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Abstract. This paper presents an interface for achieving interactive
executions of Maude terms by allowing console and file input/output (I/O)
operations. This interface consists of a Maude API for I/O operations, a
Java-based server offering I/O capabilities, and a communication protocol
between the two implemented using the external objects concept and
Maude’s TCP sockets. This interface was evaluated as part of the K
framework, providing interactive interpreter capabilities for executing
and testing programs for multiple language definitions.

1 Introduction

Formal specifications are often used when designing complex systems. The exe-
cutability aspect of rewriting logic [10], and Maude’s ability to efficiently execute,
explore, and analyze rewrite theories [5] offers an additional level of support when
designing a new system, as it allows the designer to experiment, test, and revise
a specification before deciding to implement it. In certain cases, it even allows for
the specification to become the implementation, eliminating the need of building
another executable model. However, many systems include a human component,
who is allowed/required to provide input to the system for directing its evolution.

To handle interaction, Maude provides the read-eval-print loop in the LOOP-
MODE standard module, but this allows only for very limited user interaction.
Furthermore, according to the Maude manual [4], it “may not be maintained in
future versions, because the support for communication with external objects
makes it possible to develop more general and flexible solutions for dealing
with input/output in future releases.” While Maude’s external objects do al-
low interaction in principle, they are low-level and cannot be used for generic
input/output (I/O) without significant infrastructure external to Maude. Our
contribution is to provide this infrastructure and to develop an easy to use
interface for it within Maude.

Figure 1 presents a high-level view of the I/O interface. It includes a Maude
API for I/O, a Java-based server for handling requests, and a protocol for
delivering queries and transmitting the responses. Using this interface, potentially
any Maude definition can be enhanced with I/O capabilities. A Java wrapper
which runs on top of both Maude and the Java server allows for the user to
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Fig. 1. The architecture of the Maude I/O interface

experience interpreter-like behavior: the console in which the program is started
is the one interactively displaying the output of the program and requesting
input. In addition to console I/O, this new framework also provides support for
file I/O, including both sequential and random-access. Moreover, all of these
actions are allowed to take place potentially anywhere in the term.

The Maude I/O interface and the examples presented in this paper, as well
as the Java I/O server are available online [3, 2]. Additionally, this interface has
been used as part of the K framework tool [1] to obtain interpreter-like behavior
for a number of language definitions, including a definition of the C language [7].

The remainder of this paper is structured as follows. Section 2 describes
the I/O interface from a user point-of-view and illustrates some usage pat-
terns through examples. Section 3 details the implementation, both for the
Maude I/O client and the Java I/O server components. Section 4 reviews related
work and Section 5 concludes.

2 The I/O interface

The basic standard I/O interface exposes several I/O commands for the standard
input and standard output streams defined in the STANDARD-IO module:
op #printString : String → IOResult .
op #readInt() : → IOResult .
op #eof() : → IOResult .

op #printChar : Char → IOResult .
op #readChar() : → IOResult .
op #readToken() : → IOResult .

The resulting sort for these directives is “IOResult” which is defined in the
“IO-INTERFACE” together with several constructors for it:
op #success : → IOResult .
op #string : [ String ] → IOResult .
op #int : Int → IOResult .
op #char : [Char] → IOResult .

op #ioError : String → IOResult .
op #flag : [Bool] → IOResult .
op #eof : → IOResult .

#printString sends an entire string, character by character, to the standard
output stream and returns #success. #readInt reads a token and returns an
#int containing the number read. #eof() tests the standard input stream for
the end of file and returns a #flag result with the argument set appropriately.
#printChar sends one character to the standard output stream and returns
#success. #readChar reads a character from the standard input stream and
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returns a #char containing it or #eof. Finally, #readToken skips the whitespace
from the standard input and then returns a #string containing all characters
read until the next whitespace or the end of file is encountered, or #eof if the
end of file is reached while skipping over whitespace. In case of an I/O error or
a communication error, an #ioError term detailing the error is produced. We
will present their formal definition in the next section, but in the meanwhile,
let us start with some examples.

