously communicating by
means of futures.

Being an agent, each object carries its own state � holding �elds and their
values �, which can be altered only by the object's methods/tasks. Thus, the
store cell is now object-local rather than global as in KOOL.

An object manages multiple tasks, each handling a speci�c future to which
it is linked through the futureId cell. To ensure task atomicity, we follow the line
in [8] and allow only one task being active at a time. Hence an object's tasks are
split into the active-task and a pool of waiting-tasks.

Tasks are similar in essence to KOOL threads: the active-task cell includes
almost all cells occurring in a thread cell. However, the location and environment
stack envStack of an object are now at the top of the object cell, being shared
by all tasks.

9

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



〈 〈〈
〈0〉 fid 〈0〉 oid 〈·K 〉 closure 〈·K 〉 returnType

〈·Exps〉 arguments 〈·K 〉 result? 〈 sleeping〉 state

〉
future∗

〉
futures〈〈

〈0〉 location 〈Object〉 mainClass

〈·List〉 envStack 〈0〉 nextLoc 〈·Map〉 store〈
〈0〉 futureId

〈($PGM :Stmts y execute)〉 k

〈·Map〉 env〈
〈·List〉 fstack 〈·List〉 xstack

〈 void〉 return 〈Object〉 crntClass

〉
control

〉
active−task

〈〈 〈·Set〉 guard?

〈·K 〉 waiting−k

〈·Bag〉 waiting−task−conf

〉
waiting−task∗

〉
waiting−tasks

〉
object∗

〉
objects

〈1〉 nextObjectId 〈1〉 nextFutureId 〈·List〉 in 〈·.List〉 out

〈〈〈Main〉 className 〈Object〉 extends 〈·K 〉 declarations〉 class∗〉 classes

〉
T

Fig. 3. The KFUTURE con�guration

Futures (placed in the futures cell) serve as communication channels between
objects. A future method invocation results in the creation of a new future cell
containing data identifying the target object (oid), the method (closure) and its
arguments. Each future has a state and will eventually produce a result.

To simplify the presentation, we have completely eliminated the threading
constructs existing in the KOOL language. From a de�nitional point of view, this
amounted to simply eliminating the extra syntax, cells in the con�guration and
speci�c threading rules in the de�nition. Section 4 shows how Java-like threads
can be de�ned using futures.

In the following, we �rst revisit the changes required to the KOOL semantics
to re�ect the new con�guration architecture, then describe the semantics of
futures as an addition to the existing semantics.

3.3 Objects and methods

As objects are now full citizens of the con�guration, several changes to the
de�nition of KOOL are required to re�ect that.

Object creation requires a rede�nition of the semantics for new:〈
new Class(Vs)

object (Id ,Class,Class) . $clinit(Vs)

···

〉
k

〈
Id

Id +Int 1

〉
nextObjectId

·Bag

〈··· 〈Id〉 location 〈Class〉mainClass 〈··· 〈-1〉 futureId 〈·K 〉 k ···〉 active−task ···〉 object

An instance of the class is created in the cell object and an unique identi�er is
assigned to it, while the new construct reduces to a method call to the special

10

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



method $clinit on a reference to the newly created object, a method which:
(1) performs basic object allocation and initialisation; (2) calls the construc-
tor method; (3) returns a reference to the object. Hence, $clinit basically
corresponds to the create(Class) y storeObj y Class(Vs)); return this;

sequence of tasks from the KOOL semantics for new, with the di�erence that
now these tasks need to occur within the newly created object.

Object references replace KOOL's object closures. An object reference is a triple
(Id ,MainClass,CurrentClass), where Id corresponds to the contents of the ob-
ject's location cell, MainClass corresponds to the contents of the mainClass cell,
and CurrentClass corresponds to the current contents of the crntClass cell, as
shown by the new semantics for this:〈

this

object (Id ,MClass,Class)

···

〉
k 〈Id〉 location 〈Class〉 crntClass 〈MClass〉mainClass

The replacement of object closures by object references, made mandatory by
the KFUTURE extension, required rede�ning some of the other KOOL rules,
mainly those related to method and �eld resolution. Note though that these
changes are actually simpli�cations to the existing KOOL semantics, inspiring
us to redesign future versions of KOOL to use references instead of closures as
object values.

