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Abstract. This paper presents a nine-rule language-independent proof system
that takes an operational semantics as axioms and derives program reachability
properties, including ones corresponding to Hoare triples. This eliminates the need
for language-specific Hoare-style proof rules to verify programs, and, implicitly,
the tedious step of proving such proof rules sound for each language separately.
The key proof rule is Circularity, which is coinductive in nature and allows for
reasoning about constructs with repetitive behaviors (e.g., loops). The generic
proof system is shown sound and has been implemented in the MatchC verifier.

1 Introduction

An operational semantics defines a formal executable model of a language typically
in terms of a transition relation ¢fg = c¢fg’ between program configurations, and can
serve as a formal basis for language understanding, design, and implementation. On the
other hand, an axiomatic semantics defines a proof system typically in terms of Hoare
triples {y/} code {¢’}, and can serve as a basis for program reasoning and verification.
Operational semantics are well-understood and comparatively easier to define than
axiomatic semantics for complex languages. More importantly, operational semantics
are typically executable, and thus testable. For example, we can test them by executing
the same test suites that compiler testers use, as has been done with the operational
semantics of C [6]. Thus, we can build confidence in and eventually trust them.

The state-of-the-art in mechanical program verification (see, e.g., [[1,}9}/13}|15]19,27])
is to describe the trusted operational semantics in a powerful logical framework or
language, say £, and then to use the capabilities of £ (e.g., induction) to verify programs.
To avoid proving low-level and program-specific lemmas, Hoare-style proof rules (or
consequences of them such as weakest-precondition or strongest-postcondition proce-
dures) are typically also formalized and proved sound in £ w.r.t. the given operational
semantics. Despite impressive mechanical theorem proving advances in recent years,
language designers still perceive the operational and axiomatic semantics as two dis-
tinct endeavors, and proving their formal relationship as a burden. With few notable
exceptions, real languages are rarely given both semantics. Consequently, many program
verifiers end up building upon possibly unsound axiomatic semantics.

The above lead naturally to the idea of a unified theory of programming, in the
sense of [12]], where various semantic approaches coexists with systematic relationships
between them. The disadvantage of the approach in [[12] is that one still needs two or more
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semantics of the same language. Another type of a unified theory could be one where we
need only one semantics of the language, the theory providing the necessary machinery
to achieve the same benefits as in each individual semantics, at the same cost. In the
context of operational and axiomatic semantics, such a theory would have the following
properties: (1) it is as executable, testable, and simple as operational semantics, so it can
be used to define sound-by-construction models of programming languages; and (2) it
is as good for program reasoning and verification as axiomatic semantics, so no other
semantics for verification purposes—and, implicitly, no tedious soundness proofs—are
needed. Such a unified theory could be, for example, a language-independent Hoare-
logic-like framework taking the operational semantics rules as axioms. To understand
why this is not easy, consider the Hoare logic rule for while in a C-like language:
Hr+{pAe+0}s{p
H+ {p}while(e) s{o A e =0}

This proof rule is far from being language-independent. It heavily relies on the C-like
semantics of this particular while construct (e = 0 means e is false, e # 0 means e is
true). If by mistake we replace e # 0 with e = 1, then we get a wrong Hoare logic. This
problem is amplified by its lack of executability/testability, which is why each Hoare
logic needs to be proved sound w.r.t. a trusted semantics for each language separately.

We present the first steps towards such a unified theory of operational and axiomatic
semantics. Our result is a sound and language-independent proof system for matching
logic reachability rules ¢ = ¢’ between patterns. A pattern ¢ specifies a set of pro-
gram configurations that match it. A rule ¢ = ¢’ specifies reachability: configurations
matching ¢ eventually transit to ones matching ¢’. Patterns were used in [21]] to define
language-specific axiomatic semantics (e.g., the while proof rule was similar to the one
above). Our new approach is much closer to a unified theory. Although we support a lim-
ited number of operational semantics styles (including the popular reduction semantics
with evaluation contexts [[7]), our new proof system is language-independent.