2.1 Example 1: A straightforward usage of the I/O interface

Let us begin with an example showing how our I/O interface can be used in a
Maude definition. For this we have chosen a very simple expression language,
called EXP. The following module defines its syntax:
mod EXP−SYNTAX is

including INT .
including STRING .
sort Exp .
subsort Int < Exp .
op _+_ : Exp Exp →Exp [ditto ] .
op _∗_ : Exp Exp →Exp [ditto ] .

endm

op _ifnz_ : Exp Exp → Exp [strat(2 0)] .
op nzloop : Exp → Exp [strat (0)] .
op read : String → Exp .
op print : String Exp → Exp .

EXP has integers as basic values and extends two of the integer operations:
addition and multiplication. Moreover, it provides a guarded expression, ifnz,
which evaluates its first argument only if the evaluation of the second one produces
a non-zero value, and a fix-point operator, nzloop, which evaluates its argument as
long as its value is not zero. Note that in the absence of any side effects, the nzloop
construct is rather non-sensical, as its argument would always evaluate to the same
value. However, adding I/O constructs to the language allows for some interesting
(albeit simple) programs to be written in this language, like, for example:

nzloop(print("3∗x+1=",3 ∗ read("x= (0 to stop)? ") + 1) + −1)

The intended meaning of the read construct is that it prompts the string in
the first argument to the user and expects an integer to be entered, returning that
integer. The meaning of print is that it prints the string in the first argument,
then prints the string representation of the second argument (which is expected to
be evaluated to an integer), and then advances the line feed. With this intuition in
mind, the semantics of the program above is that reads a number “x” from the con-
sole and computes and displays “3*x+1” until the number entered is 0 (included).

The module in Figure 2 formally defines the semantics described above. Assum-
ing this module is included in a file named io-test.maude (which also loads the
io-interface.maude file) and that the Maude command for rewriting (with ex-
ternal objects) the above program is written in a file named io-test-cmd.maude,
the following command “executes” the program interactively:

java -jar MaudeIO.jar \
--maudeFile io-test.maude \
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mod EXP−SEMANTICS is
including EXP−SYNTAX . including STANDARD−IO .

eq read(S)
= #printString(S);
#readInt();
read(S) .

eq nzloop(E) = nzloop(E) ifnz E .
eq E ifnz 0 = 0 .
eq E ifnz NzI = E .

eq print(S,I)
= #printString(S + string(I,10) + "\n");
I .

op _;_ : IOResult Exp → Exp
[strat (1 0)] .

eq #success ; E = E .
eq #int(I) ; read(S) = I .

var I : Int . var S : String . var NzI : NzInt . var E : Exp .
endm

Fig. 2. A Straight-forward semantics for the EXP language

--moduleName EXP-SEMANTICS \
--commandFile io-test-cmd.maude

Here is a possible interaction sequence between the user and the tool:
x= (0 to stop)? 5
3*x+1=16
x= (0 to stop)? 10
3*x+1=31
x= (0 to stop)? 7
3*x+1=22
x= (0 to stop)? 0
3*x+1=1
Maude> ==========================================
erewrite in KRUNNER : nzloop(...) .
rewrites: 9766 in 81ms cpu (29403ms real) (120319 rewrites/second)
result Zero: 0

Allowing I/O operations anywhere in the term/program provides a high
degree of flexibility, but at a price. As running multiple I/O commands at the
same time creates race conditions, the user has to provide mechanisms to avoid
these races. One such example is the “_;_” command defined in the semantics
above whose only purpose is to ensure that the printing command completes
before the next command is executed (enforced by the strategy annotation),
resembling the _>>_ sequentialization operator of the Haskell I/O monad [12].

However, parallel I/O commands are still possible in our language, producing
potentially undesirable effects. For example, when executing the program

print("Hello " ,1) + print("World!",2)

a possible result would be the following:
HWoerllldo! 2
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1
Maude> ==========================================
erewrite in KRUNNER : print("Hello ", 1) + print("World!", 2) .
rewrites: 1525 in 9ms cpu (23ms real) (160374 rewrites/second)
result NzNat: 3

While this may be acceptable behavior, it is also possible to avoid it if not. This can
be done by sequentializing the two printing expressions programatically, e.g., by re-
lying on the strategy of ifnz, like “print("World!",2) ifnz print("Hello ",1)”.