Method calls to foreign objects are desugared into (blocking) future invoca-
tions [8]:〈

object (Id ,BClass,Class) . Method(Vs)

( object (Id ,BClass,Class) ! Method(Vs)) . get(·Exps)

···

〉
k 〈Id ′〉 location

requires Id 6=K Id ′

The condition expressed by the clause requires ensures that the called method
belongs indeed to a foreign object.

Method calls for the current object remain basically the same as in KOOL. While
convenient, this additionally is a proper way to treat self calls, avoiding deadlock
(which would occur if handled as foreign object calls) while capturing the direct
transfer of control which was a caveat of the workaround solution proposed in [8].

First, the method is looked up in the object's environment stack:〈
object (Id ,BClass,_) . Method(Vs)

lookupThis (〈ES 〉 envStack,BClass,Method)(Vs)

···

〉
k 〈Id〉 location 〈ES 〉 envStack

Next, once a method is evaluated to a method closure, application saves the
current context before binding the arguments and calling the method:

11

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



〈
methodClosure(_->T ,Class,OL,Ps,S )(Vs) y K

mkDecls (Ps,Vs) Sy return ;

〉
k〈OL〉 location

〈
Env

·Map

〉
env〈〈

·List
ListItem ((Env ,K ,C 〈T ′〉 return 〈Class ′〉 crntClass))

···

〉
fstack

〈
Class ′

Class

〉
crntClass

〈
T ′

T

〉
returnC

〉
control

The only changes from the corresponding KOOL rule are (1) the fact that
we enforce that the method's object location is the same as the current object's
location; and (2) since we are inside the same object, the only object-related
which needs to be updated/saved/restored is the current class.

The KOOL rule for the return statement is preserved unchanged, although
an additional rule will be added below to model returning from a future call.

3.4 Futures

Futures model asynchronous method calls as messages exchanged between ob-
jects. These exchanges are captured by the future cells in the con�guration, which
serve as communication channels between objects.

Future method invocations result in opening a channel (future) to the object
owning the method, containing a request for executing the method:〈

object (OId ,Class,_) ! Method(Vs)

preFuture (F )

···

〉
k

〈
F

F +Int 1

〉
nextFutureId

·Bag

〈··· 〈F 〉 fid 〈OId〉 oid 〈 lookupMethod (Class,Method)〉 closure 〈Vs〉 arguments ···〉 future

The future will initially be in the sleeping state, waiting to be activated
by its corresponding object. The future invocation evaluates to a pre-future
reference to the newly created future; this will become a full future reference
once the return type of the method is known.

The activation of a sleeping future occurs when there are no active tasks run-
ning for the future's object, and consists in creating a task to initiate the method
call, and changing the state of the future to active to prevent recurrent activa-
tions:〈
··· 〈F 〉 fid 〈Id〉 oid 〈Closure〉 closure 〈Vs〉 arguments

〈
sleeping

active

〉
state ···

〉
future

〈Id〉 location 〈··· 〈-1〉 futureId 〈·K 〉 k ···〉 active−task

〈··· 〈F 〉 futureId 〈 performCall (Closure,Vs)〉 k ···〉 active−task

12

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



The auxiliary operation performCall does the actual method invocation
which is similar to the one in KOOL, only without saving a stack frame (because
no context needs to be saved). The contents of the futureId cell links the task to
its corresponding future. The value −1 in the futureId cell is used to signal that
the object is idle.

Returning from a future call occurs when a return statement is encountered and
there are no function frames on the function stack. When this happens, we need
to set the returned value as the result of the corresponding future and to signal
this to the caller by setting the state of the future to complete:

〈··· 〈Id〉 futureId 〈 return V ; ···〉 k 〈 .List〉 fstack ···〉 active−task

〈··· 〈-1〉 futureId 〈·K 〉 k ···〉 active−task〈
··· 〈Id〉 fid

〈
active

completed

〉
state ·Bag

〈V 〉 result

···

〉
future

The active-task cell is resetted to indicate there is no current active task running.

