
Program Verification by Coinduction

Brandon Moore
Univeristy of Illinois at Urbana-Champaign

bmmoore@illinois.edu

Grigore Rosu
Univeristy of Illinois at Urbana-Champaign

bmmoore@illinois.edu

Abstract
We present a program verification framework based on coinduction,
which makes it feasible to verify programs directly against an op-
erational semantics, without requiring intermediates like axiomatic
semantics or verification condition generators. Specifications can
be written and proved using any predicates on the state space of the
operational semantics.

We implement our approach in Coq, giving a certifying language-
independent verification framework. The core proof system is
implemented as a single module imported unchanged into proofs of
programs in any semantics. A comfortable level of automation is
provided by instantiating a simple heuristic with tactics for language-
specific tasks such as finding the successor of a symbolic state,
and for domain-specific reasoning about the predicates used in a
particular specification. This approach also smoothly allows manual
assistance at points the automation cannot handle.

We demonstrate the power of our approach by verifying algo-
rithms as complicated as Schorr-Waite graph marking, and the ver-
satility by instantiating it for object languages in several styles
of semantics. Despite the greater flexibility and generality of our
approach, proof size and proof/certificate-checking time compare
favorably with Bedrock, another Coq-based certifying program veri-
fication framework.

1. Introduction
Formal verification is a powerful technique for ensuring program
correctness, and approaches such as axiomatic semantics and verifi-
cation condition generators make proofs feasible for many languages.
However, these add substantially to the effort of formally specifying
a language.

Even if only a proof system is desired, it is necessary to show that
it is faithful to the desired object language. This generally requires
an executable and thus testable semantics1, and a proof of soundness.
If two semantics are required, then every construct of the language
must be defined twice. Some features, especially loops or mutual
recursion, require proof rules substantially more complicated than
corresponding rules of an operational semantics. A semantics for
a mature language such as C[9], Java[5], or JavaScript[4] can take
several years, even without giving multiple semantics.

In short, standard approaches are known to work well for many
languages, but they only give a plan for designing and implementing
a program verification framework for each new language, rather than
theorems or systems that can be reused with many languages. To
use a software engineering metaphor2, Hoare Logic[13] is a design
pattern[11] rather than a library.

This paper presents instead a single language-independent proof
framework. The proof system requires only an operational semantics

1 attempting to execute an axiomatic semantics by proof search as in [25]
has not been demonstrated for realistic languages or test suites
2 less metaphorical when we formalize our mathematics in proof assistants

Minimal granularity
〈while (x != 0) {x-=1} | x 7→ 3〉
〈while (x != 0) {x-=1} | x 7→ 2〉
〈while (x != 0) {x-=1} | x 7→ 1〉
〈while (x != 0) {x-=1} | x 7→ 0〉

〈skip | x 7→ 0〉
Modest granularity

〈while (x != 0) {x-=1} | x 7→ 1〉
〈if (x != 0) {x-=1; while (x != 0) {x-=1}} | x 7→ 1〉
〈if (1 != 0) {x-=1; while (x != 0) {x-=1}} | x 7→ 1〉

〈if (true) {x-=1; while (x != 0) {x-=1}} | x 7→ 1〉
〈x-=1; while (x != 0) {x-=1} | x 7→ 1〉
〈x:=0; while (x != 0) {x-=1} | x 7→ 1〉
〈skip; while (x != 0) {x-=1} | x 7→ 0〉

〈while (x != 0) {x-=1} | x 7→ 0〉
〈if (x != 0) {x-=1; while (x != 0) {x-=1}} | x 7→ 0〉
〈if (0 != 0) {x-=1; while (x != 0) {x-=1}} | x 7→ 0〉
〈if (false) {x-=1; while (x != 0) {x-=1}} | x 7→ 0〉

〈skip | x 7→ 0〉

Figure 1. Example executions of example loop

of a language, given as a transition relation on a set of configurations.
The core of the approach is a single language-independent theorem
which gives a coinduction principle for proving that certain claims
about paths among configurations hold in a particular transition
relation. Working in a proof assistant, the key theorem is proved
once and then literally instantiated with different relations to sup-
port verification in different programming languages. Hoare-style
specifications can be straightforwardly reduced to such claims, as
shown in [19]. The key theorem applies also to nondeterministic
semantics, but we focus in this paper on deterministic languages for
simplicity.

Proof automation is essential for the practicality of any program
verification approach. We demonstrate our proofs can be effectively
automated, on examples including heap data structures and recursive
functions. We describe our automation strategy, the division of the
implementation into reusable and language-specific components,
and how we incorporate manual assistance on problems which are
almost completely automated.

We first present our approach and a detailed example proof to
illustrate it, then present experimental results and discuss proof au-
tomation before returning to a general soundness and completeness
result.

2. Examples
We will illustrate how we formulate semantics and specifications
with the following simple loop.

while (x != 0) {x-=1}

Technical Report http://hdl.handle.net/2142/73177, February 2015

Two potential execution traces of the loop are given in Figure 1.
Both take sufficiently fine steps for our approach to work. The
longer trace takes steps of about the size we would expect from
an evaluation contexts or small step semantics. Finer steps would
not be a problem. The “minimal” trace is the coarsest semantics for
which our approach is useful.

2.1 Specification
We can see this loop can only exit normally with x having the value
0, and will do so starting from non-negative integers. The loop may
run forever if the language includes unbounded integers, which we
assume to illustrate non-termination.

The claim we wish to make is that any state entering the loop
with the variable x defined will either run indefinitely or reach a
state which has just exited the loop, assigns x the value 0, and leaves
any other local variables unchanged from the initial state. In some
imaginary Hoare logic with a “partial-correctness” interpretation
this might be written as{{

>
}}

while (x != 0) {x-=1}
{{

x= 0
}}

This sort of notation is language-specific in several ways. Code
written between the predicates is translated to some relation between
the code of initial and final states, program variables are written
directly in place of their values in the predicates, and some framing
condition governs what parts of the state are assumed not to change.
In the interests of a language-independent notation we will dispense
with these convenient conventions, and write a specification directly
in terms of the underlying states of a transition relation.

Suppose that a configuration of the transition system defining our
example language consists of a pair 〈T | σ〉 of a current statement
T and a store σ mapping identifiers to values. Then the desired
specification is written

∀n, T, σ . 〈while (x!=0) {x -= 1}; T | x 7→ n, σ〉
⇒ {〈T | x 7→ 0, σ〉}

A reachability claim c⇒ P is valid if the initial configuration c can
reach a state in the set P or can take an infinite number of steps. The
leading universal quantification gives a collection of claims making
up our specification.

In general, we suppose a semantics consists of a set C of
configurations and a step relation R ⊆ C × C. We also write
a →R b for (a, b) ∈ R, and drop the subscript when R is
understood. Conversely, we subscript the claim arrow ⇒ when
it is necessary to be explicit about the transition relation. We define
the set of valid claims validR ⊆ C × P(C) as

validR ≡ {(c, P) | c⇒R P}

This approach to specification reduces claims about particular
programs to a uniform sort of claim about the language semantics
itself, asking if certain sorts of paths exist among various states in
the configuration space of the semantics.

