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Abstract

Ordinary software engineers and programmers can easily understand regular pat-
terns, as shown by the immense interest in and the success of scripting languages
like Perl, based essentially on regular expression pattern matching. We believe that
regular expressions provide an elegant and powerful specification language also for
monitoring requirements, because an execution trace of a program is in fact a string
of states. Extended regular expressions (EREs) add complementation to regular
expressions, which brings additional benefits by allowing one to specify patterns
that must not occur during an execution. Complementation gives one the power to
express patterns on strings more compactly. In this paper we present a technique
to generate optimal monitors from EREs. Our monitors are deterministic finite
automata (DFA) and our novel contribution is to generate them using a modern
coalgebraic technique called coinduction. Based on experiments with our imple-
mentation, which can be publicly tested and used over the web, we believe that our
technique is more efficient than the simplistic method based on complementation of
automata which can quickly lead to a highly-exponential state explosion.
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1 Introduction

Regular expressions can express patterns in strings in a compact way. They
proved very useful in practice; many programming/scripting languages like
Perl, Python, Tcl/Tk support regular expressions as core features. Because
of their power to express a rich class of patterns, regular expressions, are used
not only in computer science but also in various other fields, such as molecular
biology [18]. All these applications boast of very efficient implementation of
regular expression pattern matching and/or membership algorithms. More-
over, it has been found that compactness of regular expressions can be in-
creased non-elementarily by adding complementation (¬R) to the usual union
(R1 + R2), concatenation (R1 · R2), and repetition (R∗) operators of regular
expressions. These are known as extended regular expressions (EREs) and
they proved very intuitive and succinct in expressing regular patterns.

Recent trends have shown that the software analysis community is inclin-
ing towards scalable techniques for software verification. Works in [12] merged
temporal logics with testing, hereby getting the benefits of both worlds. The
Temporal Rover tool (TR) and its follower DB Rover [5] are already commer-
cial. In these tools the Java code is instrumented automatically so that it
can check the satisfaction of temporal logic properties at runtime. The MaC
tool [17,22] has been developed to monitor safety properties in interval past
time temporal logics. In [24,25], various algorithms to generate testing au-
tomata from temporal logic formulae, are described. Java PathExplorer [10]
is a runtime verification environment currently under development at NASA
Ames. The Java MultiPathExplorer tool [29] proposes a technique to moni-
tor all equivalent traces that can be extracted from a given execution, thus
increasing the coverage of monitoring. [7,11] present efficient algorithms for
monitoring future time temporal logic formulae, while [13] gives a technique
to synthesize efficient monitors from past time temporal formulae. [27] uses
rewriting to perform runtime monitoring of EREs.

An interesting aspect of EREs is that they can express safety properties
compactly, like those encountered in testing and monitoring. By generat-
ing automata from logical formulae, several of the works above show that
the safety properties expressed by different variants of temporal logics are
subclasses of regular languages. The converse is not true, because there are
regular patterns which cannot be expressed using temporal logics, most no-
toriously those related to counting; e.g., the regular expression (0 · (0 + 1))∗

saying that every other letter is 0 does not admit an equivalent temporal logic
formula. Additionally, EREs tend to be often very natural and intuitive in
expressing requirements. For example, let us try to capture the safety prop-
erty “it should not be the case that in any trace of a traffic light we see green
and then immediately red at any point”. The natural and intuitive way to
express it in ERE is ¬((¬∅) · green · red · (¬∅)), where ∅ is the empty ERE
(no words), so ¬∅ means “anything”.
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Previous approaches to ERE membership testing [14,23,30,21,16] have fo-
cussed on developing techniques that are polynomial in both the size of the
word and the size of the formulae. The best known result in these approaches
is described in [21] where they can check if a word satisfies an ERE in time
O(m ·n2) and space O(m ·m+k ·n2), where m is the size of the ERE, n is the
length of the word, and k is the number of negation/intersection operators.
These algorithms, unfortunately, cannot be used for the purpose of monitor-
ing. This is because they are not incremental. They assume the entire word
is available before their execution. Additionally, their running time and space
requirements are quadratic in the size of the trace. This is unacceptable when
one has a long trace of events and wants to monitor a small ERE, as it is
typically the case. This problem is removed in [27] where traces are checked
against EREs through incremental rewriting. At present, we do not know if
the technique in [27] is optimal or not.

