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Abstract
Despite the numerous static and dynamic program analysis tech-
niques in the literature, data races remain one of the most common
bugs in modern concurrent software. Further, the techniques that do
exist either have limited detection capability or are unsound, mean-
ing that they report false positives. We present a sound race detec-
tion technique that achieves a provably higher detection capability
than existing sound techniques. A key insight of our technique is
the inclusion of abstracted control flow information into the execu-
tion model, which increases the space of the causal model permitted
by classical happens-before or causally-precedes based detectors.
By encoding the control flow and a minimal set of feasibility con-
straints as a group of first-order logic formulae, we formulate race
detection as a constraint solving problem. Moreover, we formally
prove that our formulation achieves the maximal possible detection
capability for any sound dynamic race detector with respect to the
same input trace under the sequential consistency memory model.
We demonstrate via extensive experimentation that our technique
detects more races than the other state-of-the-art sound race detec-
tion techniques, and that it is scalable to executions of real world
concurrent applications with tens of millions of critical events.
These experiments also revealed several previously unknown races
in real systems (e.g., Eclipse) that have been confirmed or fixed by
the developers. Our tool is also adopted by Eclipse developers.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Diagnostics; Debugging aids

General Terms Algorithms, Design, Theory

Keywords Maximal Sound, Data Race, Prediction, Control Flow

1. Introduction
Some of the worst concurrency problems in multithreaded systems
today are due to data races, which occur when there are unordered
conflicting accesses in the program without proper synchrorniza-
tion. Data races are particularly problematic because they manifest
non-deterministically, often appearing only on very rare executions,
making them notoriously difficult to test and debug. We shall refer
to data races simply as races in this paper.
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initially x=y=0 resource z=0

Thread t1 Thread t2

1. fork t2
2. lock l
3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l
10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Figure 1. An example program with a race (3,10).

Although researchers have proposed a wide spectrum of tech-
niques [7, 10, 13, 14, 19, 21, 24, 28, 30, 31, 35] to combat races,
existing techniques are either unsound (by soundness we mean no-
false-positive in this paper) or have a limited detection capability.
The school of lockset-based techniques [14, 21, 28, 31] popular-
ized by Eraser [31] is known to be unsound, whereas the happens-
before (HB) based approaches [7, 13, 19, 24] are often very lim-
ited in detecting races, due to extra overly conservative HB edges.
Even though a recent development, causally-precedes (CP) [35],
improves the detection power by soundly relaxing the HB edges
between critical sections that have no conflicting accesses, it can
still miss many races. Consider, for instance, an execution of the
program in Figure 1. The program contains a race between lines
(3,10) that may cause an authentication failure of resource z at line
12, which in consequence causes an error to occur when z is used
at line 15. Supposing the execution follows an order denoted by the
line numbers, however, CP cannot detect this race because line 3
causally-precedes line 10, for the reason that the two lock regions
contain conflicting accesses to y. PECAN [21], another representa-
tive technique that uses a hybrid algorithm combining lockset and
a weaker form of HB, is able to detect this race by ignoring the HB
edges between critical regions. However, the hybrid algorithm is
unsound in general. For instance, if we switch lines 1 and 2, (3,10)
is no longer a race (because then line 10 will always happen-after
line 3), but PECAN will still report it.
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initially x=y=0 y is volatile
Thread t1 Thread t2

1. x = 1
2. y = 1

3. À r1 = y Á while(y == 0);
4. r2 = x

Figure 2. The two cases À and Á produce the same read/write
trace. However, (1,4) is a race in case À but not in case Á.

In this work, we present a sound dynamic race detection tech-
nique that achieves a much higher detection capability than existing
techniques. Our key observation is that the control flow information
between events in the execution (which is often ignored by exist-
ing techniques) can help significantly improve the race detection
ability. Consider the simple scenario in Figure 2 where y is volatile
and line 3 has two cases: À r1 = y and Á while(y == 0). For
case À, (1,4) is a race on x; while for case Á, it is not, because
line 4 is control-dependent on the while loop at line 3. However,
without considering the control dependence between operations,
the dynamic execution traces for these two cases are identical (both
following lines 1-2-3-4). Hence, a sound technique must conserva-
tively assume that a value read by a thread influences all subsequent
values produced by the same thread, which, in consequence, creates
a HB edge from line 2 to line 3 and misses the race in case À. How-
ever, with the control flow information, we can tell that, in case À,
line 4 is not control-dependent on line 3. In other words, regardless
of what value line 3 reads, line 4 will always be executed. There-
fore, we can safely drop the HB edge from line 2 to line 3, which
enables detecting the race (1,4). Similarly, we are able to detect the
race (3,10) in Figure 1 by dropping the HB edge from line 4 to line
8, because there is no control flow from line 8 to line 10 and hence
no need to ensure line 8 should read value 1 (written by line 4).

Our first contribution is to add a new type of events—branch—
into the execution model. Observing branch events is cheap at run-
time, however, it provides an abstract view of the control flow infor-
mation between events that enables a higher race detection power.
Moreover, inspired by the theoretical maximal causal model [33],
we develop a weaker maximal causal model that incorporates con-
trol flow information under the sequential consistency memory
model. Underpinned by the new model, we design a maximal race
detection algorithm that encodes all the valid trace reorderings al-
lowed by the model as a set of first-order logical constraints, and
uses an SMT solver to find races. By formulating race detection as
a constraint solving problem, our technique is both sound and max-
imal: every race it detects is real, accompanying with a valid trace
that can manifest it, and it detects all the possible races that can be
detected by any sound technique based on the same trace.

Our race detection algorithm is inspired by the work of Said
et al. [30], which also uses SMT-based analysis to detect races.
Unlike our approach, [30] does not consider control flow and it is
non-maximal. To ensure soundness, [30] requires the whole trace
read-write consistency: every read returns the same value as that
in the original trace (the value may be written by a different write,
though). However, this requirement limits the race exploration to
only a subset of the feasible traces. For example, [30] cannot detect
the race (1,4) in case À, because it requires line 3 to read the value
1 on y written by line 2, which rules out the incomplete trace 3-1-4
that can manifest the race (1,4). Similarly, [30] cannot detect the
the race (3,10) in Figure 1, as line 10 can only read value 1 on x
written by line 3. Instead, our technique is concerned with the read-
write consistency from the perspective of control dependence, and
generates only the constraints with respect to the events that have
control flow to the race related operations. Hence, our technique is
able to detect races in all feasible incomplete traces as well.

We have implemented our technique for Java and conducted ex-
tensive evaluation and comparison with the state-of-the-art sound
race detection techniques—HB, CP, and Said et al. [30]—on a wide
range of popular multithreaded benchmarks as well as real world
large concurrent systems. Our results show that our technique de-
tects significantly more races than the other approaches, demon-
strating the theoretically higher race detection capability of our ap-
proach with the control flow abstraction. Moreover, our technique
is practical: it has been applied to real complex executions with
tens of millions of critical events and is highly effective in detect-
ing real races. For the seven real systems, our tool detected 299 real
races in total. Comparatively, HB, CP, and Said et al. only detected
68, 76, and 158 races, respectively. Our experiments also revealed
11 previously unknown races in these real systems that have been
confirmed or fixed by the developers. Because of our bug reports in
Eclipse [1, 2], the developers have adopted our tool on the codebase
of Eclipse Virgo [3].

The following summarizes our contributions:

• We present a sound and maximal causal model incorporating
the control flow information for general multithreaded pro-
grams under the sequential consistency memory model. This
new causal model forms a foundation for maximal dynamic
concurrency error detection with control flow. (§2)

• We present a maximal sound dynamic race detection technique
based on this new model. We formally prove that our technique
is able to detect all races by any sound race detector based on
the same execution trace. (§3)

• We present an efficient implementation (§4) and extensive eval-
uation of our technique, demonstrating the practicality and race
detection capability in real world concurrent systems. (§5)

2. Maximal Causal Model With Control Flow
In this section we present our main theoretical contribution, the
maximal causal model with control flow, following the axiomatic
approach pioneered in [33] (there without control flow). This model
paves the theoretical foundation for maximal dynamic concurrency
error detectors, such as our race detection technique.

Multithreaded programs P are abstracted as the prefix-closed
sets of finite traces of events that they can produce when com-
pletely or partially executed, called P-feasible traces. Such sets of
traces can be constructed for each P using, for example, a formal
semantics of the target programming language. Regardless of the
programming language and of how they are defined, the sets of
P-feasible traces must obey some basic consistency axioms. We
only consider sequential consistency in this paper. The axioms al-
low us to associate a sound and maximal causal model feasible(τ)
to any consistent trace τ , which comprises precisely the traces that
can be generated by all programs that can generate τ . As shown
in [33], conventional happens-before causal models consisting of
all the legal interleavings of τ and their prefixes are not maximal.
The maximal causal model allows us to define a maximal notion of
race: trace τ has a race iff there is some τ ′ ∈ feasible(τ) which
contains two consecutive events by different threads that access the
same location, at least one of them corresponding to a write.