2.2 Proof
Now we introduce the proofs of our system. We begin with a
direct but informal argument for the correctness of the example
specification, which relies on the simple and predictable behavior of
the example loop. The proof is divided into local reasoning about
short sequences of execution steps from symbolic configurations,
and global arguments about how these path segments can be fit
together. Then we introduce a lemma which replaces and generalizes
the global argument, and requires less precise local reasoning than
the original informal proof.

Assume an operational semantics for our language where

〈while (x!=0) {x-=1}; T | x 7→ n, σ〉
→+ 〈while (x!=0) {x-=1}; T | x 7→ n− 1, σ〉

for n 6= 0 and any T and σ, and

〈while (x!=0) {x-=1}; T | x 7→ 0, σ〉 →+ 〈T | x 7→ 0, σ〉
From this we can informally argue that the specification is valid.

For n ≥ 0 we get a path reaching the target state by induction on n,
and for n < 0 we can assemble an infinite path showing execution
diverges, by concatenating the path segments starting with x equal
to n, n− 1, n− 2, etc.

This is sound, but too specific. One problem is that this form
of argument requires deciding in advance which configurations
can diverge. It is also excessively specific to describe precisely the
single state which will be reached after one loop iteration. Even
in a deterministic language it is often most appropriate to give
specifications that permit multiple results, such as not specifying
the precise address where freshly heap-allocated results will be
allocated at.

In fact it is sufficient to check that states of the form

〈while (x!=0) {x-=1}; T | x 7→ n, σ〉
with n 6= 0 reach some state of the form

〈while (x!=0) {x-=1}; T | x 7→ n′, σ〉
in a positive number of steps, while still checking that the initial
state with n = 0 reaches the desired target state.

It should be plausible this suffices: For any initial state we either
reach an acceptable target state, or we can take some steps and reach
another state that we claimed reaches the same target set. Simply
wandering forward along these path segments will either eventually
actually reach an acceptable target state, or extend forever to give
an infinite path. This will be made precise in terms of coinduction
when we prove the soundness of our approach in Section 5.

Now we introduce a proof lemma. Fix a transition relation R
on domain C. We identify reachability claims about individual
configurations with pairs in C × P(C) and specifications with
subsets S ⊂ C × P(C). Define an operation

stepR(S) = {(c, P) | c ∈ P ∨ ∃d.(c, d) ∈ R ∧ (d, P) ∈ S}
We will see later that the set of all valid claims is in fact the greatest
fixpoint of this operation (in a lattice of sets ordered by inclusion).
Given any monotone F : P(C ×P(C))→ P(C ×P(C)), define
the F -closure operation F ∗ by

F ∗(X) = µY . F (Y) ∨X
The operation Y 7→ F (Y) ∨ X is monotone for any X . so
all the fixpoints exist and we have a well-defined function F ∗ :
P(C × P(C))→ P(C × P(C)). With these definitions we state
the lemma

Lemma 1. S ⊆ validR if S ⊆ stepR(step
∗
R(S))

We prove a generalization in Section 5. Now we prove our
example, to demonstrate that proofs using this style of lemma are
closely based on symbolic execution in the semantics.

As a set of claims, our example specification is

S ≡
{(
〈while (x!=0) {x-=1}; T | x 7→ n, σ〉
, {〈T | x 7→ 0, σ〉}

)
| ∀n, T, σ

}
Applying the proof lemma, it suffices to show that

S ⊆ stepR(step
∗
R(S)) (1)

Suppose our transition relation R follows the “Modest granu-
larity” trace in Figure 1. Then all of the initial configurations in

Technical Report http://hdl.handle.net/2142/73177, February 2015

our specification have a first step which unfolds the while loop. In
symbols, for any n, T, σ,

〈while (x!=0) {x-=1}; T | x 7→ n, σ〉 →R

〈if (x!=0) {x-=1; while(x!=0) {x-=1}}; T | x 7→ 0, σ〉
We use this in the proof of the original inclusion (1) by choosing the
second case of the disjunction in stepR and instantiating d to match
this step. Thus it suffices to show

{(〈if (x!=0){x-=1; while(x!=0){x-=1}}; T | x 7→ n, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀n, T, σ} ⊆ step∗R(S)

These configurations all can take homologous steps to look up the
program variable. Unfolding the fixpoint as stepR(step

∗
R(S)) ⊆

stepR(step
∗
R(S))∪S = step∗R(S) exposes an application of stepR

on the right hand side. Then we can take an execution step as before
to reduce the goal to

{(〈if (n!=0){x-=1; while(x!=0){x-=1}}; T | x 7→ n, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀n, T, σ} ⊆ step∗R(S)

more steps evaluate the if condition to leave the goal

{(〈if (n 6= 0){x-=1; while(x!=0){x-=1}}; T | x 7→ n, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀n, T, σ} ⊆ step∗R(S)

The if-condition is now a single boolean constant, whose concrete
value is given by the symbolic expression n 6= 0.

We can make a case distinction by using the fact that A ⊆ X
and B ⊆ X imply A ∪B ⊆ X for any sets A,B,X . We split our
set of claims into the subset with n = 0,

{(〈if (false){x-=1; while(x!=0){x-=1}}; T | x 7→ 0, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀T, σ} ⊆ step∗R(S)

and the rest,

{(〈if (true){x-=1; while(x!=0){x-=1}}; T | x 7→ n, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀T, n, σ, n 6= 0} ⊆ step∗R(S)

Translating execution steps to proof steps as before leaves

{(〈T | x 7→ 0, σ〉, {〈T | x 7→ 0, σ〉}) | ∀T, σ} ⊆ step∗R(S)

and

{(〈while (x!=0){x-=1}; T | x 7→ n− 1, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀T, n, σ, n 6= 0} ⊆ step∗R(S)

In the n = 0 case the current state matches the target state. We
conclude by using the first case c ∈ P in the definition of stepR to
reduce to the trivial hypothesis

〈T | x 7→ 0, σ〉 ∈ {〈T | x 7→ 0, σ〉}
For the non-zero case, we have arrived at a set of claims that

are contained in the initial specification. We use this by unfolding
the fixpoint step∗R(S) differently, S ⊆ stepR(step

∗
R(S)) ∪ S =

step∗R(S). This reduces the goal to showing the inclusion

{(〈while (x!=0){x =1}; T | x 7→ n− 1, σ〉
, {〈T | x 7→ 0, σ〉}) | ∀T, n, σ, n 6= 0} ⊆ S

This holds by instantiating the variable n in the definition of S with
the expression n− 1, and concludes the proof.