2.2 Interaction with Maude’s analysis tools

The definition presented above is very simple, but it can also easily become
quite chaotic, due to its very direct use of I/O (through external objects). It
is also impossible to test it in the absence of the I/O server. However, it is
quite easy to add I/O as a natural extension to specifications which are already
amenable for testing, exploration, and analysis.

mod EXP−SEMANTICS is
including EXP−SYNTAX . including LIST{Int} . including STANDARD−IO .

sort State . op {_,_,_} : Exp List{Int} String → State .

op •_: State  State . op ∗_ : State  State .
eq ∗ State = ∗ • State .

crl •{E1 ∗ E2,In,Out} ⇒ {E1' ∗ E2,In',Out'} if •{E1,In,Out} ⇒ {E1',In ',Out'} .
crl •{E1 + E2,In,Out} ⇒{E1' + E2,In',Out'} if •{E1,In,Out} ⇒ {E1',In ',Out'} .
crl •{print(S,E),In,Out} ⇒ {print(S,E'),In ',Out'}
if •{E,In,Out} ⇒ {E',In ',Out'} .
rl •{read(S),I In,Out} ⇒ {I,In,Out + S} .
rl •{print(S,I ), In,Out} ⇒ {I,In,Out + S + string(I,10) + "\n"} .

crl •{E2 ifnz E1,In,Out} ⇒ {E2 ifnz E1',In ',Out'}
if •{E1,In,Out} ⇒ {E1',In ',Out'} .
rl •{E ifnz 0,In,Out} ⇒ {0,In,Out} . rl •{E ifnz NzI,In,Out} ⇒ {E,In,Out} .
rl •{nzloop(E),In,Out} ⇒ {nzloop(E) ifnz E,In,Out} .

var I : Int . var S : String . var NzI : NzInt . var E E1 E2 E' E1' E2' : Exp .
var In In' : List{Int} . var Out Out' : String . var State : State .

endm

Fig. 3. An SOS-like semantics for EXP in Maude

Figure 3 presents an SOS-style rewriting logic semantics [16, 11] for the EXP
language. To simulate input and output it uses a configuration which, in addition
to the program to be evaluated, contains a list of integers for input and a string
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buffer for output. The small-step semantics is given through the rules for the •_ op-
eration which defines the application of a single computation step in an SOS style.

Given an input list, this semantics can be tested, explored, and even model-
checked using Maude. Moreover, using the proposed I/O interface, it is quite
easy to turn it into an I/O-enabled interpreter. One relatively simple way to
achieve this is by adding a special input constant requestInt and an equation
for requesting an int when the input list becomes empty:
op requestInt : → [ List{Int}] .
rl •{read(S),nil ,Out} ⇒ {read("" ), requestInt ,Out + S} .

The reason for allowing requestInt to be in the kind of List { Int} is because we
want to catch this state at the top level by making the equation for “*” not
applicable. However, to ensure that requestInt is propagated, we need to declare
the variable In' to also be in the kind. Then, we need to add an additional
equation at the top to flush the output buffer and perform the actual read:
eq ∗{E,requestInt,Out} = ∗ •{(#printString(Out) ; #readInt() ; {E,nil,""})} .

These operations are sequenced using the same idea as in the previous definition;
moreover, once an integer is read, it is added to the In list:
op _;_ : IOResult State → State [strat (1 0)] .
eq #success ; State = State .
eq #int(I) ; {E,In,Out} = {E,I In,Out} .

Finally, we might want to add an additional equation to flush the output
buffer at the end of the execution:
eq ∗ •{I,In,Out} = #printString(Out) ; {I,In,""} .

Since in this particular example the communication with the I/O server is
enforced to occur at the top of the term, this semantics guarantees the sequencing
of the print statements above, producing a reasonable output:
Hello 1
World!2
Maude> ==========================================
erewrite in KRUNNER : * {print("Hello ", 1) + print("World!", 2),nil,""} .
rewrites: 1455 in 12ms cpu (51ms real) (114738 rewrites/second)
result State: {3,nil,""}

Moreover, if we exclude the final equation from this semantics (e.g., by putting
it in its own separate module which is only used for I/O interpretation) the
modified semantics still has all the good properties of the non-I/O definition.
That is, if provided with enough input in the initial configuration, the list will
not become empty during the rewrite/search/model-checking process and thus
the I/O-blocking communication commands will not impede the analysis process.

Note: As the I/O operations rely on external objects, they cannot be executed
as part of the rewriting process for verifying a rewriting condition. Therefore
in definitions using conditional rewriting, like the one presented above, the I/O
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request must be pushed outside of the condition context before it can be handled
(we did that above by using the requestInt construct).