2.1 Events
The execution environment contains a set of concurrent objects
(shared locations, locks, etc.), which are accessed by arbitrarily
many threads to share data and synchronize. A concurrent object is
behaviorally defined through a set of atomic operations and a serial
specification of its legal behavior in isolation [20]. For example, a
shared memory location is a concurrent object with read and write
operations, whose serial specification states that each read yields
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Event ::= begin(t) | end(t)
| write(t, x, v) | read(t, x, v)
| acquire(t, l) | release(t, l)
| fork(t, t′) | join(t, t′)

| branch(t)

t, t′ ∈ Thread;x ∈ Variable; l ∈ Lock; v ∈ Value

Figure 3. Event types in a multithreaded execution.

the same value as the one of the previous write. A (non-reentrant)
lock is an object with acquire and release operations, whose se-
rial specification consists of operation sequences in which the dif-
ference between the number of acquire and release operations is
either 0 or 1 for each prefix, and all consecutive pairs of acquire-
release share the same thread. Virtually all concurrency constructs
fall under this simple and general notion of concurrent object [20]
(including reentrant locks, fork/join, wait/notify, etc.).

Events are operations performed by threads on concurrent ob-
jects, abstracted as tuples of attribute-value pairs. For example,
(thread = t1, op = write, target = x, data = 1) is a write event by
thread t1 to memory location x with value 1. When there is no con-
fusion, we take the freedom to use any other meaningful notation
for events; for example write(t1, x, 1). For any event e and attribute
attr, attr(e) denotes the value corresponding to the attribute attr in
e, and e[v/attr] denotes the event obtained from e by replacing the
value of attribute attr by v. The theoretical results in this section
hold for any types of events corresponding to any concurrent ob-
jects whose behaviors can be described with serial specifications.
However, for clarity, we instantiate our subsequent notions and re-
sults to the following common event types:

• begin(t)/end(t): the first/last event of thread t;
• read(t, x, v)/write(t, x, v): read/write a value v on a variable x;
• acquire(t, l)/release(t, l): acquire/release a lock l;
• fork(t, t′): fork a new thread t′;
• join(t, t′): block until thread t′ terminates;

In addition to the usual events above that have been extensively
studied in previous work, we consider a new branch event:

• branch(t): jump to a new operation.

The semantics of this new type of event cannot be given as a
serial specification. In fact, branch events can appear anywhere in
the trace. Their formal semantics will be defined within the local
determinism axiom shortly. To state briefly, the branch event serves
as a guard of a possible control flow change, which determines
the next operation to execute in a thread. The choice depends on
some computation local to the thread, for example the result of
an expression in a conditional statement, that is unknown in the
event and is not visible to other threads. Hence, conservatively, we
assume that the choice of branch(t) depends on all the previous
read(t, x, v) operations executed by the same thread.

Figure 3 depicts all the event types discussed above and consid-
ered in the rest of the paper, highlighting the novel branch event.

2.2 Traces
An execution trace is abstracted as a sequence of events. Given a
trace τ and any set S of concurrent objects, threads, or event types,
we let τ�S denote the restriction of τ to events involving one or
more of the elements in S. For example, if o is a concurrent object
then τ�o is the restriction of τ to events involving o; if t is a thread
then τ�t contains only the projection of τ to events by thread t;
τ�t,o is the projection of τ to events by thread t involving object o;
τ�t,read the projection to read events by thread t; etc. If e is an event
in trace τ then let τe denote the prefix of τ up to and including

initially x = y = z = 0

1. fork(t1, t2)
2. acquire(t1, l)
3. write(t1, x, 1)
4. write(t1, y, 1)
5. release(t1, l)

6. begin(t2)
7. acquire(t2, l)
8. read(t2, y, 1)
9. release(t2, l)
10. read(t2, x, 1)
11. branch(t2)
12. write(t2, z, 1)
13. end(t2)

14. join(t1, t2)
15. read(t1, z, 1)
16. branch(t1)

Figure 4. A trace corresponding to the example in Figure 1.

e: if τ = τ1eτ2 then τe is τ1e. Let lastop(τ) be the last event of
τ corresponding to operation op; e.g., lastwrite(τ) is the last write
event of τ .

An interleaving of τ is a trace τ ′ such that τ ′�t = τ�t for each
thread t. Trace τ is (sequentially) consistent iff τ�o satisfies o’s se-
rial specification for any object o [20]. Despite its simplicity, this
notion of consistency based on concurrent object serial specifica-
tions is quite general. If all the events considered are those in Fig-
ure 3, then the consistency of τ means precisely the following:

• Read Consistency A read event contains the value written
by the most recent write event on the same memory loca-
tion. Formally, if e is a read event of τ then data(e) =
data(lastwrite(τe�target(e))).

• Lock Mutual Exclusion Each release event is preceded by
an acquire event on the same lock by the same thread, and
each pair is not interleaved by any other acquire or release
event on the same lock. Formally, for any lock l, if τ�l =
e1e2 . . . en then op(ek) = acquire for all odd indexes k ≤ n,
op(ek) = release for all even indexes k ≤ n, and thread(ek) =
thread(ek+1) for all odd indexes k with k < n.

• Must Happen-Before A begin event can happen only as a first
event in a thread and only after the thread is forked by another
thread: for any event e = begin(t′) in τ , the trace τ�t′ starts
with e and there exists precisely one fork(t, t′) event in τe. An
end event can happen only as the last event in a thread, and
a join event can happen only after the end event of the joined
thread: for any event e = end(t′) in τ , the trace τ�t′ terminates
with e; also, for any event e = join(t, t′), the event end(t′) is
in τe.

Since the branch events do not have serial specifications, they
are allowed to appear anywhere in a trace without affecting the
consistency of the trace. Figure 4 shows the (consistent) trace
corresponding to our example in Figure 1. Note that read and write
to local data (i.e., r1, r2, r3) are not included, as they are not
needed for race detection and are also expensive to track in practice.

2.3 Feasibility Axioms
Consistency is a property of a trace alone, stating that all the serial
specifications describing the legal behaviors of the involved con-
current objects are met. Any (complete or incomplete) trace pro-
duced by a running program is expected to be consistent. How-
ever, the various consistent traces that can be generated by a multi-
threaded program are not unrelated. Let feasible(P) be the set of all
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traces that can be produced by a hypothetical programP , which we
call P-feasible traces. The most common characterizing axiom of
feasible(P), rooted in Lamport’s happens-before causality [22] and
Mazurkiewicz’ trace theory [25], is to require feasible(P) be closed
under consistent interleavings. For the trace in Figure 4, e.g., this
tells that consistent interleavings such as 1-6-2-3-4-5-7-8-9. . . and
1-2-6-3-4-5-7-8-9. . . , where we refer to events by their line num-
bers, are also P-feasible, regardless of the program P that gener-
ated the original trace. This axiom is, however, too strong. What we
want is the weakest axioms of feasible(P), which will give the re-
sulting concurrency error detection technique the largest coverage.

Two weaker axioms governing feasible(P) are proposed in [33]:
prefix closedness and local determinism. The former says that the
prefixes of a P-feasible trace are also P-feasible. The latter says
that each thread has a deterministic behavior, that is, only the pre-
vious events of a thread (and not other events of other threads) de-
termine the next event of the thread, although if that event is a read
then it is allowed to get its value from the latest write. Formally,
if τ1e1, τ2 ∈ feasible(P) and τ1�thread(e1) = τ2�thread(e1) then (1) if
τ2e1 is consistent then τ2e1 ∈ feasible(P), and (2) if op(e1) =
read and there exists some event e2 with e2[data(e1)/data] = e1
and τ2e2 consistent, then τ2e2 ∈ feasible(P). Unlike the con-
sistent interleavings axiom underlying the usual happens-before,
these weaker axioms allow us to infer from the trace in Figure 4
that the consistent trace 1-6-7-8’ is also P-feasible regardless of
the program P that generated the original trace, where 8’ is the
event read(t2, y, 0) which reads 0, the value written initially to y,
instead of 1 as the original event 8. Note, however, that the trace
1-6-7-8’-9 can not be inferred as P-feasible with the axioms and
model in [33] without control flow, because the projections of 1-
6-7-8 and 1-6-7-8’ to thread t2 are not equal. It would in fact be
unsound to allow the trace 1-6-7-8’-9 to be inferred as P-feasible,
because the read of 1 for y in event 8 may be part of the condition
in a conditional statement in P , and the release event 9 generated
by a branch that would not be taken if y were 0.