Lemma 1 can obviously be used with any operational semantics.
This simple example served to illustrate in detail that a simple
statement about subsets and fixpoints can be used for verification,
and understood as a language-independent proof system allowing
proof steps of finishing trivially, taking a symbolic step, and applying
a claim from the specification being proved. Our full coinduction
theorem allows a compositional choice of additional rules, and

Size (lines) Time (s)

Example Code Spec. Proof Prove Check

Simple
undefined 2 3 1 3.5 2.0
average3 2 5 1 4.0 1.2

min 3 4 2 3.6 1.0
max 3 4 2 3.6 1.0

multiply 9 7 1 12.4 2.4
sum(rec) 6 8 6 5.5 1.3
sum(iter) 5 12 6 8.1 1.5

Lists
head 1 6 1 2.6 1.2

tail 1 6 1 2.5 1.1
add 4 16 1 4.5 1.4

swap 9 13 1 19.6 4.2
dealloc 4 7 1 8.5 1.8

length(rec) 4 12 1 7.8 1.9
length(iter) 5 17 1 9.4 2.0

sum(rec) 6 7 1 9.3 2.1
sum(iter) 5 11 1 12.6 2.3

reverse 7 11 3 22.0 3.7
append 7 12 3 22.3 4.3

copy 13 23 3 101.5 15.5
delete 15 60 35 83.3 10.8

Trees
height 8 7 3 26.7 4.2

size 5 7 1 11.4 2.5
find 5 12 2 20.9 3.2

mirror 6 16 1 24.2 5.6
dealloc 14 33 1 33.8 6.8

flatten(rec) 10 18 1 43.7 8.5
flatten(iter) 28 35 28 270.7 49.6

Schorr-Waite
tree 14 91 116 105.1 14.4

graph 14 91 203 232.9 34.4

Table 1. Proof statistics

our soundness and relative completeness results in Section 5 state
that our simple approach is as powerful as any other verification
method can be. However, the crucial aspect of our approach is that
it maintains these desirable results for all programming languages
given by their operational semantics, at no additional definitional
or proof effort. Compare that with the current state-of-the-art in
mechanical verification, where in order to obtain a proof system
for a new language given by its (trusted) operational semantics, an
additional, axiomatic semantics needs to be defined, and language-
specific and tedious soundness proofs need to be produced.

The question is: “Can this simple approach really work?”

2.3 Experiments
The rest of this section describes a range of examples we have
verified in Coq with our system. Overall statistics are presented
in Table 1. Times were measured with the 64-bit Linux version
of Coq 8.4pl2, on a laptop with a i7-3720QM processor and
1600Mhz memory. We describe the languages, predicates, and proof
automation afterwards.

Size attempts to count content, ignoring comments, blank lines,
and punctuation. We also ignore some fixed lines such as imports.
The specification size includes any functions or predicates defined
for a particular example in addition to the set of claims. The

Technical Report http://hdl.handle.net/2142/73177, February 2015

proof size similarly includes any lemmas, tactics, and proof hint
declarations in addition to the main body of the proof. The one-line
proofs are those solved completely by our automation.

Proving time is measured by compiling the Coq file containing an
example, and certificate checking time is measured by rechecking
the resulting proof certificate file, while skipping checks of any
included modules. Checking a proof certificate does not require
proof search or executing proof tactic scripts.

The simple examples are those which do not use the heap. The
minimum and maximum proofs required a hint to use standard
lemmas about the min and max functions. The sum program adds
numbers from 1 to n, and required an auxiliary lemma proving
an arithmetical formula. We describe one example in each of the
remaining categories in more detail.

2.4 Lists
The next group of examples deals with linked lists. We implement a
list node as a record value containing the integer value of that node,
and the address of the rest of the list (which is 0 to represent empty
lists).

Here is a statement which returns a copy of an input list, leaving
the input list unchanged.

if (x == 0)
{ return 0 }

else
{ y := alloc
; *y := {val = x->val, next = 0}
; iterx := x->next
; itery := y
; while (not (iterx == 0))
{ node := alloc
; *node := {val = iterx->val; next = 0}
; *itery := {val = itery->val; next = node}
; iterx := iterx->next
; itery := itery->next
}

; return y
}

Using abbreviated notation, the desired specification is

(<k> copy_code </k>
<store>... "p" |-> p ...</store>
<heap> asP hlist (rep_list A p), hrest </heap>
...)
=>

(exists p2,
<k> return p2 </k>
<store> _ </store>
<heap> rep_list A p2, hlist, hrest </heap>
...)

This says that if the code is executed in a state where the store binds
program variable p to the address of a linked list in the heap holding
the sequence of values in the abstract list A, it can only return with
the address of a freshly-allocated copy of the list, and the rest of the
heap unchanged.

For this program, repeating rep_list A p in the postcondition
would not be a strong enough specification, because it would
allow moving intermediate nodes in the input list, but the copy
operation should be usable as a subroutine even in code that holds
pointers to intermediate nodes in the input list. The asP pattern
binds the variable hlist to the exact subheap that satisfies the
pattern rep_list A p, which allows specifying that the input list
is unchanged.

We have not implemented this abbreviated notation. Our com-
plete specification also includes a claim about the loop, whose
precondition asserts that a non-empty initial segment of the list has
been copied, and itery holds the address of the last list node in the
copied segment.

The complete proof script for this example is

Proof. list_solver.
rewrite app_ass in * |-.
list_run. Qed.

We see associativity of list append was not automatically applied.
When the automated solver paused, it left a goal we abbreviate as

(<k> return v </k>
<heap> rep_list ((A++[x])++y::B) v , H </heap>
...)
=>
(exists p2,
<k> return p2 </k>
<heap> rep_list (A++x::y::B) p2 , H </heap>
...)

The abstract list is described with an unexpectedly associated
append, but the current state does satisfy the target. It was not
necessary to automate reasoning about associativity or to manually
complete this branch of the proof. After reassociating the expression
membership in the target set can be shown automatically, and this
is the first thing attempted when the list_run tactic resumes
automation.

The three examples with three-line proof required this assistance
with associativity. The delete example removes all copies of a value
from a linked list. The specification defined the desired operation as
a Coq function, and we did not automate reasoning about it.

The Bedrock[6] example SinglyLinkedList.v verifies a mod-
ule defining length, reverse, and append functions on linked lists.
It takes approximately 150 seconds to prove, and 50s to recheck.
Our results in Table 1 may be an unfair comparison as Bedrock’s
language can only store a scalar value in a heap location and our
code as presented in this section keeps an entire structure at an
address. For a more even comparison we modified the program and
specification to expect the value and next pointers at consecutive
addresses. To ensure no undesired functional was used, we made
a modified copy of our main language with records and built-in
memory allocation removed, under the bytewise directory in our
development. However, rather than costing performance, the ability
to make a single-field update without copying the other field actu-
ally improved performance. The modified examples can be verified
in respectively 6.5, 13, and 15 seconds. Rechecking these proof
certificates take 1.7, 2.4, and 2.6 seconds.

2.5 Trees
The next data structure we deal with is a binary tree. Tree nodes are
implemented as records containing a value and the addresses of left
and right children.

Two examples flatten a binary tree into a linked list by a preorder
traversal, deallocating the input tree.