A simple, straightforward, and practical approach is to generate optimal
deterministic finite automata (DFA) from EREs [15]. This process involves the
conversion of each negative sub-component of the ERE to a non-deterministic
finite automaton (NFA), determinization of the NFA into a DFA, comple-
mentation of the DFA, and then its minimization. The algorithm runs in a
bottom-up fashion starting from the innermost negative ERE sub components.
This method, although generates the minimal automata, is too complex and
cumbersome in practice. Its space requirements can be non-elementarily larger
than the initial regular ERE, because negation involves an NFA-to-DFA trans-
lation, which implies an exponential blow-up; since negations can be nested,
the size of such NFAs or DFAs could be highly exponential.

Our approach is to generate the minimal DFA from an ERE using coinduc-
tive techniques. In this paper, the DFA thus generated is called the optimal
monitor for the given ERE. Currently, we are not aware of any other algo-
rithm that does this conversion in a straightforward way. The complexity of
our algorithm seems to be hard to evaluate, because it depends on the size of
the minimal DFA associated to an ERE and we are not aware of any lower
bound results in this direction. However, experiments are very encouraging.
Our implementation, which is available for evaluation on the internet via a
CGI server reachable from http://fsl.cs.uiuc.edu/rv/, rarely took longer
than one second to generate a DFA, and it took only 18 minutes to generate
the minimal 107 state DFA for the ERE in Example 5.3 which was used to
show the exponential space lower bound of ERE monitoring in [27].

In a nutshell, in our approach we use the concept of derivatives of an ERE,
as described in Subsection 2.2. For a given ERE one generates all possible
derivatives of the ERE for all possible sequences of events. The size of this
set of derivatives depends upon the size of the initial ERE. However, several
of these derivative EREs can be equivalent to each other. One can check the
equivalence of EREs using coinductive technique as described in Section 3, that
generates a set of equivalent EREs, called circularities. In Section 4, we show
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how circularities can be used to construct an efficient algorithm that generates
optimal DFAs from EREs. In Section 5, we describe an implementation of this
algorithm and give performance analysis results. We also made available on
the internet a CGI interface to this algorithm.

2 Extended Regular Expressions and Derivatives

In this section we recall extended regular expressions and their derivatives.

2.1 Extended Regular Expressions

Extended regular expressions (ERE) define languages by inductively apply-
ing union (+), concatenation (·), Kleene Closure (∗), intersection (∩), and
complementation (¬). More precisely, for an alphabet E, whose elements are
called events in this paper, an ERE over E is defined as follows, where a ∈ E:

R ::= ∅ | ε | a | R + R | R · R | R∗ | R ∩R | ¬R.

The language defined by an expression R, denoted by L(R), is defined
inductively as

L(∅) = ∅,

L(ε) = {ε},

L(A) = {A},

L(R1 + R2) = L(R1) ∪ L(R2),

L(R1 · R2) = {w1 · w2 | w1 ∈ L(R1) and w2 ∈ L(R2)},

L(R∗) = (L(R))∗,

L(R1 ∩R2) = L(R1) ∩ L(R2),

L(¬R) = Σ∗ \ L(R).

Given an ERE, as defined above using union, concatenation, Kleene Clo-
sure, intersection and complementation, one can translate it into an equivalent
expression that does not have any intersection operation, by applying De Mor-
gan’s Law: R1 ∩R2 = ¬(¬R1 +¬R2). The translation only results in a linear
blowup in size. Therefore, in the rest of the paper we do not consider expres-
sions containing intersection. More precisely, we only consider EREs of the
form

R ::= R + R | R · R | R∗ | ¬R | a | ε | ∅.
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2.2 Derivatives

In this subsection we recall the notion of derivative, or “residual” (see [2,1],
where several interesting properties of derivatives are also presented). It is
based on the idea of “event consumption”, in the sense that an extended reg-
ular expression R and an event a produce another extended regular expression,
denoted R{a}, with the property that for any trace w, aw ∈ R if and only if
w ∈ R{a}.

In the rest of the paper assume defined the typical operators on EREs and
consider that the operator + is associative and commutative and that the
operator · is associative. In other words, reasoning is performed modulo
the equations:

(R1 + R2) + R3 = R1 + (R2 + R3),

R1 + R2 = R2 + R1,

(R1 · R2) · R3 = R1 · (R2 ·R3).

