
Maximal Causal Models for Sequentially
Consistent Systems?

Traian Florin S, erbănut, ă1,2, Feng Chen1, and Grigore Ros,u1,2

1 University of Illinois at Urbana-Champaign
2 University “Alexandru Ioan Cuza” Ias, i

Abstract. This paper shows that it is possible to build a maximal and
sound causal model for concurrent computations from a given execution
trace. It is sound, in the sense that any program which can generate
a trace can also generate all traces in its causal model. It is maximal
(among sound models), in the sense that by extending the causal model
of an observed trace with a new trace, the model becomes unsound: there
exists a program generating the original trace which cannot generate the
newly introduced trace. Thus, the maximal sound model has the property
that it comprises all traces which all programs that can generate the
original trace can also generate. The existence of such a model is of great
theoretical value as it can be used to prove the soundness of non-maximal,
and thus smaller, causal models.

1 Introduction

Traces of events describing concurrent computations have been employed in a
plethora of methods for testing and analyzing concurrent systems. The common
pattern for all these methods (e.g., [2, 3, 5, 7, 12–16,18–21]) is: (1) the program is
instrumented to trace the execution of programs; then (2) one execution trace
is recorded; then (3) an abstraction of that trace, i.e., a model, is derived; and
finally, (4) the obtained model is used to “predict” (problematic) event patterns
occurring in other possible executions abstracted by it.

Consider, for example, the conventional happens-before causality: if two
conflicting accesses to an object are not causally ordered, then a data-race is
reported [15]. But is this the best one can do? Of course, not. A series of papers
propose more relaxed happens-before causal models where one can also permute
blocks protected by the same lock, provided that they access disjoint variables [12],
thus discovering new concurrency bugs not observable with plain happens-before.
But is this the best one can do? Of course, not. Other papers propose models
where one can also permute semantic blocks provided that each read access
continues to correspond to the same write [16, 18, 21]. Others go even further.
Section 5 discusses a series of existing causal models; we only study sound models
here, i.e., ones which only report real problems in the analyzed systems, allowing

? This work was supported in part by Contract 161/15.06.2010, SMISCSNR 602-12516
(DAK) and by NSF grant CCF-0916893.

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

developers to focus on fixing those real problems and not on additionally sorting
them out from false positives. We would naturally like to know whether there
is an end to the question “Is this the best we can do?”, that is, whether there
is any causal model that can be associated to a given execution trace which
comprises the maximum number of causally equivalent traces.

Although most runtime analysis techniques are built upon some underlying
sound causal model, possibly relaxed for efficiency reasons, each effort seems to
focus more on how to capture it efficiently rather than proving its soundness
(often implicitly assumed) or studying its relationship to existing models (other
than empirically comparing the number of found bugs). Moreover, since such
approaches attempt to extract information from one observed trace and to find
property violations, they actually deal with causal properties (e.g., causal datarace,
causal atomicity), which are instances of desired system-wise properties that
can be detected using only the causal information gathered from the observed
trace. Since what can be inferred from a trace intrinsically depends on the chosen
causal model, definitions of causal properties differ from technique to technique,
with the undesirable effect that a causal property (e.g., a datarace) in one model
might not be recognized as such by another model.

1.1 Motivating Examples

Each example in Figure 1 shows a two-threaded program, together with one of
its possible executions, in which Thread 1 is executed completely before Thread
2 starts. In this representation of executions, synchronized blocks are boxed,
while write and read operations on shared locations are denoted by ← (receiving
a value), and → (yielding a value), respectively. Both programs exhibit a race
condition between the two write operations on y. However, are the observed
executions also exhibiting a causal datarace?

Thread 1 Thread 2
sync(l) {
y = 1;
x = 1;
if (x == 2)
z = 1;

}
sync(l){
x = 2;
}
y = 2;

Execution
1:

y ← 1
x← 1
x→ 1

2:

x← 2

y ← 2

Thread 1 Thread 2
sync(l) {
x = 1;
}
y = 1;
sync(l) {
x = 1;
}

sync(l) {
if (x > 0)
y = 2;

}

Execution
1:

x← 1

y ← 1

x← 1

2:

x→ 1
y ← 2

(a) (b)

Fig. 1. Motivating examples.

2

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

When analyzing the observed execution in Figure 1(a), a simple happens-
before approach ordering all accesses to concurrent objects [15] cannot observe
a causal datarace: the release operation of the lock in Thread 1 is required to
happen-before the acquire of the lock in Thread 2. Happens-before with lock
atomicity [12] is not able to infer a causal datarace either: although the lock
atomicity would allow for the two lock-blocks to be permuted, the read of x in
Thread 1 is still required to happen-before the write of x in Thread 2. Yet, the
race condition can be captured as a causal datarace of the observed execution
by weaker happens-before models [16, 18, 21], since in those models, one can
additionally permute a write before a read of same location, as long as it is
permuted before the write corresponding to that read. Thus, the trace generated
by the program in Figure 1(a) has or does not have a causal datarace, depending
upon the particular causal model employed.