Matching logic reachability rules generalize the basic elements of both opera-
tional and axiomatic semantics. Transitions between configurations, upon which opera-
tional semantics build, are instances of one-step reachability rules. Also, Hoare triples
{y} code {y'} can be viewed as reachability rules between a pattern holding code with
constraints ¢ and a pattern holding the empty code and constraints ¢’. The proof system
that we propose in this paper takes an operational semantics given as a set of reachability
rules, say A (axioms), and derives other reachability rules. The key proof rule of our
system is Circularity, which has a coinductive nature:

Arp="¢"  AUlp=¢) Fe' = ¢
Arp=¢

It deductively and language-independently captures the various circular behaviors that
appear in languages, due to loops, recursion, etc. Circularity adds new reachability rules
to A during the proof derivation process, which can be used in their own proof! The
correctness of this proof circularity is given by the fact that progress is required to be
made (indicated by =% in A + ¢ =% ¢”’) before a circular reasoning step is allowed.

Sections[2]and [3|recall operational semantics and matching logic patterns. Sections ]
and [5] contain our novel theoretical notions and contribution, the sound proof system for
matching logic reachability. Section [6]discusses MatchC, an automated program verifier
based on our proof system. Section [/|discusses related and future work, and concludes.
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IMP language syntax IMP evaluation contexts syntax
PVar := program variables Context == m
Exp := PVar | Int | Exp op Exp | (Context, State)
Stmt == skip | PVar:=Exp | Stmt;Stmt | Contextop Exp | Intop Context
| 1f(Exp) Stmtelse Stmt | PVar:=Context | Context, Stmt
| while(Exp) Stmt | if(Context) Stmt else Stmt

IMP operational semantics

lookup (C, o)[x] = (C, o)[o(x)] cond; if(i) s; elses, = s if i#0
op i1 0PIy = 1) 0Py, iz cond, if(0) s; elses, = s,

asgn (C, o)[x:=i] = (C, o[x « i])[skip] while while(e) s =

seq skip; s, = 5, if(e) s;while(e) selse skip

Fig. 1. IMP language syntax and operational semantics based on evaluation contexts.

2 Operational Semantics, Reduction Rules, and Transition Systems

Here we recall basic notions of operational semantics, reduction rules, and transition
systems, and introduce our notation and terminology for these. We do so by means of a
simple imperative language, IMP. Fig.|l|shows its syntax and an operational semantics
based on evaluation contexts. IMP has only integer expressions. When used as conditions
of if and while, zero means false and any non-zero integer means true (like in C).
Expressions are formed with integer constants, program variables, and conventional
arithmetic constructs. For simplicity, we only assume a generic binary operation, op.
IMP statements are the variable assignment, if, while and sequential composition.

Various operational semantics styles define programming languages (or calculi, or
systems, etc.) as sets of rewrite or reduction rules of the form “I = r if b, where /
and r are program configurations with variables constrained by the boolean condition
b. One of the most popular such operational approaches is reduction semantics with
evaluation contexts [7]], with rules “C[t] = C’[¢'] if b”, where C is the evaluation context
which reduces to C” (typically C = C’), ¢ is the redex which reduces to ¢, and b is a side
condition. Another approach is the chemical abstract machine [4], where [ is a chemical
solution that reacts into » under condition b. The K framework [23]] is another, based
on plain (no evaluation contexts) rewrite rules. Several large languages have been given
such semantics, including C [[6] (whose definition has about 1200 such rules).

Here we chose to define IMP using reduction semantics with evaluation contexts.
Note, however, that our subsequent results work with any of the aforementioned opera-
tional approaches. The program configurations of IMP are pairs (code, o), where code
is a program fragment and o is a state term mapping program variables into integers.
As usual, we assume appropriate definitions for the integer and map domains available,
together with associated operations like arithmetic operations (i op;,, i2, etc.) on the
integers and lookup (0(x)) or update (o[x « i]) on the maps.

The IMP definition in Fig. [I] consists of seven reduction rule schemas between
program configurations, which make use of first-order variables: o is a variable of sort
State; x is a variable of sort PVar; i,i, i, are variables of sort Int; e is a variable of
sort Exp; s, s1, sp are variables of sort Stmt. A rule mentions a context (containing a
code context and a state) and a redex which together form a configuration, and reduces
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the said configuration by rewriting the redex and possibly the context. As notational
shortcut, a context is not mentioned if not used; e.g., the rule op stands in fact for the
rule (C, o)[ijopir] = (C, o)li1 opy,, i2]. The code context meta-variable C allows
one to instantiate a schema into reduction rules, one for each valid redex of each code
fragment. For example, with C set to x :=mop y, the op rule schema becomes the rule
(x:=(iopix)opy, o) = (x:=(i1 0p, i2) Oy, O°).