Testing whether a future is resolved can be done using the ? operator:〈
future (Id ,_) ?

State =K completed

···

〉
k 〈Id〉 fid 〈State〉 state

The semantics of get. Get can only be called on future references and blocks
until the corresponding future contains a value, with the e�ect of �returning�
that value to the caller:〈

future (Id ,T ) . get(·Exps)

subtype( typeOf(V ),T ) y true?y unsafeCast(V ,T )

···

〉
k〈Id〉 fid〈V 〉 result

requires isExceptionV al(V ) 6=K true

The tasks associated to the �returning� value are the same to the ones from
the KOOL rule for return, because we want to also extend the dynamic type
checking aspect of the language over futures.

Another KOOL-related aspect is that of exception handling. Since KOOL
gives semantics for exceptional behaviour, this has to be extended in the case of
futures. Therefore, uncaught exceptions from a future call need to be propagated.

Exceptions and futures. If there is no exception handler in the exception stack,
the exception thrown by the throw statement is returned as an exceptional value:〈

throw V ;

return exception (V ) ;

···

〉
k 〈·List〉 xstack

When get is used on an exceptional value, the exception is thrown again:〈
future (Id ,_) . get(·Exps)

throw V ;

···

〉
k 〈Id〉 fid 〈 exception (V )〉 result

13

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



3.5 Yielding control and rescheduling

As shown above, the semantics of get is blocking, which can be counter-productive
when there are multiple concurrent asynchronous calls made to the same object.

The await statement allows one task to yield control until a condition is satis�ed:

await (E ?) ;

waiting (〈 SetItem (E ?)〉 guard)

await ( wait) ;

waiting (〈 SetItem ( wait)〉 guard)

To avoid overcomplicating the semantics, we restrict conditions to conjunctions
of disjunctions of elements of the Guard type (wait and Exp ?). There are more
rules like the above, handling conjunction and disjunction, and attempting to
simplify guards; however, if the condition cannot be reduced to true, the active
task will need to block and wait to be rescheduled.

Yielding control. When waiting cannot be reduced, the active task is moved to
the pool of waiting tasks and the object becomes idle:

〈Task 〈 waiting (〈Guards〉 guard) y K 〉 k〉 active−task

〈··· 〈-1〉 futureId 〈·K 〉 k ···〉 active−task

·Bag

〈〈Guards〉 guard 〈K 〉 waiting−k 〈Task〉 waiting−task−conf〉 waiting−task

Note that the guard cell argument of the waiting computation task, holding
a disjunction of basic guards represented as a set, becomes the guard cell of the
newly created waiting-task.

Departing from [8], we chose not to model tasks as a queue, but rather as a
bag, to capture any possible scheduling policy.

Simplifying guards. A waiting task's guard is removed if one of the futures it
waits upon completes:

〈··· SetItem ( future (Id ,_) ?) ···〉 guard

·Bag

〈Id〉 fid 〈 completed〉 state

The wait guard is used to unconditionally yield control; therefore, once the
task becomes a waiting task, we can dissolve the guard to allow its reactivation:〈

··· 〈··· SetItem ( wait) ···〉 guard

·Bag

···

〉
waiting−task

Regaining control. If an object is idle and the guard of one of its waiting tasks
has dissolved, then that waiting task can be reactivated:

〈··· 〈-1〉 futureId ···〉 active−task

〈Task 〈K 〉 k〉 active−task

〈〈K 〉 waiting−k 〈Task〉 waiting−task−conf〉 waiting−task

·Bag

3.6 Global and Local Future Invariants

In [8] a proof system for proving a set of monitor invariants that describe the
release points is presented. A monitor invariant i is a local property of an object

14

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



that must hold each time the await statement is scheduled. A monitor invari-
ant is proved in the presence of global invariants I, which describe invariant
properties of the future objects.