However, none of the approaches mentioned above can detect the race condi-
tion in Figure 1(b) as a causal datarace for the observed execution. The reason
for this is that all models enforce at least the read-after-write dependency (i.e.,
a read should always follow the latest write event of the same variable), and
therefore would not allow the permutation of the last two lock-blocks of the
execution, since the read of x in Thread 2 must follow the last write of x in
Thread 1. Nevertheless, there is enough information in the observed execution
to be able to detect the race: since both writes of x in Thread 1 write the same
value, it is actually possible to permute the last two lock blocks, and thus detect
the race. Moreover, since one could conceive a technique specialized for finding
such cases, it can be rightfully claimed that the observed execution has in fact
a causal datarace, although not captured by any existing definition.

Given this ever increasing (regarding coverage) sequence of causal models and
definitions for causal properties, it is only natural to ask the following question:

Is there any causal model that generalizes all existing models, and which
cannot be surpassed?

We answer this question positively in the context of sequential consistency [9].
While we believe the presented approach can be applied to other memory models,
we chose sequential consistency here for two reasons: (1) it is broadly accepted,
popular and intuitive; (2) it is subsumed by other memory models: errors detected
under sequential consistency are also errors for other memory models.

Contributions. The main result of this paper is a semantic framework that allows
to prove maximality of causal models, and a proof that our proposed model is
indeed the maximal causal model for the observed execution. This means that it
comprises precisely all traces which can be generated by all programs which can
generate the observed trace. Concretely, we show that: (1) all programs which
can produce the observed execution can generate all traces in the model; and (2)
for any trace not in the model there exists a program generating the observed
trace which cannot generate it. To our knowledge, this is the first such result for
causal models. We then prove (the implicitly assumed) soundness for a series of
existing causal models by showing they are submodels of the proposed model.

3

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

Paper structure. Section 2 introduces some notation and discusses sequential
consistency. Section 3 axiomatizes consistent concurrent systems and defines
our proposed causal models. Section 4 formally defines the maximality claim
and proves our model maximal among sound models. Section 5 shows how
existing models are included in ours, thus proving their soundness. Section 6
reviews related research and discusses several research ideas connected with
the presented work. Section 7 concludes.

2 Execution Model

Assume a machine that can execute arbitrarily many threads in parallel. The
execution environment contains a set of concurrent objects (shared memory loca-
tions, locks, . . .), which are accessed by threads to share data and synchronize.
Threads, which can only interact through the execution environment, are ab-
stracted as sequences of operations on concurrent objects. The only source of
thread non-determinism is the execution environment, that is, if the interaction
between a thread and the environment is the same across executions, the thread
will execute the same operations, in the same order. To simplify the presentation,
we assume no dynamic creation of threads (this presents no technical difficulty).

2.1 Concurrent Objects, Serial Specification

We adopt the definition of concurrent objects and serial specifications proposed
by Herlihy and Wing [8]. A concurrent object is behaviorally defined through
a set of atomic operations, which any thread can perform on it, and a serial
specification of its legal behavior in isolation. The serial specification describes
the valid sequences of operations which can be performed on the object. We
next describe two common types of concurrent objects.

Shared memory locations Each shared memory location can be regarded as a
shared object with read and write operations, whose serial specification states
that each read yields the same value as the one of the previous write. More-
over, to avoid non-determinism due to the initial state of the memory, we will
further require that all memory locations are initialized, that is, the first op-
eration for each location is a write.

Mutexes Each mutex can be regarded as a concurrent object providing acquire
and release operations. Their mutual exclusion property is achieved through the
serial specification which accepts only those sequences in which the difference
between the number of acquire and release operations is either 0 or 1 for each
prefix, and all consecutive pairs of acquire-release share the same thread.

To keep the proofs simple and the concepts clear, we refrain here from adding
more concurrency constructs (such as spawn/join, wait/notify, or semaphores).
Note, however, that this would not introduce additional complexity, but just
further constrain the notion of consistency.

4

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

2.2 Events and Traces

Operations performed by threads on concurrent objects are recorded as events.
We consider events to be abstract entities from an infinite “collection”Events, and
describe them as tuples of attribute-value pairs. The only attributes considered
here are: thread—the unique id of the thread generating the event, op—the
operation performed (e.g., write, read, acquire, or release), target—the concurrent
object accessed by the event, and data—the value sent/received by the current
event, if such exists (e.g., for the write/read operations). For example, (thread=
t1, op=write, target=x, data=1) describes an event recording a write operation
by thread t1 to memory location x with value 1. When there is no confusion,
we only list the attribute values in an event, e.g., (t1,write, x, 1). Our choice for
deciding what attributes to record in an event considers a monitor which can
observe memory and synchronization operations and the identity of the thread
performing them, but has no access to the actual code. Section 6 includes a
discussion on possible variations on the set of attributes recorded for an event.