We can therefore regard the operational semantics of IMP above as a set of reduction
rules of the form “/ = rif b”, where [ and r are configurations with variables constrained
by the boolean condition b. The subsequent results work with such sets of reduction
rules and are agnostic to the particular underlying operational semantics style.

Let S (for “semantics™) be a set of reduction rules like above, and let 2 be the
underlying signature; also, let Cfg be a distinguished sort of 2’ (for “configurations™).
S yields a transition system on any 2-algebra/model 7-, no matter whether 7~ is a term
model or not. Let us fix an arbitrary model 7, which we may call a configuration model,
as usual, 7 ¢y, denotes the elements of 7~ of sort Cfg, which we call configurations:

Definition 1. S induces a transition system (T, :>§) as follows: y :»g vy’ for some
Y,Y € T iff there is some rule “I = rit b” in S and some p : Var — T such that
p() =, p(r) =" and p(b) holds (Var is the set of variables appearing in rules in S
and we used the same p for its homomorphic extension to terms I, r and predicates b).

T, :>§) is a conventional transition system, i.e., a set together with a binary relation

on it (in fact, =>§Q Tcre X Icre), and captures precisely how the language defined by S
operates. We use it in Section [5|to define and prove the soundness of our proof system.

3 Matching Logic Patterns

Here we recall the notion of a matching logic pattern from [21]]. Note that this section is
the only overlap between [21]] and this paper. The objective there was to use patterns as a
state specification logic to give language-specific axiomatic (non-operational) semantics.
The approach and proof system in this paper (Sections ] and[3)) are quite different: they
are language-independent and use the operational semantics rules as axioms.

We assume the reader is familiar with basic concepts of algebraic specification
and first-order logic. Given an algebraic signature 2, we let 75 denote the initial 2-
algebra of ground terms (i.e., terms without variables) and let 7x(X) denote the free
2-algebra of terms with variables in X. 75 ;(X) denotes the set of 2-terms of sort s.
These notions extend to algebraic specifications. Many mathematical and computing
structures can be defined as initial 2-algebras: boolean algebras, natural/integer/rational
numbers, monoids, groups, rings, lists, sets, bags (or multisets), mappings, trees, queues,
stacks, etc. CASL [17] and Maude [5]] use first-order and algebraic specifications as
underlying semantic infrastructure; we refer the reader to [S}/17] for examples. Here we
only need maps, to represent program states. We use the notation Mappy,, ,, for the sort
corresponding to maps taking program variables into integers. We use an infix “—" for
map entries and (an associative and commutative) comma “,” to separate them.

Matching logic is parametric in configurations, or more precisely in a configura-
tion model. Next, we discuss the configuration signature of IMP, noting that different
languages or calculi have different signatures. The same machinery works for all.
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Fig. P] shows the configuration syntax of IMP. The | PVar :=IMP identifiers
sort Syntax is a generic sort for “code”. Thus, terms of Int == integer numbers
sort Syntax correspond to program fragments. States are  [Synzax »= IMP syntax
terms of sort State, mapping program variables to integers. | State i= Mappy,, p,

A program configuration is a term {code, o) of sort Cfg, Cfg == (Syntax, State)
with code a term of sort Syntax and o of sort State. Fig. 2. IMP configurations

Let 2" be the algebraic signature associated to some desired configuration syntax.
Then a 2-algebra gives a configuration model, namely a universe of concrete configura-
tions. From here on we assume that 2 is a fixed signature and 7~ a fixed configuration
model. Note that 7~ can be quite large (including models of integers, maps, etc.). We
assume that 2 has a distinguished sort Cfg and Var is a sort-wise infinite set of variables.

Definition 2. Matching logic extends the syntax of first order logic with equality (ab-
breviated FOL) by adding X-terms with variables, called basic patterns, as formulae:

¢ == ... conventional FOL syntax | T cp(Var)
Matching logic formulae are also called patterns.

Let ¥, y1,¢/, ... range over conventional FOL formulae (without patterns), &, 7y, 7/, . ..
over basic patterns, and ¢, ¢1,¢’, ... over any patterns. Matching logic satisfaction is
(pattern) matching in 7. The satisfaction of the FOL constructs is standard. We extend
FOL’s valuations to include a 7~ configuration, to be used for matching basic patterns:

Definition 3. We define the relation (v, p) | ¢ over configurations y € T cf,, valuations
p : Var — T and patterns ¢ as follows (among the FOL constructs, we only show 3):
(v,0) EAX ¢ iff (v0") E ¢ for some p’:Var— T with p’'(y) = p(y) for all y € Var\X
P Ex  iffy=p@) where € Ty y(Var)

We write = ¢ when (y,p) E ¢ forall'y € T and all p = Var — T .