These invariants can be easily expressed as matching logic formulas [17],
which can be thought as con�guration terms with variables and constraints over
these variables. We exhibit this by two simple examples. Let I be the global
invariant: for any future z associated to the method m of the class C, if the state
of z is completed then the return value is positive. I is formally expressed by the
following matching logic formula, written using the abstraction mechanism:

〈C〉mainClass 〈Oid〉 oid〈··· ListItem(_, 〈··· m 7→ L ···〉 env ···〉 envStack

〈Oid〉 location〈lookup(L)〉 closure 〈V 〉 result 〈completed〉 state
−→ V > 0

In the left hand side of the implication we have (the abstraction of) a con�gura-
tion term, which is a particular matching logic formula: the �rst line is a pattern
matching objects of the class c having the method m stored at location L, and
the second line is a pattern matching futures associated to the method m (via
location L), and that are completed and have the return value V . The object
reference Oid connects the future with its associated object. In the right hand
side of the implication is the constraint on V .

Similarly, a monitor invariant saying that "for any instance of the class C, its
�eld fld must have a nonzero value at any release point" is formally expressed
as follows:

〈await ···〉 k 〈··· fld 7→ X ···〉 env 〈C〉 crntClass −→X 6= 0

Writing the global and monitor invariants as matching logic formulas has the
advantage that they are expressed in the same logic used to give semantics for the
programming language. This allows the direct use of the semantics for proving
the correctness of such properties. In particular, the correctness of invariants can
be proved using the symbolic execution and the circular coinduction technique
described in [2]. More precisely, that general technique can be combined with
the proof system given in [8] to obtain a specialized prover parametric in the
language de�nition. Since matching logic formulas are written at a lower level, by
considering the con�guration as particular formulas, a richer class of properties
can be expressed. On the other hand, the abstraction level used in [8] can be
preserved by developing tools that automatically translate higher-level formulas
into matching logic formulas following the idea used in the MatchC prover [22].

4 Experiments

A main advantage of the formal semantics de�ned in K is that they are directly
executable using the K tool. A �rst experiment we did was to test if the KOOL
programs, used to test the KOOL de�nition, can be executed with the new
semantics. All programs, excepting those including threads, were successfully
executed and their executions produced the same outputs with those obtained
with the de�nition of KOOL.

15

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



Multithreading de�ned through futures. Even if the threads were removed from
KOOL to de�ne KFUTURE, the concept of threads can be somehow regained
at the programming level. For example, one may de�ne a base class Thread as
follows:

class Thread {
!void id;
void run() { } // to be overridden
void start() { id = this ! run(); }
void join() { await(id ?); }

}

Then, speci�c threads can be de�ned by extending the class Thread with par-
ticular behaviour and overriding the method run.

The Thread class enables the concurrent execution of multiple threads. Note,
however, that KOOL's globally shared memory is no longer directly available to
the programmer, each object now carrying its own memory.

Nevertheless, the objects themselves are still globally shared and that su�ces
from a programming point of view. Programmers need only to assume a shared-
memory model where all object data is hidden and thus only accessible through
the interfaces provided by the objects, which is considered good object-oriented
programming discipline.

Hence, KOOL with futures brings relative little change to the programming
model, while providing certain important bene�ts at a semantics level: futures
allow for all accesses to memory to be clearly sequentialized, enabling better
abstraction and reasoning techniques for program analysis and veri�cation.

Future-induced deadlocks. We tested the de�nition on various examples in order
to see if there is a combination of method calls for foreign objects and those for
the current object that leads to a deadlock. (Un)Fortunately we found such an
example:

class A {
B b;
void A() { }
void setB(B b) { this.b = b; }
void callB() { b.c (); }
}

class B {
A a;
void B(A a) { this.a = a; a.setB(this); }
void c() { print("It works!"); }
void callA() { a.callB (); }

}

class Main {
void Main() {
A a = new A();
B b = new B(a);
b.callA ();

}
}

The A object a has a reference to the B object b, and the object b has a reference
to a. The call of b.callA() triggers the call of a.callB(), which in turn triggers
the call of b.c(). The execution blocked on a con�guration with two active

16

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



futures, the ones for b.callA() and a.callB(), and a sleeping future , that for
b.c(). Although not present in Creol, this problem seems to originate in the
identi�cation between processes and objects proposed in [8].