2.3 The File I/O Interface

As detailed in the next section, the simple I/O interface exhibited above is imple-
mented in terms of a file I/O interface, defined by the IO-INTERFACE module,
which provides file-handle-parameterized versions of its basic I/O commands:
op #fPrintString : Nat String → IOResult .
op #fReadInt : Nat → IOResult .
op #fEof : Nat → IOResult .

op #fPrintChar : Nat Char → IOResult .
op #fReadChar : Nat →IOResult .
op #fReadToken : Nat →IOResult .

In addition to those, it also provides commands for opening and closing files,

op #open : String → IOResult . — opens a file , mapping it to a #handle
op #reopen : Nat String → IOResult . — maps a different file to the #handle
op #close : Nat → IOResult . — closes the file mapped to the #handle

as well as several lower-level commands for accessing the contents of a file:
op #fReadByte : Nat →IOResult .
op #fPutByte : Nat Nat →IOResult .
op #fPeekByte : Nat → IOResult .

op #flush : Nat → IOResult .
op #tell : Nat → IOResult .
op #seek : Nat Nat → IOResult .

As a simple example of how this more advanced interface could be used, let
us provide an addition to the I/O rules above, which would allow specifying the
input file in the initial configuration. Thus, if an input file is specified, it would be
used instead of the standard input stream whenever the input list becomes empty.

To achieve this we introduce a new construct, stream, a rewriting rule, and
an equation. stream holds a file handle and acts as a potential marker in the
input list to signal where input should be read from. The first rule signals a
request for reading from the file stream, while the second one actually per-
forms the read operation.

op stream : IOResult → List{Int} .

rl •{read(S),stream(#handle(N)),Out}
⇒ {read("" ), requestInt stream(#handle(N)),Out + S} .

eq ∗{E,requestInt stream(#handle(N)),Out}
= ∗ .(#printString(Out) ; #fReadInt(N) ; {E,stream(#handle(N)),""}) .

With only this addition, the program behaves as follows. As long as there is any
integer in the input list, the execution proceeds as without any I/O. When the
list contains no more integers, there are two options: (1) if the list is empty, then
input will be requested from the standard input stream; (2) if the list contains
a stream term, then input will be read from that stream.

For example, assuming the contents of the test.in file are “1 3 5 6 0”,
rewriting with the following command:
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erew * {nzloop(-1 + print("3*x+1=",1 + 3 * read("x= (0 to stop)? "))),
stream(#open("file:test.in#r")),
""} .

will produce the output:
x= (0 to stop)? 3*x+1=4
x= (0 to stop)? 3*x+1=10
x= (0 to stop)? 3*x+1=16
x= (0 to stop)? 3*x+1=19
x= (0 to stop)? 3*x+1=1
Maude> ==========================================
erewrite in KRUNNER : * {..., stream(#open("file:io-test6.exp.in#r")),""} .
rewrites: 11940 in 70ms cpu (130ms real) (169949 rewrites/second)
result State: {0,stream(#handle(3)),""}

The argument of #open contains the usual URI description of a file location
before the “#” symbol, while the “r” after the symbol specifies that the file
should be opened for read-only access.

2.4 Separating the I/O server from Maude
The common usage pattern for the I/O interface presented above is that both
Maude and the Java I/O Server are executed as subprocesses of the same Java
wrapper application. This way, users interact directly with the console they used
to start the execution of the program. Moreover, as this close integration uses
a fresh TCP port for communication, this allows multiple instances of Maude
using I/O to be running at the same time. Unfortunately this hides the Maude
console and inhibits the user from interacting with Maude directly. As sometimes
it might be useful to have both the I/O console and the Maude console available,
let us describe how this can be achieved.

First, one needs to fix the port on which communication takes place. To
do so, it needs to add an equation of the form “eq #TCPPORT = 8001 .” either
in the definition using the I/O interface, or right after the definition of the
#TCPPORT constant in the tcp-interface.maude file (if this behavior is desired
for all definitions). Then, the server must be started first in a console taking
as parameter the same port number:

java -jar ioserver.jar 8001

Once the server is running, the definition can be loaded into Maude in a separate
console. Now we have two consoles, communicating between them. The rewriting
commands can be given using the normal Maude console and the Maude result
will be displayed here, while the I/O messages will be displayed in the console
running the I/O server and I/O input will be requested from there.