The pattern below matches the IMP configurations holding the code computing the
sum of the natural numbers from 1 to n, and the state mapping the program variables
s, n into integers s, n, such that n is positive. We use typewriter fonts for program
variables and italic fonts for mathematical variables.

ds ((s:=0; while(n>0)(s:=s+n; n:=n-1), (s> s, n>n))An >, 0)
Note that s is existentially quantified, while 7 is not. That means that n can be further
constrained if the pattern above is put in some larger context. Similarly, the pattern

(Skip, (S = 1y (” +ine 1)/Int2, nme 0))
is satisfied (with the same p, that is, the same 7) by all the final configurations reachable
(in IMP’s transition system) from the configurations specified by the previous pattern.

Next, we show how matching logic formulae can be translated into FOL formulae,
so that its satisfaction becomes FOL satisfaction in the model of configurations, 7.
Definition 4. Let O be a fresh Cfg variable. For a pattern ¢, let ¢° be the FOL formula
replacing basic patterns nt € Ix cr,(Var) with equalities O = & If p: Var— T and y €Tcy,
then let p¥ : Var U {0} — T be the mapping p¥(x) = p(x) for x € Var and p¥(O) = v.
With the notation in Definition |4} (v, p) E ¢ iff p” EroL ¢", and E ¢ iff T EroL ¢".
Therefore, matching logic is a methodological fragment of the FOL theory of 7. Thus, we
can actually use conventional theorem provers or proof assistants for pattern reasoning.
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4 Matching Logic Reachability

Patterns were used in [21] to specify state properties in axiomatic semantics. Unfor-
tunately, that approach shares a major disadvantage with other axiomatic approaches:
the target language needs to be given a new semantics. Axiomatic semantics are less
intuitive than operational semantics, are not easily executable, and thus are hard to test
and need to be proved sound. What we want is one formal semantics of a language,
which should be both executable and suitable for program verification. In this section we
introduce the notion of matching logic reachability, and show that it captures operational
semantics and can be used to specify reachability properties about programs. Assume an
arbitrary but fixed configuration signature 2 and a model 77, like in Sections [2]and [3]

Definition 5. A (matching logic) reachability rule is a pair ¢ = ¢', where ¢, called
the left-hand side (LHS), and ¢, called the right-hand side (RHS), are matching logic
patterns (which can have free variables). A (matching logic) reachability system is a set
of reachability rules. A reachability system S induces a transition system (7, =>§) onthe
configuration model T, as follows: y :>g v’ for some y,y" € Ty, iff there is some rule
¢ = ¢ inS and some p : Var — T such that (v, p) E ¢ and (y',p) E ¢'. Configuration
Y € Tcf, terminates in (T, =>g) iff there is no infinite :g—sequence starting with y. A
rule ¢ = ¢’ is well-defined iff for any y € Tcg and p : Var — T with (y,p) E ¢, there
is some y’ € Tcp with (v, p) | ¢'. The reachability system S is well-defined iff each
rule is well-defined, and is deterministic iff (T, =>g) is deterministic.

As mentioned in Section 2] various operational semantics styles define languages
as sets of rules “I = rif b, where / and r are Cfg terms with variables constrained by
boolean condition b (a predicate over the variables in / and r). These reduction rules
are just special matching logic reachability rules: “/ = r if b can be viewed as the
reachability rule / A b = r, as both specify the same transitions y =>§ v’ between
configurations y,y" € Ty,. This is because Definition [3]implies that (y p) | [ A b and
(v, p) E r (like in Definition[3) iff p(!) = vy, p(r) = ¥’ and p(b) holds (like in Definition|T).
Note that well-definedness makes sense in general (since, e.g., ¢’ can be false), but that
matching logic rules of the form [ A b = r are always well-defined (pick y’ to be p(r)).