For any event e and attribute attr, attr(e) denotes the value corresponding
to the attribute attr in e, and e[v/attr] to denote the event obtained from e by
replacing the value of attribute attr by v. An execution trace is abstracted as
a sequence of events. Given a trace τ , a concurrent object o and a thread t,
let τ�o and τ�t denote the restriction of τ to events involving only o, and only
t, respectively. Let latesto(τ) be the latest event of τ having the op attribute
o. If o is omitted, it simply means the latest event in τ .

Sequential consistency can be now elegantly defined:

Definition 1 ([1]). Let τ be any trace.
(1) τ is legal if and only if τ�o satisfies o’s serial specification for any object o;
(2) An interleaving of τ is a trace τ ′ such that τ ′�t = τ�t for each thread t.
(3) A trace τ is (sequentially) consistent if it admits a legal interleaving.

Since we restrict ourselves to sequential consistency, from here on when we say
that a trace is sequentially consistent we automatically mean that it is also legal.

3 Feasibility Model

This section introduces an axiomatization for a machine producing consistent
traces, and uses it to associate a sound-by-definition causal model to any observed
execution, comprising all executions which can potentially be inferred from that
execution alone, without additional knowledge of the system generating it.

The two properties/axioms (presented below) we base our approach on are
trace consistency and feasible executions. A consistent trace (Definition 1) dis-
allows “wrong” behaviors, such as reading a value different from the one which
was written, or proceeding when a lock cannot be acquired. Feasible executions,
defined below, refer to sets of execution traces and aim at capturing all the
behaviors that a given system or program can manifest. No matter what task
a concurrent system or program accomplishes, its set of traces must obey some

5

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

basic properties. First, feasible traces are generate-able, meaning that any pre-
fix of any feasible trace is also feasible; this is captured by our first axiom of
feasible traces, prefix closedness. Second, we assume that thread interleaving
is the only source of non-determinism in producing traces; this is captured by
our second axiom of feasible traces, local determinism.

Each particular multithreaded system or programming environment, say S,
has its own notion of feasible execution, given by its specific intended semantics.
Let us call all (possibly incomplete) traces that S can yield S-feasible, and let
feasible(S) be their set. Instead of defining feasible(S), which requires a formal
definition of S and is therefore S-specific (and tedious), we here axiomatize it:

Prefix Closedness Events are indivisible and generated in execution order;
hence, feasible(S) must be prefix closed : if τ1τ2 is S-feasible, then τ1 is S-feasible.
Prefix closedness ensures that each event is generated individually, with the pos-
sibility of interleaving happening in-between any of them. For example, although
the ++ x instruction generates two events, a read, follow by a write on x these
are not necessarily consecutive: if the instruction is not properly synchronized,
another thread could write x after the first event, yielding an atomicity violation.

Local Determinism The execution of a concurrent operation is determined
by the previous events in the same thread, and can happen at any consistent
moment after them. Formally, if τe, τ ′ ∈ feasible(S) and τ�thread(e) =τ ′�thread(e)
then: if τ ′e is consistent then τ ′e ∈ feasible(S); moreover, if op(e) = read and
there exists an event e′ such that e = e′[data(e)/data] and τ ′e′ is consistent, then
τ ′e ∈ feasible(S). The second part says that if a read operation is enabled, i.e., all
previous events have been generated, then it can be executed at any consistent
time (despite the fact that the value it receives might be different from that ob-
served in the original trace). Allowing traces where read events observe a different
value than in the original trace might seem like a source of unsoundness. Note,
however, that the same local determinism property prohibits the thread on which
such a read event occurred to continue after producing this event, by stating that
an additional event for a thread is generated only if the current trace for that
thread is exactly the same (including the value) as in the original trace. Suppose,
for example, that two threads, identified by t1 and t2, assign 1, then execute an
increment operation on the same location l. One potential observed trace could be:
(t1,write, l, 1)(t2,write, l, 1)(t1, read, l, 1)(t1,write, l, 2)(t2, read, l, 2)(t2,write, l, 3).
Local determinism ensures that we can also obtain the (partial) trace

(t1,write, l, 1)(t2,write, l, 1)(t1, read, l, 1)(t2, read, l, 2)(t1,write, l, 2).

This shows that we can use local determinism to interleave threads differently
than their original scheduling, as long as consistency is respected and threads
produce the same events. Note that, (1) event e = (t2, read, l, 2) can be generated
although it reads a different value than it originally did; and (2) thread t1 can
continue after e was generated (since it concerns a different thread), but thread
t2 cannot (because, e.g., e could be guarding a control statement).