Our objective in the remainder of this section is to give the
weakest possible axioms of feasibility that take into account our
new branch events. Consider, for example, an assignment x =
y + 1 inside a branch that has just been taken. The read of y
and the write of x will happen unconditionally; other threads may
at most change the data values of these events (in a sequentially
consistent manner), but they cannot affect the existence of the
events themselves. Moreover, the write of x event contains the
same value, provided that the read of y event reads the same
value. Similarly, the existence of concurrent operations inside the
taken branch is conditioned only by global sequential consistency
constraints, but not by the particular data values read or written
by the current thread. Hence, the fact that the branch events alone
determine the control flow in the original program allows us to
significantly relax the requirement of the local determinism axiom
of [33] that traces τ1 and τ2 must have identical projections on e’s
thread t in order for τ1e P-feasible to determine the next event
by t in the P-feasible extensions of τ2. Instead, we can now only
require the two projections to be equal except for the data values in
write and read events. However, since the branch and write events
depend upon the evaluation of thread-local expressions which are
not available in the execution trace, we conservatively assume that
these events depend upon all the reads by the same thread.

Let F be a set of traces. Below we identify five axioms for F
to be feasible. The intuition is that the set of traces that can be
generated by a multithreaded program is such a feasible set.

Prefix Closedness F is prefix closed: if τ1τ2 ∈ F then τ1 ∈ F .
Prefix closedness ensures that events are generated in execution
order, with the possibility of interleaving in-between any of them.

For the remaining axioms, suppose that τ1e1, τ2 ∈ F , that
thread(e1) = t, and that τ1�t ≈ τ2�t, where two traces are in
the ≈ relation, called data-abstract equivalence, iff they are equal
except for the data values in read and write events. The next axioms
state the thread-local determinism requirements. Specifically, they
state that under the above thread-local data-abstract equivalence
condition between τ1 and τ2, the trace τ2 can only continue with a
well-determined event of t, which is data-abstract equivalent to e1.

Local Determinism Each event is determined by the previous
events in the same thread and can occur at any consistent moment
after them. There are four cases to distinguish:

• Branch. If op(e1) = branch and τ1�t,read = τ2�t,read, then
τ2e1 ∈ F .

• Read. If op(e1) = read and e2 is a (read) event such that
e2[data(e1)/data] = e1 and τ2e2 is consistent, then τ2e2 ∈ F .

• Write. If op(e1)=write then there is a v such that τ2e1[v/data] ∈
F ; moreover, if τ1�t,read = τ2�t,read then v = data(e1).

• Other. If op(e1) 6∈ {branch, read,write} and τ2e1 is consistent,
then τ2e1 ∈ F .

DEFINITION 1. A set of traces F is feasible if it satisfies the prefix
closedness and the local determinism axioms above.

In addition to all the consistent interleavings and feasible sets
of traces according to [33] derived from the trace τ in Figure 4
discussed above, we can now show that any feasible F including τ
also includes many more other traces. For example, the trace 1-6-7-
8’-9 with 8’ the event read(t2, y, 0) which was not allowed before
is allowed now as feasible, and so is the trace 1-6-7-8’-9-2-3-10,
which shows a race on x by events 3 and 10. Note that there is no
way to infer a trace in F that brings events 4 and 8 (race on y) or
12 and 15 (race on z) next to each other, because that would violate
the lock-mutual exclusion or must happen-before consistency.

Discussion We have made two assumptions and adopted a delib-
erate limitation in our feasibility axioms above. First, we assumed
that the branch events and the data values in write events depend
only on the previous read events by the same thread. If there are
other factors that determine these events in a particular language,
such as random jumps or expressions, then one either needs to gen-
erate additional read events corresponding to those external fac-
tors or alternatively to explicitly consider them as special events
and modify the axioms accordingly. Second, we assumed that all
possible places where the control dependence may be changed are
logged as explicit branch events, e.g., mutable pointer dereferences
and array indexing. If there are implicit control flow points in a
particular program that are activated by the data flow, such as an
exception thrown when a division by zero is performed, then one
needs to generate additional branch events after each such implicit
control choice. Third, we conservatively assumed that each branch
or write depends on all the previous read events by the same thread.
In most cases branch and write events only depend on the values
read within the evaluation of a particular expression. We could get
even weaker axioms if we assumed a preceding window of events
for each write and branch in which the read values matter for these
events, but that would involve more complex events and axioms.

2.4 Sound and Maximal Causal Model
Our objective here is to associate to any given consistent trace
τ a sound and maximal causal model, feasible(τ), comprising
precisely all the traces that can be generated by any program that
can generate τ . It is irrelevant at this stage how we represent such
a model; in Section 3 we show a way to represent it by means
of logical constraints. Soundness means that any program P that
can produce τ can also produce any of the traces of feasible(τ).
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Maximality means that for any trace τ ′ which is not in feasible(τ)
there is some program P which can produce τ but not τ ′.

Following [33] (there without control flow), a natural choice
for feasible(τ) would be the smallest set of traces that includes τ
and is closed under the feasibility axioms. However, that simplistic
approach does not work here, mainly because of the local write
determinism axiom (Section 2.3): it would be unsound to pick any
particular value v in the write event, because we have no further
information about the program that generated the original trace
τ and thus it is impossible to know how it computes the written
value. To avoid picking any particular value v, we instead modify
the second case of the local data-abstract determinism axiom to
introduce (fresh) symbolic values. We keep all the other axioms in
Section 2.3 unchanged, but note that traces appearing in feasible(τ)
can contain symbolic values in their read and write events. For that
reason, we call the new local determinism axioms local symbolic
determinism. We use the symbolic axiom variant only to define
our maximal causal model; for abstractions of programs P as their
sets of traces we continue to use the non-symbolic axiom variant
in Section 2.3. For clarity, below we give the formal definition of
feasible(τ).

Let Sym be an infinite set of symbolic values. For technical
reasons we assume that given any trace τ , we can always pick an
arbitrary but fixed symbolic value symτ which is distinct from any
other similar symbolic value: if τ1 6= τ2 then symτ1 6= symτ2 .

DEFINITION 2. Given a consistent trace τ , let feasible(τ) be the
feasibility closure of τ defined as the smallest set of (symbolic)
traces that includes τ and is closed under the following operations:

1. Prefixes. if τ1τ2 ∈ feasible(τ) then τ1 ∈ feasible(τ).
2. Local symbolic determinism. Assume that τ1e1, τ2 ∈ feasible(τ),

that thread(e1) = t, and that τ1�t ≈ τ2�t. Then
• Branch. If op(e1) = branch and τ1�t,read = τ2�t,read then
τ2e1 ∈ feasible(τ).

• Read. If op(e1) = read and e2 is such that e2[data(e1)/data] =
e1 and τ2e2 is consistent, then τ2e2 ∈ feasible(τ).

• Write. Suppose that op(e1) = write. There are two cases to
distinguish: if τ1�t,read 6= τ2�t,read then τ2e1[symτ2/data] ∈
feasible(τ); if τ1�t,read = τ2�t,read then τ2e1 ∈ feasible(τ).

• Other. If op(e1) 6∈ {branch, read,write} and τ2e1 is consis-
tent, then τ2e1 ∈ feasible(τ).

A trace in feasible(τ) is called τ -feasible.

It can be easily seen that for any mapping θ of symbolic val-
ues to concrete values, θ(feasible(τ)) is a feasible set of traces,
in the sense of Definition 1. Recall that we abstract multithreaded
programs as feasible sets of traces, namely all complete or incom-
plete traces that they can produce when executed. We can think of
feasible(τ) as an abstract representation of all causal dependencies
revealed by τ in all programs that can produce τ when executed,
each θ corresponding to such a program. This intuition will be for-
mally captured below, by our soundness and maximality results.

The next result states the soundness of our causal model:

THEOREM 1 (Soundness). Suppose that F is a feasible set of
(concrete) traces, like in Definition 1, and that τ ∈ F is a con-
sistent trace. Then there exists a mapping θ of symbolic values into
concrete values such that θ(feasible(τ)) ⊆ F .

PROOF: Since feasible(τ) is the smallest set of traces closed under
prefixes and the local symbolic determinism axioms in Definition 2,
we can order the traces in feasible(τ), say τ0 = τ , τ1, . . . , τn,
. . . for n ∈ N, so that each trace τn+1 can be derived from one (if
a prefix) or from two (if a locally deterministic continuation) of the
traces τ0, τ1, . . . , τn. We construct by induction on n a sequence

of partial mappings θ0 = ⊥ v θ1 v θ2 v · · · v θn v · · · taking
symbolic to concrete values, where f v g iff Dom(f) ⊆ Dom(g)
and f(s) = g(s) for each s ∈ Dom(f), such that θn(τn) ∈ F
for all n ∈ N. Note that θi(τ i) = θj(τ

i) for any i ≤ j. Then
the result immediately holds, because we can take θ to be the least
upper bound (lub) of the chain of these partial functions,

⊔
n∈N θn.