Hence, any operational semantics defined using reduction rules like above is a
particular matching logic reachability system. If we relax the meaning of ¢ = ¢’ from
“one step” to “zero, one or more steps”, then reachability rules can in fact express
arbitrary reachability program properties. Consider for example the IMP code fragment
“s:=0; while(n>0)(s:=s+n; n:=n-1)", say SUM. We can express its semantics as:

(SUM, (s> 5, n > n)) An > 0= (skip, (s n sy (04 1)/ 2, n - 0))
This says that any configuration y holding SUM and some state binding program variables
s and n to integers s and respectively positive n, eventually transits to a configuration y’
whose code is consumed, s is bound to the sum of numbers up to n and n is 0. Note that
s,n € Var are free logical variables in this rule, so they are instantiated the same way in
v and ', while s and n are program variables, that is, constants of sort PVar.

As shown in [25], to any IMP Hoare triple {y/} code {¢)’'} we can associate the
following reachability rule: X oge({code, ox ) A¥x) = IXcode((SKID, Tx op) A YY),
where X is a set containing a logical integer variable x for each variable x appearing in
the Hoare triple, Xco4e € X is the subset corresponding to program variables appearing
in code, oy, binds each program variable x to its logical variable x, and x, Y, are the

code
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formulae obtained from , Y’ by replacing each variable x with its corresponding logical
variable x and each arithmetic operation op with its corresponding domain operation
op:- As an example, consider the Hoare triple specifying the semantics of SUM above,
namely {n = oldn A n > 0} SUM {s = oldn*(oldn+1)/2 A n = 0}. The oldn variable
is needed to remember the initial value of n. Hoare logic makes no theoretical distinction
between program and logical variables, nor between program expression constructs and
logical expression constructs. The corresponding matching logic reachability rule is
ds,n ((SUM, (s> s, n—> n)) An=oldn An >p, 0)
= ds,n ((skip, (s — s, n > n)) A s = oldn =y, (oldn +p; 1)/ 12 A n=0)

While this reachability rule mechanically derived from the Hoare triple is more involved
than the one we originally proposed, it is not hard to see that they specify the same pairs
of configurations 7y, y’. The proof system in Section [5]allows one to formally show them
equivalent. Therefore, in the case of IMP, we can use reachability rules as an alternative
to Hoare triples for specifying program properties. Note that reachability rules are strictly
more expressive than Hoare triples, as they allow any code in their RHS patterns, not
only skip. Replacing Hoare logic reasoning by matching logic reachability reasoning
using translations like above is discouraged, as one would be required to still provide a
Hoare logic for the target language. A strong point of our approach is that one does not
have to go through this tedious step. We implemented the proof system in Section[5]and
verified many programs (see Section [6) with it, using only the operational semantic rules,
without having to prove any Hoare logic proof rules as lemmas. The reason we show this
translation here is only to argue that the matching logic reachability rules are expressive.

Next, we define the semantic validity of matching logic reachability rules. Recall
the semantic validity (i.e., partial correctness) of Hoare triples: = {¢/} code {¢’} iff for
all states s, if s = ¢ and code executed in state s terminates in state s’, then s’ = ¢/'.
This elegant definition has the luxury of relying on another (typically operational or
denotational) semantics of the language, which provides the notions of “execution”,
“termination” and “state”. Here all these happen in the same semantics, given as a reach-
ability system. The closest matching logic element to a “state” is a ground configuration
in 7 ¢y, which also includes the code. Since the transition system (77, =>g) is meant to
give all the operational behaviors of the defined language, we introduce the following

Definition 6. Let S be a reachability system and ¢ = ¢’ a reachability rule. We define
SkE = ¢ iffforally € Tep and p : Var — T such that y terminates in (T, :>§) and
(% p) E @, there exists some Yy’ € Tcp, such that y =>’:Z v and (V,p) E ¢'.

Intuitively, S = ¢ = ¢’ specifies reachability, in the sense that “any terminating
ground configuration that matches ¢ transits, on some possible execution path, to a
configuration that matches ¢’”. If S is deterministic (Definition [5), then “some path”
becomes equivalent to “all paths”, and thus ¢ = ¢’ captures partial correctness.

Note that, if S is well-defined, then S = ¢ = ¢’ holds for all ¢ = ¢’ € S (well-
defined axioms are semantically valid). Also, as already mentioned, ¢’ does not need to
have an empty (skip) code cell. If it does, then so does y’ in the definition above, and,
in the case of IMP, 7’ is unique and thus we recover the Hoare validity as a special case.