6

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

Definition 2. S is consistent iff feasible(S) satisfies the axioms above.

A major goal of trace-based analysis is to infer/analyze as many traces as
possible using a recorded trace. When one does not know (or does not want
to use) the source code of the multithreaded program being executed, one can
only infer potential traces of the system resembling the observed trace. Let us
now define the proposed causal model, termed feasibility closure, as the set of
executions which can be inferred from an observed execution—they correspond
to the traces obtainable from τ using the feasibility axioms.

Definition 3. The feasibility closure of a consistent trace τ , written feasible(τ),
is the smallest set of traces containing τ which is prefix-closed and satisfies the
local determinism property. A trace in feasible(τ) is called τ-feasible.

Without dwelling into details here, as this is proved elsewhere [17], intuitively
the feasibility closure of a trace contains all interleavings of the observed trace,
where each thread is stopped once it read a value from the memory different
from the one observed originally, as well as all prefixes of these traces.

The following result formalizes the soundness of the proposed model. As-
suming the base axioms are sound, the closure properties guarantee that all
traces in our causal model are feasible. In addition, Proposition 1 shows that any
system/program which can generate one trace, can also generate all traces
comprised by its causal model.

Proposition 1. If S consistent and τ ∈ feasible(S) then feasible(τ) ⊆ feasible(S).
Moreover, if τ ′ is consistent and τ ∈ feasible(τ ′), then feasible(τ) ⊆ feasible(τ ′).

The intuition for τ ∈ feasible(τ ′) is that if a run of any program executed
on S can produce τ ′, then there is also some run of the same program exe-
cuted also on S that can produce τ .

4 Maximality

In this section we show that the proposed causal model is maximal among sound
models, in the sense that any extension to it is done at the expense of soundness.
We will prove therefore that given a trace τ ′ which is not in the feasibility
closure of a trace τ , there exists a program p which can generate τ but not τ ′;
therefore, if the model were extended to include τ ′ and used τ ′ as a witness
that a property is satisfied/invalidated by a program generating τ , this would
be a false witness if the program which generated τ was p.

To prove our claim, we propose CONC, a very simple (not even Turing
complete) concurrent language. The benefit of such a simple language is that
it can conceivably be simulated in any real language; therefore, proving the
maximality result for CONC proves the model is maximal for all languages.
Figure 2 presents the grammar and SOS semantics of CONC. The grammar
specifies a parallel composition of named threads. Each thread is a succession of
statements and uses one internal register to load data from the shared memory.

7

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

CONC syntax: Proc ::= Proc || Proc | Int : Stmt
Stmt ::= Stmt ; Stmt | nop | if Int then Stmt

| load Loc | Loc := Int | acquire Loc | release Loc

CONC semantics:
〈p1, σ, δ, ρ〉

τ−→ 〈p′1, σ′, δ′, ρ′〉
〈p1 || p2, σ, δ, ρ〉

τ−→ 〈p′1 || p2, σ′, δ′, ρ′〉
(Par1)

〈p2, σ, δ, ρ〉
τ−→ 〈p′2, σ′, δ′, ρ′〉

〈p1 || p2, σ, δ, ρ〉
τ−→ 〈p1 || p′2, σ′, δ′, ρ′〉

(Par2)

〈s, σ, δ, ρ, t〉 τ−→ 〈s′, σ′, δ′, ρ′, t〉
〈t : s, σ, δ, ρ〉 τ−→ 〈t : s′, σ′, δ′, ρ′〉

(Thread)

〈s1, σ′, δ′, ρ′, t〉 τ−→ 〈s′1, σ′, δ′, ρ′, t〉
〈s1 ; s2, σ, δ, ρ, t〉

τ−→ 〈s′1 ; s2, σ
′, δ′, ρ′, t〉

(Seq)

·
〈nop ; s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

(Nop)

·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈s, σ, δ, ρ, t〉

if ρ(t) = i (If true)

·
〈if i then s, σ, δ, ρ, t〉 ε−→ 〈nop, σ, δ, ρ, t〉

if ρ(t) 6= i (If false)

·
〈load x, σ, δ, ρ, t〉 (t,read,x,i)−−−−−−−→ 〈nop, σ, δ, ρ[t← i], t〉

where i = σ(x)
(Read)

·
〈x := i, σ, δ, ρ, t〉 (t,write,x,i)−−−−−−−→ 〈nop, σ[x← i], δ, ρ, t〉

(Write)

·
〈acquire x, σ, δ, ρ, t〉 (t,acquire,x)−−−−−−−→ 〈nop, σ, δ[x← t], ρ, t〉

if δ(x) =⊥
(Acq)

·
〈release x, σ, δ, ρ, t〉 (t,release,x)−−−−−−−→ 〈nop, σ, δ[x←⊥], ρ, t〉

if δ(x) = t
(Rel)