If n = 0 then we pick θ0 = ⊥; since τ0 = τ ∈ F is a
concrete trace, θ0(τ0) = τ0 ∈ F . Now suppose that the de-
sired property holds for all indexes less than or equal to n, and
let us prove it for n + 1. If τn+1 is derived as a prefix of some
τ ′ ∈ {τ0, τ1, . . . , τn}, then let θn+1 be θn. By the induction
hypothesis, θn(τ ′) ∈ F , so θn+1(τn+1) = θn(τn+1) ∈ F be-
cause F is prefix closed (Definition 1). If τn+1 is derived using
a local symbolic determinism axiom, there there must exist two
traces τ1e1, τ2 ∈ {τ0, τ1, . . . , τn} such that τ1�t ≈ τ2�t, where
t = thread(e1). By the induction hypothesis, θn(τ1e1), θn(τ2) ∈
F . Note also that θn(τ1)�t ≈ θn(τ2)�t. If op(e1) = branch then
it must be the case that τ1�t,read = τ2�t,read, so θn(τ1)�t,read =
θn(τ2)�t,read, and that τn+1 = τ2e1. Let θn+1 be θn. Then
θn+1(τn+1) = θn(τ2)e1 ∈ F because of the local branch de-
terminism of F (Definition 1). If op(e1) = read then it must be the
case that there is some event e2 such that e2[data(e1)/data] = e1,
so θn(e2)[data(θn(e1))/data] = θn(e1), τ2e2 is consistent, so
θn(τ2)θn(e2) is consistent, and τn+1 = τ2e2. Let θn+1 be θn.
Then θn+1(τn+1) = θn(τ2)θn(e2) ∈ F because of the local read
determinism of F . Now suppose that op(e1)=write. There are two
cases to distinguish. If τ1�t,read = τ2�t,read then it must be the case
that τn+1 = τ2e1. In this case we let θn+1 be θn and θn+1 ∈ F
follows similarly to the previous cases. If τ1�t,read 6= τ2�t,read then
it must be the case that τn+1 = τ2e1[symτ2/data]. By the lo-
cal write determinism of F (Definition 1), there is some value v
such that θn(τ2)θn(e1)[v/data] ∈ F . In this case we pick θn+1

to be equal to θn in all symbolic values in which θn is defined,
and θn+1(symτ2) = v. Note that θn+1 is well-defined because
of our assumption that symτ2 is uniquely determined by τ2. Fi-
nally, if op(e1) 6∈ {branch, read,write} then it must be the case
that τ2e1 is consistent, so θn(τ2)θn(e1) is consistent, and that
τn+1 = τ2e1. In this case we can again let θn+1 be θn. Then
θn+1(τn+1) = θn(τ2)θn(e1) ∈ F also by the feasibility of F . �

In words, the soundness theorem says that if a hypothetical pro-
gram P (abstracted above by the complete or incomplete traces in
F that it can produce) generates a trace τ , then any τ -feasible trace,
which may contain symbolic data values, corresponds to some con-
crete trace τ ′ that P can also generate, obtained by instantiating the
symbolic values with some concrete ones. Therefore, if a dynamic
error detection technique is based on our maximal causal model,
say a data race detector, then any error reported by the technique is
a real error, which can happen under a different thread schedule.

The next result states the maximality of our sound causal model:

THEOREM 2 (Maximality). Suppose that τ, τ ′ are concrete traces
such that τ is consistent and τ ′ 6∈ θ(feasible(τ)) for any θ mapping
symbolic values to concrete values. Then there is a multithreaded
program P with τ ∈ feasible(P) and τ ′ 6∈ feasible(P).

PROOF: To refer to programs and their execution traces, we for-
mally define a simple programming language that can produce all
the events that we consider in our traces, noting that other events
can similarly be supported and that this language is so basic that
its instructions can easily be reproduced in any other language.
The formal definition of the language is then used to show that
the set of traces that any program P can produce when executed,
feasible(P), is indeed a feasible set in the sense of Definition 1.
Finally, given a consistent trace τ we construct a program Pτ such
that feasible(Pτ ) ⊆

⋃
θ θ(feasible(τ)). We next detail the above.
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For brevity, we here describe the language and its semantics
informally. The language has threads which can be forked and
joined, (non-reentrant) locks which can be acquired and released,
and both shared and thread-local variables. Shared variables can
only be read and written with simple assignments r := x and
x := r, respectively, where r is a local and x is shared. The trace
semantics of the language is that all statements of the language
produce corresponding events when executed, except for reads
and writes of local variables. Complex assignments of the form
r := (r1 == v1)&& · · ·&&(rn == vn)?v : v′ are also allowed,
where r, r1, ..., rn are locals and v1, ..., vn, v, v′ are values, with the
meaning that if ri equals vi for all 1 ≤ i ≤ n then r takes the value
v, otherwise v′. However, these generate no events. Finally, we
also introduce a simple conditional statement to account for branch
events: if(r). Its semantics is that it produces a branch event and
the execution continues only if local variable r is 1; otherwise the
execution gets stuck without a branch event. Using the language
semantics, it is relatively easy (albeit tedious) to define the set
feasible(P) of all complete or incomplete traces of a program P ,
and to show that it satisfies the feasibility axioms in Definition 1.

The only thing left is to construct a particular program Pτ from
a consistent trace τ such that feasible(Pτ ) ⊆

⋃
θ θ(feasible(τ)),

where the union goes over all mappings θ from symbolic to con-
crete values. The idea is to traverse the trace τ and generate the
program Pτ by replacing each event in τ with one or more corre-
sponding instructions in Pτ . We discuss the read, write and branch
events last. Each fork(t1, t2) event generates a corresponding fork
statement in thread t1, making sure that all subsequent events of
thread t2 are used to generate instructions in the forked thread.
Similarly, each join(t1, t2) event generates a corresponding join
statement in thread t1. Events acquire(t, l) and release(t, l) gen-
erate corresponding acquire and release instructions of lock l in
thread t, and similarly for wait/notify events. The interesting events
are the reads, writes and branches. For each event read(t, x, v), we
generate an assignment statement r := x, where r is a fresh local
variable that we keep track of in the generation algorithm that it is
paired with value v. For each event write(t, x, v) we generate two
instructions in thread t,

r := (r1 == v1)&& · · ·&&(rn == vn)?v : v′

x := r
where (r1, v1), . . . , (rn, vn) are all the pairs between a local
variable and a value corresponding to read events as above that the
generation algorithm stored for thread t so far, and where v′ is a
value distinct from v. Finally, for events branch(t) we generate the
following instructions in thread t:

r := (r1 == v1)&& · · ·&&(rn == vn)?1 : 0
if(r)

In both cases above, the complex assignment ensures that r gets the
expected value only if the thread’s read history is the same as that in
the original trace τ . In the case of write, if that is the case then the
precise value v that appeared in τ is written, which accounts for the
first case of the local write determinism axiom before Definition 1;
otherwise a different value v′ is written, which accounts for the
second case of the local write determinism axiom. We need not
worry about which particular value v′ should be written to avoid
having τ ′ as a possible trace, because τ ′ 6∈ θ(feasible(τ)) for any
θ guarantees that no v′ has this property. In the case of branch, the
thread is allowed to continue only if its read history is identical to
that of τ ; otherwise the thread gets stuck without issuing a branch
event. This accounts for the local branch determinism axiom.

The generated program Pτ is therefore quite simple, its instruc-
tions corresponding almost identically to the trace τ and having no
loops; in fact, our simple language is not even Turing-complete. Us-
ing the language semantics we can show that τ ∈ feasible(Pτ ), and
also that any trace τ ′′ in feasible(Pτ ) is included in θ(feasible(τ))

for some mapping θ of symbolic to concrete values; specifically, it
is a θ that maps symbolic values symτ2 introduced by the second
case of the local write determinism of the feasibility closure (see
Definition 2) to (arbitrarily chosen) concrete values v′ as in the
corresponding instructions associated to the write event. Therefore,
feasible(Pτ ) ⊆

⋃
θ θ(feasible(τ)), so Pτ is such a multithreaded

program P with τ ∈ feasible(P) and τ ′ 6∈ feasible(P). �

In words, the maximality theorem says that for any concrete trace
τ ′ which is not an instance of a (possibly symbolic) τ -feasible
trace, there exists a “witness” program P that can produce τ but
not τ ′. Therefore, any dynamic error detection technique that pro-
duces counterexample traces which are not instances of τ -feasible
traces, must be unsound: there are programs for which they report
false alarms. Of course, our soundness and maximality results are
intrinsically based on the assumption that the traces generated by
multithreaded programs obey our feasibility axioms for sequential
consistency1 (see also the discussion at the end of Section 2.3), and
the statements of the target multithreaded programming language
have the granularity of our events.

2.5 Maximal Causal Properties
The existence of a maximal causal model allows us to define max-
imal variants of concurrency properties, such as races, atomicity,
etc. In this paper we only focus on races, but the same maximal
causal model approach can be used to define other notions.

DEFINITION 3 (COP). Events a and b form a conflicting op-
eration pair, written COP(a, b), iff op(a) = write, op(b) ∈
{write, read}, target(a) = target(b), and thread(a) 6= thread(b).