5 Conclusion and Future Work

We presented an executable formal semantics, de�ned using the K Framework,
for an object-oriented programming languages with asynchronous method calls
modelled with futures. We used KOOL � an object oriented programming lan-
guage already de�ned in K for teaching and research purposes � and we followed
the line from [8] for the de�nition of the futures. However, there are some im-
portant points where the two approaches di�er, e.g., the treatment of threads,
method calls for the current object, the scheduling of the tasks inside of an object
process. A main advantage of using K Framework is that the formal semantics of
the language is directly executable by the K tool, hence no further encoding of
the formal semantics to an executable framework is needed. The designed de�ni-
tion can be tested on programs, analysed, and adjusted according to the desired
behaviour. In this way we found several more natural solutions for KFUTURE
than those proposed in [8]. We also detected a case when the combination of the
method calls for foreign objects with those of the current object can lead to a
deadlock.

This exercise to de�ne KFUTURE starting from that of KOOL was also a
good test for the modularity of the K Framework. The con�guration of KFU-
TURE is strongly di�erent from that of KOOL: some cells were removed (e.g.
those for threads), some cell have been added (e.g. for objects, futures, auxiliary
constructs), and the nesting structure have been substantially changed. In this
context, it is expected that the rules of KOOL to be changed in order to ac-
commodate with the new con�guration. This did not happen: from the 129 rules
of KOOL, 8 have been removed because they give semantics for threads and 13
have been replaced with other 49 that give the semantics to both implicit and
explicit futures. Besides the modular aspect of K, this numbers show also that
the change is not trivial. Since the semantics is directly executable, all details
have to be specifed.

The K de�nition of the new language, KFUTURE, can be found on the
github repository, http://github.com/roKmania/KFuture, and it can be exe-
cuted with the version 3.5.2 of the K tool, https://github.com/kframework/
k/releases/tag/v3.5.2.

This exercise is a �rst step toward a methodology of how to add asynchronous
methods/function calls with futures to an existing programming language de-
�ned in K. This methodology could allow to generalise the proof system proposed
in [8], for verifying monitor invariant of the release points, to a generic proof sys-
tem expressed in the terms of matching logic [17] and reachability logic [6].

17

Boer's Festschrift, LNCS 9660, pp 325-343. 2016

http://github.com/roKmania/KFuture
https://github.com/kframework/k/releases/tag/v3.5.2
https://github.com/kframework/k/releases/tag/v3.5.2


References

1. E. Ábrahám, I. Grabe, A. Grüner, and M. Ste�en. Behavioral interface description
of an object-oriented language with futures and promises. J. Log. Algebr. Program.,
78(7):491�518, 2009.

2. A. Arusoaie, D. Lucanu, and V. Rusu. A Generic Framework for Symbolic Execu-
tion: Theory and Applications. Research Report RR-8189, Inria, Sept. 2015.

3. D. Bogd na³ and G. Ro³u. K-Java: A Complete Semantics of Java. In Proceed-
ings of the 42nd Symposium on Principles of Programming Languages (POPL'15),
pages 445�456. ACM, January 2015.

4. D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous and deterministic objects.
In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages
123�134. ACM, 2004.

5. D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous sequential processes.
Inf. Comput., 207(4):459�495, 2009.

6. A. �tef nescu, �. Ciobâc , R. Mereuµ , B. M. Moore, T. F. �erb nuµ , and G. Ro³u.
All-path reachability logic. In Proceedings of the Joint 25th International Confer-
ence on Rewriting Techniques and Applications and 12th International Confer-
ence on Typed Lambda Calculi and Applications (RTA-TLCA'14), volume 8560 of
LNCS, pages 425�440. Springer, July 2014.