3 Implementation

This section comes to give additional details for the implementation of the I/O
interface described in the prior sections.
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As hinted in the introduction and depicted in Figure 1, both the I/O Server
and Maude are wrapped by a Java process which is intended to offer to the user
the console he expects when a program is executed. The wrapper hides some
operations that a casual user would not care about. This wrapper is executed as
a normal Java jar, taking as arguments the file containing the Maude definition,
the name of the main module, and the file containing the rewrite command
to be executed, as exhibited in Section 2.1. The main purpose of this wrapper
is to automatically setup Maude and the I/O Server. An unused TCP port
p is identified and an equation:
eq #TCPPORT = p .

is added automatically in a module KRUNNER, which includes the main module
of the definition. The wrapper also sets up the port number for the I/O Server
which is then started before Maude is launched and the files containing the
modified definition and the rewriting command are loaded.

3.1 The Maude I/O client

#fReadToken
#fPrintString
#fEof
#fOpen
...

IO-INTERFACE

<
<
u
se

s>
>

#tcpRequest
("readbyte#0#")

“success”

#readInt()
#printString
#eof
...

STANDARD-IO

#start
#toSend
#TCPPORT
#containedRequest
...

TCP-CLIENT

#tcpRequest
#errorTCPSyntax
#checkResult
#getTCPData
...

TCP-INTERFACE

“97”

response: 
315#success# 

#tcpRequest
("writebyte#0#97#")

<
<
u
se

s>
>

request: 
315#writebyte#1#97# 

response: 
315#success#97# 

request: 
315#readbyte#0# 

SOCKET

Fig. 4. The architecture of the Maude component of the I/O interface

Figure 4 presents the architecture of the Maude component of the I/O inter-
face and briefly describes the interaction between its various sub-components. The
user interacts with it using either the basic, console-only interface provided by the
STANDARD-IO module (see Section 2.1 and 2.2), or the more comprehensive,
file-based one provided by the IO-INTERFACE module (see Section 2.3). The
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constructs in the STANDARD-IO module desugar into their correspondents from
the IO-INTERFACE module. The IO-INTERFACE module reduces all opera-
tions to simple, byte-based requests, and uses the TCP-INTERFACE function
#tcpRequest as an interface to the I/O Server. This result of communication
is further interpreted by the functions in the IO-INTERFACE module and is
transformed into a term of the IOResult sort which contains a series of constructors
for each specific type of answers, such as #success, #int, #string, and #eof.

As most of the I/O interface was exhibited in the previous section, we will focus
here on the implementation details: how the high-level constructs are expressed
in terms of the lower level ones and how the communication takes place.

The STANDARD-IO module defines handles for the standard input, output,
and error streams:

ops #stdin #stdout #stderr : → Nat .
eq #stdin = 0 . eq #stdout = 1 . eq #stderr = 2 .

These handles are then used to express the STANDARD-IO constructs in terms
of those from the IO-INTERFACE:

eq #eof() = (#fEof(#stdin)) .
eq #readChar() = (#fReadChar(#stdin)) .
eq #printChar(C) = #fPrintChar(#stdout,C) .

eq #readToken() = (#fReadToken(#stdin)) .
eq #readInt() = #fReadInt(#stdin) .
eq #printString(S) = #fPrintString(#stdout,S) .

The IO-INTERFACE module provides functionality for lower level I/O constructs
falling the following three categories. The first category consists of I/O primitives
whose semantics is simply a request to the server:

eq #open(S) = #handle(rat(#tcpRequest("open#" + S + "#"), 10)) .
eq #close(N) = #checkSuccess(#tcpRequest("close#" + string(N,10) + "#")) .
eq #fReadByte(N)
= #byte(rat(#tcpRequest("readbyte#" + string(N,10) + "#"),10)) .

ceq #fPutByte(N,B)
= #checkSuccess(#tcpRequest(

"writebyte#" + string(N,10) + "#" + string(B,10) + "#"))
if B < 256 .

These functions rely on functions like #checkSuccess to translate the string
answer provided by #tcpRequest into a term of the appropriate IOResult type.
Note that these TCP requests have a very regular form, of #-separated pieces
of information, among which the first is the command, and the following are
additional arguments to the command, like, e.g., “open#file:in.txt#r#”.