One implementation is a recursive helper function which flattens
a tree onto the front of a given list

(<k> flatten_code </k>
<store>... "t" |-> t , "l" |-> l ...</store>
<heap>rep_tree T t, rep_list A l, H</heap>
...)
=>
(exists v,
<k> return v </k>
<heap>rep_list (tree2list T ++ A) v, H</heap>

Technical Report http://hdl.handle.net/2142/73177, February 2015

...)

Flattening is defined as a Coq function tree2list. This implemen-
tation was easily verified.

A more interesting implementation avoids recursion by using an
explicit stack, implemented as a linked list of pointers to subtrees.
To specify this list, the list predicate is generalized. Instead of just
taking a list of integers, the generalized predicate takes a list of any
type, plus a representation predicate for that type, and asserts that
the values in the abstract list are represented by the corresponding
numbers in the concrete list, along with some possibly-empty
subheaps. Instantiating this with the representation predicate for
trees gives a predicate rep_gen_list rep_tree trees for a
stack of trees. Here is the full Coq specification of the loop:

loop_claim :
forall c rest,
kcell c

= kra (KStmt tree_to_list_loop) rest ->
(alloc_mark c > 0)%Z ->

forall t l s tn ln sn,
store c ~= "t" s|-> KInt t

:* "l" s|-> KInt l
:* "s" s|-> KInt s
:* "tn" s|-> tn
:* "ln" s|-> ln
:* "sn" s|-> sn ->

forall ts lv hrest,
heap c |= rep_prop_list rep_tree ts s

:* rep_list lv l
:* hrest ->

tree_to_list_spec c (fun c’ =>
exists l’, exists store’,
kcell c’ = rest
/\ stk_equiv (stack c) (stack c’)
/\ store c’ ~= "l" s|-> KInt l’ :* store’
/\ functions c ~= functions c’
/\ (alloc_mark c’ >= alloc_mark c)%Z
/\ heap c’ |=

rep_list (trees2List (rev ts) ++ lv) l’
:* hrest)

The proof of the height function required some assistance with
the max function. The (exhaustive) find function required a manual
case split on the results of looking for the target value in the left
subtree. The recursive flatten function required more substantial
assistance because we did not provide automation for the generalized
list predicate.

2.6 Schorr-Waite
A standard example of complex invariants is the Schorr-Waite graph
marking algorithm [22], which overwrites pointers to maintain a
stack without using additional space but eventually restores the
graph.

The code verified implements the algorithm as presented in [12].
This version is written for cons cells with two pointers, and is
somewhat unusual in rotating pointers through all fields rather than
only having one disturbed field at a time. This rotation ensures the
first field of the current node is the next node to consider moving to,
whether that move is descending to a child or ascending the implicit
stack.

As with the earlier examples, heap data structures are handled by
defining a representation predicate satisfied by a concrete subheap
representing an abstract value. In particular, the predicate here
describes a connected graph of cells reachable from a current pointer.
To assert that the graph nodes are left in place, the abstract value
also contains the exact address where each node is allocated.

Pgm ::= FunDef ∗

FunDef ::= Id (Id∗,) { Stmt }

Exp ::= Id | Int | Bool
| - Exp | Exp + Exp | Exp - Exp | Exp * Exp | Exp / Exp
| not Exp | Exp and Exp | Exp or Exp
| Exp <= Exp | Exp < Exp | Exp == Exp
| Id (Exp∗,)
| alloc | load Exp
| Exp . Id | build Map

Stmt ::= skip | Stmt ; Stmt
| if Exp then { Stmt } else { Stmt }
| while Exp do { Stmt }
| Id := Exp
| * Exp := Exp | dealloc Exp
| Id (Exp∗,) | decl Id | return Exp | return

Figure 2. HIMP syntax

The simpler proof shows that the given code correctly marks a
tree, with no sharing or cycles. We extend this to general graphs
by considering the tree resulting from a depth first traversal. Using
dependent types we augment a tree with a list of earlier nodes,
and allow explicit backreferences. The overall specification says
the calling the marking function with a pointer to the root of an
unmarked graph and a remaining heap will return with the connected
graph marked but otherwise unchanged, and the remaining heap
untouched. For verified garbage collection, we would prove a lemma
that selecting a root divides any collection of cells into a connected
graph and remaining unreachable nodes.

To specify the inner loop of the algorithm, we define the encoded
stack and the untargeted part of the graph as a zipper[14] into the
DFS tree.

This proof involves quite a lot of manual effort. However, it is
almost entirely in manipulating our graph representation. As hoped,
almost all execution steps are automated, even when predicates in a
specification lack any automation.

A Schorr-Waite example in Bedrock 3 takes 22 minutes to prove
and over 4 minutes to recheck. Our version proves in under 4 minutes
and rechecks in 34s. Total file length is 564 in our system and 1408
lines in Bedrock, though some of the difference in time and space
may come from the Bedrock proof reasoning directly about graphs
as sets of nodes.

3. Example Languages and Predicates
The main language used in the examples is a structured imperative
statement language, extended with functions, a heap, and records.
We call it HIMP (from IMP with heap).

A configuration is a tuple with six slots. In addition to the
currently executing code and current local variable environment,
we add cells for a call stack, the heap, and a collection of function
definitions. An increment-only counter is a simple deterministic way
to choose fresh addresses.

For clarity of programs dealing with data structures, we allow
records with named fields as values. An entire record may be stored
in a heap location. Records may be nested. Fields and subrecords
do not have their own addresses.

The syntax of the language is given in Figure 2. A program is
simply a sequence of function definitions, which are transferred

3 Obtained from https://github.com/duckki/bedrock-examples/ at commit
4086a4f63e57

Technical Report http://hdl.handle.net/2142/73177, February 2015

Pgm ::= FunDef *

FunDef ::= name : Inst*

Inst ::= Dup n | Roll n | Pop | Push z | BinOp f | While Inst* Inst*
| If Inst* Inst* | Load | Store | Call name | Ret

Figure 3. Stack language syntax

to the table of functions before beginning execution by calling the
function named “main”. A function call first evaluates the arguments,
and then pushes the current code and scope as a new stack frame, and
starts executing the body of the function in a new scope initialized
to map the formal variables to the argument values.

Heap addresses are values. Heap access is provided by a deref-
erence expression ‘load’ and a heap assignment statement * Exp
:= Exp. The ‘alloc’ expression allocates a fresh heap location, and
the ‘dealloc’ expression deallocates an existing location. Records
access uses the field projection operator Exp . Id. The record con-
struction expression ‘build’ takes a map from field names to values
and evaluates the expression to produce a record value.

The ‘decl’ statement extends the local variable environment
with a new uninitialized variable. No statement introduces a local
scope, so it would suffice to allow variable declarations only at the
start of functions. The remaining expressions and statements are
entirely conventional.

3.1 Stack Language
We also implemented a simplified stack language, with syntax given
in Figure 3. Here the local state is a stack of values rather than a
map from identifiers, and it is not saved and restored when calling
functions. However, the heap is still a map indexed by integer
addresses, so we can implement data structures with the same
memory layout as in other examples.

