
Specifying Languages and Verifying Programs with K
http://kframework.org

Grigore Roşu
Department of Computer Science

University of Illinois
Urbana, USA

grosu@illinois.edu

Abstract—K is a rewrite-based executable semantic frame-
work for defining languages. The K framework is designed
to allow implementing a variety of generic tools that can
be used with any language defined in K, such as parsers,
interpreters, symbolic execution engines, semantic debuggers,
test-case generators, state-space explorers, model checkers,
and even deductive program verifiers. The latter are based
on matching logic for expressing static properties, and on
reachability logic for expressing dynamic properties. Several
large languages have been already defined or are being defined
in K, including C, Java, Python, Javascript, and LLVM.

Keywords-semantics; verification; formal methods; logic

I. Introduction

One of the long-lasting dreams of the programming
language community is to have one formal semantic definition
of a target programming language and from it to derive all the
tools needed to execute and analyze programs written in that
language: parsers, interpreters, compilers, symbolic execution
engines, model checkers, deductive program verifiers, and
so on. This is illustrated in Figure 1.

K [1] (http://kframework.org) is a rewrite-based
executable semantic framework in which programming
languages can be defined using configurations, computations
and rules. Configurations organize the state in units called
cells, which are labeled and can be nested. Computations
carry computational meaning as special nested list structures
sequentializing computational tasks, such as fragments of
program. Computations extend the original language abstract
syntax. K (rewrite) rules make it explicit which parts of the
term they read-only, write-only, read-write, or do not care
about. This makes K suitable for defining truly concurrent
languages even in the presence of sharing. Computations are
like any other terms in a rewriting environment: they can
be matched, moved from one place to another, modified, or
deleted. This makes K suitable for defining control-intensive
features such as abrupt termination, exceptions or call/cc.
K is designed to allow implementing a variety of tools

that can be used with any language semantics. Currently, it
includes the ones mentioned in the abstract. The symbolic
execution engine is connected to the Z3 SMT solver, and the
deductive program verifier is based on matching logic for

Deductive
program
verifier

Parser

Interpreter

Compiler

(semantic)
Debugger

Symbolic
execution

Model
checker

Formal Language Definition
(Syntax and Semantics)

Test-case
generation

Figure 1. Not a dream anymore

expressing static properties, which generalizes separation
logic, and on reachability logic for expressing dynamic
properties, which generalizes Hoare logic [2]–[7].

A series of paradigmatic languages have been defined in
K and are used for teaching at several universities. Also,
several real-life large languages have been already defined
or a still being defined using K. All these can be reached
from the URL mentioned above.

II. Why Semantics?

One may wonder why bother defining a language in K, or
in any other semantic framework. In fact, the current state
of the art is to implement interpreters, compilers, and formal
analysis tools specific to each language and not worry at
all about any formal semantics for the language. This is not
only uneconomical, because most of the tools reimplement
the same techniques and algorithms, but it also quite error
prone. Consider, for example, the following C program:

int main(void) {
int x = 0;
return (x = 1) + (x = 2);

}

SYNASC'13, IEEE/CPS. 2013

http://kframework.org
http://kframework.org

According to the C standard, this program is undefined.
Yet, some compilers (gcc 4, msvc) and formal analysis
tools (Havoc, Frama-C) execute or prove that this program
evaluates to ... 4. What is wrong here is that these compilers
and tools are not based on an explicit and public formal
semantics of C, but instead have their own version of the
semantics hardwired in their implementation. If an error in
the semantics is found, then it needs to be fixed in each tool
separately, which is tedious and demotivating.

Compare this to a world where all the tools are derived
from a public formal semantics of the language, and have
nothing particular to any language, except perhaps for
cosmetic syntactic sugar for how to input formal knowledge
to the tool. Then fixing an error in the semantics will fix the
problem in all the tools. Moreover, tool developers have a
much stronger incentive to engineer their tools well, because
they become tools for all languages.

III. How KWorks

A language is defined in one or more files with extension
“.k”. A language definition consists roughly of three parts:
annotated syntax, configuration, and semantic rules.