Fig. 2. Syntax and SOS semantics for the CONC language

load x loads the value at location x into the internal register of the thread,
x := i stores integer i at location x, acquire and release have the straight-forward
semantics, and if i then s executes s only if the internal register has value i. A
running configuration of CONC is a tuple 〈p, σ, δ, ρ〉 where p is the remainder
of the program being executed, σ maps variables to values, δ maps each lock
to the id of the thread holding it, and ρ gives for each thread the value of its
internal register. In the SOS derivation rules we additionally use configurations
of the form 〈p, σ, δ, ρ, t〉, where t is the thread id obtained in the (Thread) rule,

8

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

which is propagated by all following rules. Assuming p has n threads, the initial
configuration of the system is START(p) = 〈p, σε, δε, ρnε 〉 where σε, δε, and ρnε ,
initialize all locations, locks, and registers for the n threads with ⊥, respectively.

We have chosen this minimal language both because it is sufficiently expressive
to generate all (finite) legal traces, and because it is quite easy to mimic in any
other language. In Java, for example, each thread would be modeled by a thread
object, and all threads could be started in a loop by the main thread. Since
beginnings of threads do not generate events, this is as-if all threads start
together in parallel. The running method of each Java thread object would
declare a local variable r to stand for the register, and then the two CONC
instructions dealing with the register translate as follows: load l becomes r = l,
and if i then s becomes if (r == i) s.

It is straightforward to associate to each event an instruction producing it.
Let code be the mapping defined on events as follows:

code(e) =

load x if e = (t, read, x, i)
x := i if e = (t,write, x, i)

acquire x if e = (t, acquire, x)
release x if e = (t, release, x)

Given a program p, let p�t be its projection on thread t, that is, the statement
labeled by t in the parallel composition.

The following result shows that, except for the code, the running configuration
is completely determined by the trace generated up to that point:

Proposition 2. If CONC ` START(p)
τ−→
∗
〈p′, στ , δτ , ρnτ 〉, where n is the num-

ber of threads of p, then:

(1) στ (x) = data(latestwrite(τ�x));

(2) δτ (x) =

{
thread(latest(τ�x)), ifop(latest(τ�x)) = acquire

⊥, otherwise
;

(3) ρnτ (t) = data(latestread(τ�t)).

Therefore, in the sequel we will use CONC ` p τ−→
∗
p′ instead of CONC `

START(p)
τ−→
∗
〈p′, στ , δτ , ρnτ 〉

Now, let us prove that the semantics of CONC does indeed satisfy the
sequential consistency axioms. Let p be a CONC program and let feasible(p) be
the set of all p-feasible traces; that is τ is p-feasible if there exists a program p′

such that CONC ` p τ−→
∗
p′. We sill show that feasible(p) satisfies the strong local

determinism property, namely, not only that an enabled event can be generated
at any point by its thread, but that it also must be the (unique) next event
generated by that thread (ignoring the data attribute for read events). Formally,

Definition 4. feasible(p) satisfies the strong local determinism property if
it satisfies local determinism and if τ1e1 and τ2e2 are p-feasible, thread(e1) =
thread(e2) = t, and τ1�t= τ2�t, then op(e1) = op(e2), and target(e1) = target(e2);
if additionally op(ei) = write, then also data(e1) = data(e2).

9

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

The following result shows that every CONC program p is a consistent sys-
tem in the sense of Definition 2.

Proposition 3 (CONC consistency). feasible(p) satisfies prefix closedness
and strong local determinism.

Proof (Sketch). Prefix closedness is obvious, since the semantics can emit at most
one event for each execution step. The second property follows by case analysis
on the rule SOS rule applied to produce the relevant event for local determinism.

Now, given a trace τ , let us build the canonical CONC program generating
it. code can be naturally extended on traces by code(eτ) = code(e) ; code(τ). Let
{t1, t2, . . . , tn} be the set of thread ids appearing in τ . Then the program associ-
ated to a trace τ is defined by program(τ) = t1 : code(τ�t1) || · · · || tn : code(τ�tn).

Let us also define the empty program with n threads as programn(ε) = t1 :
nop || · · · || tn : nop. The following result shows that the program corresponding
to a consistent trace can indeed generate that trace.

Proposition 4. If τ is a consistent trace with n threads, then

CONC ` program(τ)
τ−→
∗

programn(ε).

The following theorem justifies the maximality claims for the proposed model.

Theorem 1 (Maximality). For any consistent trace τ ′ which is not τ -feasible
there exists a program generating τ but not τ ′.

Proof (Sketch). Because of prefix closeness and thread determinism, the only
interesting case to analyze is when τ ′ continues the execution on a thread after
reading a value distinct from the one recorded in an event e of τ . in that case,
we create a new program p from program(τ) by inserting a conditional write
instruction right after that generating event e. We then show that program p can
still generate τ , but cannot generate τ ′.