DEFINITION 4 (Data race). Consistent trace τ has a race iff there
is a consistent trace τ1ab ∈ feasible(τ) such that COP(a, b) 2.

Consider again the trace τ in Figure 4. There are three con-
flicting pairs: COP(3, 10), COP(4, 8), and COP(12, 15). However,
only COP(3, 10) is a race because, as previously discussed, there
is a consistent trace 1-6-7-8’-9-2-3-10 ∈ feasible(τ), with 8’
= read(t2, y, 0), in which event 3 is immediately before 10, and
there is no way to bring events 4 and 8 (race on y) or 12 and 15
(race on z) next to each other without breaking consistency.

Theorem 1 implies that our notion of a race above is sound, so
any dynamic race detection technique reporting only races among
those in Definition 4 is sound (no false alarms). However, the key
feature of our definition of a race is its maximality: the witness
of the race in τ is a (possibly symbolic) trace τ ′ that belongs
to the maximal causal model of τ ; note that the symbolicity of
τ ′ is irrelevant for races. Therefore, any sound (not necessarily
maximal) dynamic race detection technique can detect no races
which are not captured by Definition 4. A technique that can detect
precisely all the races in Definition 4, like our technique presented
shortly in Section 3, is therefore both sound and maximal.

3. Maximal Dynamic Race Detection
This section presents our technique for maximal dynamic race
detection. We first give an illustrative technical overview, followed
by the formal modeling of our technique based on the maximal
causal model foundation presented in Section 2.

3.1 Technical Overview
Given an input trace τ , the goal of dynamic race detection is to
find a τ -feasible trace τ ′ and a COP(a, b) such that a and b are

1 Other memory models would require a different feasibility axiomatization.
2 Note that the dual case τ1ba is equivalent and we can consider either one
for defining a race and for race detection [30].
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A. MHB (Φmhb)
O1 < O2 < . . . < O5 O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking (Φlock) O5 < O7 ∨ O9 < O2

C. (3,10) Race (Φrace) O10 −O3 = 1

C. (12,15) Race (Φrace)
O15 −O12 = 1
O3 < O10 ∧ O4 < O8

Figure 5. Constraint modeling of the example trace in Figure 4.

next to each other in τ ′ (Definition 4). Since here we only dis-
cuss race detection, where the particular values written or read by
events are irrelevant, to simplify the presentation we make no dis-
tinction between an event that appears in τ and its data-abstractly
equivalent variants appearing in τ -feasible traces. We formulate the
maximal race detection problem as a constraint solving problem.
Specifically, we introduce an order variable Oe for each event e in
τ , which represents the order of e in τ ′. Then we generate a formula
Φ over these variables corresponding to the race problem for τ and
COP(a, b), that is, one which is satisfiable iff Ob − Oa = 1 for
some τ ′ ∈ feasible(τ). By solving Φ using any constraint solver,
we are able to determine whether (a, b) is a race or not.

For concreteness, we only consider the common concurrent ob-
jects that yield the event types in Figure 3, whose serial specifi-
cations generate the consistency requirements spelled out at the
end of Section 2.2. Figure 5 shows our constraint modeling of
the example trace in Figure 4. Let Oi refer to the order variable
of the event at line i. The constraints consist of three parts: (A)
the must happen-before (MHB) constraints, (B) the locking con-
straints, and (C) the race constraints. A and B are common for all
races, whereas C is race specific. For instance, the MHB constraints
for the fork event at line 1 and the join event at line 14 are written as
O1 < O6 ∧ O14 > O13, meaning that the fork event should hap-
pen before the begin event of t2 at line 6, and the join event should
happen after the end event of t2 at line 13, which are determined
by the must happen-before consistency requirement in Section 2.2.

The locking constraints encode lock mutual exclusion consis-
tency over acquire and release events. For example, O5 < O7 ∨
O9 < O2 means that either t1 acquires the lock l first and t2 sec-
ond, or t2 acquires l first and t1 second. If t1 first, then the acquire
at line 7 must happen after the release at line 5; otherwise if t2 first,
the acquire at line 2 should happen after the release at line 9.

The race constraints encode the race and control flow condi-
tions specific to each COP. For example, for the COP (3,10), the
race constraint is written as O10 − O3 = 1, and its control-flow
condition is empty, because there is no branch event before the two
events at lines 3 and 10. For (12,15), however, because there is
a branch event (at line 11) before line 12, in addition to the race
constraint O15 − O12 = 1, we need to ensure that the control-
flow condition at the branch event is satisfied. To respect the local
branch determinism axiom in Section 2.3, we require that all read
events by t2 before this branch event read the same value as that
in the original trace. Hence, we add the control-flow constraints
O3 < O10 ∧ O4 < O8 to ensure that the read event at line 10
reads value 1 on x, and that the read event at line 8 reads value 1
on y. This guarantees that the event at line 12 is feasible.

Putting all these constraints together, we invoke an SMT solver,
such as Z3 [11] or Yices [12] in our current implementation, to
compute a solution for these unknown order variables. For (3,10),
the solver returns a solution which corresponds to the schedule 1-
6-7-8-9-2-3-10, so (3,10) is a race. For (12,15), the solver reports
no solution exists, so it is not a race.

The above example illustrates how our technique works in a
nutshell. We present our implementation and optimization details
in Section 4. We next formalize our constraint modeling in detail.

3.2 Constraint Modeling
As mentioned, given an observed trace τ , we encode the maximal
race detection problem as a formula Φ specifying all the τ -feasible
traces with respect to each race. Φ contains only variables of the
form Oe corresponding to events e, which denote the order of the
events in the to-be-computed τ -feasible trace (if there exists one)
that can manifest the race. Although we define a race of τ as a
property over the maximal causal model feasible(τ) (Definition 4),
for performance reasons we purposely do not follow the same ap-
proach here when generating the constraints. That is because the
characterizing formula of feasible(τ) would be unnecessarily com-
plex for the bare task of detecting races, e.g., it would need to gen-
erate constraints for all branches, not only for those immediately
guarding the events in a COP, and to account for the fact that the
constraints corresponding to events following an invalidated branch
do not influence the overall formula satisfiability. Thus, Φ is con-
structed by a conjunction of three sub-formulae:

Φ = Φmhb ∧ Φlock ∧ Φrace

MHB Constraints (Φmhb) The must happen-before (MHB) con-
sistency requirements discussed at the end of Section 2.2 cover
all the trace consistency requirements except for those of the
read/write and acquire/release events (which we treat differently).
MHB, together with the total orders of the events in each thread,
yield an obvious partial order ≺ on the events of τ which must
be respected by any τ -feasible trace. Fortunately, ≺ can be speci-
fied quite easily as constraints over the O variables: we start with
Φmhb ≡ true and conjunct it with a constraint Oe1 < Oe2 when-
ever e1 and e2 are events by the same thread and e1 occurs before
e2, or when e1 is an event of the form fork(t, t′) and e2 of the form
begin(t′), etc. We assume a background first-order theory where <
is transitive, like in Z3 and Yices, so we do not need to encode the
transitivity of ≺. The size of Φmhb is linear in the length of τ .

Note that our MHB differs from Lamport’s happens-before [22]
in two aspects: (1) read and write events by different threads are not
included, because their order may be consistently commutable; (2)
acquire and release events are not included, because the order be-
tween different lock regions may also be consistently commutable.

Locking Constraints (Φlock) Lock mutual exclusion consistency
(Section 2.2) requires that two sequences of events protected by the
same lock do not interleave. Φlock captures the ordering constraints
over the lock acquire and release events. For each lock l, we extract
the set Sl of all the corresponding pairs (a, r) of acquire/release
events on l, following the program order locking semantics: the
release is paired with the most recent acquire on the same lock by
the same thread. Then we conjunct Φlock with the formula∧

(a,r),(a′,r′)∈Sl

(Or < Oa′ ∨ Or′ < Oa)

which is quadratic in the number acquire/release events on l in τ .

Race Constraints (Φrace) For a COP(a, b), Φrace contains two cat-
egories of constraints: the arithmetic constraint Ob − Oa = 1 that
specifies the race condition, and a conjunction of two control-flow
constraints Φ≈cf (a) ∧ Φ≈cf (b) specifying the data-abstract feasibility
of a and b. We next define Φ≈cf (e) for any read/write event e.