We next consider an operation { } which takes an ERE and an event, and
give several equations which define its operational semantics recursively, on
the structure of regular expressions:

(R1 + R2){a} = R1{a}+ R2{a} (1)

(R1 · R2){a} = (R1{a}) ·R2 + if (ε ∈ R1) then R2{a} else ∅ fi (2)

(R∗){a} = (R{a}) · R∗ (3)

(¬R){a} = ¬(R{a}) (4)

b{a} = if (b == a) then ε else ∅ fi (5)

ε{a} = ∅ (6)

∅{a} = ∅ (7)

The right-hand sides of these equations use operations which we describe
next. “if ( ) then else fi” takes a boolean term and two EREs as
arguments and has the expected meaning defined by two equations:

if (true) then R1 else R2 fi = R1

if (false) then R1 else R2 fi = R2

(8)

(9)

We assume a set of equations that properly define boolean expressions and
reasoning. Boolean expressions include the constants true and false, as well as
the usual connectors ∧ , ∨ , and not. Testing for empty trace membership
(which is used by (2)) can be defined via the following equations:
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ε ∈ (R1 + R2) = (ε ∈ R1) ∨ (ε ∈ R2)

ε ∈ (R1 ·R2) = (ε ∈ R1) ∧ (ε ∈ R2)

ε ∈ (R∗) = true

ε ∈ (¬R) = not(ε ∈ R)

ε ∈ b = false

ε ∈ ε = true

ε ∈ ∅ = false

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The 16 equations above are natural and intuitive. [27] shows that these
equations, when regarded as rewriting rules are terminating and ground
Church-Rosser (modulo associativity and commutativity of + and modulo
associativity of · ), so they can be used as a functional procedure to calcu-
late derivatives. Due to the fact that the 16 equations defining the derivatives
can generate useless terms, in order to keep EREs compact we also propose
defining several simplifying equations, including at least the following:

∅+ R = R,

∅ · R = ∅,

ε · R = R,

R + R = R.

The following result (see, e.g., [27] for a proof) gives a simple procedure,
based on derivatives, to test whether a word belongs to the language of an
ERE:

Theorem 2.1 For any ERE R and any events a, a1, a2, ..., an in A, the
following hold:

1) a1a2...an ∈ L(R{a}) if and only if aa1a2...an ∈ L(R); and

2) a1a2...an ∈ L(R) if and only if ε ∈ R{a1}{a2}...{an}.

3 Hidden Logic and Coinduction

We use circular coinduction, defined rigorously in the context of hidden logics
and implemented in the BOBJ system [26,8,9], to test whether two EREs are
equivalent, that is, if they have the same language. Since the goal of this
paper is to translate an ERE into a minimal DFA, standard techniques for
checking equivalence, such as translating the two expressions into DFAs and
then comparing those, do not make sense in this framework. A particularly
appealing aspect of circular coinduction in the framework of EREs is that it
does not only show that two EREs are equivalent, but also generates a larger
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set of equivalent EREs which will all be used in order to generate the target
DFA.

Hidden logic is a natural extension of algebraic specification which benefits
of a series of generalizations in order to capture various natural notions of
behavioral equivalence found in the literature. It distinguishes visible sorts
for data from hidden sorts for states, with states behaviorally equivalent if and
only if they are indistinguishable under a formally given set of experiments.
To keep the presentation simple and self contained, in this section we define
an oversimplified version of hidden logic together with its associated circular
coinduction proof rule, still general enough to support defining and proving
EREs behaviorally equivalent.

3.1 Algebraic Preliminaries

The reader is assumed familiar with basic equational logic and algebra in
this section. We recall a few notions in order to just make our notational
conventions precise. An S-sorted signature Σ is a set of sorts/types S together
with operational symbols on those, and a Σ-algebra A is a collection of sets
{As | s ∈ S} and a collection of functions appropriately defined on those
sets, one for each operational symbol. Given an S-sorted signature Σ and
an S-indexed set of variables Z, let TΣ(Z) denote the Σ-term algebra over
variables in Z. If V ⊆ S then Σ�V is a V -sorted signature consisting of all
those operations in Σ with sorts entirely in V . We may let σ(X) denote the
term σ(x1, ..., xn) when the number of arguments of σ and their order and
sorts are not important. If only one argument is important, then to simplify
writing we place it at the beginning; for example, σ(t,X) is a term having σ

as root with only variables as arguments except one, and we do not care which
one, which is t. If t is a Σ-term of sort s′ over a special variable ∗ of sort s

and A is a Σ-algebra, then At : As → As′ is the usual interpretation of t in
A.

3.2 Behavioral Equivalence, Satisfaction and Specification

Given disjoint sets V,H called visible and hidden sorts, a hidden (V,H)-
signature, say Σ, is a many sorted (V ∪H)-signature. A hidden subsignature
of Σ is a hidden (V,H)-signature Γ with Γ ⊆ Σ and Γ�V = Σ�V . The data sig-
nature is Σ�V . An operation of visible result not in Σ�V is called an attribute,
and a hidden sorted operation is called a method.