The second category includes functions that easily desugar into primitives, e.g.:
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eq #fPrintChar(N,C) = #fPutByte(N,ascii(C)) .
eq #fReadChar(N) = #char(#fReadByte(N)) .
eq #fReadInt(N) = #int(#fReadToken(N)) .

op #char : IOResult → IOResult .
eq #char(#byte(B)) = #char(char(B)) .
eq #char(#eof) = #eof .

op #int : IOResult → IOResult .
eq #int(#string(S)) = #int(rat(S,10)) .
eq #int(#eof) = #eof .

Finally, there are the more involved functions like #fPrintString which iterates
over the characters of a string one by one, waiting for the printing of a character
to succeed before printing the next and flushing the output buffer at the end,
eq #fPrintString(N,"") = #flush(N) .
eq #fPrintString(N,S)
= #fPrintString(N,S, #fPrintChar(N,substr(S,0,1))) [owise] .

op #fPrintString : Nat String IOResult → IOResult .
eq #fPrintString(N,S,#success) = #fPrintString(N,substr(S,1,length(S))) .

or like #fReadToken which reads character by character from the file specified
by the handle, skipping over the initial whitespace and then accumulating the
characters read until whitespace is again encountered.

The TCP-INTERFACE module provides functionality for initializing the com-
munication process and extracting the relevant data once the communication
process concludes with a result. The semantics of the #tcpRequest construct is:
eq #tcpRequest(S:String) = #tcpRequest(S:String, counter) .

op #tcpRequest : String [Nat] → String .
eq #tcpRequest(S:String, N:Nat)
= #checkResult(#containedRequest(#start(N:Nat) #toSend(S:String))) .

#tcpRequest creates a object configuration, wrapped by the #containedRequest
construct; this configuration includes a primitive to start the communication
with the server and the request to be sent. #checkResult expects the result to be
either of the form success#data### or of the form fail#reason### and returns
“data” in case of success or an #errorTCPSyntax term otherwise.

The TCP-CLIENT module provides rules for initiating the TCP communication
through a socket, sending a message, waiting for a response, and closing the
connection. First, a fresh id is generated using Maude’s builtin COUNTER
module, and is used to establish a connection with the I/O server using the TCP
sockets interface provided by Maude:
op #start : → Configuration .
op #start : Nat → Configuration .

eq #start = #start(counter) .
op cnum : Nat → Oid .

rl #start(N)
⇒ <> < cnum(N) : Client | state : connecting >

createClientTcpSocket(socketManager, cnum(N), "localhost", #TCPPORT) .
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The #TCPPORT constant is the one mentioned in Section 2.4, being either set
manually if running the I/O server separately from Maude, or automatically
by the Java wrapper.

Once the initial exchange of messages takes place between Maude and the
server, the #toSend message is transformed into a message addressed to the server
and the state of the system becomes sending:
rl < cnum(N) : Client | state : connected, connectedTo: Server, A > #toSend(S)
⇒ < cnum(N) : Client | state : sending, connectedTo: Server, A >

send(Server, cnum(N), (string(N:Nat,10) + "#" + S + "\r\n")) .

Note that the body of the message is prefixed with the number of the client (for
logging and debugging reasons) and is appended with the end-of-line markers
as a message separator. Thus, the complete message being sent to the server
is of the form “23#open#file:in.txt#r#\r\n”.

There are additional rules for continuing the dialogue with the server following
the TCP protocol, but once the communication has finished, the answer is
extracted by the rule below and the header of the message (containing the number
identifying the communication) is removed by the #checkAnswer function:
rl #containedRequest(<> < Me : Client | state: finished, answer: S, A >)
⇒ #checkAnswer(Me, S) .

3.2 The Java I/O server

In this section we discuss the I/O Server architecture and implementation details.
While describing the main components, we will motivate our choices regarding
their design. The purpose of the I/O Server is to implement a socket-based
service for simulating file operations over regular files, standard input, and
standard output. So far it has only been used with Maude as a client, but the
implementation is rather client-independent.

The architecture and data flow of the I/O Server is depicted in Figure 5. The
server has two main components: the communication component, which is respon-
sible for receiving/sending messages, and the resource management component,
which manages resources (files, stdin, stdout, stderr) and operations on them. In
this section, we will refer to them as RequestManager and ResourceManager.