For syntax, K uses conventional BNF annotated with K-
specific attributes. For example, the syntax of assignment in
a simple C-like imperative language can be defined as

syntax Stmt ::= Id "=" Exp [strict(2)]

The attribute strict(2) states the evaluation strategy of the
assignment construct: first evaluate the second argument, and
then apply the semantic rule(s) for assignment.

To allow arbitrarily complex and nested program con-
figurations, K proposes a cell-based approach. Each cell
encapsulates relevant information for the semantics, including
other cells that can “float” inside it. For a simple imperative
language, a “top” cell <T>...</T> containing a code cell
<k>...</k> and a state <state>...</state> suffices:

configuration <T>
<k> $PGM </k>
<state> .Map </state>

</T>

The given cell contents tell K how to initialize the configura-
tion: $PGM says where to put the input program once parsed,
and .Map is the empty map.

Once the syntax and configuration are defined, we can start
adding semantic rules. K rules are contextual: they mention
a configuration context in which they apply, together with
local changes they make to that context. The user typically
only mentions the absolutely necessary context in their rules;
the remaining details are filled in automatically by the tool.
For example, here is a possible K rule for assignment:

rule <k> X:Id = V:Val => V ...</k>
<state>... X |-> (_ => V) ...</k>

The ellipses are part of the K syntax. Recall that assignment
was strict(2), so we can assume that its second argument
is a value, say V. The context of this rule involves two cells,
the k cell which holds the current code and the state cell
which holds the current state. Moreover, from each cell, we
only need certain pieces of information: from the k cell we
only need the first task, which is the assignment X=V, and
from the state cell we only need the binding X|->_. The
underscore stands for an anonymous variable, the intuition
here being that that value is discarded anyway, so there is
no need to bother naming it. The unnecessary parts of the
cells are replaced with ellipses. Then, once the local context
is established, we identify the parts of the context which
need to change, and we apply the changes using local rewrite
rules with the arrow =>, noting that it has a greedy scoping,
grabbing everything to the left and everything to the right until
a cell boundary (open or closed) or an unbalanced parenthesis
is encountered; its scoping can therefore be controlled using
parentheses. In our case, we rewrite both the assignment
expression and the value of X in the state to the assigned
value V. Everything else stays unchanged. The concurrent
semantics of K regards each rule as a transaction: all changes
in a rule happen concurrently; moreover, rules themselves
apply concurrently, provided their changes do not overlap.

Once the definition is complete and saved in a .k file,
say imp.k, the next step is to generate the desired language
model. This is done with the kompile command:

kompile imp.k

By default, the fastest possible executable model is generated.
To generate models which are amenable for symbolic
execution, test-case generation, search, model checking, or
deductive verification, one needs to provide kompile with
appropriate options. We do not discuss these options here.

The generated language model is employed on a given
program for the various types of analyses using the krun
command. By default, with the default language model, krun
simply runs the program. For example, if sum.imp contains

n=100; s=0;
while(n>0) {
s=s+n; n=n-1;

}

then the command

krun sum.imp

yields the final configuration

<T>
<k> . </k>
<state>
n |-> 0, s |-> 5050

</state>
</T>

SYNASC'13, IEEE/CPS. 2013

Using the appropriate options to the kompile and krun
commands, we can enable all the above-mentioned tools
and analyses on the defined programming language and the
given program. Many languages are provided with the K
tool distribution, and several others are available from the
mentioned URL. Some of these languages have dozens of
cells in their configurations and hundreds of semantic rules.

IV. Current Progress, Applications, Further Reading

Besides didactic and prototypical languages (such as the
lambda calculus, System F, and Actors), K has been used to
formalize several existing real-life languages and to design
and develop analysis and verification tools for them. For ex-
ample, C [8], Python [9], Java [10] and Scheme [11], as well
as various aspects of features of Haskell [12], Javascript [13],
X10 [14], a RISC assembly [15], [16], LLVM [17], and a
framework for domain specific languages [18], [19].
K’s ability to express truly concurrent computations

has been used in researching safe models for concur-
rency [20], synchronization of agent systems [21], models
for P-Systems [22], [23], and for the x86-TSO relaxed
memory model [24]. K has been used for designing type
checkers/inferencers [25], for model checking executions with
predicate abstraction [26], [27] and heap awareness [28],
for symbolic execution [29]–[31], computing worst case
execution times [32], [33], studying program equivalence [34],
and runtime verification [24], [35]. Additionally, the C
definition mentioned above has been used as a program
undefinedness checker to analyze C programs [36].
K served as an inspiration for the design of Reachability