The argument to the ‘Dup’ instruction is the natural number
offset of an existing stack entry to copy. The argument to the ‘Roll’
instruction is the number of further stack entries to lift over the top
entry. The argument to Push is the value to push. The argument to
BinOp is a binary operation to perform. To shorten the specification,
the argument to BinOp can be any Coq function.

3.2 Semantic Styles and Automating Steps
The only part of a proof that directly involves the transition relation
of a semantics is finding a successor for a configuration. To investi-
gate the difficultly of automating these steps we defined a transition
relation for a simple imperative language in three different styles:
small-step[16], evaluation contexts[10], and K[17], and verified a
simple loop.

A small-step semantics defines the transition relation inductively.
For small expressions a successor can be found by resolution using
the auto tactic, but the search depth must be increased and we may
not be able to control backtracking.

An evaluation-contexts semantics avoids a recursive definition of
the transition relation, but needs an auxiliary definition of contexts
and a plugging function. Coq’s native unification cannot decompose
a term into context and redex to apply rules to configurations, so a
custom tactic is required.

A K-style semantics extends the code in the configuration to a list
of terms, and evaluates within subterms by having a transition that
extracts the term to the front of the list, where it can be examined
directly. This allows a non-recursive definition of transition, whose
cases can be applied by unification. Given a tactic domain_solver
which can solve the side conditions of rules, the proof tactic
econstructor(domain_solver) will automatically use the first

case of the transition relation whose side conditions (if any) can all
be solved automatically.

3.3 Predicates
In general, a specification could use arbitrary predicates over con-
figurations. Within this design space we based our approach on
Matching Logic[20]. The most basic part of the matching logic ap-
proach is to provide for any term-forming operation a corresponding
pattern forming operation. This matches a value if the value can be
constructed by applying the term-former to values that respectively
match the sub-patterns.

For maps, the join pattern takes two map predicates and accepts
any map which is equivalent to the union of maps that respectively
satisfy the predicates. The empty and item patterns are satisfied
respectively by an empty map and a map with only the given binding.

A pattern existential quantifier matches a value if there is a
choice of the bound variable for which the body pattern matches
the value. The constraint patterns matches an empty heap, but
only if a logical statement is true, and is used to put constraints on
existentially quantified variables.

Using these basic patterns, we define the heap representation of
linked lists and binary trees by recursion over the abstract value.
The representation of list segments is

Fixpoint rep_seg (val : list Z) (tailptr : Z)
(p : Z) : MapPattern k k :=

(match val with
| nil => constraint (p = tailptr%Z)
| x :: xs => constraint (p <> 0%Z) :*
(existP p’,
(p h|-> KStruct (Struct

("val" s|-> KInt x
:* "next" s|-> KInt p’)%Map))

:* rep_seg xs tailptr p’)
end)%pattern.

An empty list segment is represented at address p in a heap only
when the heap is empty and p is actually equal to the final target
address. A non-empty list segment is represented in a heap when p
is the address of a linked list node in the heap which carries the first
value from the segment, and the next pointer of that node represents
the rest of the list segment in the rest of the heap.

The generalized list predicate mentioned in Section 2.5 is

Fixpoint rep_prop_list {A}
(P : A -> Z -> MapPattern k k) (val : list A)
(p : Z) : MapPattern k k :=
(match val with

| nil => constraint (p = 0%Z)
| x :: xs => constraint (p <> 0%Z) :*

existP v, existP next,
(p h|-> list_node v next
:* P x v
:* rep_prop_list P xs next)

end)%pattern.

The value in the list node is existentially quantified, and P x v may
match a subheap.

Trees are defined similarly, but recurse into two subtrees.

Fixpoint rep_tree t p : MapPattern k k :=
match t with

| Leaf => constraint (p = 0)%Z
| Node v l r => constraint (p <> 0)%Z
:* existP pl, existP pr,
(p h|-> tree_node v pl pr
:* rep_tree l pl :* rep_tree r pr)

end%pattern.

Technical Report http://hdl.handle.net/2142/73177, February 2015

With representation predicates defined in this style, whenever the
abstract value is partially known, evaluation simplifies the predicate
and exposes primitive heap assertions. Because of this, most of the
effort for making use of representation predicates is the reusable
work of writing tactics for handling the basic heap predicates.

Two cases which require some further automation are refining
the abstract value when a case split fixes information about the
concrete heap, and picking abstract values to match a claim of the
specification to the current state.

4. Proof Automation
An essential component for any practical verification approach is
proof automation. As the example proof in the previous section
demonstrated, every computational step is reflected in the proof, but
most are so simple they should not require human attention.

In particular, most steps do not introduce new symbolic variables,
introduce new facts about existing variable, or require proving any
facts about existing variables (beyond trivialities such as showing by
simple evaluation that some predicate holds for some term regardless
of the values of the symbolic variables).

The larger conceptual units in a proof, such as taking a step of
computation, correspond to some sequence of lower-level proof
steps, possibly leaving some further subgoal. A procedure imple-
menting such an operation is known as a proof tactic. In particular,
we implement our proof automation using the Ltac[8] tactic lan-
guage in Coq.

Our results were obtained with a simple overall heuristic, based
on the heuristic of the MatchC[18] system. The general idea is to
handle a proof goal of supporting a claim (c, P) in a way that makes
as much progress along program execution as possible. Here are
the possible steps, in order of expected progress. First, immediately
show c ∈ P if possible. Second, if some claim of the specification
covers c, take a step by transitivity. If no claim applies, take one
computational step according to the rules of the language. Finally,
if none of those cases apply, then it is necessary to make a case
distinction breaking c down into smaller cases, so some execution
rules (or other steps) apply.

The last case arises mostly from If-statements and other con-
ditional constructs, where a symbolic boolean value given by an
expression like x > 0 must often be split into a true and false case
to allow execution to proceed. Automatically completing a proof is
attempted simply by repeatedly trying to make progress as above
as many times a possible, recursing down all alternatives of a case
split.

As we implement this strategy in an interactive proof assistant,
it is easy to integrate manual assistance simply by having the tactics
leave a subgoal for the user. The user may resume automation by
reinvoking the appropriate tactic.

4.1 Reusability
The core logical content of our approach is a theorem that can
be proved once in a given proof assistant and reused for any
language. The procedural knowledge in our proof automation tactics
unfortunately require more customization, and contribute to the
incremental cost of supporting new language or programs. We
require a definition of the transition relation, but consider that part
of the cost of having a formal semantics of a language at all, rather
than counting it as a cost of supporting verification.

The main loop of our heuristic can be implemented as a parame-
terized tactic, so only tactics performing or used by the individual
steps need to be customized. Further more, defining semantics and
specifications in a particular style (as non-recursive inductively-
defined predicates) allows a generic tactic to select appropriate
claims for transitivity and rules for execution, given only a tactic
that can solve the hypotheses of the appropriate constructors. With

non-recursive definitions of transitions and specifications, these
hypotheses only involve reasoning about the domains making up
individual configurations, which is independent of the number of
rules in the semantics or number of clauses in the specification being
proved.