Unless otherwise stated, the rest of this section assumes fixed a hidden
signature Σ with a fixed subsignature Γ. Informally, Σ-algebras are universes
of possible states of a system, i.e., “black boxes,” where one is only concerned
with behavior under experiments with operations in Γ, where an experiment
is an observation of a system attribute after perturbation; this is formalized
below.

A Γ-context for sort s ∈ V ∪H is a term in TΓ({∗ : s}) with one occurrence
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of ∗. A Γ-context of visible result sort is called a Γ-experiment. If c is a
context for sort h and t ∈ TΣ,h then c[t] denotes the term obtained from c by
substituting t for ∗; we may also write c[∗] for the context itself.

Given a hidden Σ-algebra A with a hidden subsignature Γ, for sorts s ∈
(V ∪ H), we define Γ-behavioral equivalence of a, a′ ∈ As by a ≡Γ

Σ a′ iff
Ac(a) = Ac(a

′) for all Γ-experiments c; we may write ≡ instead of ≡Γ
Σ when

Σ and Γ can be inferred from context. We require that all operations in Σ
are compatible with ≡Γ

Σ. Note that behavioral equivalence is the identity on
visible sorts, since the trivial contexts ∗ : v are experiments for all v ∈ V .
A major result in hidden logics, underlying the foundations of coinduction, is
that Γ-behavioral equivalence is the largest equivalence which is identity on
visible sorts and which is compatible with the operations in Γ.

Behavioral satisfaction of equations can now be naturally defined in terms
of behavioral equivalence. A hidden Σ-algebra A Γ-behaviorally satisfies a Σ-
equation (∀X) t = t′, say e, iff for each θ : X → A, θ(t) ≡Γ

Σ θ(t′); in this case
we write A |≡Γ

Σ e. If E is a set of Σ-equations we then write A |≡Γ
Σ E when A

Γ-behaviorally satisfies each Σ-equation in E. We may omit Σ and/or Γ from
|≡Γ

Σ when they are clear.

A behavioral Σ-specification is a triple (Σ, Γ, E) where Σ is a hidden signa-
ture, Γ is a hidden subsignature of Σ, and E is a set of Σ-sentences equations.
Non-data Γ-operations (i.e., in Γ−Σ�V ) are called behavioral. A Σ-algebra A

behaviorally satisfies a behavioral specification B = (Σ, Γ, E) iff A |≡Γ
Σ E, in

which case we write A |≡ B; also B |≡ e iff A |≡ B implies A |≡Γ
Σ e.

EREs can be very naturally defined as a behavioral specification. The
enormous benefit of doing so is that the behavioral inference, including most
importantly coinduction, provide a decision procedure for equivalence of EREs.
[8] shows how standard regular expressions (without negation) can be defined
as a behavioral specification, a BOBJ implementation, and also how BOBJ
with its circular coinductive rewriting algorithm can prove automatically sev-
eral equivalences of regular expressions. Related interesting work can also be
found in [28]. In this paper we extend that to general EREs, generate minimal
observer monitors, and also give several other examples.

Example 3.1 A behavioral specification of EREs defines a set of two visi-
ble sorts V = {Bool , Event}, one hidden sort H = {Ere}, one behavioral
attribute ε ∈ : Ere → Bool and one behavioral method, the derivative,
{ } : Ere × Event → Ere, together with all the other operations in Subsec-

tion 2.1 defining EREs, including the events in E which are defined as visible
constants of sort Event, and all the equations in Subsection 2.2. We call it the
ERE behavioral specification and let BERE denote it.

Since the only behavioral operators are the test for ε membership and
the derivative, it follows that the experiments have exactly the form ε ∈
∗{a1}{a2}...{an}, for any events a1, a2, ..., an. In other words, an experiment
consists of a series of derivations followed by an ε membership test, and there-
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fore two regular expressions are behavioral equivalent if and only if they cannot
be distinguished by such experiments. Notice that the above reasoning applies
within any algebra satisfying the presented behavioral specification. The one
we are interested in is, of course, the free one, whose set carriers contain ex-
actly the extended regular expressions as presented in Subsection 2.1, and the
operations have the obvious interpretations. We informally call it the ERE
algebra.

Letting≡ denote the behavioral equivalence relation generated on the ERE
algebra, then Theorem 2.1 immediately yields the following important result.

Theorem 3.2 If R1 and R2 are two EREs then R1 ≡ R2 if and only if
L(R1) = L(R2).

This theorem allows us to prove equivalence of EREs by making use of
behavioral inference in the ERE behavioral specification, from now on simply
referred to by B, including (especially) circular coinduction. The next section
shows how circular coinduction works and how it can be used to show EREs
equivalent.