5 Proving Soundness for Existing Causal Models

Focusing on identifying concurrency anomalies and measuring success based on
the number of bugs found, almost no causal model in the literature is actually
proved sound. The authors of a causal model usually give some common-sense
arguments for their choice and informally rely on the soundness of Happens-
Before [9]. However, intuition can sometimes be misleading: in Section 5.4 we
reveal a soundness problem with the model of Sen et al. [16]. Moreover, even
when proved sound, the proofs are quite laborious, each having to repeat the
formalization of an execution model. Proving soundness of other causal models
by embedding them in our already proven sound model eliminates the need for
an execution model and reduces proofs to checking closure properties.

We start with the following result, which can be regarded as a sufficient crite-
rion for feasibility:

10

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

Theorem 2. Any consistent prefix of an interleaving of τ is τ -feasible.

The remainder of this section shows that existing sound causal models
are captured by the feasibility closure as simple instances of Theorem 2. An-
other important consequence of Theorem 2 is that is basically shows there is a
unique feasibility closure associated to a concurrent computation, regardless
of the representative trace [17].

5.1 Happens Before Relation on Mazurkiewicz Traces

One elegant way to capture the happens-before trace equivalence is the Mazurkiewicz
trace [10] associated to the dependence given by the happens-before relation.

The happens-before dependence is a set T ∪D, where T =
⋃
t{(e1, e2) : τ�t=

τ1e1e2τ2} is the intra-thread sequential dependence relation and D=
⋃
x{(e1, e2) :

τ�x = τ1e1e2τ2 such that e1 or e2 is a write of x} is the sequential memory
dependence relation. Given this happens-before dependence, the Mazurkiewicz
trace associated with τ is defined as the least set [τ] of traces containing τ
and being closed under permutation of consecutive independent events [10]: if
τ1e1e2τ2 ∈ [τ] and (e1, e2) 6∈ T ∪ D, then τ1e2e1τ2 ∈ [τ].

The following result shows that the feasibility closure is closed under the
equivalence relation generated by happens-before, that is, happens-before is
captured by our model, and thus re-shown sound for consistent executions:

Proposition 5. If τ1e1e2τ2 is τ -feasible and (e1, e2) 6∈T∪D, then τ1e2e1τ2 is τ -
feasible. Given any τ -feasible trace τ ′, [τ ′] ⊆ feasible(τ). Hence, [τ] ⊆ feasible(τ).

5.2 Weak Happens Before

Several more recent trace analysis techniques [16, 18, 21] argue that the happens-
before model can be further relaxed, noticing that the only purpose of the
write-after-read happens-before order is to guarantee that a read event always
reads the same write event as before in any feasible interleaving of the original
trace. Therefore, one only needs to preserve the read-after-write dependence:

Definition 5. Suppose τ=τ1e1τ2e2τ3. Then e2 write-read depends on e1 in
τ , written e1 <

wr
τ e2, if target(e1)= target(e2), op(e1)=write, op(e2)=read, and

for all e ∈ Eτ2 , either target(e) 6= target(e1), or op(e) 6= write.

That is, e1 <
wr
τ e2 iff the value read by e2 is the value written by e1.

Sen et al. [16] introduce the notion of atomic sets associated to each write event,
containing itself and all read events which write-read depend on it, accepting
as feasible executions all linearizations of the transitive closure of the combined
<wr
τ and thread ordering, satisfying the additional requirement that the atomic

sets are preserved. However this can be simply restated as follows [21]:

Definition 6. τ ∼ τ ′ if τ is an interleaving of τ ′ and <wr
τ =<wr

τ ′ .

11

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

That is, the ∼-equivalence class of τ contains all interleavings of τ which have
exactly the same write-read dependence relation. Next result shows that this
model is also captured by our model.

Proposition 6. If τ1 is τ -feasible, and τ1 ∼ τ2, then τ2 is also τ -feasible.

5.3 Happens-Before with synchronization

A conservative and sound approach, requiring no implementation changes, to
handle locks in happens-before-based trace analysis techniques is to assume
that acquire and release operations on the same lock yield the same happens-
before dependence as if they were particular write and read operations (on
the lock variable) [15]. However, this prevents synchronized blocks from being
permuted, and thus imposes coverage limitations. The lock-set approaches, also
called hybrid happens-before [12], propose to handle locks separately, associating
with each event the set of locks [14] protecting them, hereby not enforcing any
particular order between synchronized blocks.