This domain reasoning involves three sorts of predicates. Some
deal with domains such as integers and finite maps which are
general enough that many semantics can share the same definitions.
Others deal with language specific predicates such as checking
whether a subexpression is considered to be completely evaluated.
However, to have an executable semantics these predicates must
return concrete results on concrete terms, and we have found that
the symbolic states in our example are sufficiently concrete that
expression simplification reduces these conditions to simple boolean
equalities, so these first two categories can be handled in reusable
ways. Finally, some predicates are specific to particular examples,
such as the definition of the heap representation of linked lists and
trees that we mention in Section 3.3.

A necessary subtlety in the automation of transitivity steps is
recognizing when a claim of the specification might be applicable
even though it could not be automatically applied. For example, if
the specification of a loop has a precondition which is not handled
automatically, falling through to taking a symbolic execution into
another iteration of the loop would result in proof automation
diverging. For our example languages it suffices to check if the
currently executing code matches that in the specification.

The remaining case of the overall heuristic is making a case
split. This is generally necessary only at a configuration where
an if-expression or other conditional construct is examining a
boolean value which is know only as a symbolic expression such
as x > 0 ∧ y ≤ 10. We currently rely on handwritten patterns
to recognize these cases and extract the expression to split on. It
may be possible to generate these patterns by anti-unification. Some
additional proof handling is necessary to turn boolean facts into more
useful decomposed hypotheses, such as (x > 0 ∧ y ≤ 10) = true
into x > 0 and y ≤ 10.

Overall, the work necessary to implement useful proof automa-
tion is almost independent of the number of rules of the language
semantics or specification involved, but depends only on the num-
ber and complexity of the domain predicates used in defining the
language language and the specification to be proved.

5. Soundness and Completeness
We present our results without generalizing beyond the setting of
monotone functions on a complete lattice (with completeness used
only to justify the existence of certain fixpoints). In particular, the
lattice of subsets of the set of all claims. Some readers may find
it helpful to regard preorders as categories and draw on intuitions
from recursion schemes for algebraic data types, but we do not need
the generality and confine categorical language to footnotes 4.

Results which depend only on the lattice structure use lattice
notation rather than set notation, such as x ≤ y rather than x ⊆ y,
x ∨ y instead of x ∪ y, etc. We lift join and union pointwise
to operators, so (F ∨ G)(x) = F (x) ∨ G(x). A least fixpoint
expression µX . F (X) denotes the least fixpoint of the operation
X 7→ F (X), and is only used when we know or immediately show
F monotone.

For a monotone function F , µF and νF respectively denote
the least and greatest fixpoints of F . An F -closed set is a set A
such that F (A) ≤ A. Dually, an F -stable set is a set A such that
A ≤ F (A). A defining property of least fixpoints is induction:
µF is a subset of any F -closed set. Dually, a defining property of
greatest fixpoints is coinduction: any F -stable set is a subset of νF .

4 Monotone functions are the functors of a preorder category.

Technical Report http://hdl.handle.net/2142/73177, February 2015

The Knaster-Tarski Theorem [23] states that any monotone function
on a complete lattice has a complete lattice of fixpoints, and as a
corollary that least and greatest fixpoints (not necessarily distinct)
exist.

A closure operation on a lattice is a monotone function C
satisfying the additional properties of being extensive (∀X,X ≤
C(X)) and idempotent (∀X,C(C(X)) = C(X)).5. Now we are
finished recalling preliminaries.

5.1 Soundness
First, we justify the name of the F -closure operation (defined
immediately before Lemma 1):

Lemma 2. For any monotone F , F ∗ is the least closure operator
at least as large as F . 6

Proof. First, establish that F ∗ is in fact a closure operator.
For monotonicity, fix A ≤ B. Then F ∗(A) ≤ F ∗(B) follows

by induction from

F (F ∗(B)) ∨A ≤ F (F ∗(B)) ∨B = F ∗(B)

For extensiveness, X ≤ F (F ∗(X)) ∨X = F ∗(X)
For idempotence, we need F ∗(F ∗(X)) = X . Extensiveness

gives F ∗(X) ≤ F ∗(F ∗(X)) so it suffices to show F ∗(F ∗(X)) ≤
F ∗(X). This follows by induction from

F (F ∗(X)) ∨ F ∗(X) ≤ F (F ∗(X)) ∨X ∨ F ∗(X)

≤ F ∗(X) ∨ F ∗(X)

= F ∗(X)

Second, show that F ≤ F ∗. Making use of extensiveness,

F (X) ≤ F (F ∗(X)) ≤ F (F ∗(X)) ∨X = F ∗(X)

Third, show F ∗ is the least such closure operator. Suppose G is
another closure operator with F ≤ G. Fixing X , F ∗(X) ≤ G(X)
holds by induction from F (G(X)) ∨X ≤ G(G(X)) ∨G(X) ≤
G(X)

One corollary is that the −∗ operation is itself monotone. If
F ≤ G, then G∗ is a closure operator and F ≤ G ≤ G∗ so
F ∗ ≤ G∗.

Now we are ready to state and prove our key coinduction theorem.
We define G is sound for F to mean F and G are monotone and
∀X,G(F (X)) ⊆ F (G∗(X)).

Theorem 1 (Coinduction with Rules). If G is sound for F , then for
any X , X ≤ F (G∗(X)) implies X ≤ νF .

Proof. As G∗ is a closure operation X ≤ G∗(X), so it suffices to
show G∗(X) ≤ νF. This follows by coinduction from G∗(X) ≤
F (G∗(X)), which follows by induction from

G(F (G∗(X))) ∨X ≤ F (G∗(X)).

By idempotence this is equivalent to the instance

G(F (G∗(X))) ∨X ≤ F (G∗(G∗(X)))

of the hypothesis that G is sound for F .

Note that F is always sound for F , and that ifG andH are sound
for F then G ∨H is also sound for F by monotonicity of −∗ and
the inclusions G,H ≤ G ∨H . So, we say that G is a valid derived
rule for F if G ∨ F is sound for R, and note that this property is
also preserved under union.

Lemma 3. validR = ν stepR

5 This is a specialization of the definition of a monad to the preorder category.
6 “least closure operator” is a specialization of “free monad”.

Proof. First we show validR is stepR-stable. Suppose (c, P) ∈
validR. If c ∈ P , then (c, P) ∈ stepR(validR) immediately.
Otherwise either c can take an infinite number of steps in R,
or reaches a successor in P . In either case there is a one-step
successor d with c →R d, and also (d, P) ∈ validR, so (c, P) ∈
stepR(validR).