3.3 Circular Coinduction as an Inference Rule

In the simplified version of hidden logics defined above, the usual equational
inference rules, i.e., reflexivity, symmetry, transitivity, substitution and con-
gruence [26] are all sound for behavioral satisfaction. However, equational
reasoning can derive only a very limited amount of interesting behavioral
equalities. For that reason, circular coinduction has been developed as a
very powerful automated technique to show behavioral equivalence. We let �

denote the relation being defined by the equational rules plus circular coin-
duction, for deduction from a specification to an equation.

Before we present circular coinduction formally, we give the reader some
intuitions by duality to structural induction. The reader who is only inter-
ested in using the presented procedure or who is not familiar with structural
induction, can skip this paragraph. Inductive proofs show equality of terms
t(x), t′(x) over a given variable x (seen as a constant) by showing t(σ(x))
equals t′(σ(x)) for all σ in a basis, while circular coinduction shows terms t, t′

behaviorally equivalent by showing equivalence of δ(t) and δ(t′) for all behav-
ioral operations δ. Coinduction applies behavioral operations at the top, while
structural induction applies generator/constructor operations at the bottom.
Both induction and circular coinduction assume some “frozen” instances of
t, t′ equal when checking the inductive/coinductive step: for induction, the
terms are frozen at the bottom by replacing the induction variable by a con-
stant, so that no other terms can be placed beneath the induction variable,
while for coinduction, the terms are frozen at the top, so that they cannot be
used as subterms of other terms (with some important but subtle exceptions
which are not needed here; see [9]).

9
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Freezing terms at the top is elegantly handled by a simple trick. Suppose
every specification has a special visible sort b, and for each (hidden or visible)
sort s in the specification, a special operation [ ] : s → b. No equations are
assumed for these operations and no user defined sentence can refer to them;
they are there for technical reasons. Thus, with just the equational inference
rules, for any behavioral specification B and any equation (∀X) t = t′, it is
necessarily the case that B � (∀X) t = t′ iff B � (∀X) [t] = [t′]. The rule
below preserves this property. Let the sort of t, t′ be hidden; then

Circular Coinduction:

B ∪ {(∀X) [t] = [t′]} � (∀X,W ) [δ(t,W )] = [δ(t′,W )], for all appropriate δ ∈ Γ

B � (∀X) t = t′

We call the equation (∀X) [t] = [t′] added to B a circularity; it could just
as well have been called a coinduction hypothesis or a co-hypothesis, but we
find the first name more intuitive because from a coalgebraic point of view,
coinduction is all about finding circularities.

Theorem 3.3 The usual equational inference rules together with Circular

Coinduction are sound. That means that if B � (∀X) t = t′ and sort(t, t′) 6= b,
or if B � (∀X) [t] = [t′], then B |≡ (∀X) t = t′.

Example 3.4 Suppose that we want to show that the EREs (a + b)∗ and
(a∗b∗)∗ admit the same language. By Theorem 3.2, we can instead show that
BERE |≡ (∀∅) (a + b)∗ = (a∗b∗)∗. Notice that a and b are treated as constant
events here; one can also prove the result when a and b are variables, but
one would need to first make use of the theorem of hidden constants [26]. To
simplify writing, we omit the empty quantifier of equations. By the Circular

Coinduction rule, one generates the following three proof obligations

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} � [ε ∈ (a + b)∗] = [ε ∈ (a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} � [(a + b)∗{a}] = [(a∗b∗)∗{a}],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} � [(a + b)∗{b}] = [(a∗b∗)∗{b}].

The first proof task follows immediately by using the equations in B as rewrit-
ing rules, while the other two tasks reduce to

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} � [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗]} � [(a + b)∗] = [b∗(a∗b∗)∗].

By applying Circular Coinduction twice, after simplifying the two obvious proof
tasks stating the ε membership, one gets the following four proof obligations

10
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BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} � [(a + b)∗]{a} = [a∗(a∗b∗)∗{a}],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} � [(a + b)∗]{b} = [a∗(a∗b∗)∗{b}],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} � [(a + b)∗]{a} = [b∗(a∗b∗)∗{a}],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} � [(a + b)∗]{b} = [b∗(a∗b∗)∗{b}],

which, after simplification translate into

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} � [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} � [(a + b)∗] = [b∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} � [(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} � [(a + b)∗] = [b∗(a∗b∗)∗],

Again by applying circular coinduction we get

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} �

[(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗]} �

[(a + b)∗] = [b∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} �

[(a + b)∗] = [a∗(a∗b∗)∗],

BERE ∪ {[(a + b)∗] = [(a∗b∗)∗], [(a + b)∗] = [b∗(a∗b∗)∗], [(a + b)∗] = [a∗(a∗b∗)∗]} �

[(a + b)∗] = [b∗(a∗b∗)∗],

which now follow all immediately. Notice that BOBJ uses the newly added
(to BERE) equations as rewriting rules when it applies its circular coinductive
rewriting algorithm, so the proof above is done slightly differently, but entirely
automatically.