Taking S to be the operational semantics of IMP in Section[2} S k= ¢ = ¢ can be
proved for the two example reachability rules ¢ = ¢’ for SUM in this section. Unfor-
tunately, such proofs are tedious, involving low-level details about the IMP transition
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Rules of operational nature Rules of deductive nature
Reflexivity : Case Analysis :
. Arp =9 Arp, =0
Arp=¢ Aro Ve =0
Axiom : Logic Framing :
p=>¢ €A Arp=¢ ¥ is a (patternless) FOL formula
Arp=>¢ AroAYy =9 ANy
Substitution : Consequence :
Arp=>¢ 0 : Var — Tx(Var) E o — ¢ A=) E¢,— e
A +p) = 0(¢) At =@
Transitivity : Abstraction :
A Fo =@ A F ey = @3 Arp=¢ X N FreeVars(¢') = 0
A b= e ArIXe=¢

Rule for circular behavior

Arp="¢"  AUlp=¢l ' =¢
Arpe=¢

Fig. 3. Matching logic reachability proof system.

Circularity :

system and induction. What we want is an abstract proof system for deriving matching
logic reachability rules, which does not refer to the low-level transition system.

5 Sound Proof System

Fig. [3|shows our nine-rule language-independent proof system for deriving matching
logic reachability rules. We start with a set of reachability rules representing an opera-
tional semantics of the target language, and then either “execute” programs or derive
program properties in a generic manner, without relying on the specifics of the target
language except for using its operational semantics rules as axioms. In particular, no
auxiliary lemmas corresponding to Hoare logic rules are proved or needed. Initially,
A contains the operational semantics of the target language. The first group of rules
(Reflexivity, Axiom, Substitution, Transitivity) has an operational nature and derives con-
crete and (linear) symbolic executions; any executable semantic framework has similar
rules (see, e.g., rewriting logic [16]). The second group of rules (Case Analysis, Logic
Framing, Consequence and Abstraction) has a more deductive nature and is inspired from
the subset of language-independent rules of Hoare logic [[11]]. The first group combined
with Case Analysis and Logic Framing enables the derivation of all symbolic execution
paths. The Circularity proof rule is new and captures the various circular behaviors that
appear in languages, due to loops, recursion, jumps, etc.

Let A + ¢ =" ¢’ be the derivation relation obtained by dropping the Reflexivity rule
from the proof system in Fig.[3| A + ¢ =% ¢’ says that a configuration satisfying ¢ can
transit in one or more operational semantics steps to one satisfying ¢’. The Circularity
rule in Fig. [3|says that we can derive the sequent A + ¢ = ¢’ whenever we can derive
the rule ¢ = ¢’ by starting with one or more steps in A and continuing with steps which
can involve both rules from A and the rule to be proved itself, ¢ = ¢’. The first step
can for example be a loop unrolling step in the case of loops, or a function invocation
step in the case of recursive functions, etc. The use of the claimed properties in their
own proofs in Circularity is reminiscent of circular coinduction [22]]. Like in circular
coinduction, where the claimed properties can only be used in some special contexts,



I CALP' 12, LNCS 7392, pp 351-363. 2012

Circularity also disallows their unrestricted use: it only allows them to be guarded by a
trusted, operational step. It would actually be unsound to drop the operational-step-guard
requirement: for example, if A contained ¢; = ¢, then ¢y = ¢ could be “proved” in a
two-step transitivity, using itself, the rule in A and then itself again.

Theorem 1. Soundness (see [20]] for the proof) Let S be a well-defined matching
logic reachability system (typically corresponding to an operational semantics), and let
S + ¢ = ¢ be a sequent derived with the proof system in Fig.[3| Then S = ¢ = ¢'.

Hence, proof derivations are sound w.r.t. the (transition system generated by the) opera-
tional semantics. The well-definedness requirement is acceptable (operational semantics
satisfy it) and needed (otherwise not even the axioms satisfy S = ¢ = ¢’).

We next illustrate our proof system by means of examples. The proof below may
seem low level when compared to the similar proof done using Hoare logic. However,
note that it is quite mechanical, the user only having to provide the invariant (¢j,y). The
rest is automatic and consists of applying the operational reduction rules whenever they
match, except for the circularities which are given priority; when the redex is an if, a
Case Analysis is applied. Our current MatchC implementation can prove it automatically,
as well as much more complex programs (see Section [6). Although the paper Hoare
logic proofs for simple languages like IMP may look more compact, note that in general
they make assumptions which need to be addressed in implementations, such as that
expressions do not have side effects, or that substitution is available and atomic, etc.