We here group the events protected by locks in atomic blocks. Events e1
and e2 from a consistent trace τ , both generated by thread t, are l-atomic in τ ,
written e1 mτl e2, if and only if there is some acquire event e on lock l generated
by t before both e1 and e2, and there is no release event e′ on l generated by
t between e and either of e1, e2. For each lock l, let [e]l denote the l-atomic
equivalence class of e. Assuming a trace in which all acquired locks are eventually
released, l-atomic equivalence classes consist of all events belonging the the same
acquire-release block of l. A trace τ ′ is consistent with the lock atomicity of τ if
there exists no lock l and decomposition τ1e1τ2e2τ3e3τ4e4τ5 such that e1 mτl e3
and e2 mτl e4 and [e1]l 6= [e2]l. Let ≺τhb be the transitive closure of the union
between happens-before and thread orderings of τ . The following holds:

Proposition 7. Let τ ′ be a τ -feasible trace. Any linearization of ≺τ ′

hb consistent
with the lock atomicity of τ ′ is τ -feasible.

5.4 Weak-Happens-Before with synchronization

We next present two approaches to handling synchronization in weak-happens-
before models and show they are both embeddable in our model.

Lock atomicity via write-read atomicity [16]. Since the notion of write-
read atomicity already allows atomic sets to be permuted, it seems reasonable
to use the conservative idea from standard happens-before methods, and treat
acquire as a write event and release as a read event. Formally, given the consistent
trace τ , one could additionally introduce an atomic dependence relation <a

τ

given by e1 <
a
τ e2 if τ = τ1e2τ2e2τ3, target(e1) = target(e2), op(e1) = acquire,

op(e2) = release, and there is no event e in τ2 such that target(e) = target(e1),
and op(e) = acquire. With this definition, equivalent traces to an observed trace τ
are those interleavings of τ having the same write-read and atomic dependencies.

12

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

However, this definition needs a careful approach. Consider the example in
Figure 1(b), and suppose that we observe a similar execution, but that the
program is stopped after the read of x in Thread 2. Since no release event has
been generated, the acquire in Thread 2 has no event depending on it, and thus it
can be permuted (without the read event on x it was supposed to protect) before
the last lock-block of Thread 1. Then, the final read of x itself can be permuted
past the final release of l in Thread 1, exhibiting a spurious causal datarace.

Nevertheless, these models are sound for synchronization complete traces,
that is, traces in which each acquired lock is eventually released.

Proposition 8. Let τ1 be a synchronization complete τ -feasible trace. Any in-
terleaving τ2 of τ1 satisfying that <wr

τ2 =<wr
τ1 and <a

τ2=<a
τ1 is τ -feasible.

Lock atomicity via locksets. Wang and Stoller [21] propose a weak-happens-
before model based on write-read dependence, while using locksets to handle locks
as individual objects. In this model, a trace τ ′ is equivalent with a consistent trace
τ if τ ′ is an interleaving of τ having the same write-read dependence relation
and being consistent with the lock atomicity of τ .

Proposition 9. Let τ1 be a τ -feasible trace. Any interleaving τ2 of τ1, consistent
with the lock atomicity of τ1 and satisfying that <wr

τ2 =<wr
τ1 is τ -feasible.

6 Related Work and Discussion

Beginning with the introduction of the Happens-Before ordering by Lamport [9],
there has been a considerable amount of research on models and techniques to
abstract executions for the purpose of inferring causally equivalent executions
satisfying/violating particular but important properties, such as dataraces or
atomicity/serializability [2, 5, 7, 12,14–16,19–21]. Section 5 shows that the sound
causal models upon which the above mentioned techniques were based [10, 12,
15, 16, 21] are subsumed by the maximal causal model; their soundness fol-
lows as a corollaries of Theorem 1.

Ganai and Gupta [6] apply a similar technique for software model checking,
attempting to reduce the state space to be explored using sequential consistency
constraints. Similarly, building on a previous draft of this paper, Said et al. [13]
encode the axioms of our proposed model (extended with constructs for thread
creation and wait/notify) into an SMT solver and use that to effectively search
the model for potential dataraces in Java programs.

Another interesting and productive line of research attempts to use information
about the actual program code to either statically detect potential bad behaviors
[11], or to use information about the program and about the property to be
checked to further relax the models of executions [3, 20].

Adding or removing attributes from events. Our choice of which attributes to
be included in an event was based on the idea of observing the execution of any

13

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

multithreaded program executed on any machine offering no guarantees other than
sequential consistency. Therefore, no semantical information is assumed about
the program other than the identity of the thread performing an operation. There
are other possible choices, each with their benefits. For example, Sinha et al. [18]
choose not to record the value read/written in the memory. Thus, their model
must preserve the read-after-write dependence, and the set of comprised traces
is thus comparable with that of Wand and Stoller [21], and Sen et al. [16]. We
believe a similar maximality result could be proved for traces of this kind, but that
has not been attempted yet. In contrast, Wang et al. [20] enrich the events with
symbolic information extracted from the program executing them. This allows
them to obtain more comprehensive models at the expense of having to analyze
the code. Since analyzing the code statically leads quickly to undecidability
issues, and thus static analyzers need to be conservative, we believe there might
indeed be no similar maximality result for these types of models, their coverage
increasing with the power of the analysis.