Logic [6], [7], a new logic for verification based on matching
logic [2], unifying operational and axiomatic semantics [4],
generalizing both Hoare logic and separation logic [5], which
serves as basis for a new program verification tool for K
definitions using Hoare-like assertions [3].

All these definitions and analysis tools can be found on the
K tool website. Other language definitions and analysis tools
developed using the K technique before the development
of the K tool include early definitions of Java [37] and of
Verilog [38], as well as a static policy checker for C [39].

We recommend the reader who wants to learn K to start by
downloading the tool from its website, do the online filmed
tutorial, and then do the exercises in the K distribution. In
terms of paper reading, we recommend the recent K overview
[40] for a high-level presentation and a moderate example,
and the K primer [41] for tool-specific details.

V. Conclusion

K is a framework for defining programming languages. It
aims at bringing formal semantics mainstream, by providing
an intuitive notation and an attractive set of language-
independent tools that can be used with any language once
a semantics is given to that language.

Acknowledgment

The development of K would have not been possible
without the enthusiasm and support of many colleagues,
students and friends. I would like to particularly thank
Dorel Lucanu, who is leading the Romanian team that co-
develops the K tool (together with the team at Urbana, USA),
and to Traian Florin Serbanuta, for his leadership of the
development team. The research underlying the K framework
was supported in part by the NSF grant CCF-1218605, the
DARPA HACMS program as SRI subcontract 19-000222, the
Rockwell Collins contract 4504813093, and the (Romanian)
SMIS-CSNR 602-12516 contract no. 161/15.06.2010.

References

[1] G. Rosu and T.-F. Serbanuta, “An overview of the K semantic
framework,” J. Logic and Algebraic Programming, vol. 79,
no. 6, pp. 397–434, 2010.

[2] G. Rosu, C. Ellison, and W. Schulte, “Matching logic: An
alternative to Hoare/Floyd logic,” in AMAST, ser. LNCS, vol.
6486, 2010, pp. 142–162.

[3] G. Rosu and A. Stefanescu, “Matching logic: a new program
verification approach (NIER track),” in ICSE, 2011, pp. 868–
871.

[4] ——, “Towards a unified theory of operational and axiomatic
semantics,” in ICALP, ser. LNCS, vol. 7392, 2012, pp. 351–
363.

[5] ——, “From Hoare logic to matching logic reachability,” in
FM, ser. LNCS, vol. 7436, 2012, pp. 387–402.

[6] ——, “Checking reachability using matching logic,” in OOP-
SLA. ACM, 2012, pp. 555–574.

[7] G. Roşu, A. Ştefănescu, S. Ciobâcă, and B. M. Moore, “One-
path reachability logic,” in LICS’13. IEEE, 2013.

[8] C. Ellison and G. Rosu, “An executable formal semantics of
C with applications,” in POPL. ACM, 2012, pp. 533–544.

[9] D. Guth, “A formal semantics of Python 3.3,” Master’s
thesis, University of Illinois at Urbana-Champaign, July
2013. [Online]. Available: https://github.com/kframework/
python-semantics

[10] D. Bogdanas, “K definition of Java 1.4,” 2013. [Online].
Available: https://github.com/kframework/java-semantics

[11] P. Meredith, M. Hills, and G. Rosu, “An executable rewriting
logic semantics of K-Scheme,” in SCHEME, D. Dubé, Ed.
Laval University TR DIUL-RT-0701, 2007, pp. 91–103.
[Online]. Available: http://www.schemeworkshop.org/2007/
procFront.pdf

[12] D. Lazar, “K definition of Haskell’98,” 2012. [Online].
Available: https://github.com/davidlazar/haskell-semantics