Consider the SUM code (Section@]) “s:=0; while(m>0)(s:=s+n; n:=n-1)", and
the property given as a matching logic reachability rule, say yéUM = (QLHS = @RHS):

<SUM’ (S =5, Nk n» AN Zpy 0= <Sk1p, (S = 1oy (}’l +ine 1)/Intza nme 0))
Let us formally derive this property using the proof system in Fig. [3] Let S be the
operational semantics of IMP in Fig.[T|and let ¢;,, be the pattern

(LOOP, (s +> (n —pu 1) s (N g 0" 40 D/ 12, n> 1))y A1’ 24 0
where LOOP is “while (n>0) (s := s+n; n := n-1)". We derive S + ,uéUM by
Transitivity with y; = (pLgs = I’ @iny) and up = (AW’ @iy = Yrus)- By Axiom asgn
(Fig.[I] within the SUM context) followed by Substitution with 6(c) = (s > s, n > n),
0(x) = s and 6(i)) = 0 followed by Logic Framing with n >, 0, we derive ¢ ys =
(skip;LOOP, (s = 0, n— n)) A n >, 0. This “operational” sequence of Axiom,
Substitution and Logic Framing is quite common; we abbreviate it ASLF. Further, by
ASLF with seq and Transitivity, we derive ¢ s = (LOOP, (s — s, n+— n)) A n >p, 0.
S + u; now follows by Consequence. We derive S + up by Circularity with S +
A’ iy =7 @i and SU{us} F @i = @rus, Where ¢ ¢ is the formula obtained from ¢,y
replacing its code with “if (n>0) (s := s+n; n := n-1; LOOP) else skip”.
ASLF (while) followed by Abstraction derive S + An’¢;y =7 ¢;¢. For the other, we
use Case Analysis with p;¢ An’ <j,; 0 and ;¢ An’ >, 0. ASLF (lookup,, op-, cond,)
together with some Transitivity and Consequence steps derive S U {ua} F @i A n’ <py
0 = @rus (12 is not needed in this derivation). Similarly, ASLF (lookup,, op-, cond,,
lookup,, lookupg, op.., asgn, seq, lookup,, op_, asgn, seq, and x,) together with Tran-
sitivity and Consequence steps derive S U {uz} + ¢i¢ AR’ >p; 0 = @rys. This time w5 is
needed and it is interesting to note how. After applying all the steps above and the LOOP
fragment of code is reached again, the pattern characterizing the configuration is
(LOOP’ (S — (I’l ~Int l’l/) *Int (}’l +ine n’ Fine 1)/ln12 +ine I’l,, nen “Int 1)> A > Int 0
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The circularity u, can now be applied, via Consequence and Transitivity, because this
formula implies 3’ @i,y (indeed, pick the existentially quantified n” to be n’ —p,; 1).

We can similarly derive the other reachability rule for SUM in Section {4} say ,uéUM.
Instead, let us prove the stronger result that the two matching logic reachability rules are
equivalent, that is, that ,uéUM F uéUM and uéUM = ,uéUM. Using conventional FOL reasoning
and the Consequence proof rule, one can show ,uéUM equivalent to the reachability rule

ds ((SUM,(s s, n- oldn)) Aoldn >;,0) = (skip, (s oldnx*,; (oldn+j,, 1)/ 2, n- 0))

The equivalence to ,uéUM now follows by applying the Substitution rule with oldn +— n
and Consequence, and, respectively, Substitution with n — oldn and Abstraction.

In the sister paper [25] (dedicated to completeness), we show that any property
derived using IMP’s Hoare logic proof system can also be derived using our proof
system in Fig. [5] of course modulo the representation of Hoare triples as matching logic
reachability rules described in Section ] For example, a Hoare logic proof step for
while is translated in our proof system into an Axiom step (with while in Fig.[T)), a Case
Analysis (for the resulting if statement), a Circularity (as part of the positive case, when
the while statement is reached again), an Abstraction (to add existential quantifiers for
the logical variables added as part of the translation), and a few Transitivity steps.