Recall the local determinism axioms that the events appearing
in τ -feasible traces follow a deterministic order when projected
on their thread, but the data values in read and write events are
allowed to be different from those in τ , in order to satisfy the read
consistency requirement of the τ -feasible trace. Making abstraction
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of the particular data values in read/write events, the only factor that
can affect the feasibility of such an event e, in addition to the MHB
and lock consistency requirements which are already encoded as
detailed above, is that some event e′ that must happen before e,
i.e., e′ ≺ e, is infeasible because of a previous branch by the same
thread that is infeasible. Because of the local branch determinism
axiom, the feasibility of a branch is determined by the complete
read history of its thread, so we only need to consider the feasibility
of the last branch event of each thread that must happen before e.
Let Be be the set of last branch events e′ of each thread with e′ ≺ e.
Then let

Φ≈cf (e) =
∧

e′∈Be
Φcf(e

′), op(e) ∈ {read,write}

be the formula stating that the data-abstract feasibility of a read or
write event e reduces to the feasibility of all the branch events in
Be. We next model the concrete feasibility of any read, write, or
branch event e as a formula Φcf(e), where “concrete” means that e
appears unchanged, including its data value, in the τ -feasible trace.

According to the local branch and write determinism axioms,
the concrete feasibility of branch and write events is determined by
the complete read history of their thread, that is,

Φcf(e) =
∧

r∈τe�t,read

Φcf(r), op(e) ∈ {branch,write}, t = thread(e)

So far, we have straightforwardly encoded the axioms of the
maximal causal model in Section 2 using constraints. The part
which does not follow explicitly from the axioms is how to encode
the concrete feasibility of read events (needed in formula above).
We need to ensure that a read(t, x, v) event reads the same value
v written by a concretely feasible write( , x, v) event (“ ” means
any thread). Specifically, if for a read event r, say read(t, x, v), we
let W r be the set of write( , x, ) events in τ , and W r

v the set of
write( , x, v) events in τ , then we define the following:

Φcf(r) =
∨

w∈Wr
v

(Φcf(w) ∧ Ow<Or
∧

w 6=w′∈Wr

(Ow′<Ow ∨ Or<Ow′))

The above states that the read event r = read(t, x, v) may read the
value v on x written by any write event w = write( , x, v) in W r

v

(the top disjunction), subject to the condition that the order of w
is smaller than that of r and there is no interfering write( , x, ) in
between. Moreover, w itself must be concretely feasible, which is
ensured by Φcf(w).

The size of Φcf, in the worst case, is cubic in the number of read
and write events in τ . Nevertheless, in practice, the size of Φcf can
be significantly reduced by taking ≺ into consideration. Consider
two write events w1 and w2 in W r

v . If w1 ≺ w2 ≺ r, we can
excludew1 fromW r

v because it is impossible for r to read the value
written by w1 due to the read consistency axiom. Similarly, for any
w′ ∈ W r , if r ≺ w′, then w′ can be excluded from W r . Also,
when constructing the constraints for matching an event w ∈ W r

v

to r, if w′ ≺ w, then w′ can be skipped.

3.3 Soundness and Maximality
Our race detection technique above is sound and maximal. Sound-
ness means every detected race is real. Maximality means that our
technique does not miss any race that can be detected by any sound
dynamic race detector based on the same trace.

It suffices to prove the following:

THEOREM 3 (Soundness and maximality). If Φ is the first-order
constraint associated to a given trace τ as above, then Φ is sat-
isfiable iff (a, b) is a race in τ in the maximal sense of Definition 4.

PROOF: Suppose that τ = e1e2 . . . en. Note that ρ |= Φ for
some ρ : {Oe1 , Oe2 , . . . , Oen} → N iff ρ′ |= Φ for a bijective
ρ′ : {Oe1 , Oe2 , . . . , Oen} → {1, 2, . . . , n}. That is because the

particular values assigned to the O variables are irrelevant, except
for the race constraint Ob − Oa = 1, so we can find an ordering
of ρ(e1), ρ(e2), . . .ρ(en) such that ρ(a) is followed by ρ(b).
Therefore, from here on we can only consider valuations of the
form ρ : {Oe1 , Oe2 , . . . , Oen} → {1, 2, . . . , n}. Any ρ yields the
permutation eρ(O1)eρ(O2) . . . eρ(On) of τ , which we write [ρ].

It is easy to see that ρ |= Φmhb iff [ρ] satisfies the must
happen-before consistency requirements, and that ρ |= Φlock

iff [ρ] satisfies the lock mutual exclusion requirements. We can
also show by induction on i that for any event ei of τ with
op(ei) ∈ {branch, read,write} and t = thread(ei), it is the case
that ρ |= Φcf(ei) iff [ρ]ei�t,read = τei�t,read and any read event in
these trace projections satisfies the read consistency requirement in
[ρ]ei : for branch and write events, the definition of Φcf reduces the
property to previous read events, and for read events the definition
of Φcf reduces the property to previous write events.

Let us first prove the soundness, that is, that if Φ is satisfiable
then (a, b) is a race in τ . Let ρ |= Φ. Then by the properties above
and the definitions of Φ≈cf and of Φcf, the following hold: [ρ] satisfies
the must happen-before and lock mutual exclusion consistency
requirements; [ρ]b = [ρ]ab; and for all e′ ∈ Ba, if t = thread(e′)
then [ρ]e′�t,read = τe′�t,read. We can then inductively build a trace
τ1 over data-abstract variants of the events in the set {e | e ≺ a},
traversing them in the order they occur in [ρ], as follows, where
e is the next such event: if e is not a read or a write then append
it to τ1; if e is a read then to ensure read consistency we need to
possibly change its value to the value written by the last event in
τ1 so far, and then append e to τ1; if e is a write event then (1) if
ρ |= Φcf(e) then append e to τ1, otherwise (2) change the value
of e to the symbolic value symτ1 and then append it to τ1. All the
steps above preserve the consistency of τ1 and accord with the local
determinism axioms characterizing feasible(τ), so we can deduce
that τ1 ∈ feasible(τ). We can now extend τ1 with (possibly data-
abstract variants of) a and b similarly to the above, and thus obtain
that τ1ab ∈ feasible(τ), so (a, b) is a race in τ .

Let us now show the maximality, that is, that if (a, b) is a race
in τ then Φ is satisfiable. Let τ1ab ∈ feasible(τ) and let τ2 be
the trace formed with the remaining elements of τ , in the order in
which they appeared in τ . Although the trace τ ′ = τ1abτ2 may
not be τ -feasible, it still respects the must-happen before and lock
mutual exclusion consistency requirements. Let ρ be the valuation
with [ρ] = τ ′. Then clearly ρ |= Φmhb ∧ Φlock ∧ Ob − Oa = 1.
Since τ1ab is τ -feasible, prefix closedness ensures that [ρ]e′ is
also τ -feasible for each branch event e′ ∈ Ba; the local branch
determinism axiom then implies that [ρ]e′�t,read = τe′�t,read, so
by the property above and the definition of Φ≈cf we conclude that
ρ |= Φ≈cf (a). We can similarly show ρ |= Φ≈cf (b), so ρ |= Φ. �

4. Implementation
We have implemented our technique in RVPredict, a runtime pre-
dictive analysis system for Java. Although the Java memory model
(JMM [23]) is not sequentially consistent, it does not affect the
soundness of our implementation as any race in a sequential con-
sistency model should also be a race in JMM. To properly model
the Java language constructs (i.e., to ensure that the Java execution
conforms to our abstract model), we make the following treatments
in our implementation:

• branch - the branch events include not only explicit control flow
statements, but also implicit data flow points that can affect
the control flow. For example, both shared pointer dereferences
(e.g., calling a method of a shared object) and array indexing
statements (e.g., read/write to an array with a non-constant
index) are considered as additional branch events.
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initially x=0

Thread t1 Thread t2
1. lock l
2. a[x] = 2

3. unlock l
4. lock l
5. x = 1
6. unlock l
7. a[0] = 1

Consider this
program executed
following the or-
der of line numbers.
Lines 2 and 7 are
unordered and they
both access a[0].
However, (2,7) is
not a race, because
if line 2 is scheduled
next to line 7, line 2
will access a[1] in-
stead of a[0]. Hence,
we must ensure the same implicit data-flow for array accesses.

• wait-notify - Java’s wait() and notify()/notifyAll() are usually
not discussed in previous studies [18, 35]. In our implementa-
tion, we treat wait() as two consecutive release-acquire events,
notifyAll() as multiple notify() where the number is equal to
the number of currently waiting threads on the same signal, and
keep a mapping from wait() to its corresponding notify() in the
original execution. In the constraint, we ensure the order of the
notify() is between that of the two consecutive release-acquire
events of the corresponding wait(), but not between that of any
other wait() on the same signal (to ensure that the notify() is
matched with the same wait() as that in the original execution).
Currently, we do not model spurious wakeups and lost notifica-
tions in our implementation. However, since they happen rarely
in practice, this does not limit the usability of RVPredict.

• re-entrant locking - To simplify the constraint, re-entrant lock
acquire/release events are filtered out dynamically in the execu-
tion, i.e., discarding all but the outermost pair of acquire/release
events on the same lock.

• volatile variables - as concurrent conflicting accesses to volatile
variables are not data races in Java, we do not report them.