Example 3.5 Suppose now that one wants to show that ¬(a∗b) ≡ ε + a∗ +
(a + b)∗b(a + b)(a + b)∗. One can also do it entirely automatically by circular
coinduction as above, generating the following list of circularities:

[¬(a∗b)] = [ε + a∗ + (a + b)∗b(a + b)(a + b)∗],

[¬(ε)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)(a + b)∗],

[¬(∅)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)∗],

[¬(∅)] = [(a + b)∗b(a + b)(a + b)∗ + (a + b)(a + b)∗ + (a + b)∗].
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Example 3.6 One can also show by circular coinduction that concrete EREs
satisfy systems of guarded equations. This is an interesting but unrelated
subject, so we do not discuss it in depth here. However, we show how easily one
can prove by coinduction that a∗b is the solution of the equation R = a ·R+ b.
This equation can be given by adding a new ERE constant r to BERE , together
with the equations ε ∈ r = false, r{a} = r, and r{b} = ε. Circular Coinduction

applied on the goal r = a∗b generates the proof tasks:

BERE ∪ {[r] = [a∗b]} � [ε ∈ r] = [ε ∈ a∗b],

BERE ∪ {[r] = [a∗b]} � [r{a}] = [a∗b{a}],

BERE ∪ {[r] = [a∗b]} � [r{b}] = [a∗b{b}],

which all follow immediately.

The following says that circular coinduction provides a decision procedure for
equivalence of EREs.

Theorem 3.7 If R1 and R2 are two EREs, then L(R1) = L(R2) if and only
if BERE � R1 = R2. Moreover, since the rules in BERE are ground Church-
Rosser and terminating, circular coinductive rewriting[8,9], which iteratively
rewrites proof tasks to their normal forms followed by a one step coinduction
if needed, gives a decision procedure for ERE equivalence.

4 Generating Minimal DFA Monitors by Coinduction

In this section we show how one can use the set of circularities generated by
applying the circular coinduction rules in order to generate a minimal DFA
from any ERE. This DFA can then be used as an optimal monitor for that
ERE. The main idea here is to associate states in DFA to EREs obtained
by deriving the initial ERE; when a new ERE is generated, it is tested for
equivalence with all the other already generated EREs by using the coinduc-
tive procedure presented in the previous section. A crucial observation which
significantly reduces the complexity of our procedure is that, once an equiva-
lence is proved by circular coinductive rewriting, the entire set of circularities
accumulated represent equivalent EREs. These can be used to later quickly
infer the other equivalences, without having to generate the same circularities
over and over again.

Since BOBJ does not (yet) provide any mechanism to return the set of
circularities accumulated after proving a given behavioral equivalence, we were
unable to use BOBJ to implement our optimal monitor generator. Instead, we
have implemented our own version of coinductive rewriting engine for EREs,
which is described below.

We are given an initial ERE R0 over alphabet A and from that we want
to generate the equivalent minimal DFA D = (S,A, δ, s0, F ), where S is the
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set of states, δ : S × A → S is the transition function, s0 is the initial state,
and F ⊆ S is the set of final states. The coinductive rewriting engine explic-
itly accumulates the proven circularities in a set. The set is initialized to an
empty set at the beginning of the algorithm. It is updated with the accumu-
lated circularities whenever we prove equivalence of two regular expressions
in the algorithm. The algorithm maintains the set of states S in the form
of non-equivalent EREs. At the beginning of the algorithm S is initialized
with a single element, which is the given ERE R0. Next, we generate all the
derivatives of the initial ERE one by one in a depth first manner. A derivative
Rx = R{x} is added to the set S, if the set does not contain any ERE equiv-
alent to the derivative Rx. We then extend the transition function by setting
δ(R, x) = Rx. If an ERE R′ equivalent to the derivative already exists in the
set S, we extend the transition function by setting δ(R, x) = R′. To check if
an ERE equivalent to the derivative Rx already exists in the set S, we sequen-
tially go through all the elements of the set S and try to prove its equivalence
with Rx. In testing the equivalence we first add the set of circularities to the
initial B. Then we invoke the coinductive procedure. If for some ERE R′ ∈ S,
we are able to prove that R′ ≡ Rx i.e B ∪ Eqall ∪ Eqnew � R′ = Rx , then we
add the new equivalences Eqnew, created by the coinductive procedure, to the
set of circularities. Thus we reuse the already proven equivalences in future
proofs.