6 Implementation in MatchC

A concern to a verification framework based on operational semantics is that it may not
be practical, due to the amount of required user involvement or to the amount of low-level
details that need to be provided. To test the practicality of matching logic reachability,
we picked a fragment of C and implemented a proof-of-concept program verifier for it
based on matching logic, named MatchC. Our C fragment includes functions, structures,
pointers and I/O primitives. MatchC uses reachability rules for program specifications
and its implementation is directly based on the proof system in Fig. [3]

MatchC has verified various programs manipulating lists and trees, performing arith-
metic and I/O operations, and implementing sorting algorithms, binary search trees, AVL
trees, and the Schorr-Waite graph marking algorithm. Users only provide the program
specifications (reachability rules) as annotations, in addition to the unavoidable formal-
izations of the used mathematical domains. The rest is automatic. For example, it takes
MatchC less than 2 seconds to verify Schorr-Waite for full correctness. The Matching
Logic web page, http://fsl.cs.uiuc.edu/ml, contains an online interface to run
MatchC, where users can try more than 50 existing examples (or type their own).

Let S be the reachability system giving the language semantics, and let C be the set
of reachability rules corresponding to user-provided specifications (properties that one
wants to verify). MatchC derives the rules in C using the proof system in Fig. 3] It begins
by applying Circularity for each rule in C and reduces the task to deriving sequents of the
form SUC + ¢ = ¢’. To prove them, it symbolically executes ¢ with steps from SUC
searching for a formula that implies ¢’. An SMT solver (Z3 [[18]]) is invoked to solve
the side conditions of the rules. Whenever the reduction semantics rule for a conditional
statement cannot apply because its condition is symbolic, a Case Analysis is applied
and formula split into a disjunction. Rules in C are given priority; thus, if each loop and
function is given a specification then MatchC will always terminate (Z3 cutoff is 5s).

A previous version of MatchC, based on the proof system in [21]], was discussed
in [24]. The new implementation based on the proof system in Fig. [3| will be presented in
detail elsewhere. We here only mean to highlight the practical feasibility of our approach.
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7 Conclusion, Additional Related Work, and Future Work

To our knowledge, the proof system in Fig. 3| is the first of its kind. We can now
define only one semantics of the target language, which is operational and thus well-
understood and comparatively easier to define than an axiomatic semantics. Moreover, it
is testable using existing rewrite engines or functional languages incorporating pattern
matching (e.g., Haskell). For example, we can test it by executing program benchmarks
that compiler testers use, like in [6]]. Then, we take this semantics and use it as is for
program verification. We not only skip completely the tedious step of having to prove the
relationship between an operational and an axiomatic semantics of the same language,
but we can also change the language at will (or fix semantic bugs), without having to
worry about doing that in two different places and maintaining the soundness proofs.
The idea of regarding a program as a specification transformer to analyze programs
in a forwards-style goes back to Floyd in 1967 [§]. However, unlike ours, Floyd’s
rules are language-specific, not executable, and introduce quantifiers. Dynamic logic [2}
10] extends FOL with modal operators to embed program fragments within program
specifications. Like in matching logic, in dynamic logic programs and specifications also
coexist in the same logic. However, unlike in matching logic, one still needs to define an
alternative (dynamic logic) language semantics, with language-specific proof rules.
Leroy and Grall [14]] use the coinductive interpretation of a standard big-step seman-
tics as a semantic foundation both for terminating and for non-terminating evaluation.
Our approach is different in that: (1) our proof system can reason about reachability
between arbitrary formulae, rather than just the evaluation of programs to values, and (2)
although Circularity has a coinductive flavor, we take the inductive interpretation of our
proof system and obtain soundness by appropriate guarding of the circular rules.
Symbolic execution is a popular technique for program analysis and verification,
for example automatic testing and model-checking in Java Path Finder (JPF) [20]], or
strongest postcondition computation in separation logic [3[]. The first six proof rules in
Fig. [3]can be used to symbolically execute a pattern formula ¢. Different techniques
are used to make symbolic execution efficient and scalable for different programming
languages, like path merging in JPF. Our approach is orthogonal, in that our proof system
can be used to justify those techniques based on the language operational semantics.
We believe our proof system can be extended to work with SOS-style conditional
reduction rules. Concurrency and non-determinism were purposely left out; these are
major topics which deserve full attention. General relative completeness and total cor-
rectness also need to be addressed. Like other formal semantics, matching logic can
also be embedded into higher-level formalisms and theorem provers, so that proofs
of relationships to other semantics can be mechanized, and even programs verified.
Ultimately, we would like to have a generic verifier taking an operational semantics as
input, together with an extension allowing users to provide pattern annotations, and to
yield an automated program verifier based on the proof system in Fig.
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