Next we show validR is the largest stepR-stable set. Let X be
a set with X ⊆ stepR(X). For any (c, P) ∈ X , we make a case
distinction based on whether c can take an infinite number of steps
in R. If so then (c, P) ∈ validR already. If not, then relation R
is well-founded on the set of configurations reachable from c. By
well-founded induction we can assume that (d, P) ∈ validR for
any d with c→R d and (d, P) ∈ X . As (c, P) ∈ X ⊆ stepR(X)
we have either c ∈ P , in which case (c, P) ∈ validR immediately,
or that there exists a d with c →R d and (d, P) ∈ X . In this case
(d, P) ∈ validR by the inductive hypothesis. By the termination
assumption, d reaches a configuration in P . Then c reaches a
configuration in P as well, by following the step c →R d with
the same path.

By Lemma 3, instantiating Theorem 1 using stepR for F and G
gives Lemma 1. As we saw in Section 2.2, this allows multiple steps
of symbolic execution while proving a clause of the specification,
and appealing coinductively to claims which exactly satisfy the
current goal. For larger examples we need to be able to continue the
proof after appealing to the specification of loops or subroutines. As
with multiple-step symbolic execution, we can capture this reasoning
principle as a function for use with Theorem 1.

Lemma 4. Let trans be the function on claims defined as

trans(X) = {(c, P) | ∃Q.(c,Q) ∈ X ∧ ∀d ∈ Q, (d, P) ∈ X}.
Then trans∪ stepR is sound for stepR, for any R.

Proof. Suppose (c, P) ∈ trans(stepR(X)). Then there exists
some Q such that (c,Q) ∈ stepR(X) and for any d ∈ Q,
(d, P) ∈ stepR(X). Now, either c ∈ Q or there is some d with
c →R d and (d,Q) ∈ X . In the first case, c ∈ Q so (c, P) ∈
stepR(X), which is a subset of stepR((trans∨ stepR)

∗(X)). In
the second case we have (d, P) ∈ trans(X ∨ stepR(X)), so
(c, P) ∈ stepR(trans(X ∨ stepR(X))), which is also a subset
of stepR((trans∨ stepR)

∗(X)).

5.2 Relative Completeness
We are not presenting a syntactic proof system, so we carefully
consider how to formulate relative completeness. Intuitively, we
want to formulate the condition that any desired setX of valid claims
can be proven with our approach. This satisfied if X ⊆ validR

is the conclusion of an application of Theorem 1. However, this
condition is too strict. Proving of a Hoare triple may necessarily
require providing additional loop invariants. Likewise, proving a
specification of interest in our system may require also making
claims about loops and auxiliary functions. In our system this is
done by enlarging the original set of claims. The correct notion of
relative completeness is thus to ask whether the desired set X of
valid claims is contained in some larger set S for which we can
conclude S ⊆ validR as an application of Theorem 1.

For any set X and any choice of G we can in fact take the set
validR of all true claims. As part of showing validR is a fixpoint
we established that validR ⊆ stepR(validR). By monotonicity and
extensiveness,

validR ⊆ stepR(F
∗(validR))

This leaves only the goal of showing X ⊆ S = validR.
One might complain that this is trivial, but then one should

complain all the more about a conventional relative completeness

Technical Report http://hdl.handle.net/2142/73177, February 2015

result. Any general purpose specification language is necessarily
undecidable, so no syntactic proof system can be complete. Instead,
any relatively complete proof system has a rule with a hypothesis
of semantic validity in some predicate language, and the relative
completeness argument consists of tediously showing how to Gödel-
encode validity into the predicate language, and showing that the
rules of the proof system are strong enough to make use of such a
complicated predicate. We obtain an equally strong result.

6. Related Work
A number of prominent tools such as Why[3], Boogie[1, 15], and
Bedrock[6, 7] provide program verification for a fixed language,
and support other languages by translation if at all. For example,
Frama-C and Krakatoa respectively attempt to verify C and Java by
translation through Why, Spec# and Havoc respectively verify C#
and C by translation through Boogie. We are not aware of soundness
proofs for these translations.

All of these systems are based on a verification condition gen-
erator for their programming language. Bedrock is closest in archi-
tecture and guarantees to our system, as it is implemented in Coq
and verification results in a Coq proof certificate that the specifi-
cation is sound with respect to a semantics of the object language.
Bedrock supports dynamically created code, and modular verifica-
tion of higher-order functions, which we have not yet attempted.
Bedrock also makes more aggressive attempts at complete automa-
tion, which seem to be quite effective, but costs increased runtime.
Most fundamentally, Bedrock is built around a verification condition
generator for a fixed target language.

In sharp contrast to the above approaches, we believe that a small-
step operational semantics suffices for program verification, without
a need to define any other semantics, or verification condition
generators, for the same language. A language-independent, sound
and (relatively) complete coinductive proof method then allows
us to verify reachability properties of programs using directly the
operational semantics. Both the required human effort and the
performance of the verification task compare favorably with the
closest approach based on the above, Bedrock, at the same time
providing the same high confidence in correctness: the trust base
consists of the operational semantics of the language only.

A closely related approach to program verification based on oper-
ational semantics is reachability logic [21]. Reachability logic offers
a language-independent proof system for verifying reachability prop-
erties given a definition of an operational semantics as a collection
of rewrite rules. Our work in this paper resulted, in fact, from an
attempt to understand the soundness proof of the reachability logic
proof system in terms of coinduction.

A categorical generalization of our key lemma was introduced
as a recursion scheme in “Recursion Schemes from Comonads”[24].
The titular recursion scheme defines functions from an initial alge-
bra, and is parameterized also over a comonad satisfying a distribu-
tive law. Dualizing the construction to get “Corecursion Schemes
from Monads” (named λ-coiteration in [2]) and specializing to
preorder categories results in a lemma for showing that sets are
contained in a greatest fixpoint. Choosing to use a free monad gives
our Theorem 1, except with the hypothesis

∀X,G∗(F (X) ⊆ F (G∗(x))

This is however equivalent to our condition

∀X,G(F (X) ⊆ F (G∗(x))

It seems a number of weaker results are folklore. For example,
the Isabelle standard library includes a lemma

mono(f) ∧A ⊆ f(µx . f(x) ∪A ∪ νf) =⇒ A ⊆ ν(f)

which is an instance of our rule with the choice

g(x) = f(x) ∪ νf

7. Future Work
We have not used our coinductive approach for verifying higher-
order specifications. Verifying code that accepts objects or closures
generally requires preconditions making requirements about the
behavior of calling into those arguments. In some cases (e.g, when
all subclasses are known in advance) this can be split into a limited
set of allowed arguments and individual proofs. For the general case,
however, a specification may need to require that a whole set of
claims about the arguments are valid. We believe our approach
can be extended to such cases by parameterizing higher-order
specifications over set(s) of claims, and replacing “is valid” in such
preconditions with set membership.

The language-independence of our approach may be particularly
useful to allow verifying programs against slightly modified seman-
tics. Augmenting a semantics with cost counting might allow proofs
about performance or memory costs in addition to simple functional
correctness. Simply tracking the number of execution steps may
suffice for simple realtime systems. Modifying the semantics to
become stuck when such a counter expires gives an easy approach
to total correctness. We could also extend a language semantics
with descriptions of a surrounding system, such as operating system
services or network servers.