[13] D. Park, “K definition of Javascript,” 2013. [Online].
Available: https://github.com/kframework/javascript-semantics

SYNASC'13, IEEE/CPS. 2013

https://github.com/kframework/python-semantics
https://github.com/kframework/python-semantics
https://github.com/kframework/java-semantics
http://www.schemeworkshop.org/2007/procFront.pdf
http://www.schemeworkshop.org/2007/procFront.pdf
https://github.com/davidlazar/haskell-semantics
https://github.com/kframework/javascript-semantics

[14] M. Gligoric, D. Marinov, and S. Kamin, “CoDeSe: fast
deserialization via code generation,” in ISSTA, M. B. Dwyer
and F. Tip, Eds. ACM, 2011, pp. 298–308.

[15] M. Asavoae, “K semantics for assembly languages : A case
study,” in K’11, ser. Electronic Notes in Theoretical Computer
Science, M. Hills, Ed., 2013, in this issue.

[16] ——, “A K-based methodology for modular design of
embedded systems,” in WADT (preliminary proceedings), ser.
TR-08/12, Universidad Complutense de Madrid, 2012, p. 16.
[Online]. Available: http://maude.sip.ucm.es/wadt2012/docs/
WADT2012-preproceedings.pdf

[17] C. Ellison and D. Lazar, “K definition of the LLVM
assembly language,” 2012. [Online]. Available: https:
//github.com/davidlazar/llvm-semantics

[18] V. Rusu and D. Lucanu, “A K-based formal framework
for domain-specific modelling languages,” in FoVeOOS, ser.
Lecture Notes in Computer Science, B. Beckert, F. Damiani,
and D. Gurov, Eds., vol. 7421. Springer, 2011, pp. 214–231.

[19] ——, “K semantics for OCL—a proposal for a formal defini-
tion for OCL,” in K’11, ser. Electronic Notes in Theoretical
Computer Science, M. Hills, Ed., 2013, in this issue.

[20] S. Heumann, V. S. Adve, and S. Wang, “The tasks with effects
model for safe concurrency,” in PPOPP, A. Nicolau, X. Shen,
S. P. Amarasinghe, and R. Vuduc, Eds. ACM, 2013, pp.
239–250.

[21] P. Dinges and G. Agha, “Scoped synchronization constraints
for large scale actor systems,” in COORDINATION, ser.
Lecture Notes in Computer Science, M. Sirjani, Ed., vol.
7274. Springer, 2012, pp. 89–103.

[22] T. F. Şerbănuţă, G. Ştefănescu, and G. Roşu, “Defining and
executing P systems with structured data in K,” in WMC, ser.
Lecture Notes in Computer Science, D. W. Corne, P. Frisco,
G. Păun, G. Rozenberg, and A. Salomaa, Eds., vol. 5391.
Springer, 2008, pp. 374–393.

[23] C. Chira, T.-F. Serbanuta, and G. Stefanescu, “P systems with
control nuclei: The concept,” Journal of Logic and Algebraic
Programming, vol. 79, no. 6, pp. 326–333, 2010.

[24] T. F. Şerbănuţă, “A rewriting approach to concurrent pro-
gramming language design and semantics,” Ph.D. dissertation,
University of Illinois at Urbana-Champaign, December 2010,
https://www.ideals.illinois.edu/handle/2142/18252.

[25] C. Ellison, T. F. Serbanuta, and G. Rosu, “A rewriting logic
approach to type inference,” in WADT, ser. Lecture Notes in
Computer Science, A. Corradini and U. Montanari, Eds., vol.
5486. Springer, 2008, pp. 135–151.

[26] I. M. Asavoae and M. Asavoae, “Collecting semantics under
predicate abstraction in the K framework,” in WRLA, ser.
Lecture Notes in Computer Science, P. C. Ölveczky, Ed., vol.
6381. Springer, 2010, pp. 123–139.