Before describing these components, we will briefly explain the behavior and
capabilities of the I/O Server. First, the complete list of operations currently
accepted by the server is the following:
– open - open a new file
– close - close a file or stream
– readbyte - read a byte
– writebyte - write a byte
– flush - flush the buffer

– reopen - reopen an existent file
– seek - seek a particular location
– position - go to a specific location
– peek - peek a byte
– eof - check end of file

The server receives requests, each request carrying one of the commands
above, and it answers the requests upon executing the corresponding opera-
tion. The requests and answers are formatted as a string which contains data
separated by “#”:
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Fig. 5. The data-flow scheme of the I/O server.

request: 315#writebyte#1#97#
response: 315#success#

The request contains the client id, the operation name followed by the resource
id and operation parameters, if any. For instance in the above request the client
having the id 315 asks the server to write at the standard out stream the byte
corresponding to character “a” (the stdin, stdout and stderr streams have fixed
ids 0, 1, and 2, respectively). The I/O Server generates a fresh id (identifying
the file handle) as response to the client which requests to “open” a new file.
The response usually contains the client id which stands for a weak kind of
authentication, the status of the operation and the result of its execution if exists.

The RequestManager component uses TCP sockets to provide a reliable
point-to-point communication with the client. To be able to handle multiple
request concurrently, we use the Thread Pool pattern. For each request, the
associated command is analyzed and, if found valid, a task is created and queued
for execution. Commands are executed in parallel, each thread being responsible
for executing a command and sending the response to the client. The thread
pool executor (defined in the ThreadPoolExecutor class) registers commands
as members of the abstract class Command which implements the Java Runnable
interface, and assigns them to threads as these become available.

The second component of the I/O Server handles resources and operations
on them. Currently, the ResourceManager can store three types of resources:
random access files, standard input, and standard output. It provides opera-
tions to add, retrieve, or delete a resource. Some operations, for instance peek,
readbyte, seek, and position cannot be applied on the standard output; in such
cases, when operations are not applicable on a specific type of resource, the
ResourceManager throws exceptions to the RequestManager, which in turn will
send to the client a meaningful failure message.

Regarding the implementation, for each resource we have a corresponding
class (ResourceInFile, ResourceOutFile, . . . ) which must extend the abstract
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class Resource. This class contains abstract methods which correspond to com-
mands received by the I/O Server (readbyte(), writebyte(), . . . ). To store
the resources we use the ConcurrentHashMap class which has two highly con-
current properties: writing to it locks only a portion of the map and reads
can generally occur without locking.

4 Related Work

This paper uses a technology similar to that used for developing Mobile Maude [6],
but with a different aim: there sockets communication was used to communicate
between different instances of Maude; here we use a similar mechanism to
communicate with an external I/O server.

The motivation for this work came from our research in programming language
design, namely in our efforts to make the implementation of the K semantic
framework [1, 15] easier to use and experiment with. K [15] is a rewrite-based
executable semantic framework specialized for defining programming languages,
type systems and formal analysis tools. The K tool [1, 17] transforms K definitions
into rewriting logic theories which can be executed, explored and analyzed using
Maude. So far the K tool has been used to give complete definitions to real
languages like C [7] and Scheme [9], along with many educational languages
and a novel rewriting-based program verification logic named matching logic [14,
13]. The I/O interface described in this paper is an integral part of the K
tool and provides I/O capabilities for all K semantics defined using the tool.
Most notably, it has been used to extensively test the K definition of C [7]
against the gcc torture tests [8].

5 Conclusions and Future Work

We have described a methodology and a system for achieving interactive (file)
input/output from within the Maude system. This technology was designed for
modeling, in an executable way, runtime interaction needed in a system. It can
additionally be used for runtime logging or tracing, and provides an easy way of
getting output from a Maude execution. The I/O interface is generic and can easily
be used in potentially any Maude definition. The interface itself is reasonably sta-
ble, as it has been implemented and extensively used as part of the K framework.

This work could serve as a means for experimenting with I/O before the
technology is integrated in Maude directly as a special purpose external object.
As our interface uses URIs, it should be relatively easy to incorporate support
for accessing additional resources such as URLs. Moreover, adding primitives for
locking resources would offer a thread-safe mechanism of accessing the resources.
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