References
[1] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and

K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Proceedings of the 4th International Conference
on Formal Methods for Components and Objects, FMCO’05, pages
364–387, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-
36749-7, 978-3-540-36749-9. doi: 10.1007/11804192 17. URL
http://dx.doi.org/10.1007/11804192_17.

[2] Falk Bartels. On Generalised Coinduction and Probabilistic Specifica-
tion Formats: Distributive Laws in Coalgebraic Modelling. PhD thesis,
Vrije Universiteit Amsterdam, 2004.

[3] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei
Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011:
First International Workshop on Intermediate Verification Languages,
pages 53–64, Wrocław, Poland, August 2011. URL http://proval.
lri.fr/publications/boogie11final.pdf.

[4] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa Gardner,
Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and Gareth Smith.
A trusted mechanised javascript specification. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’14, pages 87–100, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535876.
URL http://doi.acm.org/10.1145/2535838.2535876.

[5] Denis Bogdănaş and Grigore Roşu. K-Java: A Complete Semantics
of Java. In Proceedings of the 42nd Symposium on Principles of
Programming Languages (POPL’15). ACM, 2015.

[6] Adam Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’11, pages 234–245, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0663-8. doi: 10.1145/1993498.1993526.
URL http://doi.acm.org/10.1145/1993498.1993526.

[7] Adam Chlipala. The bedrock structured programming system: Com-
bining generative metaprogramming and hoare logic in an extensible
program verifier. In Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP ’13, pages
391–402, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2326-
0. doi: 10.1145/2500365.2500592. URL http://doi.acm.org/10.
1145/2500365.2500592.

Technical Report http://hdl.handle.net/2142/73177, February 2015

http://dx.doi.org/10.1007/11804192_17
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
http://doi.acm.org/10.1145/2535838.2535876
http://doi.acm.org/10.1145/1993498.1993526
http://doi.acm.org/10.1145/2500365.2500592
http://doi.acm.org/10.1145/2500365.2500592

[8] David Delahaye. A tactic language for the system coq. In Proceedings
of the 7th International Conference on Logic for Programming and
Automated Reasoning, LPAR’00, pages 85–95, Berlin, Heidelberg,
2000. Springer-Verlag. ISBN 3-540-41285-9. URL http://dl.acm.
org/citation.cfm?id=1765236.1765246.

[9] Chucky Ellison. A Formal Semantics of C with Applications. PhD
thesis, University of Illinois, July 2012.

[10] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Th. Comp. Sci., 103(2):235–
271, 1992.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995. ISBN 0-201-63361-2.

[12] David Gries. The schorr-waite graph marking algorithm. Acta
Informatica, 11(3):223–232, 1979. ISSN 0001-5903. doi: 10.1007/
BF00289068.

[13] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969. ISSN 0001-0782. doi:
10.1145/363235.363259. URL http://doi.acm.org/10.1145/
363235.363259.

[14] Gérard Huet. The zipper. Journal of Functional Programming, 7:549–
554, 9 1997. ISSN 1469-7653. URL http://journals.cambridge.
org/article_S0956796897002864.

[15] K. Rustan M. Leino. This is boogie 2. Technical report, Microsoft
Research, June 2008. URL http://research.microsoft.com/
apps/pubs/default.aspx?id=147643.

[16] Gordon D. Plotkin. A structural approach to operational semantics.
Journal of Logic and Algebraic Programming, 60-61:17–139, 2004.
doi: 10.1016/j.jlap.2004.05.001. Original version: University of Aarhus
Technical Report DAIMI FN-19, 1981.

[17] Grigore Roşu and Traian Florin Şerbănuţă. K overview and SIMPLE
case study. Electronic Notes in Theoretical Computer Science, 304
(0):3 – 56, 2014. ISSN 1571-0661. doi: 10.1016/j.entcs.2014.05.
002. URL http://www.sciencedirect.com/science/article/
pii/S1571066114000383. Proceedings of the Second International
Workshop on the K Framework and its Applications (K 2011).

[18] Grigore Roşu and Andrei Ştefănescu. Checking reachability using
matching logic. In Proceedings of the 27th Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’12), pages 555–574. ACM, 2012.

[19] Grigore Roşu and Andrei Ştefănescu. From hoare logic to matching
logic reachability. In Proceedings of the 18th International Symposium
on Formal Methods (FM’12), volume 7436 of LNCS, pages 387–402.
Springer, Aug 2012. doi: 10.1007/978-3-642-32759-9 32.

[20] Grigore Roşu, Chucky Ellison, and Wolfram Schulte. Matching logic:
An alternative to Hoare/Floyd logic. In Michael Johnson and Dusko
Pavlovic, editors, Proceedings of the 13th International Conference
on Algebraic Methodology And Software Technology (AMAST ’10),
volume 6486 of Lecture Notes in Computer Science, pages 142–162,
2010. ISBN 978-3-642-17795-8.

[21] Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M.
Moore. One-path reachability logic. In Proceedings of the 28th
Symposium on Logic in Computer Science (LICS’13), pages 358–367.
IEEE, June 2013.

[22] H. Schorr and W. M. Waite. An efficient machine-independent
procedure for garbage collection in various list structures. Commun.
ACM, 10(8):501–506, August 1967. ISSN 0001-0782. doi: 10.1145/
363534.363554. URL http://doi.acm.org/10.1145/363534.
363554.

[23] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955. URL http:
//projecteuclid.org/euclid.pjm/1103044538.

[24] Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes
from comonads. Nordic J. of Computing, 8(3):366–390, September
2001. ISSN 1236-6064. URL http://dl.acm.org/citation.
cfm?id=766517.766523.

[25] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos:
a framework for axiomatic and executable specifications of memory
consistency models. In Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International, pages 31–, April 2004. doi:
10.1109/IPDPS.2004.1302944.

Technical Report http://hdl.handle.net/2142/73177, February 2015

http://dl.acm.org/citation.cfm?id=1765236.1765246
http://dl.acm.org/citation.cfm?id=1765236.1765246
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://journals.cambridge.org/article_S0956796897002864
http://journals.cambridge.org/article_S0956796897002864
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://www.sciencedirect.com/science/article/pii/S1571066114000383
http://www.sciencedirect.com/science/article/pii/S1571066114000383
http://doi.acm.org/10.1145/363534.363554
http://doi.acm.org/10.1145/363534.363554
http://projecteuclid.org/euclid.pjm/1103044538
http://projecteuclid.org/euclid.pjm/1103044538
http://dl.acm.org/citation.cfm?id=766517.766523
http://dl.acm.org/citation.cfm?id=766517.766523

	Introduction
	Examples
	Specification
	Proof
	Experiments
	Lists
	Trees
	Schorr-Waite

	Example Languages and Predicates
	Stack Language
	Semantic Styles and Automating Steps
	Predicates

	Proof Automation
	Reusability

	Soundness and Completeness
	Soundness
	Relative Completeness

	Related Work
	Future Work