RVPredict consists of two main phases: trace collection and
predictive race analysis. In trace collection, we log a sequentially
consistent trace of shared data accesses, thread synchronizations,
and branch events. To support long running programs, traces are
first stored event by event into a database. Note that trace collection
can be performed at various levels, e.g., via static or dynamic code
instrumentation, inside the VM, or at the hardware level. As trace
collection is not our main concern here, our implementation is
based on static instrumentation and is not optimized. Nevertheless,
ideally, we can use hardware tracing techniques to minimize the
runtime perturbation. In predictive race analysis, we first use a
hybrid lockset and weaker HB algorithm (similar to PECAN [21])
to perform a quick check on each conflicting operation pair (COP).
Only if a COP passes the quick check, do we proceed to build
constraints for it.

To optimize the constraint solving, instead of adding a conjunc-
tion Ob − Oa = 1 for each COP(a, b), we simply replace Oa by
Ob in the constraints. In this way, all constraints become simple
ordering comparisons over integer variables, which can be solved
efficiently using the Integer Difference Logic (IDL) (provided in
both Z3 [11] and Yices [12]). We set the default constraint solving
time to one minute for each COP. If the solver returns a solution
within one minute, we report a race. In addition, to avoid redundant
computation on races that have the same signature (from the same
program locations), once a COP is reported as a race, we prune
away all the other COPs with the same signature with no further
analysis.

Handling long traces From an engineering perspective, handling
long traces is challenging for any race detection technique. For real

world applications, the trace is often too large to fit into the main
memory. Moreover, for our approach, the generated constraints for
long traces can be difficult to solve. Even with a high performance
solver like Z3 or Yices, the constraints may still be too heavy to
solve in a reasonable time budget. For practicality, we employ in
RVPredict a windowing strategy similar to CP [35]. We divide the
trace into a sequence of fixed-size windows (typically 10K events
in a window) and perform race analysis on each window sepa-
rately. This simple strategy has two advantages for performance
optimization: First, each time only a window size of events are pro-
cessed, which can be easily loaded in memory. Second, the gener-
ated constraints for a window instead of the whole trace become
much smaller, so that Z3 and Yices can solve them much easier.
The downside of this strategy is that a race between operations in
different windows will not be detected. Fortunately, because the
likelihood for two operations to race dramatically decreases when
the distance between them gets larger, we did not find many such
cases in practice. Moreover, this windowing strategy does not af-
fect the soundness of our implementation. All detected races by
RVPredict are real, i.e., it does not report any false positive.

5. Evaluation
Our evaluation aims to answer the following research questions:
1. Race detection capability - How many races can our technique

detect in popular benchmarks and real world systems? As our
technique is maximal, how many more races can it detect than
the other state-of-the-art sound but non-maximal techniques?

2. Scalability - How efficient is our technique? Can it scale to real
world executions?

To properly compare our technique with the state-of-the-art, we
have also implemented HB [22], CP [35], and Said et al. [30] in
RVPredict. We attempted to conduct an unbiased comparison and
faithfully implemented the techniques according to their represen-
tative publications [22, 30, 35]. All our implementations are avail-
able at http://fsl.cs.illinois.edu/rvpredict/.

We evaluated these techniques on an extensive collection of
widely used multithreaded benchmarks as well as several real world
large concurrent systems, mostly from previous studies [5, 10,
17, 18, 21, 30, 35, 36]. To perform a fair comparison, for each
benchmark, we collected one trace and ran different techniques on
the same trace. To evaluate with long traces, because all techniques
(including HB and CP) need the windowing strategy to scale, for
all techniques and all benchmarks, we set the window size to 10K.
This is sufficient to cover the traces of small benchmarks and at the
same time to ensure that for large traces all techniques can finish
within a reasonable time.

All experiments were conducted on a 8-core 3.50GHz Intel i7
machine with 32G memory and Linux version 3.2.0. The JVM
is OpenJDK 1.7.0 64-Bit Server with 32G heap space. We next
discuss our experimental results in detail as reported in Table 1.

Benchmarks and Traces Columns 1-2 list our benchmarks. The
total source lines of code of these programs is more than 1.7M. The
first row shows our example program in Figure 1; the second set
of small benchmarks are from IBM Contest benchmark suite [17];
the third set contains three popular multithreaded Java Grande
benchmarks; the last set contains real world large applications. The
most substantial real systems include:

• FTPServer - Apache’s high-performance FTP server;
• Jigsaw - W3C’s web server;
• Derby - Apache’s widely used open source Java RDBMS;
• Sunflow, Xalan, Lusearch, Eclipse - popular multithreaded ap-

plications from Dacapo benchmark suite 9.12 [5].
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Program LOC Trace Data race Time
#Thrd #Event #RW #Sync #Br QC RV Said CP HB RV Said CP HB

example 64 2 20 12 6 2 1 1 0 0 0 0.4s 0.8s 0.8s 0.8s
critical 63 3 38 23 4 11 8 8 7 4 4 0.9s 0.8s 0.8s 0.8s
airline 83 11 214 127 10 77 9 9 6 8 8 0.9s 1.0s 0.8s 0.8s
account 87 3 126 82 2 42 9 5 5 3 3 0.9s 0.9s 0.9s 0.9s
pingpong 124 5 64 40 5 19 7 4 4 3 3 0.8s 0.8s 0.8s 0.8s
bbuffer 334 4 1.7K 975 209 497 15 13 10 5 5 4.1s 6.8s 1s 1s
bubblesort 274 26 4.5K 2.3K 188 2K 17 8 8 7 7 7.4s 44s 1.3s 1.2s
bufwriter 199 5 411 242 36 133 18 2 0 2 2 1s 1.2s 0.8s 0.8s
mergesort 298 5 5.5K 2.9K 122 2.5K 16 9 7 3 3 2.5s 7.9s 1.2s 1.2s
raytracer

2.9K
2 23.4K 17.7K 674 5.3K 5 5 5 3 3 1.2s 3.4s 1.2s 1.2s

montecarlo 2 11.7M 7.2M 285K 4.3M 0 0 0 0 0 13.5s 13.7s 14.2s 12s
moldyn 2 273K 193K 64 79.5K 509 11 5 2 2 53.5s 170s 1.2s 1.6s
Total: bench 4.3K - 614 75 57 40 40 -
ftpserver 32K 12 59K 40.3K 7.7K 10.7K 233 37 3 31 27 34s 96s 1.6s 1.3s
jigsaw 101K 12 4.6M 3M 15.5K 1.6M 54 15 14 7 7 81s 92s 6.2s 5.9s
derby 302K 3 856K 613K 38K 205K 469 118 15 14 12 1820s 1h 24s 23s
sunflow 109K 9 14.8M 7.7M 482 7.05M 66 2 2 2 2 14.6s 14.5s 14.4s 14.9s
xalan 180K 9 12.5M 6.9M 130K 5.5M 108 108 107 5 3 14.6s 14.6s 13.5s 12.5s
lusearch 410K 10 11.3M 6.7M 30.6K 4.6M 87 16 15 15 15 12.1s 12.8s 12.3s 11.9s
eclipse 560K 10 14.3M 7.6M 644K 6.05M 8 3 2 2 2 17.3s 23.6s 37.2s 14.5s
Total: real 1.7M - 1025 299 158 76 68 -

Table 1. Overall results - Columns 3-7 report metrics of the traces: the number of threads (#Thrd), total number of events (#Event),
reads/writes (#RW), synchronizations (#Sync), and branch events (#Br). Column 8 (QC) reports the number of potential races that passes
the quick check algorithm (a hybrid of lockset and weak HB). Columns 9-12 reports the number of real races detected by our technique
(RV), Said et al. [30] (Said), Causally-Precedes [35] (CP), and Happens-Before [22] (HB), respectively, and Columns 13-16 report the total
race detection time taken by the corresponding techniques. For all the evaluated programs, our technique detected more or at least the same
number of races as the other techniques. For the efficiency, HB and CP are faster than the other two, and our technique is faster than Said.

Columns 3-7 report metrics of the collected traces. The traces
cover a wide range of complexity. The number of events in the
traces ranges from hundreds in small benchmarks to as large as
14.8M in real systems. For most real systems, the traces contain
more than 10 threads. The number of read/write, synchronization,
and branch events is significant in the real systems, ranging be-
tween 40K-7.7M, 0.5K-650K, and 200K-6M, respectively. We are
not aware of previous sound predictive race detector implementa-
tions that have been evaluated on executions with such a large scale.

Bug Detection Capability Column 8 reports the number of poten-
tial races that pass the quick check of a hybrid lockset and weaker
HB algorithm. These races comprise a superset of all the real races
that can be detected from the trace. Because the hybrid algorithm
is unsound, some races in this set may be false positives. For in-
stance, there are 18 potential races detected in bufwriter, but only
2 of them are real races. Columns 9-12 report the number of real
races detected by different sound techniques.