7. O. Danvy and L. R. Nielsen. Refocusing in reduction semantics. RS RS-04-26,
BRICS, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, November 2004. This report supersedes BRICS report RS-02-04. A pre-
liminary version appears in the informal proceedings of the Second International
Workshop on Rule-Based Programming, RULE 2001, Electronic Notes in Theoret-
ical Computer Science, Vol. 59.4.

8. F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future.
In Programming Languages and Systems, 16th European Symposium on Program-
ming, ESOP 2007, Held as Part of the Joint European Conferences on Theory and
Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007,
Proceedings, volume 4421 of Lecture Notes in Computer Science, pages 316�330.
Springer, 2007.

9. C. C. Din and O. Owe. A sound and complete reasoning system for asynchronous
communication with shared futures. J. Log. Algebr. Meth. Program., 83(5-6):360�
383, 2014.

10. C. Ellison and G. Ro³u. An executable formal semantics of C with applications.
In Proceedings of the 39th Symposium on Principles of Programming Languages
(POPL'12), pages 533�544. ACM, 2012.

11. D. Filaretti and S. Ma�eis. An executable formal semantics of PHP. In ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Swe-
den, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in Com-
puter Science, pages 567�592. Springer, 2014.

12. D. P. Friedman, M. Wand, and C. T. Haynes. Essentials of Programming Lan-
guages. MIT Press, Cambridge, MA, 2nd edition, 2001.

13. L. Henrio and M. U. Khan. Asynchronous components with futures: Semantics and
proofs in Isabelle/HOL. Electr. Notes Theor. Comput. Sci., 264(1):35�53, 2010.

14. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci., 365(1-2):23�66, 2006.

18

Boer's Festschrift, LNCS 9660, pp 325-343. 2016



15. R. H. H. Jr. Multilisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501�538, 1985.

16. D. Park, A. �tef nescu, and G. Ro³u. KJS: A complete formal semantics of
JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI'15), pages 346�356. ACM, June
2015.

17. G. Ro³u. Matching logic � extended abstract. In Proceedings of the 26th Interna-
tional Conference on Rewriting Techniques and Applications (RTA'15), volume 36
of Leibniz International Proceedings in Informatics (LIPIcs), pages 5�21, Dagstuhl,
Germany, July 2015.

18. G. Ro³u and T. �erb nuµ . Kool � typed � dynamic. K Tutorial,
http://www.kframework.org/index.php/K_Tutorial.

19. G. Ro³u and A. �tef nescu. From Hoare logic to matching logic reachability.
In Proceedings of the 18th International Symposium on Formal Methods (FM'12),
volume 7436 of Lecture Notes in Computer Science, pages 387�402. Springer, 2012.

20. G. Ro³u, A. �tef nescu, �. Ciobâc , and B. M. Moore. One-path reachability logic.
In Proceedings of the 28th Symposium on Logic in Computer Science (LICS'13),
pages 358�367. IEEE, June 2013.

21. G. Ro³u and T. F. �erb nuµ . An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397�434, 2010.

22. G. Ro³u and A. �tef nescu. Checking reachability using matching logic. In
OOPSLA, pages 555�574. ACM, 2012. Also available as technical report http:

//hdl.handle.net/2142/33771.
23. A. Welc, S. Jagannathan, and A. L. Hosking. Safe futures for java. In Proceedings

of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San
Diego, CA, USA, pages 439�453. ACM, 2005.

24. M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
second edition edition, 2009.

25. A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Object-oriented concur-
rent programming-modelling and programming in an object-oriented concurrent
language, ABCL/1. In Object-oriented concurrent programming, pages 55�89, 1987.

19

Boer's Festschrift, LNCS 9660, pp 325-343. 2016

http://hdl.handle.net/2142/33771
http://hdl.handle.net/2142/33771

	Towards a Kool Future