[27] I. M. Asavoae, “Systematic design of abstractions
in K,” in WADT (preliminary proceedings), ser. TR-
08/12, Universidad Complutense de Madrid, 2012, p. 9.
[Online]. Available: http://maude.sip.ucm.es/wadt2012/docs/
WADT2012-preproceedings.pdf

[28] J. Rot, I. M. Asavoae, F. S. de Boer, M. M. Bonsangue,
and D. Lucanu, “Interacting via the heap in the presence of
recursion,” in ICE, ser. Electronic Proceedings in Theoretical
Computer Science, M. Carbone, I. Lanese, A. Silva, and
A. Sokolova, Eds., vol. 104, 2012, pp. 99–113.

[29] I. M. Asavoae, M. Asavoae, and D. Lucanu, “Path directed
symbolic execution in the K framework,” in SYNASC, T. Ida,
V. Negru, T. Jebelean, D. Petcu, S. M. Watt, and D. Zaharie,
Eds. IEEE Computer Society, 2010, pp. 133–141.

[30] I. M. Asavoae, “Abstract semantics for alias analysis in K,” in
K’11, ser. Electronic Notes in Theoretical Computer Science,
M. Hills, Ed., 2013, in this issue.

[31] A. Arusoaie, D. Lucanu, and V. Rusu, “A generic framework
for symbolic execution,” in SLE, ser. Lecture Notes in
Computer Science, vol. 8225, 2013, pp. 281–301.

[32] M. Asăvoae, D. Lucanu, and G. Roşu, “Towards semantics-
based WCET analysis,” in WCET, ser. Austian Computer
Society (OCG), C. Healy, Ed., 2011.

[33] M. Asavoae, I. M. Asavoae, and D. Lucanu, “On
abstractions for timing analysis in the K framework,” in
FOPARA, ser. Lecture Notes in Computer Science, R. Pena,
M. Eekelen, and O. Shkaravska, Eds., vol. 7177. Springer
Berlin Heidelberg, 2012, pp. 90–107. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-32495-6_6

[34] D. Lucanu and V. Rusu, “Program Equivalence by Circular
Reasoning,” INRIA, Tech. Rep. RR-8116, October 2012.
[Online]. Available: http://hal.inria.fr/hal-00744374

[35] G. Rosu, W. Schulte, and T.-F. Serbanuta, “Runtime verifica-
tion of C memory safety,” in RV, 2009, pp. 132–151.

[36] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,
“Test-case reduction for C compiler bugs,” in PLDI, J. Vitek,
H. Lin, and F. Tip, Eds. ACM, 2012, pp. 335–346.

[37] A. Farzan, F. Chen, J. Meseguer, and G. Rosu, “Formal
analysis of Java programs in JavaFAN,” in CAV’04, ser. LNCS,
vol. 3114, pp. 501–505.

[38] P. O. Meredith, M. Katelman, J. Meseguer, and G. Rosu, “A
formal executable semantics of Verilog,” in MEMOCODE’10.
IEEE, 2010, pp. 179–188.

[39] M. Hills, F. Chen, and G. Rosu, “A rewriting logic approach to
static checking of units of measurement in C,” in RULE’08, ser.
Electronic Notes in Theoretical Computer Science, G. Kniesel
and J. S. Pinto, Eds., vol. 290. Elsevier, 2012, pp. 51–67.

[40] G. Rosu and T. F. Serbanuta, “K overview and simple case
study,” in Proceedings of International K Workshop (K’11),
ser. ENTCS. Elsevier, 2013, To appear.

[41] T. F. Serbanuta, A. Arusoaie, D. Lazar, C. Ellison, D. Lucanu,
and G. Rosu, “The k primer (version 3.3),” in Proceedings
of International K Workshop (K’11), ser. ENTCS. Elsevier,
2013, To appear.

SYNASC'13, IEEE/CPS. 2013

http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
https://github.com/davidlazar/llvm-semantics
https://github.com/davidlazar/llvm-semantics
https://www.ideals.illinois.edu/handle/2142/18252
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://maude.sip.ucm.es/wadt2012/docs/WADT2012-preproceedings.pdf
http://dx.doi.org/10.1007/978-3-642-32495-6_6
http://hal.inria.fr/hal-00744374

	Introduction
	Why Semantics?
	How K Works
	Current Progress, Applications, Further Reading
	Conclusion
	References