The derivatives of the initial ERE R0 with respect to all events in the
alphabet A are generated in a depth first fashion. The pseudo code for the
whole algorithm is given in Figure 1.

dfs(R)
begin

foreach x ∈ A do

Rx ← R{x};
if ∃R′ ∈ S such that B ∪ Eqall ∪ Eqnew � R′ = Rx then

δ(R, x) = R′; Eqall ← Eqall ∪ Eqnew

else S ← S ∪ {Rx}; δ(R, x) = Rx; dfs(Rx); fi

endfor

end

Fig. 1. ERE to minimal DFA generation algorithm

In the procedure dfs the set of final states F consists of the EREs from S

which contain ε. This can be tested efficiently using the equations (10-16) in
Subsection 2.2. The DFA generated by the procedure dfs may now contain
some states which are non-final and from which the DFA can never reach a
final state. We remove these redundant states by doing a breadth first search
in backward direction from the final states. This can be done in time linear
in the size of the DFA.
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Theorem 4.1 If D is the DFA generated for a given ERE R by the above
algorithm then

1) L(D) = L(R),

2) D is the minimal DFA accepting L(R).

Proof. Suppose a1a2 . . . an ∈ L(R). Then ε ∈ R{a1}{a2} . . . {an}. If Ri =
R{a1}{a2} . . . {ai} then Ri+1 = Ri{ai+1}. To prove that a1a2 . . . an ∈ L(D),
we use induction to show that for each 1 ≤ i ≤ n, Ri ≡ δ(R, a1a2 . . . ai). For
the base case if R1 ≡ R{a1} then dfs extends the transition function by setting
δ(R, a1) = R. Therefore, R1 ≡ R = δ(R, a1). If R1 6≡ R then dfs extends δ

by setting δ(R, a1) = R1. So R1 ≡ δ(R, a1) holds in this case also. For the
induction step let us assume that Ri ≡ R′ = δ(R, a1a2 . . . ai). If δ(R′, ai+1) =
R′′ then from the dfs procedure we can see that R′′ ≡ R′{ai+1}. However,
Ri{ai+1} ≡ R′{ai+1}. So Ri+1 ≡ R′′ = δ(R′, ai+1) = δ(R, a1a2 . . . ai+1). Also
notice εinRn ≡ δ(R, a1a2 . . . an); this implies that δ(R, a1a2 . . . an) is a final
state and hence a1a2 . . . an ∈ L(D).

Now suppose a1a2 . . . an ∈ L(D). The proof that a1a2 . . . an ∈ L(R) goes
in a similar way by showing that Ri ≡ δ(R, a1, a2 . . . ai). 2

5 Implementation and Evaluation

We have implemented the coinductive rewriting engine in the rewriting spec-
ification language Maude 2.0 [4]. The interested readers can download the
implementation from the website http://fsl.cs.uiuc.edu/rv/. The opera-
tions on extended regular languages that are supported by our implementation
are ~ for negation, * for Kleene Closure, for concatenation, & for
intersection, and + for union in increasing order of precedence. Here, the
intersection operator & is a syntactic sugar and is translated to an ERE
containing union and negation using De Morgan’s Law:

eq R1 & R2 = ~ (~ R1 + ~ R2) .

To evaluate the performance of the algorithm we have generated the minimal
DFA for all possible EREs of size up to 9. Surprisingly, the size of any DFA
for EREs of size up to 9 did not exceed 9. Here the number of states gives the
size of a DFA. The following table shows the performance of our procedure for
the worst EREs of a given size. The code is executed on a Pentium 4 2.4GHz,

14

RV'03, Electronic Notes in Theoretical Computer Science 89(2), pp 226-245. 2003



Sen and Roşu

4 GB RAM linux machine.

Size ERE no. of states in DFA Time (ms) Rewrites

4 ¬ (a b) 4 < 1 863

5 (a ¬ b) * 4 < 1 1370

6 ¬ ((a ¬ b) *) 4 1 1453

7 ¬ (a ¬ a a) 6 1 2261

8 ¬ ((a ¬ b) * b) 7 1 3778

9 ¬ (a ¬ a b) b 9 5 9717

Example 5.1 In particular, for the ERE ¬ (a ¬ a b) b the generated minimal
DFA is given in Figure 2.

4

3

a

5b

6

b

a

7

b

8
a

0

b

1

a
b

2

a

b

a

b

aa

bb

a

Fig. 2. ¬ (a ¬ a b) b

Example 5.2 The ERE ¬ ((¬ empty) (green red) (¬ empty) ) states the
safety property that it should not be the case that in any trace of a traffic
light we see green and red consecutively at any point. The set of events
are assumed to be { green, red, yellow}. We think that this is the most
intuitive and natural expression for this safety property. The implementation
took 1ms and 1663 rewrites to generate the minimal DFA with 2 states. The
DFA is given in Figure 3.