Causal properties of traces. Since our model associates for a trace all traces
which can be obtained by all programs which can obtain that trace, this allows
for program-independent definitions of causal properties. For example,Wang and
Stoller [21] propose serializability of a trace τ as the property that there exists an
alternative execution of the program producing an interleaving of τ in which each
transaction is a sequential block. Farzan and Madhusudan [4] relax this constraint
by requiring that for each transaction there exists an alternative execution of
the program producing an interleaving of τ containing that transaction as a
sequential block. Sen et al. [16] say that a trace exhibits a datarace if there
exists an alternative execution of the program producing an (partial) interleaving
of τ in which the conflicting events are consecutive.

The program-independent properties associated to any of the above (program-
dependent) definitions can be obtained by simply replacing the (rather informal)
“alternative execution of the program producing an interleaving of τ” with “a
τ -feasible trace”, as defined by Definition 3. Formal definitions of these causal
properties can be found in the companion technical report [17].

7 Conclusion

We have shown that, by axiomatizing basic properties of (sequentially consistent)
concurrent systems, one can obtain maximally sound causal models for concurrent
executions, which can be naturally associated to each observed trace, capturing
all feasible traces which could be inferred from it. The maximality result has two
important theoretical implications. First, verifying the soundness claims for any
causal model is reduced to proving that it is a submodel of the maximal one.
Second, since the maximal model captures all causally equivalent traces, it allows
for universal, program-independent definitions for causal properties. Although
this paper focuses on proving the maximality claim of our model, the companion
technical report [17] additionally provides a constructive characterization of the
proposed model, as well as a model checking algorithm.

14

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

References

1. H. Attiya and J. L. Welch. Sequential consistency versus linearizability. TOCS,
12:91–122, May 1994.

2. U. Banerjee, B. Bliss, Z. Ma, and P. Petersen. A theory of data race detection. In
PADTAD’06, pages 69–78, New York, 2006. ACM.

3. F. Chen and G. Ros,u. Parametric and sliced causality. In CAV’07, volume 4590 of
LNCS, pages 240–253.

4. A. Farzan and P. Madhusudan. Causal atomicity. In CAV’06, volume 4144 of
LNCS, pages 315–328, 2006.

5. C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In POPL’04, pages 256–267, 2004.

6. M. K. Ganai and A. Gupta. Efficient modeling of concurrent systems in BMC. In
SPIN’08, volume 5156 of LNCS, pages 114–133, 2008.

7. D. P. Helmbold, C. E. McDowell, and J. Z. Wang. Determining possible event
orders by analyzing sequential traces. TPDS, 4(7):827–840, 1993.

8. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. TOPLAS, 12:463–492, July 1990.

9. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess progranm. IEEE Trans. Comput., 28(9):690–691, 1979.

10. A. Mazurkiewicz. Trace theory. In Advances in Petri nets, pages 279–324, New
York, NY, USA, 1987. Springer-Verlag.

11. M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In
PLDI’06, pages 308–319, 2006.

12. R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. SIGPLAN
Not., 38(10):167–178, 2003.

13. M. Said, C. Wang, Z. Yang, and K. A. Sakallah. Generating data race witnesses
by an SMT-based analysis. In NASA Formal Methods’11, volume 6617 of LNCS,
pages 313–327, 2011.

14. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a
dynamic data race detector for multithreaded programs. TOCS, 15(4):391–411,
1997.

15. E. Schonberg. On-the-fly detection of access anomalies. Best of PLDI 1979-1999,
39:313–327, April 2004.

16. K. Sen, G. Ros,u, and G. Agha. Detecting errors in multithreaded programs by
generalized predictive analysis of executions. In FMOODS’05, volume 3535 of
LNCS, pages 211–226, 2005.

17. T. F. S, erbănut, ă, F. Chen, and G. Ros,u. Maximal causal models for sequentially con-
sistent systems. Technical Report http://hdl.handle.net/2142/27708, University
of Illinois at Urbana-Champaign, October 2011.

18. A. Sinha, S. Malik, C. Wang, and A. Gupta. Predictive analysis for detecting
serializability violations through trace segmentation. In MEMOCODE’11.

19. M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints with data
in an object-oriented language. In POPL’06, pages 334–345, 2006.

20. C. Wang, S. Kundu, M. Ganai, and A. Gupta. Symbolic predictive analysis for
concurrent programs. In FM’09, pages 256–272, 2009.

21. L. Wang and S. D. Stoller. Accurate and efficient runtime detection of atomicity
errors in concurrent programs. In PPoPP’06, pages 137–146, 2006.

15

RV'12, LNCS. to appearRV'12, LNCS 7687, pp 136-150. 2012

http://hdl.handle.net/2142/27708

	Maximal Causal Models for Sequentially Consistent Systems