The results show that, for every benchmark, our technique is
able to detect more or at least the same number of races (i.e., a
super set) as the other sound techniques. For instance, for derby,
our technique (RV) detected 118 races, while Said et al. detected
15, CP detected 14, and CP detected 12. This demonstrates that
our technique achieves a higher race detection capability not only
theoretically, but also in practice. For Said et al., it detected more
races than HB and CP in most benchmarks, with a few exceptions,
though. For instance, for ftpserver, CP and HB detected 31 and
27 races, respectively, whereas Said et al. only detected 3. The
reason for this, as explained in Section 1, is that the all read-write
consistency prevents Said et al. from detecting races in feasible
incomplete traces, though its SMT-based solution is able to explore
more valid whole trace re-orderings than CP and HB. Between
CP and HB, they detected the same number of races in the small
benchmarks. This was because the lock regions in these small
benchmarks typically have conflicting accesses. However, this does
not hold for the real systems. In ftpserver, derby, and xalan, CP
detected a few more races than HB.

For the real systems, our technique detected a total num-
ber of 299 real races. Notably, among these races, a number
of them are previously unknown. For instance, we found three
real races in eclipse, one is on the field variable activeSL of
class org.eclipse.osgi.framework.internal.core.StartLevelManager,
and the other two happen on the field elementCount of class
org.eclipse.osgi.framework.util.KeyedHashSet. Interestingly, Keyed-
HashSet is documented as thread unsafe. The Eclipse develop-
ers misused this class and created a shared instance by multi-
ple threads without external synchronization. Shortly after we re-
ported these races, the developers fixed them and also contacted
us for adopting our tool. Now the team is using RVPredict to
detect races in the codebase of Virgo. We also found eight pre-
viously unknown races in lusearch, all of which happen in the
class org.apache.lucene.queryParser.QueryParserTokenManager.
We first reported these races in the lucene bug database. However,
the developer pointed out that QueryParserTokenManager is docu-
mented as thread unsafe. It turned out that this class was misused
by the Dacapo developers in writing the lusearch benchmark.

Note that our technique is sound and fully automatic. Unlike
many unsound techniques that report false warnings or even sound
techniques that require manual post-processing for most races (e.g.,
CP [35]), every race detected by our technique is real. This has
been supported by our manual inspection: every reported race has
been checked and confirmed to be real. On the other hand, because
the maximality of our technique is concerned with sound race de-
tection only, it is possible that our technique may miss some real
races that can be reported by an unsound race detector. For exam-
ple, not all the potential races reported in Column 8 are necessarily
false alarms if they are not reported in Column 9 as well. However,
if such a race exists, our technique guarantees that it cannot be re-
ported by any sound technique using the same input trace. Note that
any dynamic race detection technique (including ours) is sensitive
to the observed execution trace. The results reported for different
traces are incomparable. Therefore, it is possible for our technique
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to miss certain races reported in other studies, because the traces in
our experiments may be different from those used in other’s work.

Scalability The performance of our technique largely depends on
the complexity of the constraints and the speed of the constraint
solver, as the core computation of our technique takes place in the
constraint solving phase. With the high performance solvers and
our windowing strategy, our technique shows good scalability when
dealing with large traces. Column 13 reports the total time for our
technique to detect races in each program using Yices. The perfor-
mance of Z3 was comparable with only slight variances. For most
small benchmarks, our technique was able to finish in a few sec-
onds. For most real systems, our technique finished within around
a minute. The most time consuming case is derby, which our tech-
nique took around 30 minutes to process. The reason is that the
trace of derby has a lot more potential races (469 COPs) and also
it contains many fine-grained critical sections (38K synchroniza-
tions), making the generated constraints much more complex.

Columns 14-16 report the race detection time for the other three
techniques. Among the four techniques (including ours), HB and
CP are comparable and are typically faster than Said et al. and
our technique. This is expected because HB and CP do not rely on
SMT solving and explore a much smaller set of trace re-orderings.
Between our technique and Said et al., our technique typically has
better performance. For instance, for the derby trace, Said et al.
took more than one hour (timeout) without finishing, while our
technique finished within around 30 minutes. The reason is that
our technique generates less constraints to solve than Said et al.
for capturing the read-write consistency. While Said et al. generate
constraints for all read events in the trace to ensure the whole trace
read-write consistency, our technique concerns only the read events
that have control flow to the race events.

6. Related Work
There is a rich body of race detection work in the literature. Our
work is distinguished from other approaches in two main aspects:
1. we include control flow information - branch events - into the ex-
ecution trace, enabling us to detect more races than other sound dy-
namic race detectors. 2. we encode the maximal causal model with
control flow as a minimal set of feasibility constraints to achieve the
maximal race detection capability. We next review important race
detection techniques and discuss some representative recent work.

Predictive Trace Analysis Our technique belongs to the school
of predictive trace analysis (PTA) approaches [10, 18, 21, 30, 36],
which generate valid trace reorderings under certain scheduling
constraints to find bugs unseen in the observed execution. The work
by Said et al. [30] is representative in this direction and inspired our
technique. Both techniques rely on efficient encoding of the trace
constraints and modern SMT solvers to explore feasible reorder-
ings. The key difference, as we noted earlier in Section 1, is that
from the perspective of control flow our technique is able to en-
code the minimal set of feasibility constraints to achieve maximal-
ity. Without considering the control flow, [30] has to conservatively
enforce the whole trace read-write consistency, which cannot detect
races beyond fake control dependencies such as (3,10) in Figure 1
and also misses races in incomplete feasible traces such as (1,4) in
Figure 2. ExceptioNULL [18] presents a PTA technique that pre-
dicts null-pointer dereferences using constraint solving. Similar to
[30], it encodes the whole trace data-validity constraints and does
not achieve maximality. jPredictor [10] is another representative
PTA technique that predict races and atomicity violations based on
sliced causality [9], which is a sound causal model concerning pre-
cise data or control dependencies. Differently, jPredictor requires
expensive static dependence analysis (hard to implement soundly
in practice) and it is non-maximal.

Runtime analysis Runtime detection techniques are typically de-
signed for high runtime efficiency and do not perform comprehen-
sive exploration of feasible trace permutations. Modern dynamic
race detectors are often based on one or both of the lockset algo-
rithm (first used in in Eraser [31]) and Lamport’s happens-before
(HB) principle [22]. Lockset-based approaches would detect all
races detected by our technique but may also report many addi-
tional false alarms. It is unsound because many conflicting oper-
ations can be actually ordered by control flow even though they
have different locksets. To address this problem, active testing tech-
niques such as RaceFuzzer [32] create concrete executions to ex-
pose real races by actively controlling a race-directed thread sched-
uler. PECAN [21] statically generates racy schedules and uses a
deterministic thread scheduler to create races. On the other hand,
HB is precise but may miss races and is also more expensive. Nu-
merous tools have been proposed to combine lockset with HB. For
example, Choi and O’Callahan [28] investigate a two-phase scheme
that first uses lockset analysis to find out problematic fields and then
performs HB analysis to produce precise detection. Goldilock [14]
uses lockset and HB to support continuous monitoring of race con-
ditions in the JVM. To improve performance, FastTrack [19] pro-
poses an adaptive lightweight representation for HB, and IFRit [13]
uses static analysis to identify interference-free regions that re-
duce redundant instrumentations at compile time. Pacer [7], Lit-
eRace [24], and DataCollider [16] use sampling-based approaches
to detect races with negligible runtime overheads.

Static analysis Many whole program static analysis techniques
have been developed for identifying races in various languages, in-
cluding C [15, 29, 37, 39], Java [27], and SPMD programs [4]. The
primary advantage of static detection is that they can potentially ex-
plore all paths to find possible bugs. However, applying static anal-
ysis to large and complicated programs without producing many
false alarms is challenging. Language and type systems [6, 8] have
also been proposed to statically prevent races. These approaches
typically require programmer annotations to specify property re-
gions or have a limited language expressiveness.

Model checking An alternative way to achieve maximality in de-
tecting races is to exhaustively explore the thread scheduling space,
employed by model checking techniques [26, 34, 38]. For instance,
CHESS dynamically explores different thread schedules of the tar-
get program in a context-bounded way. Shacham et al. [34] use a
model checker to construct the witness for races reported by the
lockset algorithm. Unfortunately, facing the exponentiality of both
the program path and the scheduling space, it is still hard for model
checking techniques to scale to large multithreaded programs. As
our technique focuses on exploring races with respect to a single
dynamic trace, it is much more scalable than model checking.

7. Conclusion
We have presented a sound predictive race detection technique
based on a new foundation of maximal causal model incorporat-
ing the control flow that achieves the maximal detection capability
for any sound race detector given the same execution trace under
sequential consistency. We formulate race detection as a constraint
solving problem over a minimal set of valid trace reordering con-
straints, and use an SMT solver to find all real races captured by
the new maximal model. We have conducted extensive experiments
with our technique and demonstrate that our technique is not only
theoretically sound but also practically feasible. It is effective and
scalable in detecting races in real world large concurrent systems.
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