However for large EREs the algorithm may take a long time to generate
a minimal DFA. The size of the generated DFA may grow non-elementarily
in the worst case. We generated DFAs for some complex EREs of larger sizes
and got relatively promising results. One such sample result is as follows.

Example 5.3 Let us consider the following ERE of size 110
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0

red

yellow

1
green

yellow

green

Fig. 3. ¬ ((¬ empty) (green red) (¬ empty))

(¬$)∗$(¬$)∗∩
(0 + 1 + #)∗#(

((0 + 1)0#(0 + 1 + #)∗$(0 + 1)0 + (0 + 1)1#(0 + 1 + #)∗$(0 + 1)1)
∩(0(0 + 1)#(0 + 1 + #)∗$0(0 + 1) + 1(0 + 1)#(0 + 1 + #)∗$1(0 + 1))).

This ERE accepts the language L2, where

Lk = {σ#w#σ′$w | w ∈ {0, 1}k and σ, σ′ ∈ {0, 1, #}∗}

The language Lk was first introduced in [3] to show the power of alterna-
tion, used in [27] to show an exponential lower bound on ERE monitoring, and
in [19,20] to show the lower bounds for model checking. Our implementation
took almost 18 minutes to generate the minimal DFA of size 107 and in the
process it performed 1,374,089,220 rewrites.

The above example shows that the procedure can take a large amount of
time and space to generate DFAs for large EREs. To avoid the computation
associated with the generation of minimal DFA we plan to maintain a database
of EREs and their corresponding minimal DFAs on the internet. Whenever
someone wants to generate the minimal DFA for a given ERE he/she can look
up the internet database for the minimal DFA. If the ERE and the corre-
sponding DFA exists in the database he/she can retrieve the corresponding
DFA and use it as a monitor. Otherwise, he/she can generate the minimal
DFA for the ERE and submit it to the internet database to create a new en-
try. The database will check the equivalence of the submitted ERE and the
corresponding minimal DFA and insert it in the database. In this way one
can avoid the computation of generating minimal DFA if it is already done by
someone else. To further reduce the computation, circularities could also be
stored in the database.

5.1 Online Monitor Generation and Visualization

We have extended our implementation to create an internet server for
optimal monitor generation that can be accessed from the the url
http://fsl.cs.uiuc.edu/rv/. Given an ERE the server generates the opti-
mal DFA monitor for a user. The user submits the ERE through a web based
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form. A CGI script handling the web form takes the submitted ERE as an
input, invokes the Maude implementation to generate the minimal DFA, and
presents it to the user either as a graphical or a textual representation. To
generate the graphical representation of the DFA we are currently using the
GraphViz tool [6].

6 Conclusion and Future Work

We presented a new technique to generate optimal monitors for extended
regular expressions, which avoids the traditional technique based on comple-
mentation of automata, that we think is quite complex and not necessary.
Instead, we have considered the (co)algebraic definition of EREs and applied
coinductive inferencing techniques in an innovative way to generate the mini-
mal DFA. Our approach to store already proven equivalences has resulted into
a very efficient and straightforward algorithm to generate minimal DFA. We
have evaluated our implementation on several hundreds EREs and have got
promising results in terms of running time. Finally we have installed a server
on the internet which can generate the optimal DFA for a given ERE.

At least two major contributions have been made. Firstly, we have shown
that coinduction is a viable and quite practical method to prove equivalence
of extended regular expressions. Previously this was done only for regular
expressions without complementation. Secondly, building on the coinduc-
tive technique, we have devised an algorithm to generate minimal DFAs from
EREs. At present we have no bound for the size of the optimal DFA, but
we know for sure that the DFAs we generate are indeed optimal. However
we know that the size of an optimal DFA is bounded by some exponential in
the size of the ERE. As future work, it seems interesting to investigate the
size of minimal DFAs generated from EREs, and also to apply our coinductive
techniques to generate monitors for other logics, such as temporal logics.
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[10] K. Havelund and G. Roşu. Java PathExplorer – A Runtime Verification Tool.
In The 6th International Symposium on Artificial Intelligence, Robotics and
Automation in Space: A New Space Odyssey, Montreal, Canada, June 18 - 21,
2001.
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[12] K. Havelund and G. Roşu. Runtime Verification 2002, volume 70(4) of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2002.
Proceedings of a Computer Aided Verification (CAV’02) satellite workshop.
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